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ABSTRACT

Transient thermosolutal convection in a cubical enclosure
having finite thickness walls filled with air, submitted to
temperature and  concentration gradients, is studied
numerically. In the first series of numerical simulations, the
influence of Rayleigh number on fluid motion and heat and

mass transfer (Br =1, Ra =10* —105) is analyzed. The second
series deals with the effect of the dimensionless time
(Br=1, Ra=5-10°, 7 =1-100). In the third series the
influence of the conductivity ratio on heat and mass transfer
(Br =1, Ra=10°, k, =0.037, 0.0037) on heat and mass

transfer is investigated. Comprehensive Nusselt and Sherwood
numbers data are presented as functions of the governing
parameters mentioned above.

INTRODUCTION

Natural convection heat and mass transfer in enclosures has
numerous industrial and geophysical applications, such as
petrochemical process, fuel cells, pollutant dispersions in soil
and underground water, design of heat exchangers, channel
type solar energy collectors, and thermo-protection systems.
Therefore, the characteristics of natural convection heat and
mass transfer are relatively important. Convection flows driven
by temperature and concentration differences is studied
extensively [1-8]. Sezai and Mohamad [1], presented results
for three-dimensional flow in a cubic cavity filled with porous
medium and subjected to opposing thermal and concentration
gradients. Mohamad and Bennacer [2] numerically analyzed
three-dimensional flow in an enclosure heated differently and
stably stratified in imposed vertically. Their results revealed
that the difference between two- and three-dimensional models
is not that significant as far as heat and mass transfer is
concerned. Jer-Huan Jang et al. [3] numerically examined the
natural convection heat and mass transfer along a vertical wavy
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surface by using Prandtl’s transposition theorem and
investigated the effect of irregular surfaces on the
characteristics of natural convection heat and mass transfer. It
was found that increasing Schmidt number the skin-friction
coefficient and local Nusselt number decrease but local
Sherwood number increases. Chourasia and Goswami [4]
numerically simulated the three-dimensional transport
phenomena in heat and mass generating porous medium cooled
under natural convective environment. They found that CFD is
a useful tool for obtaining accurate solutions of engineering
problems such as modelling the transport phenomena in
partially permeable packages. Chakraborty and Dutta [5] used a
three-dimensional transient mathematical model to study the
interaction of double-diffusive natural convection and non-
equilibrium solidification of a binary mixture in a cubic
enclosure cooled from a side. It was found that the three-
dimensional transport leads to a global macrosegregation
resulting in composition variations across the longitudinal
planes, which cannot be captured by two-dimensional
mathematical models. Papanicolaou and Belessiotis [6]
numerically studied the double-diffusive natural convection in
an asymmetric trapezoidal enclosure with vertical temperature
and concentration gradients. Fu-Yun Zhao ct al. [7]
investigated the double-diffusive convective flow of a binary
mixture in a porous enclosure subject to localized heating and
salting from one side. The physical model for the momentum
conservation equation makes use of the Darcy-Brinkman
cquation, which allows the non-slip boundary condition on a
solid wall to be satisfied. It was found that overall heat and
mass transfer rates tend to be minimized in the transitional
range to the point of flow reversal for any segment location.
Alloui et al. [8] used the Darcy model with the Boussinesq
approximation to study natural convection in a porous medium
saturated by a binary fluid. It was found that both unicellular
and bicellular symmetrical circulations are possible for
centrally located heated element.



