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ABSTRACT

Gas turbine performance diagnostic is a method for
detecting, isolating and quantifying faults of gas turbine gas
path components. On-line precise fault diagnosis can promote
great reliability and availability of gas turbine in real time
operation. This work proposes a GUI-type on-line diagnostic
program using SIMULINK and Fuzzy-Neuro algorithms for a
helicopter turboshaft engine. During development of the
diagnostic program, a look-up table type base performance
module for reducing computer calculating time and a signal
generation module for simulating real time performance data
are used. This program is composed of the on-line condition
monitoring program to monitor on-line measuring performance
condition, the fuzzy inference system to isolate the faults from
measuring data and the neural network to quantify the isolated
faults. Evaluation of the proposed on-line diagnostic program is
performed through application to the helicopter engine health
monitoring.

INTRODUCTION

Types and severities of most engine faults being so complex,
conventional model based fault diagnostic approaches like the
GPA(Gas Path Analysis) method may not monitor precisely
all engine fault conditions [1].

Recently soft computing methods such as Genetic
Algorithms, Fuzzy Logic, Neural Networks and Expert System
have been applied to the advanced gas turbine HMS (health
monitoring system). Moreover, the on-line HMS has been
developed for immediate and effective action on identified
faults rather than the ground health monitoring system, and
most existing HMS are not convenient to use due to difficult
input/output data processing of the HMS program. Therefore,
this work proposes an effective and user friendly GUI(Graphic
User Interface) type on-condition performance diagnostic
program which can monitor, isolate and quantify the
component faults of the Helicopter turboshaft engine in

operation using SIMULINK, Fuzzy and Neural Networks [2].

Figure 1 shows the schematic diagnostic flow chart of the
proposed effective and wuser friendly GUI-type on-line
diagnostic program, which can monitor, isolate and quantify the
component faults, using SIMULINK and Fuzzy-Neuro
algorithms for a helicopter turboshaft engine.

Figure 2 shows a main window of GUI-type fault diagnostic
program using SIMULINK. This program is composed of 3
parts such as on-line condition monitoring program,
performance analysis program and fault diagnostic program
using Fuzzy and Neural Network.

AZ = Eﬁz;—g X 100 )

The delta measuring data value (1) is used for performance
analysis for implant fault engine. Where Zy is based
performance measuring data value, Z is the measuring data
value of faulted engine.
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Figure 1 Schematic diagnostic flow of the proposed GUI type
fault diagnostic program
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Figure 2 Main window of GUI type fault diagnostic program

NOMENCLATURE

Ng [rpm] Gas Generator Rotational Speed
PTT [K] Power Turbine inlet Temperature
EGT K] Exhaust Gas Temperature

WF [Kg/s] Fuel Flow

TRQ [N'm] Torque

ALT  [Km] Altitude

T [K] Total Temperature

Subscripts

GUI Graphic Use Interface

GPA Gas Path Analysis

HMS Health Monitoring System

PLA Power Lever Angle

KUH Korean Utility Helicopter

FpC Fault Pattern Case

MPC Measuring Parameter Change
FFBP Feed Forward Back Propagation
LRF Learning Rate Factor

RMS Root Mean Square

NN Neural Network

IFPC Input Fault Pattern Cases

OFPC Output Fault Pattern Cases

ON-LINE CONDITION MONITORING PROGRAM

The engine for this study is T700 turbo-shaft engine which
will be used for Korean Utility Helicopter. Figure 3 shows the
flow path configuration and station numbers of the turbo-shaft
engine that is composed of the compressor with 5-stage axial
and single stage centrifugal, the annular vaporizing combustor,
the 2-stage axial flow gas generator turbine and the 2-stage
axial flow free power turbine. The power turbine is connected
to the helicopter rotor through the transmission gears.

