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ABSTRACT 

 

The discovery of acoustic cavitation phenomenon is an 

important role in the design of a wide range of devices handling 

liquids and it has led to a renewed interest in the bubble 

dynamics in a sound field. In this study, the nonlinear 

behaviour of individual gas bubble in liquid under the action of 

ultrasound fields has been analysed, and simulated results of 

formation and collapse of a bubble have been provided.  

The characterization of acoustic cavitation bubbles under 

the influence of periodic pressure field, e.g., the motion of the 

bubble surface, pressure, temperature and density fields inside 

the bubble have been investigated and the results are compared 

with experimental data. The numerically calculated results 

reveal that the assumption of polytropic approximation inside 

the bubble predicts that a radius-time curve does not fit to the 

observed data. Also, the results indicate that the pressure 

gradient and the heat transfer inside the bubble and across the 

bubble surface play a major role to predict the extreme 

conditions associated with the bubble collapse.    

    

INTRODUCTION 
  

The study on dynamics of the acoustic cavitation 

phenomenon, by means of numerical investigations or via 

experimental studies, is important for the development of many 

applications, and is considered to have significant role in 

different areas of science and technology including various 

industrial processes, sonochemistry acoustics, hydraulics and 

medicine. Several experimental techniques have been tested 

and various numerical models have been developed to 

characterize the dynamics of bubble oscillation in an ultrasonic 

acoustic field [1,2]. The purpose is to improve the 

understanding of interaction between the various physical 

processes involved.  

In many cases, the shapes of the cavitation bubbles are 

believed to be spherical in an acoustic field in liquid because 

they are very tiny and the effect of surface tension plays an 

important role [3]. In particular, Kameda and Matsumoto [4] 

observed experimentally the radial motion of a spherical air 

bubble in acoustic fields where highly viscous silicon oil was 

used.  

Fujiwara [5], analyzed theoretically the nonlinear oscillation of 

a bubble in compressible hydraulic oils subjected to a periodic 

pulsating pressure. According to the numerical calculations, the 

effect of compressibility of the liquid on the oscillation of a 

bubble was clarified. The effect of compressibility is 

appreciable when the amplitude is large. 

Kwak et al. [6,7], studied Sonoluminescence (SL), i.e., the 

phenomenon associated with the collapse of bubbles oscillating 

under an ultrasonic pressure field, by solving the continuity, 

momentum, and energy equations for the gas inside the bubble 

analytically. Heat transfer in the liquid layer adjacent to the 

bubble surface was considered in their analysis. For 

Sonoluminescence (SL), the gas temperature after the shock 

focusing had been found to be 7000-44000 K, depending on the 

equilibrium bubble radius and the driving amplitude of 

ultrasound. 

Sochard et al. [8], studied the dynamics of a gas-vapor bubble 

in a liquid subjected to an ultrasound field.  A simulation was 

carried out assuming pressure uniformity of the internal 

pressure and perfect gas law for the gas-vapour mixture. At the 

maximum compression of the bubble, all the reactions of 

dissociation which can occur are assumed to be at 

thermodynamic equilibrium. It was proved that, in order to 

predict the extreme conditions associated with a collapse, the 

bubble dynamics must take into account the heat transfer inside 

the bubble and across the interface.  

Yasui [9], created a new model of bubble dynamics in order to 

investigate the single bubble sonoluminescense. The physical 

situation was that of a single spherical bubble in liquid water 

irradiated by an ultrasonic wave. The contents of the bubble 

were non-condensable gas (air) and water vapor. The pressure 

inside the bubble was assumed to be spatially uniform. The 

315

mailto:ali.alhelfi@energy.lth.se


    

calculated results from the numerical simulation of bubble 

oscillations revealed that the liquid temperature at the bubble 

surface increase considerably at the collapse due to thermal 

conduction from the heat in the interior of the bubble.  

Hisanobu et al. [10], investigated numerically the radial motion 

of a spherical gas-vapor bubble in an acoustic field. The model 

includes the effect of spatial distribution of temperature inside 

the bubble and assumes uniform pressure for the bubble 

content. The small amplitude bubble oscillation in a 

hydrothermal system was simulated. The results showed that, 

for small amplitudes the spatial uniformity of pressure was 

valid. 

Kim et al. [11], estimated the temperature and pressure fields 

generated by a collapsing bubble of microsize in a liquid under 

the action of an acoustic field and considering the heat transfer 

through the bubble surface neglecting mass transfer. An 

analytical model used for the simulation consists of solution for 

the Navier-Stokes equations inside the bubble and for the liquid 

adjacent to the bubble. The model was used to study the 

oscillation of a Xenon bubble in a sulfuric acid solution. The 

results showed that, high temperature and pressure appeared 

due to the collapsing micro bubbles.  

