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Abstract

Air release in hydraulic systems and components leads to a bubbly two-phase mixture with properties that are different
from those of monophase liquids; e.g. altered in viscosity and speed of sound. As a result, the system eigenfrequencies
change and noise may be generated. In most cases, the driving force of air release is a pressure drop induced shift in the
solubility equilibrium. Different air release models are derived by means of conservation laws of mass, momentum and
energy. The considerations are carried out for non-interacting bubbles in finite and infinite domains, where a spherical
nucleus is the starting point of the analysis. In particular, the mass transfer of dissolved air is described by an advection-
diffusion equation formulated in terms of Lagrangian coordinates. These are initialised on the phase boundary of spherical
air bubbles. The solubility equilibrium is modelled in terms of Henry’s law and the conservation of momentum leads to an
extended Rayleigh-Plesset equation representing the bubble dynamics. In order to study and compare the properties of
the models, the resulting differential equations are solved numerically. Thereby, the time-dependent diffusion boundary
layer on the bubble surface is resolved by adapted grids. The simulations reveal that advection has to be considered
for strong pressure gradients, which induce a velocity field around the air bubble. In contrast, slow bubble growth can
be sufficiently described by the diffusion equation in the case of small bubbles. Thermal effects play a minor role for

pressure oscillations outside the eigenfrequency of the air bubble and common liquids such as water or oils.
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1. Introduction

Fluids such as water and oils used in technical appli-
cations may contain a limited amount of dissolved air.
The thermodynamic state of a solute-solvent-system is de-
termined by the solubility equilibrium, which depends on
temperature 7" and pressure p. Therefore, the process of
heterogeneous nucleation and subsequent growth of the
gaseous phase, denoted as air release, sets in when sys-
tem pressure or temperature changes. Air release plays
an important role in hydraulic systems and components,
e.g. breaking systems of cars or piston pumps controlled
by suction valves. Air release leads to a bubbly two-phase
mixture that has different properties than the monophase
liquid. Consequently, the density, the speed of sound
as well as the viscosity of the two-phase mixture change
rapidly in time and space. Local properties of air-liquid
mixtures strongly influence a system’s hydraulic function-
alities, such as it’s volume flow rate and pressure drops.
As a result, the system eigenfrequencies change and noise
may be generated.

Numerical simulations have typically been used to de-
sign and characterise hydraulic systems or components.
For these simulations, robust and numerically efficient
methods and models have to be available. Identifying air
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release models suitable for computational fluid dynamics
or one-dimensional system simulations is a key task for the
near future. In this paper air release models are presented
and discussed. Non-interacting, spherical bubbles in finite
and infinite liquid domains form the basis for our analy-
sis. Different models are derived by conservation laws of
mass, momentum and energy. In addition, the mechanical
equilibrium and mechanical non-equilibrium are consid-
ered. The resulting differential equations are solved nu-
merically in order to study and compare the properties of
these models.

2. Formulation of the Problem

In this paper a spherical nuclei is the starting point to
model air release in liquid-gas solutions. We assume that
at the initial time ¢ = 0 a spherical bubble of radius Ry
is placed in a finite liquid-gas solution in which the initial
molare concentration of dissolved gas is uniform and equal
to cr,0. The centre of the bubble is taken as origin of a
spherical polar coordinate system as shown in Fig. 1(a).
That way, the derived models may be applied in the con-
text of a homogeneous two-phase mixture; where a bubble
is transported in a liquid without relative motion.

The bubble growth as shown in Fig. 1(b) states a three-
dimensional, time-dependent problem. In order to model
air release in a mathematically simplified way the problem
is reduced in complexity using the following assumptions:
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Fig. 1: Schematic diagram of a bubble in a liquid-gas solution. The
modelled control volume of the solution, denoted as liquid shell in
Fig. 1(a), is bounded such that R(¢) < r < Roo(t) and exhibits the
time-dependent boundaries I'x and I'q. Fig. 1(b) shows the real
situation of a non-spherical bubble in an arbitrary three-dimensional
temperature, pressure and velocity field. The concentration profile in
one spatial direction of a dissolving bubble is shown as an example.

