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ABSTRACT 
Solar energy is an abundant renewable energy resource that can 
be used to provide high process heat necessary to run thermo 
chemical processes for production of various solar fuels and 
commodities. In a solar reactor, sunlight is concentrated into a 
receiver through a small opening called the aperture. However, 
obtaining and maintaining semi-constant high temperatures 
inside a solar reactor is a challenge. This is because the incident 
solar radiation can fluctuate depending on the position of the 
sun and the weather conditions. For fixed aperture size reactors, 
changes in incident solar flux directly affect the temperature 
inside the reactor. This paper presents a novel solar reactor with 
variable aperture mechanism which is designed and 
manufactured at our lab. Radiation heat transfer analysis of this 
reactor concept is studied via Monte Carlo (MC) ray tracing. 
MC ray tracing module is coupled to a steady state one-
dimensional energy equation solver. Energy equation is solved 
for the wall and gas, accounting for the absorption, emission, 
and convection. Incoming direct flux values for a typical day 
are obtained from National Renewable Energy Lab (NREL) 
database. Results show that for a perfectly insulated reactor, the 
average temperature of the working fluid may be kept 
appreciably constant throughout the day if aperture diameter is 
varied between 3 cm and 1.5 cm for incoming fluxes starting 
with 400 W/m2 at 05:12 am in the morning, reaching peak 
value of 981 W/m2 at noon, and eventually receiving 400 W/m2 
at 6:58pm in the evening, which can make the solar reactor run 
about 13 hours continuously at 1500K semi-constant 
temperature.  

 
INTRODUCTION 
The earth and its atmosphere receive solar energy at the rate of 
approximately 1.7 X 1017 W [1]. Radiation from the sun 
reaching the earth’s surface has low flux density of the order of 
a few hundred Watts per square meter. However, once 
concentrated, it can be used to provide high temperature 
process heat necessary for electricity production via solar 
thermal [2] or for solar thermochemical processing to produce 
metals [3], syngas [4, 5] or hydrogen [6-8]. Such high 
temperature processes require maintaining a semi-constant 
temperature for stable efficiency. However, the incoming solar 
energy is inherently transient due to varying position of the sun 

and changing weather conditions leading to fluctuations in the 
available flux density. This makes it difficult to maintain a 
constant temperature resulting in lower process efficiency. 
Therefore, it is important to design a system that can solve this 
problem by maintaining semi-constant temperatures for these 
processes so that the production rate is kept high irrespective of 
fluctuations in solar energy.  
 
Regardless of the process, the basic principle involved is the 
collection of solar energy over a large area using reflectors and 
directing it towards a high temperature resistant receiver 
through a small opening called the aperture. In case of 
thermochemical processing, the cavity receiver absorbs the 
concentrated solar energy coming through the aperture and 
transfers it to the working fluid entraining the reactants. There 
have been many such remarkable solar reactor designs for 
various thermochemical processes [9-12]. An important point 
to be noted is that all these solar reactor concepts employ a 
fixed aperture size, which does not compensate for fluctuations 
in incoming solar energy.  
 
To address the problem of low production efficiency because of 
intermittent solar energy, we developed a novel concept for a 
variable size aperture inspired by the human eye, where pupils 
enlarge in the dark and shrink when exposed to light. The 
objective of this work is to investigate the efficacy of variable 
size apertures in maintaining a semi-constant temperature in the 
reactor irrespective of fluctuations in incoming solar flux. This 
paper presents an optical and heat transfer analysis of our 
prototype reactor concept with variable size aperture exposed to 
changing solar flux.   

METHODOLOGY 
The prototype reactor used for the analysis is shown in Figure 
1. It has three inlet ports through which the working fluid enters 
and a single exit port through which it leaves the reactor. The 
inlet ports are positioned such that a vortex flow is formed 
inside the reactor. The front plate has an opening called the 
aperture whose size can be varied to control the amount of 
incoming solar energy. In order to house the reactants inside the 
reactor and allow incoming radiation from the aperture into the 
receiver, a quartz window is fitted right behind the aperture. 
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ܳ௘௠,௖ଵ,௜ ൌ 	ߪ	ߝ	௖ଵܣ ௖ܶଵ,௜
ସ  (2) 

  

For all interior surfaces of the reactor, the total hemispherical 
emissivity is taken as, ߝ ൌ 0.8	 [19] and ߪ is the Stefan-
Boltzmann constant given by 5.67×10−8 W m−2 K−4. The area 
௖ଵܣ ൌ ଵ௜௡ܴߨ2  ,௖ଵ. The convection term is given byݓ
 
ܳ௖௢௡௩,௖ଵି௚,௜ ൌ ݄௖ଵି௚	ܣ௖ଵ	ሺ ௖ܶଵ,௜ െ ௚ܶ,௜ሻ (3) 

  

The heat transfer coefficient ݄௖ଵି௚ is calculated from heat 
transfer correlation for Nu given in [19, 20],   
ݑܰ ൌ 0.042	ܴ݁଴.଼ (4) 

 
The Reynolds number, Re is taken as 3491 as given by fluid 
dynamic simulations in [19]. Once Nu is obtained it can be 
plugged in to equation (5) to obtain	݄௖ଵି௚. 
 

