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ABSTRACT

This paper presents a rigorous numerical model that
simulates the saturated and unsaturated flow through fine-
grained soils (clays) that contain micro-pores and macro-pores.
Micro-pores are the pores where liquid can move vertically
downwards as well as upwards due to capillary action and due
to evaporative gradients. Macro-pores are large inter-clod
voids, desiccation cracks, root penetrations, and other large size
voids where water can only move downward due to gravity.
Groundwater recharge from vadoze zone and solute or
contaminant transport within vadoze zone and into the saturated
aquifer is controlled by macro as well as micro pores. The
model presented in this paper incorporates Brinkman’s
formulations into Lattice Boltzmann multiphase fluid flow
model to simulate saturated and unsaturated flow through
micro- and macro pores of clay landfill caps.
INTRODUCTION

Earthen covers are routinely used for capping municipal
solid waste landfills (MSW) as well as to cap hazardous waste
sites. There are about 1,500 MSW landfills that are currently
active in the U.S. and several thousand old dumps and
contaminated sites would need some form of capping in the
near future. In order to control long term emissions and
potential impacts from landfills, accurate prediction of liquid
flow into waste as well gas emissions from landfills is critical.
Often practitioners and researchers try to model the preferential
flow in earthen caps by artificially increasing the hydraulic
conductivity of the cap soils, this does not capture the physics
of the flow through capillary pores and macro-pores accurately
and often results in under-estimation of percolation and over-
estimation of evapotranspiration (ET) or vice versa. Dual
permeability models such as HYDRUS-2D (beta version), is an
attempt to simulate the flow through the macro-pores using a
soil-water and unsaturated hydraulic conductivity function that
is not the same as that for the capillary pores or the soil matrix.
However, the dual permeability model is numerically unstable
and the authors believe that the flow through macro-pores
cannot be accurately simulated by treating the macro-pores as

capillary pores [1]. The flow in these pores is more like a flow
in conduits with irregular shapes and hence Navier-Stokes
equations are more appropriate and numerically more stable
when solved using the Lattice Boltzmann method. This paper
presents a rigorous numerical model based on the Lattice
Boltzmann (LB) method to simulate the saturated and
unsaturated flow through fine-grained soils (clays) that not only
contain micro-pores but also macro-pores. The LB algorithms
were developed to perform two-phase flow simulations to
understand the movement of the water droplets within the
macro-cracks as well as the suction of these droplets into the
micro-cracks of the clay medium.

LATTICE BOLTZMANN METHOD FOR MODELING
MULTIPHASE FLOW

The Lattice Boltzmann (LB) method has emerged as a
versatile alternative to traditional finite-element and finite-
difference Navier-Stokes solvers. The LB method has several
advantages such as ease of implementation of boundary
conditions and computational efficiency through parallel
computing. The method naturally accommodates some of the
boundary conditions such as a pressure drop across the
interface between two fluids and wetting effects at the fluid-
solid interface [2]. It was proven to be relatively accurate in
simulating isothermal, incompressible flow at low Reynolds
numbers [3].

The LB method approximates the continuous Boltzmann
equation by discretizing physical space with lattice nodes and
velocity space by a set of microscopic velocity vectors [4], [S].
The time- and space-averaged microscopic movement of fluid
particles are modelled using molecular populations called
distribution function. The distribution function defines the
density and velocity of fluid molecules at each lattice node at
each time step. Fluid particles travel on the lattice nodes based
on the magnitude and direction of the distribution function
components. Specific particle interaction rules are set so that
the Navier-Stokes equations are satisfied. An illustration of
generation of lattice for a given geometry and set of
microscopic velocity vectors for the D3Q19 (3 dimensional, 19
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microscopic velocity) and D2Q9 (2 dimensional, 9 microscopic
velocity) LB models is shown in Fig. 1. Fig. 1a shows a 3D X-
ray Computed Tomography image of a crack map. In Fig. 1b,
the binary (black and white) image of pore space is shown for a
2D image slice for simplicity. In our implementation of LB
method, the lattice nodes are generated at the center of each
white pixel (or voxel in 3D) and microscopic velocity vectors
are defined as shown in Fig. 1c (for 3D LB model) and Fig. 1d
(for 2D LB model).