1. The gaseous phase is composed of air, contains no sol-
vent vapour and is described by the ideal gas law of a
pure substance. Furthermore, any pressure and tem-
perature gradients within the bubble are disregarded
as discussed by Plesset and Zwick for vapour bubbles
in superheated liquids [16]. The solubility of air in
the solvent is assumed to be low such that the mole
fraction is less than 1 %.

2. The physical properties of the involved fluids are sup-
posed to be constant over moderate variations of tem-
perature and pressure. In particular, the properties
of the gas-liquid solution are independent of the so-
lute’s mole fraction and adequately modelled by an
ideal dilute solution. The solvent is described as pure
Newtonian fluid leading to a binary system in which
chemical reactions are absent.

3. The former assumptions allow us to express the solu-
bility equilibrium on the phase boundary in terms of
Henry’s law (see Ref. [12]), which reads

cLl,_gr = cc =pc H(TL|,_g) » (1)

where cq is the molar concentration in the solution
on the sharp phase boundary and pg is the pressure
in the gas phase. The Henry coefficient H can be
expressed as a function of temperature for moderate
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pressure conditions, cf. Lucas [12]. According to eq. 1
the bubble surface is supposed to return to the sol-
ubility equilibrium instantaneously when either the
bubble temperature Tg = T1|,_p or the pressure pg
changes.

4. Compressibility effects in the liquid phase are ne-
glected since the velocity of the bubble surface R is
supposed to be much smaller than the speed of sound,
R < ar.

5. Fourier’s and Fick’s law are applied to model diffu-
sive heat and mass transfer with a constant isotropic
thermal diffusivity S and diffusion coefficient fp, re-
spectively.

6. The kinetic energy of the system and viscous dissi-
pation are disregarded in the energy balance. Addi-
tionally, the change in enthalpy of the solvent with
pressure is neglected over moderate variations of sys-
tem pressure.

7. The Rayleigh-Plesset equation is extended for a finite
system as shown by Arefmanesh et al. and used to
describe bubble dynamics [1]. This implies the mass
flow across the phase boundary is neglected in the
momentum balance on the bubble surface, cf. Bren-
nen [4].

2.1. Conservation of Mass

The mass balance for the bubble can be expressed in
terms of the mass flow rate g of gas into the bubble

6CL

mg = A4rR?BpMc or

(2)

r=R

where Op is the diffusion coefficient of the solute in the sol-
vent and Mg the molare mass of the solute. A correction
term accounting for the selectively-permeable properties
of the bubble surface is left out of the model due to the
low solubility of the solute (recall that in agreement with
assumption 1 no solvent vapour permeates the surface).
Considering a spherical problem, the equation of continu-
ity yields for the radial velocity in the liquid phase, cf.
Brennen [4],

un(t,r) = (f)QR. 3)

The mass flow rate 1 depends on the gradient of the
concentration field on the bubble surface %CTL |r= p that is
determined by the advection-diffusion equation. Taking

into account eq. 3 the transport equation reads
aCL Tu 8CL _ /3]3 ad 7‘2 8CL
ot “or T 2 or or )’
R(t) <r < Rx(t) . (4)
The partial differential equation (PDE) is subject to initial

and boundary conditions. At the initial time ¢t = 0 there
is a uniform concentration field of solute in the solution
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except for the specific concentration on the bubble surface
given by the solubility equilibrium,

t=0: cLl;g,op  =CLO )

et cLlisoper  =cc=pcH(Tc),  (6)
0

Iy : N =0. (7)

or t>0,r=Roo

A further constraint of the system is a constant mass of
solvent in the liquid shell yielding

RS, —R*= (R, - R%)|,_, - (8)

The latter two equations result in a finite pool of solute
in the system, since no mass transport is allowed to occur
across the outer boundary I'.

The presented boundary conditions are a model for an
activated nuclei that starts to grow in a finite system at
the time ¢ = 0. The problem stated by eq. 2 to 8 is a mov-
ing boundary problem, more precisely a Stefan problem,
cf. Winzer [21]. The closure condition that expresses the
motion of the phase boundary as a function of quantities
determined by the solution of the underlying PDE is given
by eq. 2 considering that the mass flow rate rhg deter-
mines the local velocity of the phase boundary. Applying
Lagrangian coordinates to the Stefan Problem

i =t and 7 =% —R?, 9)

we ease the mathematical treatment of the moving bound-
ary problem analogous to previous works [1, 3, 15]. Com-
bining eq. 4, 8 and 9, the transformed advection-diffusion
equation exhibits time-independent boundaries and reads

