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ABSTRACT 
This paper addresses the numerical simulation of thermal 

conductivity of composite material. A Lattice Monte Caro 
method is used in the analysis of two-dimensional two-
component models with different inclusions, including circular 
inclusion, elliptical inclusion, square inclusion, random-
generated circular inclusions. Through simulation on these 
models, relationships among phase fraction of low conductivity 
phase (B phase), ratio of thermal conductivities of two phases 
(B and A) and relative effective thermal conductivities are 
obtained. Also, thermal conductivity of porous silicon with 
porosity of 26% is predicted and excellent agreements are 
achieved when compared with experimental results. Finally, 
research on thermal conductivity of sintered porous nickel is 
carried out. Microstructure image which is obtained with 
scanning electron microscope (SEM) is digitized by image 
processing method. The results exhibit a good agreement with 
experimental results in literature. 

 
INTRODUCTION 

A composite is a material having two or more distinct 
constituents or phases [1], which processes many excellent 
thermal and mechanical properties, such as large heat capacity, 
significantly-reduced or enhanced thermal conductivity, and 
high strength. Due to these fascinating properties, in the past 
few decades composite material has been extensive utilized as 
thermoelectric material [2-4], heat sink[5], heat insulation, 
phase change energy storage material [6-9], fiber reinforced 
composite material [10-11].  

    As an important parameter of composite material, thermal 
conductivity has been a hot research topic recently, which is no 
longer an inherent property of the material itself after the 
appearance of composite [12]. However, experimental 

measurement on thermal conductivity of composite has many 
disadvantages, for instance, high-cost and time consuming. 
Thus, methods of predicting thermal conductivity of composite 
have been developing rapidly recently.   

Ben-Amoz [13] discussed effective thermal properties of 
two-phase solids. Rio [14] proposed approximate calculation 
formula for the conductivity of a two-component material 
based on reciprocity theorem and the results agree well with 
experimental results. When phase fraction is smaller than 0.1 or 
larger than 0.9, good results would be obtained using Maxwell 
equation. Samantray[15] studied the effective thermal 
conductivity of two phase composite and put forward that 
different models should be employed based on effective 
thermal conductivity of matrix phase and dispersed phase. 
Wang [16] simulated the structure of multiphase composite 
with random generation method and then they obtained the 
effective thermal conductivity after using Lattice Boltzmann to 
solve energy transport equation. 

In this work, a recent developed Lattice Monte Carlo (LMC) 
is used to simulate thermal conductivity of two-phase 
composite. LMC method is a simulation method based on 
Fick’s Law or Einstein equation which has been proven as an 
excellent method to solve a variety of heat and mass diffusion 
problems [17-20]. 

 
METHOD 

   In Lattice Monte Carlo method, physical model is scaled 
into lattice and thermal diffusion is simulated by virtual particle. 
This kind of particle represents extreme small but finite amount 
of energy which would jump from one node in the lattice to 
another. Its jump direction is selected randomly and whether 
the particle would jump is constricted by jump probability . 
Jump probability is selected according to thermal diffusion of 
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constituents or phases. Two random numbers are generated to 
select a particle and its jump direction. The jump probability is 
calculated according to target node and origin node of the 
thermal diffusion, which would be compared with a random 
number. If jump probability is larger than this random number, 
the particle jumps successfully and coordinates would be 
updated and calculation time would increase by one time unit. 
Otherwise only calculation time increases. 

           

Fig.1 Periodic boundary condition for LMC 

 

Fig.2 Schematic of displacement for a particle after 6 times 
jumping in 2D 5x5 lattice 

100x100x100  
  In the simulation process, a large number of particles would 

be released to the lattice and calculation time should be large 

enough to guarantee accuracy. There are 100x100 lattices in 

present computation domain, that is, there are 1 million 

particles in our calculation. In order to guarantee accuracy, each 

particle must at least jump 50,000 times at each shifting. 

Moreover, in order to eliminate stochastic error, the calculation 

is repeated 10 times for each working condition. Additionally, 

periodic boundary condition is employed in this paper, that is, 

when a particle passes through one face of the calculation 

domain, it reappears on the opposite face with the same 

direction, just as shown in Fig.1. Finally, displacement of each 

particle R would be obtained to determine displacement square, 

and Fig.2 is schematically shown the displacement for a 

particle after 6 times jumping in 2D 5x5 lattice. Then the mean 

of displacement square under large particle number pN  can be 

calculated. Einstein equation (1) is used to calculate thermal 

diffusion effD . 