Figure 1 (a) X-ray CT image of soil grains (b) binary image
(black areas represent the solid, and white areas represent the
air space) and generation of lattice nodes at the center of each
white pixel, (c) D3Q19 and (d) D2Q9 lattice microscopic
velocity directions defined at each node.

Extensive description of our implementation of single-phase
3D LB models can be found elsewhere ([6], [7]), therefore it
will not be repeated here. Scope of the research presented in
this paper includes only the simulation of unsaturated water
flow within the macro and micro-pores of soil medium. To
accomplish this, a multiphase LB model has been implemented
to simulate the collective behaviour of water and air within the
macro-pores of soil.

LATTICE BOLTZMANN
MULTIPHASE FLOWS
Numerical simulation of multiphase (or multi-component)
fluid flow is challenging because of difficulties in modeling
interface dynamics as well as the wetting effects of each fluid
on solids. One of the primary advantages of the LB method is
that it can naturally incorporate interactions between the
different fluids and between fluids and solids through specific
interaction rules adopted using the concept of distribution

EQUATIONS FOR

function [8]. The distribution function (F’) represents the

molecular populations and defines the time- and space-
averaged microscopic movement of fluid molecules (herein
called particles). The time dependent movement of fluid
particles at each lattice node satisfies the following particle
propagation equation [9]:

i

Fo(x+e,,t+1)= Fi“(x,t)—i[Fi"(x,t)—F;{eq)(x,t)]—g" (1
T,
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where E¢ is the distribution function of the fluid component g,

Fg,,is the equilibrium distribution function of the fluid

1
component o, and e; is the microscopic velocity at lattice node

X at time ¢, respectively, and 7 is the relaxation time which is a
function of each fluid’s kinematic viscosity (i.e.,
ve =c2(r, —0.5) where c, =1/\/§is the lattice speed of
sound for D2Q9 and D3Q19 models). The subscript i represent
the lattice directions around the node as shown in Fig. s 1¢ and
1d. The g7in Eq. 1 is the body force term and has the
following form [2]:
e Wi e
g’ == e ) @)

s

where g is the acceleration field due to a body force and w; is

the weight factor in the i direction and p? is the (number)
density of the lattice node (Eq.4). Weight factors vary for
different LB models [7]. The weight factors (w;) for the D2Q9
LB model are: wy =16/36 for rest particle, w=4/36 (1<i<4)
for particles streaming to the face-connected neighbors
and w=1/36 (5<i<8) for particles streaming to the edge-
connected neighbors. The weight factors are derived based on
the lattice type (DxQy) and the derivations can be found in
[10].

Equilibrium distribution functions (Fg,)) for different

models were derived by [11]. The function is given in the
following form for D3Q19 and D2Q9 models:
F?

ey = Wi P [1+3(e,. ~u")+%(ei .ud)z —%(u" .uu'):| 3)

where u° is velocity of the ¢ fluid component and pg is the
(number) density of the lattice node which is the scalar

summation of each component of the distribution function as
follows:

Py = Z F? 4

Interaction between Different Fluids

In order to model the surface tension between different
fluids, we adopted one of the most common methods, called
Shan-Chen (SC) model [9]. In this model, first, the following
rate of change of momentum is computed at each node:

D %)=y WX G Ty (x40 e, ()

where U° is the momentum of liquid o, G, is a parameter
used to define the interaction strength between liquid phases &
and 6’ and v @ (x) is a function of the density for the ¢ phase
at the node x. Similar to Shan-Chen’s implementation, we
chose w7 (x)=po[l—exp(p/py)] where p, is a constant.

After calculating the rate of change of momentum using Eq. 5,
the net momentum of each fluid component is shifted to
separate different fluids as follows:
duce

= (x) (6)
where p° is the density and u is the average velocity of different
fluids at each node and they are calculated using the following
relations:

P (X7 (x) = p(X)u(x) +7,
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where m? is the molecular mass of the o™ fluid component and
S is the number of fluids. Then the computed ue (x) in Eq. 6 is

utilized in the F{, ) equation in Eq. 5.

Steps of the LB Algorithm
A detailed description of the steps of single phase LB
algorithm is presented in Kutay et al. [7]. The steps for
multiphase fluids are very similar to those of a single phase. A
brief description of the steps is as follows:
1. Assign density and velocity to all lattice nodes and calculate

initial equilibrium distribution, ¥7,  (x,r=0) using Eq. 3.