ݑܰ ൌ
݄௖ଵି௚	ܦ௖ଵ

݇௚
 

(5) 
 
 

Dc1 is the inner diameter of cavity c1. The thermal conductivity 
of air, ݇௚ is calculated a function of the average gas 
temperature. Substituting equations (2) and (3) in (1) we obtain, 
 
ܳ௔௕,௖ଵ,௜ െ 	ߪ	ߝ	௖ଵܣ	 ௖ܶଵ,௜

ସ െ	݄௖ଵି௚	ܣ௖ଵ	ሺ ௖ܶଵ,௜ െ ௚ܶ,௜ሻ ൌ 0 (6) 

 
Equation 6 has to be solved for the unknown, ௖ܶଵ,௜. The term, 
ܳ௔௕,௖ଵ,௜ is obtained from MC ray tracing.  The gas temperature 

௚ܶ,௜ is calculated by solving the energy equation for the gas 
phase as explained later. Once both absorption term and gas 
temperatures are treated as known quantities in equation (6), we 
have a fourth-order equation for ௖ܶଵ,௜ as shown below, 
 
	ܣ	 ௖ܶଵ,௜

ସ ൅ 	ܤ	 ௖ܶଵ,௜ ൅ ܥ ൌ 0 (7) 

  

where ܣ ൌ െܣ௖ଵ	ߝ	ܤ  ,ߪ ൌ	െ݄௖ଵି௚	ܣ௖ଵ and ܥ ൌ ܳ௔௕,௖ଵ,௜ ൅
݄௖ଵି௚	ܣ௖ଵ ௚ܶ,௜ 
 
Following same procedure as for c1, the cylindrical cavity c2 is 
split into M2 isothermal ring elements of equal width wc2=L2/ 
M2 with inner and outer radius of R2in and R2out respectively. 
Just as in case for c1, neglecting axial conduction and assuming 
perfectly insulated outer surface, we can apply the steady state 
energy conservation for each ring element. For an element i of 
c2, the absorbed energy (ܳ௔௕,௖ଶ,௜ ൌ ܳଵ,௔௕,௖ଶ,௜ ൅ ܳଶ,௔௕,௖ଶ,௜ሻ is 
composed of contributions from incident solar radiation and 
emissions from other surface elements of the reactor. This 
energy is then either lost by convection to adjacent gas phase of 
air or re-radiated. We write steady state energy equation by 
applying an energy balance to a ring element i. 
 
ܳ௔௕,௖ଶ,௜ െ 	ܳ௘௠,௖ଶ,௜ െ 	ܳ௖௢௡௩,௖ଶି௚,௜ ൌ 0 (8) 

 

As derived for c1, equation (8) can be re-written as a 4th order 
equation to be solved for ௖ܶଶ,௜, 
 
ܲ ௖ܶଶ,௜

ସ ൅ ܳ ௖ܶଶ,௜ ൅ ܴ ൌ 0 (9) 
 

where  ܲ ൌ െܣ௖ଶ	ߝ	ߪ,  ܳ ൌ	െ݄௖ଶି௚	ܣ௖ଶ and ܴ ൌ ܳ௔௕,௖ଶ,௜ ൅
݄௖ଶି௚	ܣ௖ଶ ௚ܶ,௜. The area ܣ௖ଶ ൌ ଶ௜௡ܴߨ2  . The heat transfer	௖ଶݓ
coefficient ݄௖ଶି௚  is calculated from Nu which is obtained 
using equation 4. It is then found in the same manner as 	݄௖ଵି௚ 
was calculated.  
 
For the front plate (fp), back plate (bp) and connecting plate 
(cp), the control volume elements are chosen as rings of 
thickness equal to tfp, tcp, and tbp respectively. fp is split into M3 
elements of width, wfp= (Rfpout -Rap)/M3. Similarly cp and bp 
are also split into M4 and M5 elements, of widths wcp= (Rcpout 
–Rcpin)/M4 and wbp= (Rbpout –Rex)/M5 respectively. For each of 
these elements, at steady state, it is assumed that energy 
absorbed is only lost through emission. The losses due to 
convection to gas phase and conduction is assumed to be 
negligible. Hence we can write for an ith element, 
 
ܳ௔௕,௙௣,௜ െ ܳ௘௠,௙௣,௜ ൌ 0 (10) 

ܳ௔௕,௖௣,௜ െ ܳ௘௠,௖௣,௜ ൌ 0 (11) 

ܳ௔௕,௕௣,௜ െ ܳ௘௠,௕௣,௜ ൌ 0 (12) 

  

Again all absorption terms are obtained from MC ray tracing. 
The emission terms are calculated as follows 
 
ܳ௘௠,௙௣,௜ ൌ ߝ௙௣,௜ܣ ߪ ௙ܶ௣,௜

ସ (13) 

ܳ௘௠,௖௣,௜ ൌ ߝ௖௣,௜ܣ ߪ ௖ܶ௣,௜
ସ  (14) 

ܳ௘௠,௕௣,௜ ൌ ߝ௕௣,௜ܣ ߪ ௕ܶ௣,௜
ସ  (15) 

  

Here, ܣ௙௣,௜ ൌ ሺ2ܴ௔௣	௙௣ݓ	ߨ	 ൅ ௖௣,௜ܣ ,௙௣ሻݓ ൌ ௜௡݌ሺ2ܴܿ	௖௣ݓ	ߨ	 ൅
௕௣,௜ܣ	௖௣ሻ andݓ ൌ ௜௡݌൫2ܴܾ	௕௣ݓ	ߨ	 ൅  ௕௣൯. Temperatures forݓ
surface elements of fp, cp and bp are found by combining 
equations 10 through 12 and equations 13 through 15 as 
follows, 
 

௙ܶ௣,௜ ൌ ሺ
ܳ௔௕,௙௣,௜
ߝ௙௣,௜ܣ ߪ

ሻଵ/ସ 
(16) 

௖ܶ௣,௜ ൌ ሺ
ܳ௔௕,௖௣,௜
ߝ௖௣,௜ܣ ߪ

ሻଵ/ସ 
(17) 

௕ܶ௣,௜ ൌ ሺ
ܳ௔௕,௙௣,௜
ߝ௕௣,௜ܣ ߪ

ሻଵ/ସ 
(18) 

 
For gas phase of air, fluid domain is split into isothermal disks 
of equal widths. For domain extending from z=0 to z=L1 
(inside cavity c1) it is split into M6 isothermal disks of equal 
width, wg1 = (L1)/M6 and radius, R1in. Similarly, the fluid 
domain inside c2 located between z= L1 and z=L2, is divided 
into M7 isothermal disks of equal width, wg2 = (L2)/M7 and 
radius, R2in.    The choice of control volume in the form of disks 

1516



 

is ma
axial 
the g
௚ܶ,௜ a

non-p
entha
contro
the r
volum
c2. 
 