2

eff =
2 d t

R
D

 
                                （1） 

    Where, effD  is effective diffusion coefficient; 2R   is mean 

of displacement square under large particle number pN ; d 

represents dimension（d=1, 2, 3）; here d equals 2 for two 

dimension; t is time unit, and here is total times of particle 

jumping.. 

    Then we can obtain effective thermal conductivity after 

knowing effective density and effective heat capacity of 

composite. For simplification, we let 1 ii C . To improve 

accuracy, every case in this paper is calculated ten times and the 

mean of these values are obtained. 

 

RESULTS AND DISCUSSION 

   In literature [21], case of Fig.5 in chapter3.2 is that circular 

inclusion is located in the middle of square lattice. To justify 

accuracy, we conducted a same simulation. The results are 

compared with that in the literature, just as Fig.3 shown. It can 

be seen that the two curves coincide, which means our 

simulation has excellent accuracy. 

 
Fig.3 Relative effective thermal conductivity and B phase 

fraction when 1.0/ AB   
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  Different composites have different microstructures and 

microstructures, for example shape and size, exert a significant 

effect on their thermal conductivity. Thus, different inclusions, 

including circular, elliptical, square, random-generated circular 

ones, are studied to explore effect of phase fraction on relative 

effective thermal conductivities. Relationships between relative 

effective thermal conductivity and phase fraction with various 

shape inclusions are obtained. Meanwhile, effect of ratio of BA 

phase thermal conductivity on relative effective thermal 

conductivity is considered. 

  Fig.4 indicates the effect of B phase fraction on relative 

effective thermal conductivity when ratio of BA phase thermal 

conductivities
 B A 

 is 0.1、0.01、0.001. It is shown that 

relative effective thermal conductivity deceases with increase 

of B phase fraction and the curves of three relative effective 

thermal conductivities coincide when B phase fraction ranges 

from 0 to 0.3. The reason is that ratio of two phases thermal 

conductivities has little effect on relative effective thermal 

conductivity when doping amount is not so large. When B 

phase fraction rises, influence of inclusion becomes dominant 

increasingly. Ratio of phase fractions affects relative effective 

thermal conductivity increasingly. The decrease speed of 

composite with 1.0/ AB   is smaller than its counterparts 

of composite with 01.0/ AB   and 0.001. When B phase 

fraction reaches 4/ ， namely 0.7854, circular inclusion 

divides matrix material into four parts. Relative effective 

thermal conductivity would decrease significantly in this 

situation.  

 
Fig.4. Relative effective thermal conductivity and B phase 

fraction with various ratios of thermal conductivity 

 

As shown in Fig.4, ratio of major axis and minor axis of the 

ellipse is 2. When B phase fraction ranges from 0 to 0.1, the 

three curves coincide. This range is smaller than that of circular 

inclusion because inclusion would divide matrix material into 

two parts with a smaller B phase fraction. Additionally, effect 

of ratio of BA phase thermal conductivities appears at a smaller 

B phase fraction. Relative effective thermal conductivity 

with 1.0/ AB  is larger than those with 01.0/ AB   

and 0.001 from where B phase fraction is 0.1. 

 
Fig.4. Relative effective thermal conductivity and B phase 

fraction with various ratios of thermal conductivity  

  To further explore the effect of inclusion dividing matrix on 

relative effective thermal conductivity, ellipse inclusion model 

with constant major axis and mutative minor axis is built.   
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Simulation of relative effective thermal conductivity is 

performed when B phase fraction ranges from0.1 to 4/ .  

    We can see from Fig.4, ratio of BA thermal conductivities 

would affect relative effective thermal conductivity 

significantly when B phase fraction is 0.1. The relative 

effective thermal conductivity with 1.0/ AB   would be 0.1 

larger than those of the other two. Compared with ellipse with 

ratio of major axis and minor axis of 2, relative effective 

thermal conductivity decreases more when B phase fraction 

changes from 0 to 0.1. Result with circular inclusion decreases 

by 0.13, and result with ellipse with ratio of major axis and 

minor axis of 2 falls by 0.16 while result with another ellipse 

goes down by 0.23. When 01.0/ AB   and 0.001, this 

change becomes 0.34. One reason may be that the inclusion 

divides matrix material into halves; then vertical particle would 

get caught in inclusion and mean of particle displacement 

square would decrease significantly. 