Then assume initially 7 (x,7 = 0) = E¢, (x,£=0) .

2.Propagate the fluid particles to neighboring nodes by
calculating new (non-equilibrium) distribution functions of
all nodes using Eq. 1.
3.Impose boundary conditions at the solid-fluid interface and
at domain boundaries.
4.Calculate new densities and velocities of the nodes using
Eq.’s 7 and 8.
5. Calculate the rate of change of momentum using Eq. 5 and
modify the velocities using Eq. 6.
6.Calculate new equilibrium distribution function of each
node using Eq. 3.
Repeat steps 2 through 6 until the mass balance tolerance is
met.
Boundary Conditions at the Domain Boundaries
In the propagation step of the LB algorithm, all
components of the non-equilibrium distribution function are
computed at each node except at nodes that are located at the
boundaries of the domain (i.e., for D2Q9 model: north, south,
east and west nodes). These components can be calculated by
setting either pressure or velocity boundary condition, which
are described in Kutay et al. [7]. Also, periodic boundary
conditions can also be utilized where distribution function
components exiting from one side of the domain enters from
the opposite side. Another useful method is utilizing Grad’s
approximation method [5]. This method allows the fluid to flow
out of the domain. In this method, each missing component of
the distribution function is computed using the following
formula:

Fr = w,-[p PPl L pers,ewen - czaaﬁ)} ©)
c? 2c}
where p is the density of the node, and w; is the weight factor in
the i" direction, u is the (macroscopic) velocity of the node, e;
is the microscopic velocity, ¢, is the lattice speed of sound and &
is the kronecker delta, repeating subscripts « and S represent
the summation in tensor notation (each representing a
component of the vector) and P4 s as follows:

9
Py = zFieiaei,b’ (10)
i=1

Two phase flow

INCORPORATION OF HYDRAULIC CONDUCTIVITY AT
PERMEABLE SOLID REGIONS (MICRO-CRACKS) IN
LB MODEL

In the clay cap test sections to be modeled in this study, the
flow in macro-pores (or “cracks”) as well as the flow in the
micro-pores of the clay will be modeled. When the clay is not
fully saturated, there is suction in micro-pores of the clay which
draws the water flowing in the cracks. This suction force (i.e.,
suction head) will decrease over time as the moisture content
within the micro-pores increase. In addition, large surface area
of micro-pores of the clay medium acts as a resistive force
limiting the water seepage into the micro-pores. Furthermore,
this resistive force will decrease (i.e., the hydraulic conductivity
will increase) with increasing moisture content.
Application of Brinkman’s Equation

The Brinkman equation [12] is a generalization of Darcy’s
law that allows matching of the boundary conditions at an
interface between the larger pores and the permeable medium
and has the following form [2]:

U
VP=uViv——v 12
U I (12)

where # is the fluid dynamic viscosity (Pa-s), K is the intrinsic
permeability (mm?) and the v is the velocity (mm/s). Given that
the kinematic viscosity v=4/p and the hydraulic conductivity, k
(mm/s) is k =K y/u (y= unit weight of fluid), the Eq. 12 can be
rewritten as follows:

VPZ,UVZV—%V (13)

It should be noted that the first part of Eq. 13 is actually the
Stokes’ equation, which is solved by the LB formulations,
whereas the second part is the Darcy’s equation. In macro-pore
space, since k is infinity, second part of Eq. 13 goes to zero and
the Stokes’ equation holds. Whereas when the fluid is traveling
within the micro-pores of a permeable medium, the second
component is dominant.

The Eq. 13 was implemented in LB formulations using the
method suggested by Martys [13], where a body force term
applied to the permeable solid regions that causes momentum
sink. To accomplish this, body force acceleration (a, ) due to
the hydraulic conductivity is defined as follows:

Aoy L -85y (14)
pK pk k
where p is the density of fluid and g is the gravitational
acceleration (g=9.81 m/s*). This body force acceleration is
added to the body force term in Eq. 2 as follows:
gegtag (15)

