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ABSTRACT 

In the present paper an axisymmetric heat condition problem 

for a non-homogeneous half-space heated by a heat flux is 

considered. The half-space consists of a homogeneous substrate 

and non-homogeneous coating. The solutions are obtained using 

Hankel integral transform technique. Compared:  

1) the analytical solutions of the problems for coating, 

which has a heat conductivity coefficient is described by 

continuous function of the distance to the boundary 

surface, and the solution of the problem in which the 

non-homogeneous coating is modeled by the package of 

homogeneous layers;  

2) the solution for the multilayered coating with a periodic 

structure and the solution of the problem in which this 

coating is described by a homogenized uniform layer. 

 

INTRODUCTION 
The progress of coating technology is the reason for wide 

employments of coatings for improvement in various technical 

fields. In the last decade, significant attention is focused on the 

problem of inhomogeneous medium formed by a homogeneous 

isotropic substrate and an inhomogeneous coating whose thermal 

and mechanical properties vary over its thickness. These 

problems come down to solving partial differential equations 

with variable coefficients. For the power (or exponential) law of 

variation of heat conduction coefficient (or Young’s modulus) 

the analytical methods of solutions are known [1-5]. 

Parallel with the application of analytic methods for the 

solution of partial differential equations, inhomogeneous layers 

are also modeled by using an approach according to which 

coating is replaced with a package of homogeneous or 

inhomogeneous layers [5-11]. 

The special type of graded coating is multilayered coating 

with periodic structure [12-13]. In modeling laminated half 

spaces or coatings with periodic structures, it is customary to use 

two different approaches. The first of these approaches the layers 

are considered as separate continuous media. The second 

approach is based on the analysis of a homogenized uniform 

coating whose properties are determined on the basis of the 

material properties and geometric characteristics of the strip of 

periodicity [14–15]. The solutions obtained for the laminated 

half-space or layer are compared in [16–18]. 

In the present work, we consider an axisymmetric problem of 

heat conductivity for half-space with graded coating heated by a 

given heat flux. Examined: 1) coating, which has a heat 

conductivity coefficient is described by continuous function of 

the distance to the boundary surface, 2) multilayer coating with 

a periodic structure composed of the two-layer laminae repeated 

periodically. In the first case the two approaches was considered: 

1) analytical method of solving differential equations with 

variable coefficients; 2) analytical-numerical method based on 

modeling non-homogeneous coating by package of 

homogeneous layers, between which the conditions of ideal 

thermal contact is assumed. The multilayer coating with periodic 

structure is described by means of two models: 1) the 

homogenized model with micro-local parameters [14-15], 2) 

based on a classical heat conduction model, in which the 

components of the coating are considered as separate 

homogeneous medium.  

We analyze the difference between the temperature and heat 

flux in the non-homogeneous half-space caused by the use of two 

different models of nonuniform coatings. 

NOMENCLATURE 
 

a [m] radius of circle heating zone 

c, α, [-] dimensionless parameters described the dependence of 
heat conductivity coefficient on the coordinate z 

hI,hII [-] dimensionless thickness of layers of strip of periodicity  

H [m] thickness of the coating 
H(r) [-] Heaviside step function 

Hi [m] thickness i-th layer of coating 

Iν(r) [-] modified Bessel functions of first kind 
Jν(r) [-] Bessel function of first kind 
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K* [W/(mK)] parameter described the dependence of heat conductivity 
coefficient on the coordinate z 

Ki [W/(mK)] heat conductivity coefficient i-th layer of coating 

K0 [W/(mK)] heat conductivity coefficient of substrate 
KI,KII [W/(mK)] heat conductivity coefficients of layers of strip of 

periodicity  

KS [W/(mK)] heat conductivity coefficient on the surface of the 
inhomogeneous half-space 

Kν(r) [-] modified Bessel functions of second kind 

r, z [-] dimensionless cylindrical coordinate system 
s [-] parameter of Hankel integral transform 

T [K] temperature  

q(r) [W/m2] given heat flux on boundary half-space 
qr [W/m2] radial heat flux 

Q0 [W/m2] given maximal intensity of heat flux on boundary half-

space  
n [-] number of layer in coating 

 

FORMULATION OF THE PROBLEM 
Assume that the surface z = h of a non-homogeneous half-

space is heated by a heat flux q(r) on the circle of radius a, where 

r, z are dimensionless cylindrical coordinates referred to the 

linear size a, h = H/a, H is the thickness of the coating. 

 

 
Figure 1 The scheme of the body 

 
The non-homogeneous half space is formed by the 

homogeneous half-space with the heat conductivity coefficient 

K0 and a system of non-homogeneous layers with thicknesses Hi 

and the heat conductivity coefficients Ki, i = 1, 2, …, n, 

respectively, where the value of the parameter n corresponds to 

the number of the layer in the package. Assume that the 

conditions of perfect thermal contact are realized between the 

layers of the coating and between the coating and the base. 