Table 1 shows the operating range of the turbo-shaft engine,
and Table 2 shows design point performance data of the model
engine at sea level having static and standard atmospheric
condition.
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Figure 3 Flow path configuration and station numbers of T700
turbo-shaft engine

Table 1 Operating range of turbo-shaft engine
Altitude 0~2Km
Flight Mach No. 0~0.3
Atmospheric 30~430 K
temperature

Table 2 Design point performance data at sea level, static and
standard atmospheric condition

Mass flow rate (kg/s) 5.42
Overall pressure ratio 18
Compressor turbine exit temp. (K) 1,154
Exhaust gas temperature (K) 916
Power (Kw) 1,418.5
(kg/Slf‘e;f/ﬁg fuel consumption 0.287

Figure 4 shows a proposed on-line condition monitoring
program. This program is composed of the base engine
performance program module, the real engine performance
monitoring module and the condition monitoring display
module. Here the base engine performance program module is
programmed by the look-up table type for improving
calculation speed during mass flow and work matching (See
Figure 5).



Figure 4 GUI type on-line condition monitoring program

Figure 5 Look-up type base performance program module

During the initial phase of development of the on-condition
monitoring program, since the real engine performance data are
not available, a signal generation module is proposed for
generating virtual engine performance data (See Fig. 6). This
module can generate randomly arbitrary measuring
performance data within +5% changes. Measuring parameters
provided by KUH turboshaft engine or the signal generator
module are gas generator rotational speed (Ng), power turbine
inlet temperature (PTT), exhaust gas temperature (EGT), fuel
flow (WF), and torque (TRQ). The on-line condition
monitoring program displays the differences between real time
measuring performance data by engine or the signal generation
module and the performance data calculated by the base engine
performance module.
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Figure 6 Signal generation module for virtual measuring
performance data

Figure 7 shows monitoring results of torque found by the
proposed on-line condition monitoring program at sea level
static standard atmospheric condition, at an altitude of 1000m,
Mach NO. 0.1 and at AT-10K from the standard atmospheric
condition and at an altitude of 3000m, Mach NO. 0.3, at
AT+30K from the standard atmospheric condition. In this graph,
it is confirmed that the on-line condition monitoring program
monitors well the performance data and moreover, performance
results of the look-up table type base engine performance

program module agrees well with engine performance deck
data.

~
=]
-

650 -

=
=]
=

,g,s_,—"-i

~

73
h
=

~
~
P

Torque (N/M)
Ugl

=
]
=l

#» —-Base engine performance data

&

e
=
-

“ Engine performance deck data

350
=d#—Measuring engine performance data
300

60 100

90
RPM (%)
(b) Alt 1000m, Mach No. 0.1, AT -10K

717



2 'Topics

600
500 =3
-

400 -
s ==
= 300 & -
= =#-Base engine performancedata
= 200
s 4 Engine performance deck data
=100

=#=Measuring engine performance data

)

60 90 100
RPM (%)
(c) Alt 3000m, Mach No. 0.3,A T 30K
Figure 7 Monitoring result of torque

FAULT DIAGNOSTIC PROGRAM

The proposed fault diagnostic program is composed of the
Fuzzy Logic program for isolating faults from monitoring
difference performance values and the Neural Network
program for quantifying the isolated faults.

Major component fault patterns are classified by single fault
patterns of components such as compressor, compressor turbine
and power turbine and multiple fault patterns of components
where faults occur simultaneously on two or three components.
Here fault patterns of gas path component of the KUH
turboshaft engine are considered as 7 cases shown in Table 3.

According to Diakunchak’s experimental results, the
compressor fouling decreases both air mass flow parameter and
isentropic efficiency of compressor, and the turbine corrosion
or erosion increases air mass flow parameter but decreases
isentropic efficiency [3].

