Thermodynamics

HEFAT2010

7" International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

19-21 July 2010
Antalya, Turkey

TURBOSHAFT ENGINES PERFORMANCE OPTIMIZATION USING MULTI-
OBJECTIVE GENETIC ALGORITHM

Khorasani Nejad E.' * and Javadpour S.M.*
*Author for correspondence
Department of Mechanical Engineering,
Azad Islamic University Behbahan branch!,
University of Sistan & Baluchestan?,

E-mail: Ehsan.kh1002@gmail.com
Javadpour_m(@yahoo.com

ABSTRACT

In this paper multi-objective genetic algorithms are
employed for Pareto approach optimization of ideal Turboshaft
engines. In the multi-objective optimization a number of
conflicting objective functions are to be optimized
simultaneously. The important objective functions that have
been considered for optimization are specific fuel consumption
(S, ), output shafi powergr | /) and thermal efficiency (3, ).
These objectives are usually conflicting with each other.

The design variables consist of thermodynamic parameters,

Compressor pressurc ratio (.. ) , Turbine temperature ratio (x)
and Mach number (Af ) . In this paper, at the {irst stage, single

objective optimization has been investigated and results have
been used to compare of multi-objective optimization results.

In order to investigate the optimal thermodynamic
behaviour of two objectives, different set, each including two
objectives of output parameters, are considered individually,
For each set Pareto front are depicted. The sets of selected
decision variables based on this Pareto front, will cause the best
possible combination of corresponding objective functions.
There is no superiority for the points on the Pareto front figure,
but they are superior to any other point.

INTRODUCTION

In most real-world problems, several goals must be
satisfied simultaneously in order to obtain an optimal solution.
The multiple objectives are typically conflicting and non-
commensurable, and must be satisfied simultaneously. For
example, we might want to be able to maximize the output
shaft power of a Turboshaft engine while minimizing the fuel
consumption. Actually, multi-objective optimization is very
different than the single-objective optimization.
In single objective optimization, one attempts to obtain the best
design or decision, which usually the global minimum or the

global maximum depending on the optimization problem is that
of minimization or maximization. In multiple objective
optimization, there may not exist one solution which is best
(global minimum or maximum) with respect to all objectives.
In multi-objective optimization problem, there exist a sct of
solutions which are superior to the rest of solution in the search
space when all objectives are considered but are inferior to
other solution in the space in one or more objectives. These
solutions are known as Pareto-optimal solutions or
nondominated solutions. Since none of the solution in the
nondominated sct is absolutcly better than any other, any onc of
them is an acceptable solution [1-5].

There arc many methods to solve multi-objective problems.
In this paper we use the Non-dominated Sorting Genetic
Algorithm (NSGA-11). NSGA-II proposed in Srinivas and Deb
[6].

In this paper, an optimal set of design variables in Turboshaft
engines, namely, the input flight Mach numberdf,, the

pressure ratio of the compressorz,, and the Turbine

temperature ratio x are used by Pareto approach to multi-
objective optimization. First, different pairs of conflicting

ohisctivag in an ideal Turhochaft enoine are gelected for
OUjeClives 11 ahh 1GCa: 1uUroldsiail engiice are SGieCicd 10r

optimization. Then, a new diversity preserving algorithm called
g-climination diversity algorithm is used for enhancing the
performance of NSGA-II in terms of diversity of population
and Pareto fronts. The modified algorithm has been used for
multi-objective optimization with more than two objectives by
Atashkari et.al [7].

NOMENCLATURE

M. [-] flight Mach number

0
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Ty [K] Inlet temperature
¥ [-] Ratio of specific heats
c, [kIke' K] Thermal conductivity
. [klkg'] Heating value
T, [K] Burner exit total temperature
v [-] Compressor pressure ratio
x [-] Turbine temperature ratio
W | [kW. kg™.sec] Output shaft power
shaft
f [-] Fuel/air ratio
S, [mg. kW' sec”] Specific fuel consumption
i [-] Thermal efficiency
C - [-] Work output coelTicient
F(X) [-] Vector of objective functions
X" [-] Vector of optimal design variables
P [-1 Pareto set (set of decision variables)
Pr * [-] Pareto front (set of objective function)