The analyzed problem of the theory of heat conduction is 

reduced to the solution of the following partial differential 

equations with constant coefficients: 
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and conditions imposed at infinity 

nizrTi ,...,1,0,,0 22  ,   (4) 

where Ti is the temperature in the i-th component of non-

homogenous medium, the index i = 0 describe the parameters 

and functions of state in the homogeneous half-space,
*

ih  is the 

coordinate z upper surface i-th component of non-homogenous 

half-space, 
*

0 0h  , 
* *

1i i ih h h  , hi = Hi/a, i = 1, …, n, 
*

nh h , 

H(r) – Heaviside step function. 

 

METHOD OF SOLUTION 
The general solution of the boundary value problem is sought 

by applying the Hankel integral transformation: 

     0

0

, ,i iT s z T r z rJ sr dr



  ,    (5) 

where J0(sr) is Bessel function. The Hankel transform of 

temperature in homogeneous half-space can be written in the 

form: 

     0 0, expT s z t s sz ,    (6) 

where t0(s) is the unknown function. 

We considered the following cases. 

Case a). Let n = 1. The dependence of the heat conductivity 

coefficient on the coordinate z is described by the formula 

    hz
K

K

h
zKzK 










 0,ln
1

,exp
0

S
01 ,  (7) 

where KS is heat conductivity coefficient on the surface of the 

inhomogeneous half-space. The general solution of the 

differential equation (1) specified in the coating can be written 

in the form: 

           1 1 2, exp expT s z t s z t s z 
 

  ,  (8) 

where 
  22 42 s 

, t1(s) and t2(s) are the unknown 

functions. 

Case a). Let n = 1. The dependence of the heat conductivity 

coefficient on the coordinate z is described by the power function 

   
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  (9) 
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In equation (9) for a case K0 < KS, we take sign „+”; when 

K0 > KS – sign „–”.  

The Hankel transform of temperature in coating can be written 

in the form: 

         1 1 2, p p

p pT s z t s I s t s K s     ,  (10) 

where 2p +  = 1,  = c  z, Ip(s), Kp(s) – modified Bessel 

functions. 

Moreover, if analytical solution of partial differential equation 

with variable coefficient (1) is not known the non-homogeneous 

coating can be replaced by multilayered system of homogeneous 

layer. Their thermal properties are described by their heat 

conductivity coefficients: 

 




*

*
1

1

1
i

i

h

hi
i dzzK
h

K .     (11) 

Case b). Coating composed of n homogeneous layer. The general 

solution of equations (1) expressed in the Hankel transform 

domain takes the form: 

* *

2 1 2( )sinh( ( )) ( )cosh( ( )),
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i i i i iT t s s h z t s s h z

i n

   


 (12) 

where ti(s), i = 1,…,2n are the unknown functions. 

Case c): multilayered coating with periodical structure. Assume 

that a repeated fundamental layer comprise two homogeneous 

elastic sublayers with different thicknesses (hI and hII) and 

thermal conductivities (KI and KII). A large number of equations 

and boundary conditions on interfaces complicates solution of 

the problem. Another approach is using homogenized model [14-

15] in which properties of the homogenized coating are 

determined on the base of properties of the components.  

Applying the homogenized model to the coating, we solve the 

boundary value problem described by equation: 
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where T1 is the temperature in the homogenized coating, 
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boundary condition imposed on the surface of the non-

homogeneous half-space 
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),1(1 ,    (15) 

and boundary conditions of perfect thermal contact between the 

homogenized coating and the substrate: 

0,, 10
010 




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


 z

z

T
K

z

T
KTT c     (16) 

The boundary conditions (4) are stay without change. The 

general solution of equation (13) in Hankel transforms takes the 

form: 

1 1 1 2 1( )sinh(( ) ) ( )cosh(( ) )T t s h z sp t s h z sp    .  (17) 

The equations (6), (8), (10), (12) and (17) contain unknown 

functions ti(s). These functions are obtained, satisfying boundary 

conditions (2)–(3) (or (15)-(16) in case c). Satisfying boundary 

conditions, the functions ti(s) may be written as 

 
 

 i i

q s a
t s t s

Ks
 ,     (18) 

where the functions  sti


 are obtained solution of linear 

equations (see Appendix A),  sq~  is Hankel transform of heat 

flux, K  = Kn in case a, a, b) and K  = Kcp1 in case c). 