NOMENCLATURE
Bi=hL/k [-] Biot number
(G =G
Br= —ﬁ o e _") [-] buoyancy ratio
ﬂr (Th; - 7:1 )
C [-] concentration of pollutant
(8 [-] contaminant source concentration
el [-] initial concentration
D [m?s] mass diffusivity
g [m/s?] gravitational acceleration
h [W/m'K] heat transfer coefficient
k [W/mK] thermal conductivity
ki, =k [k, [] thermal conductivity ratio
L [m] length of the gas cavity
Nu [-] Nusselt number
Pr=v/a [-] Prandtl number
y mo_ 3
Ra— gh (1, - 1)L [-] Rayleigh number
va
Sc=v/D - Schmidt number

[-]
Sh [-] Sherwood number
Sk=eoL (L, ~1,) [k [

hs

Stark number

T 1K] temperature
T [K] heat source temperature
7 [K] initial temperature
UV W A dimensionless velocity components in

X, ¥, Z directions
b [m] Cartesian coordinates
XYZ [-] dimensionless Cartesian coordinates

Greek symbols

@ [mz/s] thermal diffusivity
a,=a, fo; [-] thermal diffusivity ratio
B ] coefficient of volumetric expansion
¢ due to concentration change
i coefficient of volumetric expansion
Br K] ature charee
due to temperature change
£ [-] specific cmissitivity factor
¢ =T/(T,-T,) [ temperaturc parameter
&=L / (Tm *'TU) [ temperature parameter
e [-] dimensionless temperature
v [m/s] kinematic viscosity
& [-] dimensionless concentration
o [W/m’K*] Stephen-Boltzman constant
T [-] dimensionless time
dimensionless vector potential
s, W, O [ o
functions
dimensionless components of
Q.0,0 [ ..
vorticity vector
Subscripts
cs contaminant source
e environment
f: fluid
hs heat source
5 solid
0 initial

Most of the previous studies about enclosures aren’t
concerned with the three-dimensional cavity having finite
thickness walls in conditions of convective-radiative heat
exchange with an environment. Conjugate natural convection
heat and mass transfer in Newtonian fluid in three-dimensional
enclosure having finite thickness walls has not been well
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investigated. The objective of this study is to examine
numerically the three-dimensional transient double-diffusive
natural convection in an enclosure having finite thickness walls.

MATHEMATICAL MODEL
In this investigation, it is assumed that the domain of
interest (Figure 1) is a three-dimensional enclosure bounded by

calid walle with a finite thicknecs and caonductivity The heat
SO0 Waus Wiul a e WiekKness and Conaucuvity, 1140 1nldi

and mass sources located at the bottom of the cavity are kept at
constant temperature and concentration respectively. The
convective-radiative heat exchange with an environment is
modeled on one of the external sides (x = 0). Other external
sides are assumed to be adiabatic and impermeable. It is
assumed in the analysis that the thermophysical properties of
the solid walls and of the fluid are independent of temperature,
and the flow is laminar. The fluid is Newtonian, viscous, heat-
conducting, and the Boussinesq approximation is valid. The
fluid motion and heat and mass transfer in the cavity are
assumed to be three-dimensional. The interactions between heat
and mass exchanges known under the name of Soret and
Dufour effects are supposed to be negligible. The viscous
dissipation is negligible too.

4

X
Figure 1 Schematic diagram of the physical situation:
1 —walls; 2 — gas; 3 — heat source; 4 — contaminant source

Based on the above-mentioned assumptions, the governing
equations in the dimensionless variables such as vector
potential functions, vorticity vector and temperature [9-11] for
the fluid can be written as follows:
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and energy equation for the solid walls can be written

)

00 o, (PO e &6
ax* or* ez’

— + +
0t ~Ra Pr

The dimensionless variables were obtained by using the
characteristic scales L, \/L/gﬁj. (T,-T,) . \/gﬁy, (B.-T)L,

(]}15 71})) 2 (Ccs 7C0)’ \/gﬂl (Ths 7]-0)/[’ 2 \/gﬁT (T;b _7;))L3
corresponding  to  length, time, velocity, temperature,
concentration, vorticity, and vector potential functions,
respectively.
The initial and boundary conditions for the formulated
problem (1)-(9) are as follows.
Initial conditions are

Y (X,Y,2,00=0, Q(X,Y,Z,0)=
¥, (X,Y,Z,0)=0, Q(X,Y,Z,0)
¥.(X,Y,2,0)=0, 2.(X,Y,2,0)

0
0
0

O(X,Y,Z,0)=¢(X.Y,Z,0)=0, except temperature for heat
source on which @ =1 and concentration for contaminant
source where £ =1 during the whole process time.