Kim and Kwak [12], predicted the motion of a bubble under 

ultrasound field by an analytical model consisting of a set of 

Navier-Stokes equations for the gas inside a spherical bubble 

and Navier-Stokes equations for the liquid surrounding the 

bubble. The results showed that, the heat transfer inside the 

bubble and in the liquid layer plays a major role in the bubble 

behavior. Also, the results showed that the mass transfer 

through the interface does not affect the bubble motion. The 

calculations were performed for an argon bubble of 13 μm 

driven by an acoustic field with a frequency of 28.5 kHz and a 

pressure amplitude of 1.42 bar in an aqueous solution of 

sulfuric acid. Around the collapse point, the maximum bubble 

surface acceleration was 1.2 ×10
10

 m/s
2
, the temperature at the 

bubble center was 9300 K and the pressure at the bubble center 

was 1034 bar. 

Kawashima and Kameda [13], developed a mathematical model 

to simulate the radial motion of cavitation bubbles. The model 

contained non-condensable gas and vapor. The temperature and 

gas concentration distribution of bubble interior as well as 

exterior were considerd, and the Rayleigh-Plasset equation was 

used to describe the time-dependent bubble radius. The 

pressure in the bubble was assumed to be uniform in space. The 

results showed that, the growth rate was very sensitive to the 

initial bubble radius, ambient pressure and liquid temperature. 

Lim et al. [14], the dynamics of a Xenon bubble  with initial 

radius R=15 µm driven by an ultrasonic waves with a 

frequency 37.8 kHz and amplitude of 1.5 bar in aqueous 

sulfuric acid solution was investigated, taking into account the 

heat transfer inside the bubble and through the bubble surface. 

In their studied, a set of solutions of the Navier-Stokes 

equations for the gas inside the bubble and for the liquid 

adjacent to the bubble surface was used to treat properly the 

heat transfer process for the oscillating bubble under 

ultrasound.  The results showed that, the polytropic relation, 

which has been used for the process of pressure change cannot 

properly treat heat transfer involving the oscillating bubble 

under ultrasound.  

In this work, an enhanced numerical model is developed to 

study the acoustic cavitation phenomenon and the enhancement 

concerns taking both the pressure and temperature gradients 

inside the bubble as well as heat transfer through the bubble 

surface into account. This is very important to obtain the 

temperature of the liquid surrounding the bubble surface. 

NOMENCLATURE 
 
c [m/s] Speed of sound in the liquid  

D [m2/s] Thermal diffusivity 

F [kHz] Acoustic frequency  

H [J/kg] Enthalpy at the bubble surface  

P
 

[bar] Pressure  

r [m] Radial distance from the center of the bubble 

R [m] Radius of the bubble  

t [s] Time  

T [K] Temperature 

u [m/s] Gas Velocity inside the bubble  

 
Special characters 

γ [-] Specific heat ratio 

λ [W/m.K] Thermal conductivity  

µ [N.s/m2] Viscosity  

ρ [kg/m3] Density  

σ [N/m] Surface tension  

ω [rad/s] Angular frequency  

∞ [-] Ambient liquid medium 

 

Superscripts 

.  Refer to first time derivatives 

..  Refer to second time derivatives 

 

Subscripts 
A  Acoustic 

bo  The values at the bubble center 

g  Gas 

L  Liquid 

o  Equilibrium values 

PROBLEM DESCRIPTION 
 

A single bubble which has a spherical geometry with initial 

radius Ro containing a gas is considered to interact with an 

acoustic wave within a static, infinite, viscous and compressible 

liquid. The bubble and the liquid are originally in equilibrium at 

a temperature To and pressure Po at the interface of the bubble, 

and then the bubble begins to oscillate under ultrasound wave 

action.  

Due to the applied acoustic pressure the bubble motion 

becomes nonlinear [15], as represented in Figure 1. 
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Figure 1 Radius-time curve of a cavitating bubble. The 

bubble is driven by a sinusoidal acoustic field [16] 

MATHEMATICAL FORMULATIONS 
 

The most common approach to understand the radial motion 

of a bubble within a static, infinite, viscous and compressible 

liquid is to solve the well-known Keller-Kolodner equation. 
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where R is the bubble radius, c speed of sound in the liquid, 

R is the bubble surface velocity, R  is the bubble surface 

acceleration, PL is the liquid pressure at the bubble surface and 

P∞ is pressure far from the bubble.  