Figu
O

 
A ste
cavity
 
ܳ௖௢௡

The c

cp= 1
flow 
rate o

Simil
 
ܳ௖௢௡

Know
tempe
tempe
and (
node 
 
Equat
equat

௙ܶ௣,௜, 
18. T
using
equat
tempe
MC r
contin
until 
expla
 

ade by keeping 
temperature di
as enters the c

and exits with 
participating, i
alpy change of
ol volume is s
reactor walls. 
me with all ene

re 7 On the lef
n the right is th
Incoming and 

ady state energ
y c1 (0 ൑ ݖ ൏

௡௩,௖ଵି௚,௜ െ ሶ݉ ௚ܿ

convection term

1189 J/kg.K an
rate of 10 l/m

of  ሶ݉ ௚ ൌ	 1.936

larly, for a cont

௡௩,௖ଶି௚,௜ െ ሶ݉ ௚ܿ

wing the inlet g
erature of 300
erature of gas 
(20), we can fi
up to z=L2. 

tions (7), (9),
tions to be sol

௖ܶ௣,௜ and ௕ܶ௣,௜

he absorption t
g a guess for i
tions (7), (9), 
erature distribu
ray tracing to 
nued between 
the overall en

ained in the nex

in mind that th
istribution in th
control volume

a temperature
it does not ab
f the gas (Δ݄௚
solely due to c
Figure 7 sho

ergy terms, for 

ft is a control v
he control volu
outgoing energ

gy balance for 
ଵሻ, is given aܮ

ܿ௣ሺ ௚ܶ,௜ାଵ െ ௚ܶ,

m ܳ௖௢௡௩,௖ଵି௚,௜ 
nd for all stud
in is used. Thi
6 X 10-4 kg/s. 

trol volume ins

ܿ௣ሺ ௚ܶ,௜ାଵ െ ௚ܶ,

gas temperatur
K) at node i=
at the next no

find the gas tem

, (19) and (2
lved for the un

௜  are calculate
terms are first 
initial tempera

(16), (17), (
utions are foun
find the abso
the energy eq

nergy balance 
xt section.  

he motivation h
he fluid. So, it 
e with a unifor
e,	 ௚ܶ,௜ାଵ. As ai
bsorb or emit 
௚ሻ as it enters 
convective hea
ows a represe
the gas mediu

volume for air i
ume for air insi
gy are indicate

a control volu
as,  

௜ሻ ൌ 0 

is given by eq

dies presented 
is corresponds 

side cavity c2 (

௜ሻ ൌ 0 

re, ௚ܶ,௜௡	(Taken
1 (z=0), we ca
de, i=2. Using
mperature at e

0) are a coup
nknowns, 	 ௖ܶଵ,௜

ed from equati
obtained from 
ture distributio
18), (19) and 
nd which is ag
rption terms. 
quations and M
for the system

here is to obtai
is assumed tha

rm temperature
ir is considere

radiation. Th
and leaves th

at transfer from
entative contro
um inside c1 an

inside cavity c1

ide cavity c2. 
ed for both. 

ume of air insid

(19)

quation 3.  Her

here, a volum
to a mass flow

ଵܮ) ൑ ݖ ൑ ,ଶሻܮ

(20)

n to be ambien
an calculate th
g equations (19
each subsequen

pled system o

௜, ௖ܶଶ,௜ and ௚ܶ,

ions 16 throug
MC ray tracin

on. Then, usin
(20), the new

ain used for th
The iteration 
MC ray tracin

m is satisfied a

in 
at 
e, 

ed 
he 
he 
m 
ol 
nd 

 
1. 

de 

) 
 

re 

me 
w 

 

) 
 

nt 
he 
9) 
nt 

of 

,௜. 

gh 
ng 
ng 
w 
he 
is 

ng 
as 

Monte
The M
techni
charac
metho
behav
experi
metho
calcul
not ra
proces
behav
produc
 
MC R
The M
radiati
a syst
radiati
behav
events
with a
broadl
reflect
or ref
metho
involv
energy
numbe
the in
emissi
that h
densit
hand. 
mediu
functio
the ev
Then, 
ray is 
system
port o
such r
MC m
indepe
 
The m
limited
analyt
simple
diffuse
with c
 
Here, 
In the
mediu
 
Step 1
volum

e Carlo Metho
Monte Carlo (M
iques that ar
cteristics of ph
od is often emp
viour is not p
imental or an
od is the use of
late the expect
andom. So a M
ss by a prob

viour, but is f
ce the same ou

Ray tracing  
MC ray tracin
ive energy exc
tem [17, 18]. T
ive exchange 

viour of the to
s that have occ
a non-participa
ly classified i
tion. The incid
flected by the 
od is to obtain
ved in the radia
y from all inci
er of rays. Inc
ncoming solar
ion from the ca

has been gene
ty functions de

Then the ray
um. For each p
on that is asso

vents would oc
the ray is eith
followed until

m as re-radiatio
of the reactor. T
rays provides t
method, along 
endent of the p

major advantag
d to treating
tical technique
e geometries. 
e, non-gray, 

complex 3D ge

the cavity wal
e gas phase, 
um.  