MULTI-OBJECTIVE OPTIMIZATION

Multi-objective  optimization, which is also called
multicriteria optimization or vector optimization, has been
defined as finding a vector of decision variables satisfying
constraints to give acceptable values to all objective functions
[7, 8]. In general, it can be mathematically defined as: find the

vector X :[x,*,xz,...,x”]r to optimize

F) =00 200 00T M

Subject to m inequality constraints

2.(X)<0, i=l..m )
and p equality constraints
h(X)=0,  i=l..p (3)

Where X * e R” is the vector of decision or design variables,
and F (X )e®" is the vector of objective functions, which

must cach be ecither minimized or maximized. However,
without loss of generality, it is assumed that all objective
functions are to be minimized. Such multi-objective
minimization based on Pareto approach can be conducted using
some definitions:

- Definition of Pareto dominance
A vector U =[u,,u,,....u, € R* is dominant to vector

V =[v,Vaev, |€R* (denoted byU <V ) if and only
ifvi e{l,2,...,k}, u, <v, nJj e{l,2,...,k}:uj v In
other words, there is at least one u; which is smaller than
v, whilst the remaining # s is either smaller or equal to

correspondingy s .

- Definition of Pareto optimality

A point X~ € Q(Q is a feasible region in R” satisfying
Equations (2) and (3)) is said to be Pareto optimal (minimal)
with respect to all X Q) if and only if F(X )<F(X) .
Alternatively, it can be readily restated as Vi e{l,Z,._.,k},
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VX eQ- (X"
FiX)SF (X)) AT e{l2, k) f (X)) <f,(X) . Tn other

words, the solution X " is said to be Pareto optimal (minimal) if

no other solution can be found to dominate X = using the
definition of Pareto dominance.

-Definition of a Pareto set
For a given MOP, a Parcto set P" is a set in the decision
variable space consisting of all the Pareto optimal vectors

P'={X eQ|FX eQ:F(X)<F(x)} In other words,

there is no other X ' as a vector of decision variables in ) that
dominates any X €P".

- Definition of a Pareto front

For a given MOP, the Pareto front P/ “is a set of vector of
objective functions which are obtained using the vectors of
decision variables in the Pareto set P°, that is
Pf” :{(f]()( W (X Vs f (X)X ep*}, In other words, the

Parcto front Pf~ is a set of the vectors of objective functions
mapped fromP" .

Different algorithms have been widely wused for
multiobjevtive optimization because of their natural properties
suited for these types of problems. The NSGA-II is one of these
algorithms. In order to show this algorithm more clearly, some
basics of NSGA-II are represented. In Fig. 1 demonstrated now
selects individuals from the entire population R, to construct the
next parent population R-,. The entire population R, is simply
the current parent population P, plus its offspring population O,
which is created from the parent population P, by using usual
genetic operators. The selection is based on non-dominated
sorting procedure which is used to classify the entire population
R, according to increasing order of dominance [7].

Non dominated Crowding distance
sorting sorting

= |- Ty -
i PF, E ””””””””””””””” Ty

(0} PFs

— Rejected
[ ]

R=P U Q

Figure 1 Basics of NSGA-II procedure [7]

Thus, the best Pareto fronts from the top of the sorted list is
chosen to create the new parent population P, which is half
the size of the entire population R,. So, it should be noted that



all the individuals of a certain front cannot be modified in the
new parent population because of space, as shown in Fig. 1. To
choose an exact number of individuals of that particular front, a
crowded comparison operator is used in NSGA-II to find the
best solutions to complete the new parent population. The
crowded comparison procedure is based on density estimation
of solutions surrounding a particular solution in a population or
front. So, the solutions of a Pareto front are first sorted in each
objective direction in the ascending order of that objective
value. The crowding distance is then assigned equal to the half
of the perimeter of the enclosing hyper box. Other objectives
arc sorted too and the overall crowding distance is calculated as
the sum of the crowding distances from all objectives. The less
crowded non-dominated individvals of that particular Parcto
front are then selected to fill the new parent population. It is
important to know that in a two-objective Parcto optimization,
if the solutions of a Pareto front are sorted in a decreasing order
of importance to one objective, these solutions are then
automatically ordered in an increasing order of importance to
the second objective. In other words, the hyper-boxes
surrounding an individual solution remain unchanged in the
objective-wise sorting procedure of the crowding distance of
NSGA-II in the two-objective Pareto optimization problem.
However, in multi-objective Pareto optimization problem with
more than two objectives, such sorting procedure of individuals
based on each objective in this algorithm will cause different
enclosing hyper boxes. Therefore, the overall crowding
distance of an individual computed in this way may not exactly
reflect the true measure of diversity or crowding property for
the multi-objective Pareto optimization problems with more
than two objectives.