Boundary conditions are
. convective-radiative heat exchange with an environment
is modeled at the wall X=0
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co . . 3
= Bz((~)—6~)c)+5k-[((~) *& ) —5;‘}

. at the rest external walls for the equation (9) heat
insulation conditions are set

a@ ~ ~r! ~r xr2 rr =3 —_
=0 X=X, X=Y¥,X¥*=7
ox
o at the solid-fluid interfaces parallel to plane XZ:
Y 2 . o » 6, =6, )
Sy T Ty T 6@52760@
oY oY

U at the solid-fluid interfaces parallel to plane XY:

O =06

O '?Z? [ o,

T ez ez ks O T

oz /4

. at the solid-fluid interfaces parallel to plane YZ:
0. =0

L A

ax v e |y

ox S o0X

Equations (1)-(9) with corresponding initial and boundary
conditions have been solved by means of finite differences
method [10-12].

The locally one-dimensional scheme of Samarskii [12] was
used to solve energy equations (7) and (9), contaminant
transport equation (8) and equations for the vorticity vector
components (1)~(3). In this scheme, the solution to a three-
dimensional problem reduces to sequential solution to the one-
dimensional systems. The resulting sct of discretized cquations
for each variable was solved by a line-by-line procedure,
combining the tri-diagonal matrix algorithm (TDMA). An
implicit difference scheme was used. Equations (4)—(6) were
solved by a point successive over-relaxation method (PSOR)
with an optimum relaxation factor. The mesh size is chosen on
the basis of a compromise between running time and accuracy

af the reanilte
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Validation of Numerical Models

The accuracy of the program developed by the authors was
checked by preparing the benchmark solutions both for non-
conjugate and conjugate problems. In case of non-conjugate
analysis, well-known benchmark of 3D natural convection in a
differently heated cubical enclosure with adiabatic side walls
[13, 14]. These benchmark results are shown in Table 1.



Table 1
Variations of average Nusselt number of heat wall with
Rayleigh number (the first benchmark)

Present
Ra [13] [14] uniform grid
50x50x50 | 60x60x60
10* | 2.055 | 2.100 2.075 2071
10° | 4339 | 4361 4.494 4.446
10° | 8.656 | 8.770 9.719 9.432

For conjugate problem benchmark solution has been
obtained by using results [15]. Table 2 shows the good
comparison between the results.

Table 3
Variations of average Nusselt number with Grashof number
and heat conductivity ratio

Gr| k| [15] | [16] | Present
1 | 087 0877 0872

10° 5 1.02 1.023
10 1.04 1.046

1 | 208 | 2082 2116

10° 5 342 3.421
10| 372 3781
287 | 2.843] 3.002

105 5 | 589 6.306
10 | 681 6.935

It can be seen in Tables 1, 2 that the agreement is good,
with a maximum deviation of 8% in the mean Nusselt number.

RESULTS AND DISCUSSION

Numerical analysis of the boundary value problem (1)-(9)
has been carried out at following dimensionless complexes
such as 10°<Ra<10°, Pr=07, k,=0.037, 0.0037,
Br=0,1 describing the basic modes of conjugate double-
diffusive natural convection in enclosures. Qur main attention
was paid to the effect of the heat source strength (Ra), the
contaminant source strength (Br), the dimensionless time and
the thermal conductivity ratio on formation of the thermal
modes and hydrodynamic structures in the domain of interes
(Figure 1).

Velocity fields and isosurfaces of the vertical velocity
component at Br=1, k, =0.0037, =100 and diffcrent

values of the Rayleigh number are presented in Figure 2 and
Figure 3.

The increase in the Rayleigh number (Figure 3} leads both
to change of convective flow intensity in the gas cavity and to
modification of the velocity field in the center of the domain of
interest. Figure 3 shows appearance of the additional
descending flows in the center which are caused both influence
of heat and contaminant sources, and effect of an environment.