1: Dividing so
me elements in

od 
MC) method re
re based on

hysical process
ployed to analy
predicted easi
alytical metho

f randomly gen
ted outcome of
MC method es
babilistic mode
far easier to 
utcome as the a

ng method us
change to simu
The ray tracin

by a statis
otal system as 
curred. In a rad
ating medium, 
in to irradiatio
dent solar radi
cavity walls. 

n the net radi
ation exchange
ident radiation

cident radiation
ar radiation a
avity walls. Ea

erated such th
emanded by th
y is followed 
possible event, 
ociated with it
cur based on a
her absorbed o
l it is absorbed
on through the
The average be
the radiative pe
the path of a r

preceding even

ge of MC ray tr
g diffuse-gray
es would req
With MC ray
non-isotherma

eometries.   

lls are assume
air is consid

olar radiation
nto rays 

 

efers to a grou
n calculation 
ses that are det
yse complex p
ily or accura
ods.  The bas
nerated number
f any process t
ssentially repla
el that simula
analyse, and 
actual process 

ses a probabil
ulate radiative 
ng method repl
stical method 

an average o
diative heat ex
the events tha

on, absorption
iation can be e
The aim of M

iative flux for
e process. In ra
n is divided eq
n includes prim
and secondary
ach ray is assig
at it follows 
he actual phys

as it traverse
there is a prob

t. This decides
a randomly gen
or reflected at t
d by the walls o
e aperture or th
ehaviour of a l
erformance of 
ray, each even

nt.  

racing method
y-isotropic pr

quire these as
y tracing, one 
al and anisotr

d to be diffuse
dered as a no

n and emission

up of numerica
of statistica

terministic. MC
problems whos
ately by direc
sis of any MC
rs as a means t
that is by itsel
aces a physica
ates the actua
is expected to
[17]. 

listic model o
heat transfer in
laces the actua

that capture
of frequency o
xchange proces
at occur can b
, emission an
either absorbed
MC ray tracing
r each elemen
ay tracing, tota
qually among 
mary rays from
y rays due t
gned a direction
the probability

sical process in
es through th
bability density
s which one o
nerated number
the walls. Each
or lost from th
hrough the exi
arge number o
the receiver. In

nt is considered

d is that it is no
roblems. Mos
sumptions an
can treat non

ropic problem

e-gray surfaces
on-participating

n from contro

 

al 
al 
C 
e 

ct 
C 
o 
lf 
al 
al 
o 

of 
n 
al 
es 
of 
s 
e 
d 
d 
g 

nt 
al 
a 

m 
o 
n 
y 
n 
e 
y 

of 
r. 
h 
e 
it 

of 
n 
d 

ot 
st 
d 

n-
ms 

s. 
g 

ol 

1517



 

The s
have 
and i
The t
This 
const
energ
 
ܳ௣௥௜௠
 

Each 
virtue
ܳ௘௠,௙

eleme
conne
each 
called
 
ܳ௦௘௖
ܳ௦௘௖
ܳ௦௘௖
ܳ௦௘௖
ܳ௦௘௖

For t
tempe
calcu
 
ܳ௘௠
ܳ௘௠
ܳ௘௠
ܳ௘௠
ܳ௘௠

Each 
receiv
or esc
 
Step 
Ray t
determ
how i
non-p
where
found
be de
 
Figur
the so
parab
Rconc=
tracin
apertu

solar radiation
a Plank’s blac
s assumed to 
total solar ener

energy is sp
titutes the prim
gy,  

௠ ൌ ܳ௦௢௟௔௥/ܰ′ௌ

subsystem ele
e of its tempera

௙௣,௜, ܳ௘௠,௕௣,௜  
ents of c1 and
ecting plate (c
element be sp

d secondary ray

௖,௖ଵ,௜ ൌ ܳ௘௠,௖ଵ,௜

௖,௖ଶ,௜ ൌ ܳ௘௠,௖ଶ,௜

௖,௙௣,௜ ൌ ܳ௘௠,௙௣,

௖,௕௣,௜ ൌ ܳ௘௠,௕௣,

௖,௖௣,௜ ൌ ܳ௘௠,௖௣,௜

the very firs
erature distrib

ulate	ܳ௘௠,௖ଵ,௜, ܳ

௠,௖ଵ,௜ ൌ ߪ	ߝ	௖ଵܣ

௠,௖ଶ,௜ ൌ ߪ	ߝ	௖ଶܣ

௠,௙௣,௜ ൌ ߪ	ߝ௙௣,௜ܣ

௠,௕௣,௜ ൌ 	ߝ	௕௣,௜ܣ

௠,௖௣,௜ ൌ ߪ	ߝ	௖௣,௜ܣ

of these rays
ver until they 
capes through t

2: Finding dir
tracing is a p
mination of po
it traverses thr
participating, s
e the ray strik
d, the control v
etermined. 

re 8 shows the 
olar concentrat
boloidal concen
= 4.25 m. For 
ng, first we ca
ure and its poin

n intercepted a
ck body spectr
be uniformly 

rgy incident at 
plit equally b
mary rays. E

ௌ,௥௔௬௦ 

ement of the re
ature. This is d
and ܳ௘௠,௖௣,௜ fo
d c2, front pla
cp) for the ith 
plit equally bet
ys where energ

/ܰ′௜,௥௔௬௦ 

/ܰ′௜,௥௔௬௦ 

௜/ܰ′௜,௥௔௬௦ 

௜/ܰ′௜,௥௔௬௦ 

௜/ܰ′௜,௥௔௬௦ 

t iteration, w
bution equal t
ܳ௘௠,௖ଶ,௜, ܳ௘௠,௙௣

	 ௖ܶଵ,௜
ସ  

	 ௖ܶଶ,௜
ସ   

	ߪ ௙ܶ௣,௜
ସ  

	ߪ ௕ܶ௣,௜
ସ  

	ߪ ௖ܶ௣,௜
ସ  

s (primary and
are either abso
the aperture or

rection of prim
purely geometr
oint of origin 
rough the med
so we only ha
kes the cavity
volume corresp

solar cavity-re
tor [13] and ap
ntrator has a fo
initiating the M

alculate the dir
nt of origin on

at the aperture
al distribution 
distributed ov
the aperture i

between ܰ′ௌ,௥
ach primary 

eactor also rad
designated as ܳ
for the cylindri
ate (fp), back 

element. Let 
tween ܰ′௜,௥௔௬௦ 
gy of each ray i

we have assum
to 500 K for 
,௜, ܳ௘௠,௕௣,௜  and

d secondary) i
orbed by the su
r exit of the rea

mary/secondar
rical problem.
of the ray, the

dium. Here the
ave to establi

y walls. Once 
ponding to this

eceiver position
perture at the f
ocal length, f =
Monte-Carlo t
rection of the r
 the aperture. T

e is assumed t
[17] at 5780 K

ver the aperture
s ܳ௦௢௟௔௥ (=Pap

௔௬௦ rays. Th
ray carries th

(21)

diates energy b
ܳ௘௠,௖ଵ,௜, ܳ௘௠,௖ଶ,

ical cavity wa
plate (bp) an
emission from
rays. These ar
is given by, 

(22)