3CL_ 0 N 3 é(‘)c
at_%[’af-((”R) oF )

0<7< (Ro — R, - (10)
A general analytical solution to eq. 4 or 10 is unknown
to the present authors. Neglecting the convective term in

eq. 4 results in the diffusion equation

= (P (1)
ot r2 or or

the solution of which is given by Carslaw [6] for a infinite
system, R., — oo, and applied to the problem of bubble
growth by Epstein and Plesset [8]. The initial and bound-
ary condition on the inner surface are given by eq. 5 and 6,
respectively. The boundary condition on the outer surface
is, contrary to the boundary condition of the advection-
diffusion (eq. 4), given by

FOO : C|t,'r—‘:>o =CL,0 (12)

and violates the claim in this paper to model a finite sys-
tem. Therefore, the concentration gradient on the bubble
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surface, which is given by the analytical solution of the dif-
fusion equation, is extend to fullfill the total mass balance
of a finite system. This yields an approximated gradient
of the solute concentration on the bubble surface

mg—ma,o _
MgV, G <1+ R

\/WﬁDf) - (18)

In the limiting case of an infinite system eq. 13 approaches
the original gradient determined by Epstein and Ples-
set. Disregarding the time-dependent term in the approxi-
mated gradient yields a constant Sherwood number Sh = 2
(for a definition of the Sherwood number cf. Bachr [2]).

dey, CL,0 —

or |,._p R

2.2. Conservation of Momentum

The motion of the incompressible Newtonian liquid sur-
rounding the bubble is governed by the conservation law
of momentum, which reads for a spherical problem

aU,L + 8uL
U =
Pelor ™" or
8pL 1 8 26UL 2

- r - 14
or tpLL r2or\" or r2 | (14)
where the kinematic viscosity vy, is approximated by the
solvent subject to assumption 2. Substituting the velocity

field from eq. 3 and integrating in radial direction from I'g
to ', we obtain
pL|r:R - pL|r:Rm =

oL [};2 (go—l)—(RR+2R2)<Ri—l>] . (15)

In accordance with assumption 7 the balance of forces is
used to compute the pressure drop over the inner and outer
boundary of the control volume shown in Fig. 2(a),

R 20‘L
pG — pL|7-:R = 4pLVLR + R’ (16)
.
Poc = PLl—p,. = 4pLiL R (17)
o0

The pressure inside the bubble pg differs from the pres-
sure on the outside pr|,_p due to the surface tension oy,
and the local velocity of the surface R. Combining eq. 15,
16 and 17 gives an extended Rayleigh-Plesset equation de-
scribing the bubble dynamics

201, 4pLvLR [ R?
— Px) = - -1
(pc —pc) = " R <R§o )+

oL [Pj (5; —~ 1) — (RR+2R?) (R]i - 1)] . (18)

The latter equation can be linearised for the limiting case
of an infinite system, R, — 00, yielding the representa-
tion of a damped oscillator with the undamped angular
frequency

3’%1900 0 2U'L
wo = .+ . (3k—1), 19
0 ¢mﬂ3 o 1) (19)



where x = 1 denotes an isothermal and x = 1.4 an isen-
tropic and adiabatic bubble, cf. Ref. [14]. In the limiting
case of slow bubble growth, R — 0, eq. 18 simplifies to the
mechanical equilibrium of a bubble in a static fluid

207,

R (20)

PG =pL +

2.8. Conservation of Energy

The conservation of energy for the air bubble requires
the change of internal energy dgtc to be equal to the sum
of heat transfer Qg, energy change due to a change in
the bubble volume Vg and energy transfer due to mass

transport across the control surface, cf. Fig. 2(b),

dUg

= Qc + Wa + 1ghe,r , where (21)
Uc = mchg —pcVa » (22)
Qc = 4TR*)\, 381} ' (23)
Wg = —paVa and Vg = ;ﬂ’RB . (24)

The dissolution of a gas in a solvent can be associated
with a change in enthalpy, which is given by the enthalpy
of solution Ahy,. Finally, the energy balance of the bubble
reads

: RTg : R
ma [AhL — Mg } + magTg (cp,G — MG) =

0Ty,

2
47'I'R >\L ar

+ 47pcR*R . (25)
r=R

The energy balance of the liquid shell is expressed in
terms of a transport equation. Assumption 6 allows us to
model the heat transport in the liquid phase analogously
to the mass transport, cf. eq. 10,