+
Jeblivifenii

Natural convection

Figure 2
velocity component at Ra =10*

Velocity field and isosurface of the vertical

Figure 3
velocity component at Ra = 10

Velocity field and isosurface of the vertical

Temperature isosurfaces and contours at Br=1,
k, =0.0037, =100 and different values of the Rayleigh

i

mirmhar ara nracantad in Fionre 4 and Figneas §
numocr are presenics m rigure £ angG figure o,

The increase in heat source temperature in 10 times is
reflected in modification of the temperature ficld in the gas
cavity. Formation of the thermal plume not only in the center of
the contaminant source, but also on each side is observed. It is
caused by influence of conductive heat transfer in solid walls
on natural convection in the gas cavity. Figure 5 shows the
decrease in temperature near to the wall 0< X <0.,06. It is
caused by more intensive gas motion.
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Figure 4 Temperature isosurfaces and contours at
Ra=10"

Figure 5 isosurfaces and contours at

Ra=10°

Temperature

The analysis of the Rayleigh number effect on the average

1.06 1.06 a@
Nusselt number Nu = I — dXdY at the heat source
0.06 0.06 = 1Z=0.12
surface and the average Sherwood number
1 1.06 1.06 55
Sh = 035 j j — dXdY at the contaminant source
: 0.06 0.71 Z=0.12

surface has been carried out (Figure 6).

The presented graphic dependences of the average Nusselt
and Sherwood numbers as functions of the Rayleigh number
and the buoyancy ratio evidently show the typical increase in
the heat and mass transfer intensity on the heat source and
contaminant source surfaces at the Rayleigh number ranging
10 <Ra<10°. Tt should be noted that the buoyancy
concentration force (Br=1) leads to the heat and mass

intensification.
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Figure 7 The dynamics of isolines of vector potential

function ¥, isotherms & and isoconcentrations £ at:
t=2—-a,7=6—-b
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Figure 8 Variations of Nu and Sh with 7, Ra and &

The dynamics of the vector potential function ¥ formation

and temperature fields formation at ¥ =0.56 for Rg=5.10",
Br =1 are shown in Figure 7.

Figure 7 evidently shows the formation of the convective
cells and the temperature field in the gas cavity. [t should be
noted that the buoyancy concentration force reflects formation
of the thermal plume above the contaminant source. The
increase in the dimensionless time from 7=2 up to =6 at
Ra=15-10" leads to the increase in the intensification of the
convective flow in the gas cavity
l‘a" | =001< !‘lf | =0.075. The latter is reflected in the

Tomax ‘T:Z max IT:() T
increase in the sizes of the left vortex which in turn attenuates
the intensity of the right convective cell. The temperature field
also undergoes changes.

Variations of the average Nusselt and Sherwood numbers
with the dimensionless time at different values of the Rayleigh
number and the thermal conductivity ratio are shown in
Figure 8. Stabilization of the concentration field occurs long
before stabilization of the temperature field. The increase in the
thermal conductivity ratio leads both to the decrease in the
average Nusselt number at 7 <40 and to the increase in the
average Nusselt number at 7 > 40.

Natural convection

It should be noted that the increasc in the thermal
conductivity ratio leads to the insignificant changes of the
average Sherwood number.

CONCLUSIONS
Mathematical simulation of the double-diffusive conjugate
natural convection in the three-dimensional enclosure having

finite thicknace walle with lacal hpat and cantaminant gourcag
alillCe UMCKTICSS Waus Wil 10Cd: lay allG ComMaminalilt sOuUrccs

in the presence of convective-radiative heat exchange with an
environment has been carried out. The distributions of velocity
fields, isosurfaces of the vertical velocity component, isolines
of vector potential function ¥, temperature and concentration

ficlds in wide range of defining parameters 10* < Ra<10°,
ky, =0.037, 0.0037, Br=0,1 have been obtained. The

influence of the defining parameters such as the Rayleigh
number, the dimensionless time, the buoyancy ratio and the
thermal conductivity ratio on formation of heat and mass
transfer modes has been analyzed.
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