(23)

(24)

(25)

(26)

med an initia
all surface t

d ܳ௘௠,௖௣,௜ from

(27)

(28)

(29)

(30)

(31)

is traced in th
urface element

actor. 

ry rays 
 It depends o
e direction, an

e gas medium i
sh the locatio
the location 

s location has t

ned on axis wit
focal plane. Th

= 5 m and radiu
echnique of ra
ray through th
This direction 

to 
K 
e. 

p). 
is 

he 

by 
,௜, 

all 
nd 
m 
re 

) 

) 

) 

) 

) 
 
al 
to 

m 

) 

) 

) 

) 

) 
 

he 
ts 

on 
nd 
is 

on 
is 
to 

th 
he 
us 
ay 
he 
is 

given 

apertu
to be 
apertu
rays fr
projec
incide
 
ܰᇱ

ௌ,௥௔

        

F

 
The pr
is give
 

ܲሺݎሻ

        
 

The cu
 

ܴଵ ൌ

 
Equati
 
ଶݎ ൌ

 

Likew
 
ߠ ൌ 2

Here ܴ
distrib
pseudo
and in
Once t

by the unit ve

ure from where
found in order

ure. Assuming 
from a certain r
cted area	2	ݎߨ
ent on the conc

௔௬௦ ൌ ܥ ݎߨ2 ݀
       = 0         

Figure 8 Sche
p

robability distr
en by 

ൌ
஼భ௥

׬ ஼భ௥ ௗ௥
ೃ೎೚೙೎
ೃమ೚ೠ೟

 =     0            

umulative distr

න ܲሺݎ′ሻ݀ݎ′
௥

ିஶ

ൌ

ion (34) can be

ܴଵሺܴ௖௢௡௖ଶ െ ܴ

wise, we can fin

ଶܴߨ2  

ܴଵand ܴଶare r
buted set betw
o-random num
nserted into th
these are calcu

ector ݑො ൌ
௉మି௉

|௉మି௉

e the ray enters
r to obtain the
 uniform flux
ring of radius r
Let ܰ′ௌ,௥ .ݎ݀

centrator. Then

ݎ݀ ଶ௢௨௧ܴ		ݎ݋݂
           else wh

eme of solar rea
paraboloidal co

ribution for a r

௥
ൌ

ଶ௥

ோ೎೚೙೎
మ ିோమ೚ೠ೟

మ

             else w

ribution functio

ൌ න ܲሺݎ′ሻ
௥

ோమ೚ೠ೟

ൌ
ଶݎ െ ܴଶ௢௨௧

ଶ

ܴ௖௢௡௖ଶ െ ܴଶ௢௨
ଶ

e rewritten as  

ܴଶ௢௨௧
ଶ ሻ ൅ ܴଶ௢௨௧

ଶ 	

nd the polar an

random numbe
ween 0 and 1
mber generator
he equations (3
ulated, the coor

 

௉భ
௉భ|

  and ଶܲ is th

s the receiver. 
e direction of t
x distribution, 
r is proportion
௥௔௬௦ be the n
,  

௧ ൏ ݎ ൏ ܴ௖௢௡௖
here 

actor configura
oncentrator 

ray hitting a par

೟
		for  R2out< r <

where 

on is calculated

ሻ݀ݎ′

௨௧
	 

	  

ngle, ߠ using  

ers chosen fro
. These are g
r using a com
35) and (36) 
rdinates of ଵܲ a

he point on th

ଵܲand ଶܲ  nee
the ray into th
the number o

nal to its norma
number of ray

(32)

ation with 

rticular radius 

 Rconc 
(33)
 

d by 

(34)

(35)

(36)

om a uniformly
generated by 

mputer program
to get r and	ߠ
are given as 

 

e 

d 
e 

of 
al 
ys 

 

r 

 

y 
a 

m 
 .ߠ

1518



   

 

ଵܲ ൌ ሾݎ. cos ߠ , .ݎ sin ,ߠ െሺ ݂ െ
ଶݎ

4݂
ሻ	ሿ 

(37) 
 
 

Using the same approach we can assign two more random 
numbers, ܴଷand ܴସ to calculate the location of ଶܲ as shown 
below, 
 
ݎ ൌ ܴ௔௣	ඥܴଷ (38) 

߮ ൌ   (39)	ସܴߨ2

ଶܲ ൌ ሾݎ. cos߮ , .ݎ sin߮ , 0	ሿ (40) 
 

By using guesses for the random numbers, a random direction 

for the ray is obtained as ݑො ൌ
௉మି௉భ
|௉మି௉భ|

. This ray enters the 

aperture at a random location, ଶܲ.  
 
After the direction of incoming radiation through the aperture ݑො  
is calculated, we need to find out where it intersects the interior 
of the receiver. For that we define a line in the direction of ݑො  in 
parametric form as,  
 
௥௔௬ሬሬሬሬሬሬሬԦݎ ൌ ܱ ଶܲሬሬሬሬሬሬሬԦ ൅ ොݑ	ݐ    (41) 

 
where t is a parameter which can be varied to generate the line 
and O is the origin of the co-ordinate system. 
 