8TL d - 3 4 aT’L
— 2 2
o =90 o ((r+R) (%) : (26)
t=20: TL|t=0,f = TL,O ’ (27)
Ig: TL|t,7’:O =Tg ) (28)
Foo : 81—}’ = 0 ’ (29)
OF e (R,

where Lagrangian coordinates are applied as well. The ap-
proximated gradient of a transport quantity on the bub-
ble surface according to eq. 13 can also be used to ex-
press the temperature gradient on the bubble surface. At
the initial time the system is at its thermal equilibrium.
Furthermore, the characteristic time scale of heat trans-

2
port 7p = g’; is smaller than the characteristic time scale

of mass transport T = g}‘j such that 71 < 7r < 7p, where
= gf: ‘3 is the characteristic time scale of bubble dy-
namics. Therefore, the system is likely to show only small
temperature changes and the temperature gradient on the

Two phase flow

bubble surface is approximated by the stationary solution
of the transport equation

ot T -Tg
or|,._.p R
T Vepnep L0 + (mao — ma)(cp,aTa + Ahy)
pLVLCp}L + [(771(;70 — ’m(;) + CLyOVLMG] Cp,G
ma,0(Ta — Tao) + cLoViMacy,cTLo
pLVicpL + [(ma,o —ma) +cLoViMal epa

, where (30)

31)

This means a constant Nusselt number Nu = 2 for the
heat transfer on the bubble surface, cf. Refs. [2, 10].

Bubble

o

Liquid-Gas Solution

Liquid—G;s Solution

(a) Balance of forces (b) Energy balance

Fig. 2: Balance of forces and energy on the bubble surface. The
control volume in Fig. 2(a) envelopes the sharp phase boundary of
the bubble (A4 = A_). The radial stress on the phase boundary is

denoted by orr|,_p = — pLl,—p + 2pLVL O;TL , cf. Brennen [4].

3. Numerical Implementation

Different air release models, which vary in the quality of
physical modelling, are deduced from the presented equa-
tions. Eq. 2 describes the mass growth of the bubble and
is part of all models, whereas the remaining equations are
as follows:

EI Energy and mass transport are modeled with transport
eq. 10 and 26, respectively. The bubble dynamics are
covered by eq. 18 and the energy balance of the bubble
is given by eq. 25.

EI-EP-Nu2 The model is derived from the previous one
by replacing the transport equation of mass with the
approximated gradient by Epstein and Plesset, eq. 13,
and the temperature gradient with eq. 30 (Nu = 2).
This yields a computationally efficient algorithm to
model air release.

I The energy balance is disregarded and replaced by the
assumption of an isothermal system. The mass trans-
port is modeled with transport eq. 10. As with
model EI and EI-EP-Nu2 the bubble dynamics are
covered by eq. 18.

M Model I is further simplified by replacing the extended
Rayleigh-Plesset equation with the mechanical equi-
librium at the bubble surface, eq. 20. The mass trans-
port in the liquid phase is still modeled with the PDE.
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M-EP A simplification of model M where the transport
equation is replaced with the approximated gradient
by Epstein and Plesset, eq. 13.

M-Sh2 This is the most simple model presented in this
paper. It is a simplification of model M where the
transport equation is replaced with the approximated
gradient by Epstein and Plesset disregarding the time-
dependent term in eq. 13 (Sh = 2).

In order to improve numerical handling, the various sets
of equations are transformed to a dimensionless represen-
tation given by

t T
T (RE, — R®)|,
R p
R = , = 33
Ry P Poo ( )
c T
¢ = , T = , 34
CL,0 TL,O ( )
my = "¢ (35)
maG,o

As spatial discretisation a finite difference scheme ac-
cording to Skeel and Berzins [18] is applied to the trans-
port equations of mass and heat transfer resulting in a
system of coupled ordinary differential equations (ODE).
An implementation of backward differentiation formulas
(BDF, cf. Ref. [17]) is used as timestepping method, since
the underlying ODE system revealed itself to be stiff. The
concentration and temperature boundary layer on the bub-
ble surface are time-dependent and change their spatial di-
mension due to diffusive and advective transport. There-
fore, each boundary layer thickness is computed at every
numerical time step and the grid is adapted as needed.
A logarithmic grid spacing ensures an adequate resolution
near the phase boundary.