In addition to application of Eq. 15 that causes
momentum sink in the permeable regions, the relaxation time
(7, ) must also be modified to match the shear stress at the free
fluid/ permeable medium interface. This is accomplished by
defining an effective viscosity parameter, z, for the permeable
medium and using the following relaxation parameter in this
zone:

a; =—

o =32£405 (16)
0
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where 7, is the (modified) relaxation time used in the lattice

nodes in the permeable regions.
Validation of the LB model
An analytical solution for Equation 12 for simple shearing
flow above a porous flat plane (Fig.2) is given in [14] as
follows:
u(y)=a+by  (0<y<d)

y 17)
u(y)=aexp -==—=| (-d2<y<0)
[\/ mK /1 ]
where u, is the horizontal velocity, d, and d, are the distance
above and below the surface of porous media (Fig.2), K is the
intrinsic permeability (mm?), z is the effective viscosity
parameter, and the coefficients a and b are given as follows:

V. He a
a= , b= [He L 3
LG,/ o) INEK) \/:ﬁ

LB simulations were performed to model the shearing flow
shown in Fig. 5. A horizontal velocity of 600 mm/s was
assigned at the north surface of the domain. Zero velocity
boundary condition was assigned at the south and periodic
boundary conditions were set in the x-direction (i.e., for east
and west sides of the domain). Simulations were performed at
three permeability levels: k = 0.1, 1 and 5 mm/s for the porous
media. As shown in Figure 2, an excellent agreement was
observed between the LB simulations and analytical solution of
Brinkman equation.
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Figure 2. Comparison between the analytical solution of
Brinkman equation and the LB simulations.

TWO-PHASE FLUID FLOW SIMULATIONS THROUGH
MACRO PORES OF A CLAY LANDFILL CAP

In order to test the multiphase LB algorithms, preliminary
two-phase simulations were conducted on approximate crack
geometry of a specimen obtained from the field (Fig. 3a). The
specimen was subjected to a rhodamine tracer test to determine
the relative location of the interconnected macro-pore structure.
The specimen was cut into half for imaging (Fig. 3b). From the
image, location(s) of the crack(s) was determined and the
binary image was obtained (Fig. 3c).

The LB simulations of water flow through an initially dry
(i.e., filled with air) crack structure were performed. A constant
influx of water at the surface was assumed and the downward
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movement of the water was simulated by applying a body force
acceleration of 9.81 m/s”. The interaction strength ( G, in Eq.
5) between the water and air was assumed to be 2.1. This
number was selected via numerous trials until the best phase
separation (without diffusion) between the water and air.
Reducing this parameter causes two fluids to diffuse into each
other and mix.

Fig. 3d shows the three snapshots of the simulation results
where the evolution of the water migration within the crack can
be seen. Entire simulation can be viewed at Kutay URL1 [15].
Fig. 3d also shows the simulated precipitation and percolation
where the delay in percolation as well as the difference in the
slope of the cumulative percolation compared to the cumulative
precipitation is noticeable. It is noted that while the simulation
was performed for two-phase flow, this graph only illustrates
the percolation of water. Similar graphs can also be developed
for the air phase. The vertical scale of the images shown in Fig.
3d is about 100 mm. The slope of percolation plot is the liquid
flux which will depend upon the size and distribution of macro-
pores and its connectivity with micro-pores. It will also depend
upon the rate of precipitation, and evaporative gradients. These
processes will be modeled in a future study to capture the
hydrology of clay caps containing macro-pores.

(b) Perform liquid tracer tests

(a) Obtain Field Samples (c) Image Processing
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Figure 3. Illustration of two-phase flow simulation results for
clay sample collected from the test sections from the
instrumented clay cap located in Detroit-MI.

CONCLUSION

Landfill caps made of compacted clay often have large
interconnected macro-pores due to desiccation or over-
compaction. This causes large quantities of water to seep into
the waste material, which in turn lead to development leachate.
Therefore, estimation of quantity of percolation from the clay
caps is very important. This paper presented implementation of
a multiphase fluid flow simulation technique, the Lattice
Boltzmann (LB) method, to simulate the unsaturated water flow
within the macro- and micro-pores of landfill clay caps. The LB
method was implemented along with the addition of



Brinkman’s formulation to be able simulate the flow within the
micro-pores of the clay medium. The LB model was validated
against analytical solution of simple shearing flow above a
porous space. An excellent agreement between the LB
simulations and the analytical solution was observed. In
addition, preliminary simulations of two-phase (unsaturated)
water flow through the internal crack structure of a clay sample
obtained from the field were presented.
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