Table 3 Considered fault patterns of KUH turbo-shaft engine

Fault
Pattern Cases Causes of faults
(FPO)
FP1 Compressor fouling
FP2 Compressor turbine erosion
FP3 Power Turbine Erosion
FP4 Comp. Fouling & Comp. turbine
erosion
FP5 Comp. Fouling & Power turbine
erosion
Comp. turbine erosion & Power
FPo6 . .
turbine erosion
Comp. Fouling & Comp. turbine
FP7 . . .
erosion & Power turbine erosion

Table 4 Measuring parameter change (MPC) trend depending
on fault patterns

MP

C AN AP AE AW AT

g TT GT F RQ

C
FP1 - + + + -
FP2 - + + + +
FP3 + - - - -
FP4 - + + + +
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FP5 | - + + - -
FP6 | -
FP7| -

Table 4 shows the measuring parameter change (MPC)
trend on fault patterns.

Here the single fault pattern case FP1 of the compressor
fouling has the following trend of measuring parameters;
increases of power turbine inlet temperature change, exhaust
gas temperature change and fuel flow change, and decreases of
gas generator rotational speed change, torque change. However
the multi fault pattern case FP7, which is compressor fouling,
compressor turbine erosion and power turbine erosion, has the
following trend of measuring parameters; increases of power
turbine inlet temperature change, exhaust gas temperature
change, fuel flow change and torque change, and decrease of
gas generator rotational speed change.

In order to isolate the faulted components, the MAMDANI
type Fuzzy Inference System is developed using FIS editor of
MATLAB [4][5]. This program can identify the faulted
components from data base of measuring parameter changes
and trends (See Figure 8).
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Figure 8 MAMDANI type Fuzzy inference system for isolating
faulted components

Input data for fuzzyfication of the inference system are
changes between measuring engine performance data due to
faulted components and calculating base performance data,
having output for 7 fault pattern cases. The MAMDANI theory
is applied to fuzzyfication, and the Centroid method is applied
to defuzzyfication. The fuzzy rule depending on measuring
parameter change trend is generated as Figure 9 [6][7].
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Figure 9 Fuzzy rule generated by measuring parameter change
trend
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Figure 10 Fuzzy-Neural Networks fault diagnostic program

Figure 10 shows Fuzzy-Neural Networks fault diagnostic
program. First, the delta parameters values inputted dates from
the on-line condition monitoring program. The dates used
isolate component faults by the fuzzy logic. Second, the engine
measuring values inputted dates from the engine signal. The
dates used quantify component faults by the Neural Networks.

In the proposed Neural Network program, the FFBP (Feed
Forward Back Propagation) algorithm is used for training
Neural Networks using measuring performance data changes
and component performance characteristic parameter changes
due to faulted components. The Neural Network is composed
of an input layer with 5 neurons, a hidden layer with a neuron
and an output layer with 6 neurons. The 5 neurons of input
layer are measuring parameter changes of Ng, PPT, EGT, WF
and TRQ, and the 6 neurons of output layer are changes of
mass flow parameters and isentropic efficiencies of compressor,

ten vf—w{T)

ot
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high pressure turbine and power turbine, respectively.

The tangent sigmoid function (2) is used as a transfer
function of the hidden layer, and the linear (3) function is used
as a transfer function of the output layer [8].

g g8
F= @i® g aA @
=R (3)

In order to increase learning speed as well as to maintain
stability during training process, LRF (Learning Rate Factor) is
increased by 10% of the previous LRF if the error is decreased,
but LRF is decreased by 50% of the previous LRF if the error is
increased. Here the error is defined in the form of RMS (Root
Mean Square) value (4). Where T is target value, y is the output
value calculated by Neural Network, and n is the number of
output layer neurons. The target maximum RMS error is fixed
as 1.5%, here.

P—
(I My

L
RMSgrror = ,d = "W “4)

In order to build database for training the Neural Work,
1~5% decreases of both mass flow parameter and isentropic
efficiency due to compressor fouling are assumed, and 1~5%
increase of mass flow parameter and 1~5% decrease of
isentropic efficiency due to turbine erosion are assumed. In
addition, engine operating conditions are assumed as 1000m,
2000m and 3000m of altitudes, Mach No. 0.1, 0.2, 0.3 0f flight
speeds, and +10K, 20K and +30K changes from standard
atmospheric temperatures. Database of faulted components for
training Neural Network with operating conditions mentioned
as the above are obtained by GASTURB program [9].