Applying the inverse Hankel transform to equations (6), (8), 

(10), (12) and (17), temperature can be find at the desired 

location 

0

0

( , ) ( , ) ( )i iT r z sT s z J sr ds



  .    (19) 

At internal points of the non-homogeneous half space (z < h) the 

integrals were evaluated numerically using the Gaussian 

quadrature. On the surface z = h, we take into account the 

asymptotic behavior of the functions t2n-1(s) and t2n(s) as s → ∞. 

The continuity of results when z → h was verified. 

 

NUMERICAL RESULTS AND DISCUSSION 

 Assume that the heat flux is elliptical distributed as follows 

   
 3 22

0 0 3 2
( ) 1 1 ,

2

J s
q r Q r H r q s Q

s


    , (20) 

where J3/2(s) is a Bessel function. 

The analysis of the original relations in case a) (or a) shows 

that the solution in the problem of modeling of inhomogeneous 

coating by the package of homogeneous layers depends on three 

(case a) or four (case a) dimensionless parameters: the thickness 

of the coating h, the ratio of heat conductivity coefficients on the 

surfaces of non-homogeneous half space and the substrate KS/K0, 

the parameter α (only for case a) and the number of layers in the 

package n. A similar solution obtained for an inhomogeneous 

coating with regard for the continuous dependence of the thermal 

properties on the coordinate is independent of parameter n. In 

what follows, we assume that h = 0.4, K0/KS = 2, 4, or 8, α = 1 

(only for case a), and n = 10, 20, 40,  or 80. 

The temperature and the heat flux in radial direction r on 

considered nonhomogeneous surface are shown in Figs. 2 and 3 
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(a: case a; b: case a). In this figures, the continuous lines 

correspond to the solution of the problem with continuous 

variation of the thermal properties. The rhombi correspond to the 

results obtained for the package formed by 40 homogeneous 

layers. The results of calculations presented in this Figs. show 

good agreement between the solutions obtained using the 

analyzed two models of the coating. As follows from Figs. 2 and 

3 the maximum absolute error in finding the radial heat flux is 

obtained on the boundary of the heated zone. 

 

 

 
Figure 2 The dimensionless temperature distribution on the 

surface z = h: a) –case a; b) – case a; 1: K0/KS = 2; 2: 

K0/KS = 4; 3: K0/KS = 8; h = 0.4 

 

K0/KS  n = 10 n = 20 n = 40 n = 80 n   

case a 

2 2.79% 1.43% 0.68% 0.29% 0.6169 

4 5.40% 2.73% 1.29% 0.54% 0.5021 

8 7.79% 3.90% 1.82% 0.71% 0.4236 

case a 

2 3.95% 2.03% 0.98% 0.43% 0.6022 

4 11.00% 5.68% 2.72% 1.14% 0.4562 

8 23.00% 11.97% 5.65% 2.18% 0.3435 

Table 1 The dimensionless radial heat flux on the boundary 

of the heated zone 

The values of the radial heat flux in this point are presented 

in Table 1. The analytical solution is presented in the rows of 

Table 1 with n  . The relative error of their evaluation with 

the help of modeling of the inhomogeneous coating by the 

package of n homogeneous layers is given in columns with n = 

10, 20, 40, and 80. It is easy to see that, as the number of layers 

becomes twice larger, the corresponding error becomes almost 

twice lower. In the case where there are 80 layers in the package 

and K0/KS  8, the error of finding the heat flux at the point r = 1, 

z = h does not exceed 2.2%. 

 

 

 
Figure 3 The dimensionless radial heat flux on the surface 

z = h: a) –case a; b) – case a; 1: K0/KS = 2; 2: K0/KS = 4; 3: 

K0/KS = 8; h = 0.4 

 

Estimating the original relations, we conclude that the 

distributions of temperature and heat flux in the problem of 

homogenized coating (case c) depend on four dimensionless 

parameters: the thickness of the coating h , the ratios of heat 

conductivity coefficients KI/K0 and KII/K0 and the ratio of the 

thicknesses of layers in the strip of periodicity hI/hII. Similar 

distributions for the non-uniform coating additionally depend on 

the number of layers in the coating n. To decrease the number of 

input parameters, we assume that the thermal properties of one 

layer in the strip of periodicity coincide with the thermal 

properties of the base (KI/K0 = 1 or KII/K0 = 1) and the thicknesses 
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of all layers in the stack are identical (hI/hII = 1). We also assume 

that K0/KI  (or K0/KII ) = 4, h = 0.2, 0.4, or 0.8, and n = 10, 20, 

40, or 80. 