The inner surface of cylindrical cavity c1 can be represented in 
parametric form as follows, 
 
,ߠ௖ଵሬሬሬሬሬሬԦሺݎ ሻݏ ൌ ܴଵ௜௡ܿߠݏ݋	ଓ̂ ൅ 	ܴଵ௜௡ߠ݊݅ݏ	ଔ̂ ൅ 	ݏ ෠݇				 
ሾ0			ݎ݋݂										 ൑ ߠ ൑ ሾ0	ܽ݊݀	ሿߨ2 ൑ ݏ	 ൑  	ଵሿܮ	

(42) 

Here ߠ and  ݏ are the parameters that generate the inner surface 
of the cavity c1.   
 
Let ܱ ଶܲሬሬሬሬሬሬሬԦ ൌ 	 ሬܾԦ ൌ 	ܾଵ	ଓ̂ ൅ 	ܾଶ	ଔ̂ ൅ ܾଷ	 ෠݇ and			ݑො ൌ ଓ̂	ଵݑ	 ൅ ଔ̂	ଶݑ	 ൅
	ଷݑ ෠݇. 
 
We need to find the intersection of incoming ray with the 
cylinder surface. Equating equations (41) and (42), we get, 
 
ሺܾଵ ൅ ଓ̂	ଵሻݑ	ݐ 	൅ ሺܾଶ ൅ ଔ̂	ଶሻݑ	ݐ 	൅ ሺܾଷ ൅ 	ଷሻݑ	ݐ ෠݇ 
																						ൌ ܴଵ௜௡ܿߠݏ݋	ଓ̂ ൅ 	ܴଵ௜௡ߠ݊݅ݏ	ଔ̂ ൅ 	ݏ ෠݇					 
 

(43) 

Equating x, y and z components separately we get 3 equations 
that have to be solved for the unknowns	ߠ ,ݐ and ݏ. 
 
ሺܾଵ ൅ ଵሻݑ	ݐ 	ൌ ܴଵ௜௡ܿߠݏ݋						(44)  

ሺܾଶ ൅ ଶሻݑ	ݐ 	ൌ ܴଵ௜௡ߠ݊݅ݏ						(45)  

ሺܾଷ ൅ ଷሻݑ	ݐ 	ൌ  						ݏ	 (46) 
 

Eliminating ߠ from equations (44) and (45) we get a quadratic 
equation for t, 
 
ଶݐܣ ൅ ݐܤ ൅ 	ܥ ൌ 0					 (47) 

 
Here ܣ ൌ ଵଶݑ	 ൅	ݑଶ

ଶ	, ܤ ൌ 	2	ሺܾଵݑଵ ൅	ܾଶݑଶሻ and ܥ ൌ	ܾଵଶ ൅
	ܾଶ
ଶ െ ܴଵ௜௡

ଶ  
 
When t	൑ 0 , the incoming ray does not intersect the cylinder.   
 
The z – coordinate for intersection of line with cylindrical 
cavity c2 is calculated from equation (46). If the calculated s is 
within the bounds indicated in equation (42) (ݏ ൑  ଵሻ, then theܮ	
ray intersects the cylinder surface 1. The point of intersection is 
then obtained from equation (41) by substituting for the value 
of t from (47). However, if	ݏ ൐  ଵ then we need to repeat aܮ
similar procedure as outlined above to check if the incoming 
ray intersects the inner surface of c2.  
 
To verify intersection of the incoming ray with c2, we repeat 
above procedure for c2 just as we did for c1. Now s is re-
calculated and if ܮଵ ൏ ݏ	 ൏ ଵܮ	 ൅  ଶ, then incoming rayܮ
intersects with c2. However, if  ݏ ൒ ଵܮ ൅  ଶ then, we check forܮ
possible intersection on the surface of the back plate. 
The parametric form of surface of back plate is written as 
 
,ߠ௕௣ሬሬሬሬሬԦሺݎ ܴሻ ൌ ܴ ߠݏ݋ܿ ଓ̂ ൅ ܴ ଔ̂	ߠ݊݅ݏ ൅ ሺܮଵ ൅ ଶሻܮ ෠݇  

ݎ݋݂ ሾ0 ൑ ߠ ൑ ሾ0	ܽ݊݀	ሿߨ2 ൑ 	ܴ ൑ ܴଶ௜௡ሿ  
 

(48) 

In order to determine the point of intersection we have to 
equate equations (41) and (48). 
 
ሺܾଵ ൅ ݐ ଵሻݑ ൌ ܴ ߠݏ݋ܿ  (49) 

ሺܾଶ ൅ ݐ ଶሻݑ ൌ ܴ ߠ݊݅ݏ  (50) 

ሺܾଷ ൅ ݐ ଷሻݑ ൌ ሺܮଵ ൅ ଶሻܮ   (51) 
 

From equation 51, we can calculate parameter t. Then, equation 
(43) gives the co-ordinates of point of intersection of the ray 
with back plate. The radius R at which intersection takes place 
is calculated by combining equations (49) and (50), 
 

ܴ ൌ ඥሺܾଵ ൅ ݐ ଵሻଶݑ ൅ ሺܾଶ ൅   (52)					ଶሻଶݑ	ݐ
 

If R < Rex, then the ray escapes the receiver through the exit. 
The history of this ray is terminated and recorded as energy 
lost. Now go to step 4 to check if all primary rays have been 
traced. 
 
In case of intersection with c1, c2 or bp go to step 3 to verify 
whether reflection or absorption takes place at the surface. 
 
Secondary ray emission from walls 
Simultaneously, there are secondary rays emanating from the 
cavity walls. Trace a ray each from the control volume element, 
i. 
 