In reference [7], a new method is presented which modifies
NSGA-II so that it can be safely used for any number of
objective functions (particularly for more than two objectives).
The modified method is then used for a two objective
thermodynamic optimization of Turboshaft engines and the
results are compared with those of the original NSGA-II.

THE & - ELIMINATION DIVERSITY ALGORITHM

In the e-elimination diversity approach that is used to main
loop in NSGA-IL, all the clones and/or ¢-similar individuals
based on Euclidean norm of two vectors are recognized and
simply climinated from the current population. Therefore,
based on a pre-defined value of & as the elimination threshold
(¢ = 0.001 has been used in this paper) all the individuals in a
front within this limit of a particular individual are eliminated.
It should be noted that such e-similarity must exist both in the
space of objectives and in the space of the associated design
variables. This will ensure that very different individuals in the
spacc of design variables having e-similarity in the space of
objectives will not be eliminated\ from the population. The
pseudo-code of the e-elimination approach is depicted in
Figure 2 Evidently, the clones or e- similar individuals are
replaced from the population with the same number of new
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randomly generated individuals[7].

Pseudo-code of e-elimination

£-glim=e-elimination (pap) l/pop includes design variables and
objective functions.

//Diefine elinunation theeshold.

/(Fromt Ne.

define &
gei k (k=1 for the first front)
i=lI
until i + 1 <= pop_size
_f =i+1
until j < pop_size
IF{|F(X{), FIXUD < e | X0 X0 = &)
FIX(), FIX(jN e PF} X)X (/) eP}
THEN pop = pop'\pop(j) //Bemove the e-similar individual.
r_new_ind = make_new_random_individual
[{Generate new random individual.
pop =pop U r_new_ind //Add the newly generated individual.
end
end

Figure 2 Pseudo-code of g-elimination for preserving genetic
diversity [7]

MULTI-OBJECTIVE THERMODYNAMIC OPTIMIZATION
OF TURBOSHAFT

The Turboshaft engine is similar to the Turboprop except
that power is supplied to a shaft rather than a propeller. The
Turboshaft engine is used quite extensively for supplying
power for helicopters [9]. We saw that the addition of
regenerator to the Brayton engine cycle increased the cycle's
thermal efficiency when the compressor exit temperature
(station 3) was below the turbine exit temperature (station 5).
For analysis, we consider an idecal Turboshaft engine with
regeneration, as show in Figures 3 and 4. The high
temperature/low-pressure gas enters the regeneration at station
5 and deports as station 6.

Regenerator my
l 3.5 HP Free
l Burner 4 turbine  turbine

Compressor .
P Net Wm

Inlet

— 5
0 my
— : Nozzle
—eee)
9 —

Figure 3 stations numbering of Turboshaft engine with
regeneration
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IM e t4

Ti3s. Tis |

Figure 4 The T-S diagram of ideal Turboshafl engine with
regeneration

A detailed description of the thermodynamic analysis and
equations [8] of ideal Turboshaft engines is given in Appendix
A. This elementary thermodynamic model is sufficient to
capture the principles of behavior and interactions among
different input and output parameters in a multi-objective
optimal sense. The input parameters involved in such
thermodynamic analysis in an ideal Turboshaft engine given in
Appendix A arc Compressor pressure ratio(z,. ), Turbine

temperature ratio (x) and Mach number(ds ). The output

parameters involved in the thermodynamic analysis in the ideal
Turboshaft engine given in Appendix A are, output shaft power
W oy 1) specific fuel consumption (g ,) and thermal
efficiency (57, ). However, in the multi-objective optimization
study, some input parametets are already known or assumed as,
T,=290K, v =14, C,=1.00kJ kg™ K™, hy, =42800kIkg",
and 7, =1600K . The input flight Mach number 0 <M, <04,
Turbine temperature ratio 1.01<X <1.09 and the
compressor pressure ratio 2 « 7. <30 are considered as design
variables to be optimally found based on multi-objective
optimization of 3 output parameters, namely, S,, 77, and
W”shz!/r
behavior of Turboshaft engines,2 different sets, cach including
two objectives of the output parameters, are considered
individually. Such pairs of objectives to be optimized
separately have been chosen as (W\M [nitg, ) and (W, /1, S0)s

evidently, it can be observed that W‘}M o/ g, Ty Are maximized

/m,- In order to investigate the optimal thermodynamic

whilst §, is minimized in those sets of objective functions. A

population size of 40 has been chosen in runs with crossover
probability Pc and mutation probability Pm as 0.75 and 0.7,
respectively for single-objective optimization and a population
size of 120 has been chosen in runs with crossover probability
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Pc and mutation probability Pm as 0.94 and 0.1 respectively for
two-objective optimization.