A force balance on the bubble surface is now considered. 

The pressure PL(R) is written as taking the surface tension and 

the liquid viscosity into account [17]: 
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At infinity the pressure far from the bubble is denoted by P∞ 

and is given by, 
 

tPPP Ao sin
                                                                  (3)  

                                                                                     

where  
 

F 2  
 

where Po is the hydrostatic pressure, PA  is the time dependent 

acoustic pressure, ω is the angular frequency, and F is the 

acoustic frequency. 

1. CASE 1: POLYTROPIC APPROXIMATION  
 

There are many investigations based on this polytropic 

approximation. A usual simplification is carried out by 

assuming uniform pressure and temperature inside the bubble. 

In this case study, the governing equations for the gas inside the 

bubble are replaced by the polytropic relations for pressure and 

temperature as follows; 

The uniform internal pressure is then linked to the bubble 

radius by, 
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where Ro is the initial bubble radius, k is the polytropic 

exponent, and Pgo is the initial internal pressure of the gas 

inside the bubble. 
 

oogo RPP 2                                                                   (5) 

 

where Po hydrostatic pressure in the liquid, σ is the surface 

tension. 

The internal temperature inside the bubble is given by, 
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Kameda and Matsumoto [4] showed significant 

discrepancies between the polytropic theory and experimental 

data for an oscillating bubble under the action of ultrasound. 

They stated that “the polytropic approximation has a serious 

limitation for many problems, because it cannot correctly 

describe the thermal behavior of the bubble interior. Indeed, we 

have a considerable spatial non-uniformity of the temperature 

in the bubble, which needs to be taken into account”.  

Consequently, different models have been proposed for 

more accurate calculations of the bubble content by replacing 

the polytropic model, as highlighted below. 

2. CASE 2: UNIFORM PRESSURE MODEL 
 

The model studied is based on two main assumptions, the 

pressure gradient inside the bubble is neglected   0/  rP and 

the gas inside the bubble behaves as a perfect gas. By using 

these assumptions, the continuity and energy equations are 

combined to obtain an exact expression for the gas velocity 

distribution inside the bubble in terms of the temperature 

gradient and this is given as [18,19],    
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By applying the velocity boundary condition ( Ru  at r=R) for 

equation (7) the time dependent pressure term is obtained as, 
 

 

    




















 Rp

r

T

Rdt

dP

R

 1
3                               (8) 

 

The energy equation inside the bubble with spherical 

symmetry is written in the following form [19], 
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where r is the radial distance from the center of the bubble, T , 

P are the gas temperature and pressure respectively, u is the gas 

velocity, γ is the specific heat ratio, λ is the  thermal 

conductivity of the gas inside the bubble.  
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The thermal conductivity of the gas inside the bubble is 

assumed to follow [20]: 
   

BAT                                                                        (10) 
                      

where the constants in equation (10) for air are, 

A=5.528×10
-5

 W/m K
2
 and B=0.01165 W/m K 

 

In this case the heat transfer between the bubble and the 

surrounding liquid is considered, so the energy equation of the 

liquid is required, and is given as [21], 
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where DL is the liquid thermal diffusivity, and TL is the 

temperature of the liquid at a distance r from the bubble center.   

 3. CASE 3: VARIABLE PRESSURE MODEL 
 

The dynamics of a gas bubble in a liquid is strongly related 

to the pressure of the gas inside it. Basically, this quantity must 

be calculated from the solutions of the conservation equations 

inside and outside the bubble coupled together by suitable 

boundary conditions at the bubble-liquid interface.  This task is 

very complex and can only be solved analytically for small-

amplitude motion in which the equations can be linearized [22]. 

In introduction section, different models were presented to 

improve and give more comprehensive understanding of the 

bubble dynamics.  Furthermore, Wu and Robert, [23] and Moss 

et al. [24] performed numerical simulations of the energy 

equation in addition to the mass and momentum equations for 

the gas inside the bubble with spherical symmetry. However, 

the heat transfer inside the bubble and in the liquid layer at the 

bubble surface was not considered in their study. In the recent 

study by Kwak [25] an analytical model was developed 

consisting of a set of Navier-Stokes equations for the gas inside 

a spherical bubble and an analytical treatment for the Navier-

Stokes equations for the liquid surrounding the bubble.  