    When B phase fraction is between 0.1 and  4 , relative 

effective thermal conductivity exhibits a linear relationship 

with B phase fraction and relative effective thermal 

conductivities with 1.0/ AB  , 0.01 and 0.001 fall evenly 

with slope of -0.86.  

 

Fig.4. Relative effective thermal conductivity and B phase 

fraction with various ratios of thermal conductivity  

   As Fig.5 shown, relative effective thermal conductivity 

changes evenly. Relative effective thermal conductivity curves 

with 01.0/ AB   and 0.001 almost coincide, which 

indicates that change of AB  /  exerts little influence on 

relative effective thermal conductivity when AB  /  is smaller 

than 0.01.  

 

Fig.5. Relative effective thermal conductivity and B phase 

fraction with various ratios of thermal conductivity  

2.2.4 Model with random-generated circular inclusions 

    To simulate the randomness of particle’s size and position in 

composite, circular inclusions are generated randomly by 

computer. It can be seen from Fig.6 that eight inclusions are 

generated in 100x100 lattices. The circle center positions and 

radii are generated randomly. B phase fractions in Fig.6 from 

left to right are 0.1, 0.3496 and 0.6136, respectively. Here we 

calculated cases with B phase fraction changing from0.1 to 

0.6136，meanwhile effect of ratio of BA thermal conductivity 

on relative effective thermal conductivity is also studied.  

 

Fig.6. Model with random-generated circular inclusions 

    As Fig.7 shown, X axis is logarithmic coordinate. When 

1.0/ AB  , AB  /  has an apparent effect on relative 
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effective thermal conductivity while this effect disappear 

when 01.0/ AB  . Relative effective thermal conductivity 

decreases with increase of B phase fraction evenly. 

 

Fig.7. Relative effective thermal conductivity and ratio of BA 

thermal conductivity with different B phase fraction 

    Fig.8 depicts the relationship of relative effective thermal 

conductivity and B phase fraction with different AB  / . 

Composite’s relative effective thermal conductivity exhibits a 

linear relationship with B phase fraction, namely relative 

effective thermal conductivity decreases when B phase fraction 

increases. The larger B phase fraction is, the more significant 

effect AB  /  has on relative effective thermal conductivity, 

making relative effective thermal conductivity to decrease more. 

The reason is that when B phase accounts for a large proportion 

of composite, change of thermal conductivity of dominant part 

would significantly affect thermal conductivity of composite 

if AB  /  changes.  

    For 01.0/ AB   and 0.001, relative effective thermal 

conductivity decreases to 0.2 when B phase fraction is0.6136. 

Also, it decreases to 0.3 in case of 1.0/ AB  . Relative 

effective thermal conductivity decreases significantly through 

adding inclusions into matrix material. 

Fig.8. Relative effective thermal conductivity and B phase 

fraction with different ratios of BA thermal conductivity 

2.3 Thermal conductivity of porous composite 

2.3.1Thermal conductivity of porous silicon 

    When bulk silicon is made into porous silicon, phonon in 

porous material would reflect or refract on the surface of cavity, 

which results in the decrease of mean free path of phonon and 

then the decrease of thermal conductivity. At the same time, 

porous silicon’s electrical conductivity changes little from bulk 

silicon to porous silicon, so thermoelectric efficiency would be 

greatly enlarged. In this case, prediction of thermal 

conductivity of porous silicon is meaningful and critical. 

Table1 gives parameters which would be used in calculation. 

Table1：physical parameters of bulk silicon  

 
Density

（Kg/m3）

Heat capacity

（J/(Kg*K)） 

Thermal 

conductivity

（W/

（m*k））

Silicon

（300K）
2329 705 148 

    Compared with silicon’s thermal conductivity, air’s thermal 

conductivity is negligible. Also, radiation can be neglected 

when temperature is lower than ambient. Finally, convective 
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heat transfer in small volume can be ignored. Thus, boundary 

condition of porous silicon’s cavity wall can be simplified as 

adiabatic boundary, which means phonons only transport in 

silicon material. When phonons move to cavity wall, they 

would be reflected back. Based on Einstein Equation, diffusion 

coefficient of porous silicon (Deff) can be obtained by LMC 

simulation.  

