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ABSTRACT 
Hydraulic turbines are turbo machines which produce 

electricity from hydraulic energy. Francis type turbines are the 
most common one in use today. The design of these turbines 
requires high engineering effort since each turbine is tailor 
made due to different head and discharge values. Therefore 
each component of the turbine is designed specifically. During 
the last decades, Computational Fluid Dynamics (CFD) has 
become very useful tool to predict hydraulic machinery 
performance and save time and money for designers. This 
paper describes a design methodology to optimize a Francis 
turbine by integrating theoretical and experimental 
fundamentals of hydraulic machines and commercial CFD 
codes. 

 
INTRODUCTION 

Hydropower, the largest source of renewable energy, is a 
clean and very efficient way to generate electricity in Turkey 
and many countries around the world. The machines which 
produce electricity from hydraulic energy are the hydraulic 
turbines. Francis turbines are the most popular one among all 
other hydraulic turbines due to their vast operating regime and 
high efficiencies up to 95% [1]. Each turbine is unique to the 
project because of different head and discharge, therefore each 
component of the turbine of a power plant must be designed 
specifically. The traditional design is carried out by means of 
experiments, measurements and model tests, which require 
significant money and time. With increasing computational 
power during the last two decades, Computational Fluid 
Dynamics (CFD) has become an important tool for the design 
of turbo machines. Complex, turbulent, three-dimensional 
flows occurring in the entire turbine can be solved by CFD 
which is a cheap and fast way to predict turbine performance 
other than model tests. With the help of CFD, modifications in 
the design can be implemented by analyzing the flow pattern 
inside turbine components in detail. Turbine efficiency and 

power can be increased and undesired situations such as not 
matching flow angle, vortex or cavitation in the fluid domain 
can be avoided by making necessary modifications in the 
components. However, in order to check the reliability of the 
optimized turbine, the results should be validated with model 
tests. CFD has been an additional element in the design process 
which saves money and time [2-4]. 

NOMENCLATURE 
 
H [m] Net available head 
Q [m3/s] Net available flow rate 
n [rpm] Rotational speed 
D [m] Diameter 
L [m] Length 
R [m] Radius 
V [m/s] Velocity 
K [m2/s] The factor of velocity moment  
b [m] Width  
g [m/s2] Gravity 
h [m] Head 
c [-] Recovery factor 
 
Special characters 
α [°] Flow angle 
θ [°] Cone angle  
φ [°] Coverage angle 
 
Subscripts 
g  Guide vane 
s  Stay vane  
r  Radial direction 
u  Circumferential direction 
st,out  Stay ring outlet 
0  At the wicket gate 
1  Inlet 
2  Outlet 
c  Cone 
d  Diffuser 
l  Loss  
p  pressure 
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