4. Results and Discussion

Air release is simulated for systems consisting of air and
water for which fluid data are taken from various sources,
cf. Refs. [5, 9, 11, 19, 20]. The models are solved numeri-
cally as described in the previous section, where arbitrary
pressure curves as function of time can be given as input.
The initial degree of saturation sg denotes the condition
of the solution with regard to the solubility equilibrium at
the beginning of a simulation

>1 , oversaturated
CL,0

= P oH(TLo) (36)

50 =1 , saturated

<1 , undersaturated.
Fig. 3 shows the response of a bubble excited by a sin-
gle pressure oscillation. At a frequency near the bubble

cigenfrequency model EI* and I* clearly show a post-pulse
oscillation, cf. Fig. 3(a). Model EI* produces a higher
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eigenfrequency than model I*, which is in accordance with
eq. 18. As can be seen in Fig. 3(b) the bubble dynam-
ics may be neglected for moderate pressure oscillations,
i.e. those with f < 0.1 fp. The mechanical equilibrium
on the bubble surface (mmodel M) may be applied as ade-
quate approximation in such cases. Moreover, simulations
with model I and EI disclose bubbles to be excited by
mass transfer under constant ambient pressure conditions
(without Fig.), though this effect plays only a minor role
in technical applications due to the small amplitudes en-
countered in such simulations.
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Fig. 3: Bubble dynamics at different excitation frequencies f of the
ambient pressure

oo — oo (YT L0<t< ]
Poo = _ 1 <t

Poo oy St
with poc = 0.2 bar and psc = 1 bar. The initial bubble radius
is Ry = 1073 m and the bubble eigenfrequency is fp = 2760 Hz.
Due to the short period of time in comparison with the timescale
of heat and mass transfer, the transport equations are disabled in
this simulations (denoted by an asterisk) yielding numerical efficient

models to describe bubble dynamics. As a consequence, model ET*
represents an adiabatic and isentropic bubble.

The models of air release presented in this paper are
dependent on ten fluid properties denoted as z;: Op, ¢p.q,
cp.L, H, Ahy, AL, Mq, vi, pr and or. We use a sensitiv-
ity analysis to compute the variation of the dimensionless
bubble mass with the relative change of a single fluid prop-
erty z;

* * _ *
dmg, Mg, — Mg

i ~ Z; 37

Li=1,...,10.
where mg; ; is the bubble mass of the simulation performed
with the disturbed set of fluid properties. The initial con-
ditions, such as the amount of dissolved air, are unaltered
in the sensitivity analysis. Fig. 4 shows the most influ-
encing fluid properties of model EI-EP-Nu2, from which
the Henry coefficient H and the diffusion coefficient Gp
are the most dominant ones. This verifies air release to
be a process activated by a change in the solubility equi-
librium but inhibited by diffusive mass transport. The
surface tension oy, plays a major role for small bubbles in
the order of several nm, cf. Fig. 4(b). The sensitivity anal-
ysis further indicates that energy related quantities, e.g.
heat capacity c, and thermal conductivity Ar,, are of mi-



nor importance for air release. This fact is also confirmed
by simulations comparing model EI and I (without Fig.).
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Fig. 4: Sensitivity analysis of bubbles excited near their eigenfre-
quency. The ambient pressure is given by poo = Poo + Poo Sin(2m ft),
with poo = 1bar, poc = 0.2bar and f = 0.5 fp. The initial degree of
saturation is sop = 5 and the used model is EI-EP-Nu2.

Rectified diffusion denotes the process of bubble growth
in undersaturated solutions due to pressure oscillations, cf.
Refs. [7, 13]. It mainly consists of three effects:

1. The solubility equilibrium depends on the pressure in
the gas phase (cf. eq. 1) and, therefore, an oversatu-
rated solution may exist for a short fraction of time.

2. The surface area of an expanded bubble is much
greater than that of a compressed bubble. Hence,
the mass flow of air passing the bubble surface during
its expansion is greater than the mass flow during its
compression. Due to effect 1 an oversaturated solu-
tion may exist in times of an expanded bubble leading
to a net mass flow of air into the gas phase.