VERIFICATION OF PROPOSED DIAGNOSTIC
PROGRAM

Through the following example, the proposed diagnostic
program is verified. Measuring parameter changes shown as
Table 6 are obtained by implanted faults assumed as Table 5
using the base performance module of the on-line condition
monitoring program. If the diagnostic program can identify the
implanted faults with the measuring parameter changes and
trends, it is confirmed that this diagnostic program is verified.

Firstly, measuring parameter changes due to 7 component
fault pattern cases are entered as input data of the Fuzzy
Inference System program. This Fuzzy Inference System
isolates 7 component fault pattern cases from input data though
fuzzyfication and defuzzycation using the previously generated
Fuzzy rules. Table 7 shows results of faulted components
isolated by the proposed Fuzzy Inference System. Here, if the
largest value among fault pattern results calculated by given
measuring parameter changes using the Fuzzy Inference
System is approaching to 1, the largest value becomes a
possible component fault pattern. As shown in Table 7, because
the diagonal values are larger than other values, the fault
patterns related to diagonal values is the isolated fault pattern
result. Therefore, it is confirmed that the isolating fault patterns
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obtained from fault monitoring program are same as the
implanted fault patterns.

Table 5 Implanted fault values (IFV) of engine major

components
IF
co Cco HT HT PT PT
MA EF MA EF MA EF

PC
F

P1 -2 -3 0 0 0 0
F

P2 0 0 4 -2 0 0
F

P3 0 0 0 0 4 -2
F

P4 -2 -3 2 -3 0 0
F

Ps -2 -2 0 0 2 -3
F

P6 0 0 2 -3 2 -3
F

P -2 -3 2 -3 2 -3

Table 6 Measuring parameter changes due to implanted

faults(%)

PC| AN| AP | AE]| =& ATR
FPe| g T |GT |WF |0
FPL |, 0 25 > 28 e 1.92
P2 s e | 88 | ass
FP3 | 035 1731 4332 |79 1.08
P4 | oo Lson |aar | 90 |a
FPS | og 8 85 e 94 - 56 | 135
FP6 | gg " 66 " w2
FP7 75913' 73513‘ 35914' 31| 41

Table 1 Results of faulted components isolated by Fuzzy
Inference System (IFPC: Input fault pattern cases, OFPC:
Output fault pattern cases)

Table 7 Results of faulted components isolated by Fuzzy
Inference System (IFPC: Input fault pattern cases, OFPC:
Output fault pattern cases)
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In the next step, measuring performance parameter changes
of the faulted components isolated by Fuzzy Inference System
are given as input to the Neural Network diagnostic program
learned by training database.

Figures 11 shows degraded characteristic values of the
single and multiple faulted components found by Neural
Network diagnostic program.

Figure 12 shows RMS errors of estimation of 7 fault pattern
cases using the proposed Neural Network diagnostic program

Through these comparisons, it is confirmed that the
degraded characteristic values of the faulted components are
well agreed with the implanted degraded characteristic values
of the faulted components with less than 1 % RMS error.
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Figure 11 Results of faulted components quantified by Neural
Network diagnostic program
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Figure 12 RMS errors of estimation of 7 fault pattern cases
using Neural Network diagnostic program

CONCLUSION

The present work proposes an effective and user friendly
GUI-type on-line diagnostic program, which can monitor,
isolate and quantify the component faults, using SIMULINK
and Fuzzy-Neuro algorithms for a helicopter turboshaft engine.

This program is composed of the on-line condition
monitoring program to monitor on-line measuring performance
condition, the fuzzy inference system to isolate the faults from
measuring data and the neural network to quantify the isolated
faults.

The proposed on-line diagnostic program is performed
through application example to KUH turboshaft engine health
monitoring. Through this verification, it is confirmed that the
degraded characteristic values of the faulted components are
compared well with the implanted degraded characteristic
values of the faulted components with less than 1 % RMS error.
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