When energy is absorbed by the receiver walls, at steady state, 
it is either lost through convection to gas phase or lost through 
re-radiation. The emitted energy from the wall elements are 
given by equations (27) through (31). Here again we need to 
find the direction of the secondary ray. Assuming diffuse-gray 
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properties for the walls, we can calculate the polar and cone 
angles by defining the random numbers ܴଵସ and ܴଵହ as, 
 
ߠ ൌ sinିଵ ඥܴଵସ (53) 

߮ ൌ  ଵହ (54)ܴߨ2
 

Step 3: Absorption or Reflection from walls 
If a ray primary or secondary reaches a wall element, we need 
to check if absorption or reflection occurs. It is decided by 
generating another random number, ܴଵଵ. The criterion is as 
follows   
 
Case I absorption when : ܴଵଵ ൑ ߙ	  (55) 

Case II reflection occurs when : ܴଵଵ ൐ ߙ	  (56) 
 

Here ߙ ൌ ߝ	 ൌ 0.8 by Kirchoff’s law for diffuse-gray surfaces 
[17]. If Case I occurs, the ray is absorbed and recorded by 
counters. If it is a primary ray that is absorbed then the counter 
݊௣,௔௕,௖ଵ,௜,  ݊௣,௔௕,௖ଶ,௜, ݊௣,௔௕,௙௣,௜, ݊௣,௔௕,௕௣,௜ or ݊௣,௔௕,௖௣,௜ is 
incremented depending on where the ray is absorbed and  its 
history is terminated. If it is a secondary ray, depending on the 
source of the ray the counters, ݊௦௘௖,௔௕,௖ଵ,௜ି௖ଵ,௝	, ݊௦௘௖,௔௕,௖ଵ,௜ି௖ଶ,௝,
݊௦௘௖,௔௕,௖ଵ,௜ି௙௣,௝	 and ݊௦௘௖,௔௕,௖ଵ,௜ି௕௣,௝ are incremented for 
absorption by c1. For absorption by c2 we have the counters, 
݊௦௘௖,௔௕,௖ଶ,௜ି௖ଵ,௝	, ݊௦௘௖,௔௕,௖ଶ,௜ି௖ଶ,௝, ݊௦௘௖,௔௕,௖ଶ,௜ି௖௣,௝, ݊௦௘௖,௔௕,௖ଶ,௜ି௙௣,௝	 
and ݊௦௘௖,௔௕,௖ଶ,௜ି௕௣,௝. The back plate sees all other surfaces (does 
not see itself). So for absorption by bp, we have to increment 
the counters, ݊௦௘௖,௔௕,௕௣,௜ି௖ଵ,௝	, ݊௦௘௖,௔௕,௕௣,௜ି௖ଶ,௝, ݊௦௘௖,௔௕,௕௣,௜ି௖௣,௝,	 
and ݊௦௘௖,௕௣,௖ଶ,௜ି௙௣,௝. The connecting surface, cp sees elements 
on surfaces of bp and c2. So for absorption by connecting plate 
cp the counters ݊௦௘௖,௔௕,௖௣,௜ି௕௣,௝ and ݊௦௘௖,௔௕,௖௣,௜ି௖ଶ,௝ are 
incremented. The surface, fp sees all surfaces of the receiver 
other than cp and itself. Any absorption by elements of fp are 
recorded by incrementing the counters, 
݊௦௘௖,௔௕,௙௣,௜ି௖ଶ,௝, ݊௦௘௖,௔௕,௙௣,௜ି௖ଵ,௝	 and ݊௦௘௖,௔௕,௙௣,௜ି௕௣,௝. Go to step 
4. 
 
If case II occurs, diffuse-gray reflection is assumed from the 
surface. The wavelength of the reflected ray remains 
unchanged. The direction of the reflected ray is calculated by 
generating two random numbers, ܴଵଶ and ܴଵଷ to calculate the 
polar and cone angles: 
ߠ ൌ sinିଵ ඥܴଵଶ (57) 

߮ ൌ  ଵଷ (58)ܴߨ2

 
The reflected ray is then traced to find location of its 
intersection with the walls in a similar manner as outlined in 
step 2. If it escapes through the exit or aperture its history is 
terminated and go to step 4. Otherwise, if an intersection occurs 
with the surface elements of the wall, then go to step 3 to 
ascertain if absorption or reflection takes placed. This  process 
is continued until the ray is either absorbed or escapes the 
receiver. 
Step 4: Check number of primary and secondary rays 
emitted 

If all primary rays ܰ′ௌ,௥௔௬௦ and secondary rays ܰ′௜,௥௔௬௦  have 
been traced, then go to step 5. Otherwise, go back to step 2. 
 
Step 5: End of iteration: Calculation of absorption terms 
One iteration of Monte Carlo ends by the calculation of the 
absorption terms. The absorption terms for a c1 wall volume 
element, i are calculated as: 
 
ܳ௔௕,௖ଵ,௜ ൌ ܳଵ,௔௕,௖ଵ,௜ ൅ ܳଶ,௔௕,௖ଵ,௜  
=݊௣,௔௕,௖ଵ,௜. ܳ௣௥௜௠ ൅

	∑ ݊௦௘௖,௖ଵ,௜ି௖ଵ,௝	. ܳ௦௘௖,௖ଵ,௝ ൅
			

ெଵ
௝ୀଵ ∑ ݊௦௘௖,௔௕,௖ଵ,௜ି௕௣,௝	. ܳ௦௘௖,௕

ெହ
௝ୀଵ

൅ ∑ ݊௦௘௖,௔௕,௖ଵ,௜ି௖ଶ,௝. ܳ௦௘௖,௖ଶ,௝ெଶ
௃ୀଵ ൅

∑ ݊௦௘௖,௔௕,௖ଵ,௜ି௙௣,௝ . ܳ௦௘௖,௙௣,௝
ெଷ
௝ୀଵ 	  

(59) 

 
Similarly for back plate  
 
ܳ௔௕,௕௣,௜ ൌ ܳଵ,௔௕,௕௣,௜ ൅ ܳଶ,௔௕,௕௣,௜  
=݊௣,௔௕,௕௣,௜. ܳ௣௥௜௠ ൅ ∑ ݊௦௘௖,௔௕,௕௣,௜ି௖ଶ,௝	. ܳ௦௘௖,௖ଶ,௝ ൅