 

h  n = 10 n = 20 n = 40 n = 80 n   

0.2 
1.12% 0.56% 0.28% 0.14% 

1.0841 
-1.13% -0.56% -0.28% -0.14% 

0.4 
3.35% 1.67% 0.83% 0.41% 

1.2481 
-3.26% -1.64% -0.83% -0.42% 

0.8 
7.99% 3.92% 1.94% 0.96% 

1.3887 
-7.31% -3.76% -1.90% -0.96% 

Table 2 The dimensionless temperature at the centre of the 

heating area 

 

 

 
Figure 4 The dimensionless radial heat flux on the line 

r = 1: a) – n = 20; b) – n = 40; K0/KI = 4; h = 0.4; hI/hII = 1 

 

The dimensionless temperature at the centre of the heating area 

for different thicknesses of the coating and different number of 

layers is presented in Table 2. The temperature calculated for the 

homogenized model is in the last column. The relative 

differences between the temperature in non-homogeneous 

coating and the temperature in homogenized coating are 

presented in columns with n = 10, 20, 40, and 80. The upper 

numbers in cells were calculated for the case K0/KI = 4, 

K0/KII = 1, the lower numbers were obtained for the case 

K0/KI = 1, K0/KII = 4 It can be seen that as number of layers 

becomes twice larger the errors become twice lower. For the 

same value of the parameter δ = h/n (for example: h = 0.2, n = 

10; h = 0.4, n = 20; and h = 0.8, n = 40) these errors are in the 

same order of magnitude.  

Figs. 4 show the dimensionless radial heat flux as functions 

of z for r=1 and two numbers of layers (n=20 and n=40). In Figs. 

4, the rhombs mark the numerical results obtained for the non-

homogeneous laminated coating, whereas the solid lines 

correspond to the homogenized coating. It should be emphasized 

that, in the case of homogenized coating, we do not know which 

layer of the slip of periodicity is located at the analyzed point of 

the coating. Hence, the radial heat flux at every point of the 

coating is described by the two curves. Curves 1 and 2 

correspond to the heat flux acting in the layers with smaller and 

larger heat conductivity coefficients, respectively. In the 

homogeneous substrate curves 1 and 2 coincide. 

Comparing the heat flux obtained in both analyzed problems, 

we conclude that, only in the case of the heat flux acting in the 

homogeneous substrate, we get deviations comparable with the 

deviations of the temperature. In the layers of the coating, the 

deviations of heat flux vary from 1–5% (K0/KI ≤ 4, n = 20) up to 

10–20% for the heat flux acting on the boundary of the region of 

heating. The indicated deviations strongly depend on the 

gradient of the analyzed parameter in the investigated layer of 

the slip of periodicity, which explains the following 

observations: in the layers with lower heat conductivity 

coefficients, the deviations are much smaller (Figs. 4) and the 

maximum deviations are observed at the point (1, h). As could 

be expected, the agreement between the solutions improves as 

the number of layers in the coating increases. 

 

CONCLUSIONS  
This paper provides the solution to the problem of 

inhomogeneous half-space heated by the heat flux. It is shown 

that the solution of the problem for a package of 20–80 

homogeneous layers is in good agreement compliant with the 

analytical solution to the problem for the coating whose the 

dependence of the heat conductivity coefficient on the 

coordinate z is described by a exponential (or power) function. 

This is a strong argument for the possibility of modeling of the 

gradient coating with continuous variation of thermal properties 

by a package of homogeneous layers. 

It is shown that the solution of the axisymmetric problem of 

heat conductivity for the half-space with laminated coating of 

periodic structure heated by heat flux is in good agreement with 

the solution of the problem in which the coating is modeled by a 

homogenized coating. The smallest deviations are obtained in 

finding the temperature and heat flux in the homogeneous 

substrate. 
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Appendix A. 

A system of linear equations for determination of the functions 
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     

         
             

0 1 2

1 1

0 1 2

1 1

1 2

0,

0,

exp exp 1;

t s t s t s

t s s t s s t s

s t s h s t s h

 

   

  

    

   

   

 

 (A1) 

case a): 

         

         

     

     

0 1 2

0 1 1 2 1

1 1

2 1

0,

0,

1;

p p

p p

p p

p p

p

p

p

p

t s t s c I sc t s c K sc

t s t s c I sc t s c K sc

t s c h I s c h

t s c h K s c h

 





   

 

  

    

  (A2) 

case c): 

         

       

   

0 1 1 2 1

1

0 1 0 1 1

2 1

1

sinh cosh 0,

cosh

sinh 0,

( ) 1;

c

t s t s sp h t s sp h

K K p t s t s sp h

t s sp h

t s



   

 

 

 

  (A3) 

A system of linear equations for determination of the functions 

 sti


, i = 0, 1, …, 2n in case b): 

     

     

   

 

   

 

0 1 1 2 1

1

0 1 0 1 1 2 1

2 2 1 1

2 2 1

1

1 2 1 2 1 1

2 2 1
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sinh( )
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sin( ) 0, 1,..

i i i

i i

i i i i i

i i

t s t s sh t s sh
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
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 
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   
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 (A4) 
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