3. The concentration gradient of dissolved air at the bub-
ble surface is related to the boundary layer thickness.
When the bubble expands, the boundary layer be-
comes thinner and the concentration gradient as well
as the mass flow rate increases, cf. eq. 2. This ef-
fect is a result of the velocity field and the spherical
symmetry of the problem.

As a result, rectified diffusion can counteract the dissolu-
tion process in an undersaturated solution for values of the
pressure amplitude greater than a specific value

1 1
3\ 2 207, 2
= 1 + _ - 80] N
RD (2) [ Ropoo

which is valid for oscillations much smaller than the bub-
ble’s eigenfrequency, cf. Eller and Flynu [7]. A
Fig. 5 shows the results of a simulation with ;: >

Poo

Poo (38)

gz ‘RD = 0.5, so that the bubble mass is supposed to
increase. Both models reflect effect 1 and 2, but only

model M, which incorporates advective mass transport (ef-

fect 3), is able to reproduce rectified diffusion, cf. Fig. 5(a).

As expected, this model also shows a decrease in bubble

mass for g"" < g“” (without Fig.). Effect 3 is illus-
i >~ |IRD

trated in Fig. 5(b), where the change of the dimension-

less boundary layer thickness 6§, with ambient pressure
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can be seen. Such a behaviour can not be reproduced
with model M-EP, since the advective mass transport is
neglected. This is further illustrated by the comparison
of the concentration profiles of dissolved air in the liquid
phase, cf. Figs. 5(c) and 5(d). Model M produces complex
concentration profiles that exhibit local maxima resulting
in a net mass flow of air into the bubble even though the
solution is undersaturated

Jdey,

o T=R>O,for ce > en(r — Roo)

(39)
In contrast, model M-EP fails to produce such a behaviour.
This result demonstrates the importance of advective mass
transport during pressure oscillations in undersaturated
solutions.
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(c) Concentration profile consid- (d) Concentration profile con-
ering advection and diffusion sidering diffusion

Fig. 5: Bubble Growth in an undersaturated solution during mod-
erate pressure oscillations. The ambient pressure is given by peo =
Poo + Poo sin(2m ft), with Poc = 6 bar, poo = 0.52bar and f = 10 Hz.
The initial degree of saturation and bubble size are sg = f; and
Ry = 1073 m, respectively.

Advective mass transport is also important for bub-
ble growth in oversaturated solutions. As can be seen in
Figs. 6(a) and 6(b) the difference in model M and M-EP
increases with pressure amplitude. Model M predicts an
increase in the bubble mass of 52 %, whereas model M-
EP estimates an increase of 24 %. These relations are also
valid for simulations of much smaller bubbles, cf. Fig. 6(c)
and 6(d).

Model M-Sh2 can be reduced to a single ODE result-
ing in a simple but robust air release model. The more
advanced models depend on the history of bubble growth.
Model M-EP incorporates a time-dependent term in eq. 13
and models that solve a PDE also depend on the history of
bubble growth. That is why model M-Sh2 compares badly
with M and M-EP in Fig. 6(a) and 6(b). The stationary so-
lution of the diffusion equation seems to be an insufficient
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model for bubbles in the order of several mm. However,
in case of small bubbles the performance is much better
(cf. Figs. 6(c) and 6(d)), since these bubbles approach the
limit of stationary bubble growth much faster.

1.05 105
—M -~ M-EP - M-Sh2 —M ---M-EP - \-Sh2

1.04 1.04 -

1.03 1.03 ﬁ
sy - i
L0 1.02 i Lo 1.02 e

T & =

101} 1.01 [

1.00 SIS e 1.00F sermsesmees =

0.9, 0.99,

0.1 02 03 04 05 06 0.7 0.1 02 03 04 05 06 0.7
[ th -

T T
(2) Ro =103 m, oo =0.4Pss (b) Ro = 1073 m, Poo = 0.8 oo
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Fig. 6: Bubble growth in an oversaturated solution during moderate
pressure oscillations. The ambient pressure is given by pec = Poo +
Poo sin(27 ft), with poo = 1bar, poc = 0.4bar...0.8bar and f = 1Hz.
The Figs. show a comparison of models for different initial bubble
sizes and pressure amplitudes, but same dimensionfull period of time
and initial degree of saturation sg = 5.