ெଶ
௝ୀଵ

			 ∑ ݊௦௘௖,௔௕,௕௣,௜ି௖ଵ,௝	. ܳ௦௘௖,௖ଵ,௝
ெଵ
௝ୀଵ ൅

∑ ݊௦௘௖,௔௕,௕௣,௜ି௖௣,௝.
ெସ
௝ୀଵ ܳ௦௘௖,௖௣,௝ ൅

∑ ݊௦௘௖,௔௕,௕௣,௜ି௙௣,௝. ܳ௦௘௖,௙௣,௝	
ெଷ
௝ୀଵ 	  

(60) 

 
For cylindrical cavity c2  
 
ܳ௔௕,௖ଶ,௜ ൌ ܳଵ,௔௕,௖ଶ,௜ ൅ ܳଶ,௔௕,௖ଶ,௜  
=݊௣,௔௕,௖ଶ,௜. ܳ௣௥௜௠ ൅ ∑ ݊௦௘௖,௔௕,௖ଶ,௜ି௕௣,௝	. ܳ௦௘௖,௕௣,௝ ൅

ெହ
௝ୀଵ

			 ∑ ݊௦௘௖,௔௕,௖ଶ,௜ି௖௣,௝	. ܳ௦௘௖,௖௣,௝
ெସ
௝ୀଵ ൅

	∑ ݊௦௘௖,௔௕,௖ଶ,௜ି௖ଶ,௝. ܳ௦௘௖,௖ଶ,௝
ெଶ
௝ୀଵ ൅

∑ ሺ݊௦௘௖,௔௕,௖ଶ,௜ି௖ଵ,௝ . ܳ௦௘௖,௖ଵ,௝ ൅
ெଵ
௝ୀଵ

݊௦௘௖,௔௕,௖ଶ,௜ି௖ଵ,௝ . ܳ௦௘௖,௖ଵ,௝ሻ   

(61) 

 
Likewise, for connecting plate, cp: 
 
ܳ௔௕,௖௣,௜ ൌ ܳଵ,௔௕,௖௣,௜ ൅ ܳଶ,௔௕,௖௣,௜  
=݊௣,௔௕,௖௣,௜. ܳ௣௥௜௠ ൅ ∑ ݊௦௘௖,௔௕,௖௣,௜ି௕௣,௝	. ܳ௦௘௖,௕௣,௝ ൅

ெହ
௝ୀଵ

∑ ݊௦௘௖,௔௕,௖௣,௜ି௖ଶ,௝ . ܳ௦௘௖,௖ଶ,௝
ெଶ
௝ୀଵ  

(62) 

 
For the front plate, fp, 
 
ܳ௔௕,௙௣,௜ ൌ ܳଵ,௔௕,௙௣,௜ ൅ ܳଶ,௔௕,௙௣,௜  
=݊௣,௔௕,௙௣,௜. ܳ௣௥௜௠ ൅ ∑ ݊௦௘௖,௔௕,௙௣,௜ି௕௣,௝	. ܳ௦௘௖,௕௣,௝ ൅

ெହ
௝ୀଵ

∑ ݊௦௘௖,௔௕,௙௣,௜ି௖ଶ,௝ . ܳ௦௘௖,௖ଶ,௝
ெଶ
௝ୀଵ ൅

∑ ݊௦௘௖,௔௕,௙௣,௜ି௖ଵ,௝. ܳ௦௘௖,௖ଵ,௝
ெଵ
௝ୀଵ   

(63) 

 
The Monte Carlo routine ends here, go to Step 6 
 
Step 6: Numerical Solution of Governing Equations 
Once the absorption terms are available from step 5, the energy 
conservation equations 7, 9, 16, 17, 18, 19 and 20 can be solved 
to obtain ௖ܶଵ,௜

௡ , ௖ܶଶ,௜
௡ , ௙ܶ௣,௜

௡ , ௖ܶ௣,௜
௡  and ௕ܶ௣,௜

௡  where superscript 
indicates the iteration number. These temperatures are then 
provided to the MC ray tracing module to calculate the 
absorption terms again. The absorption terms are then 
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1858 hrs when the insolation is 400 W/m2 the diameter should 
be back at 3 cm. As the insolation decreases further in the 
evening, opening the aperture will not provide us with the 
required temperature inside the reactor.    
 
This method of changing aperture size to compensate for 
fluctuating solar energy is reminiscent of the human eye, 
wherein the pupils dilate to let in more light in dim settings 
while they shrink to block the light in bright conditions.   

CONCLUSIONS  
The heat transfer and optical analysis of the prototype reactor is 
done with a well validated MC ray tracing code coupled to a 
steady state energy solver. We have shown that for a fixed mass 
flow rate of the working fluid, it is possible to maintain a 
constant gas temperature in the reactor by varying the aperture 
size that mimics the human eye. In the example we considered, 
to obtain an average gas temperature of 1500K, we would have 
to operate the reactor between 0512 hrs in the morning and 
1858 hrs in the evening when normal insolation is at least 400 
W/m2. At this level of insolation, an aperture diameter of 3 cm 
is required. For peak insolation of 981 W/m2 which occurs at 
noon, an aperture diameter of 1.5 cm would be sufficient. 
 
The analysis presented here assumes a perfectly insulated 
reactor. Ideally we want the reactor to be perfectly insulated so 
that maximum amount of energy absorbed by the receiver walls 
is transferred to the gas. However, in reality usage of any 
insulation material would still result in losses to the outside 
environment from the reactor walls. This is the reason why the 
aperture diameters calculated here would be smaller compared 
to what would actually be required in practice. However, the 
objective of the present work is to show how semi-constant gas 
temperature inside a reactor could be maintained by use of 
variable size apertures. Even when conduction losses, losses by 
convection to the atmosphere or heat of reaction for 
thermochemical processing are included, the trends we have 
presented here are to be expected. 
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