SiSi

Si
Si C

D






，

effeff

eff
eff C

D






                   （2） 

According to formula (2), we can get the following formula: 

Si

eff
BSieff D

D
 )1( 

 

                     （3） 

    Where, Dsi is thermal diffusion coefficient of bulk 

silicon, s i is thermal conductivity of bulk silicon, B refers to 

porosity of porous silicon. 

    The porous silicon’s porosity that this paper is used is 26%. 

Models with circular, rectangular, ellipse random-generated 

circular inclusions are simulated and porous silicon’s relative 

effective thermal conductivity is got. Relative effective thermal 

conductivity is defined as porous silicon’s thermal conductivity 

divided by bulk silicon’s thermal conductivity at a certain 

temperature. The results are shown as Fig.9. 

    We can see from Fig.9, rectangle, random-generated circle, 

circle, ellipse represent LMC results with temperature in the 

range of 125K to 300K. Russell and Eucken stand for the 

results in literature [22], which are obtained using Russell 

Formula、Maxwell-Eucken Formula. 10um represents 

experimental results in literature [22]. As shown in Fig.9, all four 

LMC results are closer to experimental results than those of 

empirical formula（Russell Formula、Maxwell-Eucken 

Formula）. Notably, results of models with circle and ellipse 

inclusions almost coincide with experimental results. 

 

Fig.9. Porous silicon’s relative effective thermal conductivity 

and temperature 

2.3.2 Thermal conductivity of sintered porous nickel 

    Fig.10 is the SEM microstructure image of sintered porous 

silicon. The white part is nickel framework while the black part 

is air. 

 

Fig.10. SEM image of sintered porous nickel 

    The SEM image can be transferred into grayscale image by 

Matlab. A threshold value is set to turn grayscale image into 

binary image. Porosity (66%) can be measured by weighing 

sample. Through changing threshold value, porosity can be fit 

into 66%. Because periodic boundary is employed and nickel is 

connected in the boundary area, we define the outer boundary 

pixels as nickel. The binary image is as Fig.11 shown. 

2019



   

 

Fig.11. Binary image with porosity of 66% (400x400 pixels) 

The physical parameters of nickel and air are given below. 

Table 2： physical parameters of nickel 

 Density

（Kg/m3） 

Heat capacity

（J/(Kg*K)） 

Thermal 

conductivity

（W/

（m*k）） 

Nickel 8908 440 90.7 

Air 1.184 1005 0.0257 

    Based on Einstein Equation, diffusion coefficient of porous 

nickel (Deff) can be obtained by LMC simulation. 

   
NiNi

Ni
Ni C

D






    ，
effeff

eff
eff C

D






                （4） 

    Then, effective density and effective heat capacity can be 

obtained using the following formula. 

airairBSiBNiNiBeffeff CCC  )1()1( 
               （5） 

    Where, NiD is thermal diffusion coefficient of bulk nickel, 

Ni is thermal conductivity of bulk nickel, B is nickel’s 

volume fraction. Ni and air are densities of nickel and air 

respectively; NiC and airC are heat capacities of nickel and air 

respectively. 

    Then, we can get thermal conductivity of porous nickel: 

 

NiNi

Si

eff
SiairairBNiNiB

eff C

D

D
CC






)1( 


              

（6） 

Table3. LMC simulation result and experimental results 

in literature [23] 

 LMC Mo[23] K& 

B[23]

K& 

B[23] 

Porosity 0.613 0.557 0.61 0.53 

Cavity 

Diameter(um) 

2 2 0.65 0.52 

Thermal 

conductivity 

W/(m*k) 

5.188 5.90 3.73 4.08 

    It can be seen from Table3 that LMC simulation result 

reaches excellent agreement with experimental results.  

3. Conclusion 

    This paper addresses the numerical simulation of thermal 

conductivity of composite material. A Lattice Monte Caro 

method is used in the analysis of two-dimensional two-

component models with different shape inclusions, including 

circle, ellipse, rectangle, random-generated circle. Through 

LMC simulation, relationships among relative effective thermal 

conductivity, ratio of BA thermal conductivity, B phase 

fraction are obtained. Then thermal conductivities of porous 

silicon and sintered porous nickel are predicted and excellent 

agreements are achieved with experimental results. 
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