Fig. 7 shows a comparison of model M and M-EP for
finite systems at constant ambient pressure. As discussed
before, model M-EP underestimates bubble growth in
comparison with model M. This effect is further increased
when simulating finite systems. We extend the analyt-
ical concentration gradient from Epstein and Plesset in
such a way that the concentration difference between the
bubble surface and the outer boundary of the system is
reduced according to the total mass balance of dissolved
air. Clearly, this may not reflect the local concentration
profile in the diffusion boundary layer to the full extent
but allows us to describe finite systems in a numerically
efficient way.

Requirements for air release models may increase for
other technical fluids, such as oils that are able to dis-
solve a higher amount of air in comparison with water,
cf. Fig. 7(b). At the same pressure conditions the bubble
grows to a greater extent and, thus, induces a more intense
velocity field enhancing the effects of advective transport.

5. Conclusion

Simulations of air release have been performed for finite
and infinite systems. Different models that vary in the
quality of physical modelling and are based on the con-
servation laws of mass, momentum and energy have been
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Fig. 7: Bubble growth in finite systems (RE’)’O = 12.5, sop = 5)

and for different solute-solvent pairs at constant pressure conditions,
Poo = 1 bar. Fig. 7(b) shows the result of a simulation performed
with fluid data of the test oil V1404 produced by Royal Dutch Shell
plc.

applied. In particular, we focused on the transport pro-
cess of dissolved air in the liquid phase. The results have
shown the following:

o Slow growth of bubbles with an initial size in the or-
der of several pm can be described by the stationary
solution of the diffusion equation in technical applica-
tions. Bubbles with an initial size of several mm re-
quire a model regarding the history of bubble growth.
In turn, one may conclude that the size distribution
of bubbles in liquids is of major importance for air
release.

e Advection has to be considered for strong pressure
gradients, which induce a velocity field around the air
bubbles. The diffusion boundary layer is deformed
leading to an increased net mass flow of air into the
gas phase. This may also lead to complex concentra-
tion profiles near the bubble surface.

e The mechanical non-equilibrium has to be consid-
ered for pressure excitations near the bubble eigenfre-
quency fp. The bubble dynamics may be neglected
in the context of air release for excitation frequen-
cies f <0.1 fp.

o Thermal effects can be neglected for oscillations out-
side the eigenfrequency of air bubbles. The enthalpy
of solution as well as other energy related fluid proper-
ties do not play an important role for common liquids
such as water or oils.

Air release models presented in this paper are predic-
tive, i.e. they are solely based on properties that can be
determined a priori. This requires the initial size distribu-
tion and fluid properties to be known. As a consequence,
the formulation of air release depends on an accurate nu-
cleation model. Introducing empirical parameters that are
fitted to experimental data might be a way to improve air
release models at the expense of the predictive character.
Therefore, future work may focus on experimental inves-
tigations of air release in technical applications.



Nomenclature

A Area

ar, Speed of sound in the liquid phase
c Molare concentration of the gas
cp Isobaric, specific heat capacity

f Frequency

/o Eigenfrequency

H Henry coefficient of solute-solvent pair
h Specific enthalpy

Ahy, Specific enthalpy of solution of solute-solvent pair
M Molare mass

m Mass

Nu Nusselt-Number

p Pressure

Q Heat

R Bubble Radius

R Universal gas constant

r Spherical coordinate (radius)

7 Lagrangian coordinate (radius)

Sh Sherwood-Number

s Degree of saturation

T Temperature

t Time coordinate

t Lagrangian coordinate (time)

U Internal Energy

u Velocity

v Volume

w Work due to volume change

Z; Fluid property

Special characters

Bp Diffusion coefficient of the gas in the liquid phase

Br Thermal diffusivity of the liquid phase

op Boundary layer thickness

r Boundary of a volume

K Heat capacity ratio

AL Thermal conductivity of the liquid phase

vy, Kinematic viscosity of the liquid phase

¢, 0 Spherical coordinates (angels)

L Density of the liquid phase

o1, Surface tension of the liquid phase

Orr Radial stress

™, 71, 71 Characteristic time scale of diffusion, thermal diffusion
and momentum transfer, respectively

Supscripts

* Dimensionless quantity

0 Reference or initial state

D, I, T Time scale used to normalise simulation time

G Gas, bubble surface

o] Outer boundary

L Liquid, solvent
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