 In the present study an enhanced numerical model is 

developed to study the acoustic cavitation phenomenon and the 

enhancement takes into account the pressure and temperature 

gradient inside the bubble, as well as heat transfer through the 

bubble surface. This is very important to obtain the temperature 

of the liquid surrounding the bubble surface. 

The gas density and the radially dependent velocity 

distribution inside the bubble imposed in Ref. [25] are given as, 
 

robg                                                                    (12) 
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where 
g is the gas density inside the bubble, 

bo is the gas 

density at the bubble center , and 
r the radially dependent gas 

density. 

The gas pressure inside the bubble can be obtained by 

solving the momentum equation for the gas inside the bubble 

with the density and velocity profiles given above.  
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where Pbo is the gas pressure at the bubble center. 

Continuity and momentum equations for the bubble content 

are replaced by Eqs. (13) and (14), respectively. 

The energy equation of the gas inside the bubble may be 

written in the following form [13],  
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where r is the radial distance from the center of the bubble, u is 

the gas velocity, T temperature of the gas inside the bubble, P 

pressure of the gas inside the bubble, λ is the  thermal 

conductivity of the gas inside the bubble expressed by Eq. (10), 

and γ is the specific heat ratio. 

To complete the system of equations, the bubble surface 

motion equation is required, i.e., Eq. (1). Also, the liquid 

temperature on the external side of the bubble surface is 

assumed to vary during the oscillations, so the energy equation 

for the liquid surrounding the bubble, i.e., Eq. (11) as modified 

previously, is required to complete the set of equations. 

NUMERICAL SOLUTION METHOD 
 

 In the present work, a numerical solution method is 

performed for the systems of equations modified previously. 

The systems of equations required to be solved consist of 

ordinary and partial differential equations, which are both 

nonlinear and time dependent equations. A fourth order Runge-

Kutta algorithm is applied to solve the ordinary differential 

equations, and more details regarding this method can be found 

in Ref. [26]. One the other hand, the Finite Difference Method 

(FDM) is employed to solve the partial differential equations. 

This method has been one of the most widely used to solve 

several physical problems [27].   

In order to determine a radius versus time behavior and 

other characteristics of the bubble, the constants c, ω, PA, Po, 

To, F, µ, and σ must be known. Numerical calculations are 

performed for a gas (air) bubble with an equilibrium radius Ro 

of 8.5µm driven by an acoustic field with a frequency of 26.5 

kHz and amplitude of 1.075 bar, in a liquid (water) at the 

conditions To=20°C and Po=1 bar. The calculations start from 

time t = 0 s with the initial condition that R = Ro and 0R , for 

a gas bubble in liquid with physical properties ρ = 998.2 kg/m
3
, 

c=1482 m/s,  σ =7.275E-02 N/m and µ=1.003E-03 Ns/m
2
. 
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RESULTS AND DISCUSSION 
 

The present bubble dynamics model and a simpler adiabatic 

one are compared.  

From the graphs in Figure 2 it is clearly illustrated that the 

acoustic pressure amplitude has a great influence on the bubble 

dynamics. It is observed that the bubble starts to grow 

immediately and begins to oscillate in a nonlinear manner due 

to the action of periodic acoustic pressure. Also, it can be seen 

that, during the rarefaction phase of the sound field the bubble 

grows. As the sound field turns compressive, the bubble may 

oscillate. Subsequently, the bubble can oscillate with low 

amplitude on a very short time scale. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 Comparison of radius-time behavior for the three 

cases of study 

  Case 1: Polytropic approximation 

Case 2: Uniform pressure model 

Case 3: Variable pressure model 

 

The major variables in the acoustic cavitation phenomenon are 

the temperature and pressure produced by the collapsing bubble 

of microsize in the liquid in the ultrasonic field. So, the 

temperature-time variation and pressure-time variation for the 

three cases are given in Figures 3 and 4. 

For all cases high temperatures and pressures are predicted 

during compression as can be seen in the figures above. In case 

1, the assumption of polytropic behavior of the gas inside the 

bubble at the minimum bubble radius predicts maximum values 

of pressure and temperature of 122 bar and 1065.2 K, 

respectively. In case 2, the assumption of uniform pressure and 

variable temperature inside the bubble at minimum bubble 

radius predicts pressure and temperature maximum values of 

1042 bar and 3075.5 K, respectively, while in case 3 for the 

assumption of variable pressure and temperature inside the 

bubble, the pressure and temperature reach the maximum 

values of 398 bar and 2234.5 K, respectively.  
      