The results of the single-objective optimizations arc
summarized in Table 1.

2<m. <30, 0<M,<04 , 1L0I<X <109
Wowan _ 5322548
n
7. =18.1008
X =1.01
M,=0.4
S, =64.9558 n, =79.2209
7. =16.0864 To =2
X =1.01 X =1.01
M,=04 M, =0.4

Table 1 Values of decision variables and objective functions

Some Pareto fronts of each pair of two objectives have been
shown through Figurcs 5-6.
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Figure 5 Pareto front of thermal efficiency and output shaft
power in 2-objective optimization
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Figure 6 Pareto front of specific fuel consumption and
output shaft power in 2-objective optimization
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Figure 7 Pareto front of thermal efficiency and output shaft
power in 2-objective optimization

These figures and the associated values of the decision
variables and the objective functions given in Table 1 simply
cover all the 3 objectives studied in the two-objective Parcto
optimization. The first and the end points of this diagrams that
is explanatory extremum points at single-objective optimization
are compared with the results given in Table 1. The result of
this comparison indicates the similar conformity.

Figure 5 shows variation of output shaft power and thermal
cfficiency. Interval variations arc (250.8, 532.25) and (57.91,
79.21) for output shaft power and thermal efficiency,

Thermodynamics

respectively. The initial and the end of values of this diagram
are very similar to the optimal values of single-objective
condition. If the designer wants to have morc output shaft
power for the engine, he should use the higher points of this
diagram. And he wants to have more thermal efficiency he
should use the lower points of this diagram. Also as it is shown
the thermal efficiency decreased drastically, if the output shaft
power goes higher than 450 kW/(kg/Sec). Therefore choosing
these points in a very good design can be avoid.

Figure 6 shows variation of output shaft power and specific
fuel consumption. Interval variations are (531.45, 532.25) and
(64.955, 65.048) for output shaft power and specific fuel
consumption, respectively. At this diagram by attention to
characteristic problem designer can be determined optimal
point. At single-objective condition (Table 1) minimum point
of specific fuel consumption and maximum point of output
shaft power are 64.9558 and 532.2548, respectively, that this
points is closer to the initial and the end points of this diagram.

Figure 7 depicts comparison of approach NSGA-II with
elimination approach. As seen elimination approach is
smoother than other one.

CONCLUSION

In the single objective optimization an objective function
was investigated by changing several design variables,
simultancously. The correlation between the optimal point and
the objective function and design variable are obtained. In the
two-objective optimization, the comparison of the first and the
end points of Pareto curvature with the result of single-
objective show the compatibility with these diagrams.

APPENDIX A. THERMODYNAMIC MODEL OF IDEAL
TURBOSHAFT ENGINE

Assumptions: Inlet diffuser, compressor, turbine and exit
nozzle, all operate isentropically.

No pressure loss in the bumer. f = (fuel/air)<<l,
P, (Turboshaft exit pressure) = P (ambient pressure), C, =
1.004 (kS kg7 K™, T,=290K, y = 1.4,
hy, = 42800 kJ kg™ . T, =1600K -

Input parameters: M, T, (K), 7, C, (kT kg™ K™, X,
b T kg ™), T, (K), 7,

Output parameters: Wh ol ﬁ%(kag’l,sec), S, (mg kW sec™),

I s s C

Equation:
ro=1+ Xy (4.1
2
i
r, o=t (4.2)
T 0
7. =7, (4.3)
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L X
(’.\}u.j/ =17, (l_r - ]_Tr (TF _1) (4.4)
M =C,T, C‘,\'Imir (4.5)
7,
T X
f':CP ofa[l J (4.6)
T LT
S, = fi (4.7)
W s /m,
t, {2 ~1] (4.8)

(ks 7, [1—X /(T,rp ):|
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