  

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Figure 3 The temperature inside the bubble as a function of 

time  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4 The pressure inside the bubble as a function of time 

(logarithmic vertical axis)  

 

Several factors affect the pressure of the gas inside the 

bubble, and the dominating forces in the liquid near the bubble 

surface are the surface tension, the viscous force, the 

hydrostatic pressure, and the time dependent acoustic pressure. 

Thus the velocity of the bubble surface plays an important role 

in the bubble dynamics. The velocity and acceleration of the 

bubble surface for the three cases are given in Figures 5 and 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 The bubble surface velocity as a function of time  
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Figure 6 The bubble surface acceleration as a function of time  

 

The physical properties of the bubble content are assumed to be 

variable with time so the gas density behaviour inside the 

bubble shown in Figure 7.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7 The gas density inside the bubble as a function of 

time  

 

For polytropic approximation presented in case study 1, a 

general simplification is adapted by assuming no heat transfer 

inside the bubble as well as no heat transfer between the bubble 

and the surrounding liquid. Additionally, incorporation of an 

energy balance enables a study of the effect of liquid 

temperature as shown in Figure 8 for case 2 and 3. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 The liquid temperature at the bubble surface as a 

function of time 

VALIDATION OF NUMERICAL MODELS 
 

Comparing the results of case 1, case 2 and case 3 along 

with the observed one reveals that, the assumption of uniform 

pressure and temperature inside the bubble to predict the 

radius-time behavior is not close to the experimental results.  

Figure 9 shows the calculated radius-time behavior for the 

three case studies for an air bubble of Ro=8.5 µm at PA=1.075 

bar and F=26.5 kHz in water along with the observed one 

obtained by Löfstedt et al. [28]. The experimental data of 

bubble radius behaviour under ultrasound were obtained by 

light scattering and the accuracy of the measurement was not 

indicated.     

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 9 Comparison of calculated radius-time behaviour for 

the three cases of study with experimental data by          

Löfstedt et al. [28] 

 

In order to give the model greater reliability, the previous 

comparisons were limited to the radius-time behavior only, 

while the pressure and temperature inside the bubble during 

collapse, which represent the most important parameters, were 

not considered. Thus, another comparison of the calculated 

results of case 2 and case 3 with experimental results is 

conducted but for an argon bubble of RO=13 µm under the 

action of an acoustic field of PA=1.42 bar and F=28.5 kHz in a 

sulfuric acid solution. The experimental results include the 

values of pressure and temperature inside the bubble during the 

collapse. The observed data was obtained originally by 

Flannigan et al. [29, 30] by standard tools of plasma diagnostics 

applied to the observed argon emission inside the cavitating 

bubble. The experimental error in the measured temperature 

was 5%. The temperature and pressure fields calculated as a 

function of time inside the bubble during the collapse phase are 

given in Figures 10 and 11.  
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Figure 10 The time dependent gas temperature at the bubble 

center during the collapse phase  

 

The value of the peak temperature during collapse for the 

case of variable pressure and temperature inside the bubble is 

10085 K, which is closer to the observed value 10000 K. On 

the other hand the peak temperature for the case of uniform 

pressure and variable temperature inside the bubble is 16155 K, 

which is quite different from the observed values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 The time dependent gas pressure at the bubble center 

during the collapse phase 

 

Also, there is a large difference in pressure predictions 

between the two cases. The value of the peak pressure inside 

the bubble during collapse for variable pressure model is 1023 

bar, and that is not too far away from the observed value which 

is 1104 bar. The peak pressure for uniform pressure model is 

2786 bar, which is far from the observed value. 

The results reveal that, the predictions model based on the 

assumption of variable pressure inside the bubble are closer to 

the experimental results than those of a uniform pressure 

assumption. Accordingly this model represents the best 

assumption.  

 
 
 
 

CONCLUSIONS 
 

Models for the numerical calculations of bubble growth and 

collapse under the action of an acoustic field for different 

assumption of pressure and temperature inside the bubble are 

developed and implemented to study the bubble dynamics.  

The calculated radius-time behavior based on the 

assumption of polytropic approximation does not fit to the 

experimental results and lead to the predictions of pressure, 

temperature, density, bubble surface velocity, and acceleration 

which are less than the predictions of the assumptions of 

uniform and variable pressure models. This means that 

neglecting the thermal conduction inside and outside the bubble 

has a considerable effect on the bubble dynamics.  

Also, the results reveal that the pressure gradient inside the 

bubble has a considerable effect on bubble dynamics. 

Predictions of model based on the assumption of variable 

pressure inside the bubble are closer to the experimental results 

than those of uniform pressure assumptions. 
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