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A run-of-mine ore milling circuit is primarily used to grind incoming ore containing precious metals

to a particle size smaller than a specification size. A traditional run-of-mine (ROM) ore single-stage

closed milling circuit comprises of the operational units: mill, sump and cyclone. These circuits are

difficult to control because of significant nonlinearities, large time delays, large unmeasured disturb-

ances, process variables that are difficult to measure and modelling uncertainties. A nonlinear model

predictive controller with state estimation could yield good control of the ROM ore milling circuit

despite these difficulties. Additionally, the ROM ore milling circuit is an energy intensive unit and a

controller or power optimizer could bring significant cost savings.

A nonlinear model predictive controller requires good state estimates and therefore a neural network

for state estimation as an alternative to the particle filter has been addressed. The neural network

approach requires fewer process variables that need to be measured compared to the particle filter. A

neural network is trained with three disturbance parameters and used to estimate the internal states

of the mill, and the results are compared with those of the particle filter implementation. The neural

network approach performed better than the particle filter approach when estimating the volume of

steel balls and rocks within the mill. A novel combined neural network and particle filter state es-
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timator is presented to improve the estimation of the neural network approach for the estimation of

volume of fines, solids and water within the mill. The estimation performance of the combined ap-

proach is promising when the disturbance magnitude used is smaller than that used to train the neural

network.

After state estimation was addressed, this work targets the implementation of a nonlinear controller

combined with full state estimation for a grinding mill circuit. The nonlinear controller consists of a

suboptimal nonlinear model predictive controller coupled with a dynamic inversion controller. This

allows for fast control that is asymptotically stable. The nonlinear controller aims to reconcile the

opposing objectives of high throughput and high product quality. The state estimator comprises of a

particle filter for five mill states as well as an additional estimator for three sump states. Simulation

results show that control objectives can be achieved despite the presence of noise and significant

disturbances.

The cost of energy has increased significantly in recent years. This increase in price greatly affects

the mineral processing industry because of the large energy demands. A run-of-mine ore milling

circuit provides a suitable case study where the power consumed by a mill is in the order of 2 MW.

An attempt has been made to reduce the energy consumed by the mill in the two ways: firstly, within

the nonlinear model predictive control in a single-stage circuit configuration and secondly, running

multiple mills in parallel and attempting to save energy while still maintaining an overall high quality

and good quantity. A formulation for power optimization of multiple ROM ore milling circuits has

been developed. A first base case consisted not taking power into account in a single ROM ore

milling circuit and a second base case split the load and throughput equally between two parallel

milling circuits. In both cases, energy can be saved using the NMPC compared to the base cases

presented without significant sacrifice in product quality or quantity.

The work presented covers three topics that has yet to be addressed within the literature: a neural

network for mill state estimation, a nonlinear controller with state estimation integrated for a ROM

ore milling circuit and power optimization of a single and multiple ROM ore milling circuit configur-

ation.
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’n Maalkring wat onbehandelde erts maal word hoofsaaklik gebruik om erts, wat kosbare metale

bevat, fyn te maal tot ’n partikel grootte kleiner as ’n sekere spesifikasie. ’n Tradisionele enkel-

fase geslote-lus maalkring bevat die volgende funksionele eenhede: ’n meul, opvangbak en sikloon.

Hierdie maalkringe is moeilik om te beheer as gevolg van aansienlike nie-lineariteite, groot tyds-

vertragings, sterk eksterne steurings, prosesveranderlikes wat moeilik is om te meet en onsekerhede

in modelle. ’n Nie-lineêre-model voorspellende beheerder (NMVB) met toestandsafskatting kan die

maalkring goed beheer ten spyte van hierdie probleme. Verder verbruik die maalkring baie energie

en ’n beheerder of energie-optimeerder kan beduidende koste-besparings teweeg bring.

’n Nie-lineêre-model voorspellende beheerder benodig akkurate afgeskatte toestandswaardes en as

sulks word ’n neurale netwerk vir toestandsafskatting as alternatief tot ’n partikel-filter aangespreek.

Die neurale netwerk benadering benodig minder prosesveranderlikes wat gemeet is as die partikel-

filter. Die neurale netwerk is opgelei met drie steuringsveranderlikes en word gebruik om die interne

toestande van die meul te beraam. Die resultate verkry deur hierdie benadering word vergelyk met

die verkry deur van ’n partikel-filter gebruik te maak. Die neurale netwerk benadering verkry beter

resultate as die partikel-filter wanneer die volume van staal balle en rotse binne die meul beraam word.
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’n Nuwe gekombineerde neurale netwerk en partikel-filter toestandsafskatter word voorgestel om op

die resultate te verbeter wat die neurale netwerk verkry wanneer die volume van fyn erts, soliede

erts en water binne die meul beraam word. Die akkuraatheid van afskatting wat die gekombineerde

afskatter behaal is belowend in die teenwoordigheid van eksterne steurings, indien hierdie steurings

minder sterk is as die wat gebruik is tydens die opleiding van die neurale netwerk.

Nadat toestandsafskatting aangespreek is, word daar gefokus op die implementasie van ’n nie-lineêre

beheerder gekombineerd met volle toestandsafskatting vir ’n geslote-lus maalkring. Die nie-lineêre

beheerder bestaan uit ’n sub-optimale nie-lineêre-model voorspellende beheerder en ’n dinamiese in-

versie beheerder. Dit laat toe vir vinnige beheer wat asimptoties stabiel is. Die nie-lineêre beheerder

probeer om die teenstrydige doelwitte van hoë deurset en hoë kwaliteit te versoen. Die toestandsaf-

skatter bestaan uit ’n partikel-filter vir die afskatting van die vyf toestande van die meul asook ’n

addisionele afkatter vir die drie toestande van die opvangbak. Simulasieresultate dui aan dat beheer-

doelwitte behaal kan word in die teenwoordigheid van ruis en sterk eksterne steurings.

Die koste van energie het drasties toegeneem in die afgelope paar jaar. Hierdie toename het ’n groot

impak op die mineraalprosesseeringsbedryf aangesien die energieaanvraag so hoog is. ’n Maalkring

wat onbehandelde erts maal is ’n goeie voorbeeld hiervan aangesien die energieverbruik van ’n meul

in die orde van 2 MW is. ’n Poging is aangewend om die energie wat verbruik word in die meul te ver-

minder op twee maniere: eerstens, deur die nie-lineêre-model voorspellende beheer van ’n enkel-fase

maalkring, en tweedens wanneer ’n versameling meule in parallel bedryf word, om energie te bespaar

en steeds ’n hoë kwaliteit en kwantiteit van produk te handhaaf. ’n Formulering vir energiebespar-

ing wanneer ’n versameling maalkringe in parallel bedryf word, word voorgelê. ’n Grondslag vir

vergelyking is opgestel vir wanneer ’n enkele maalkring beheer word sonder om energieverbruik in

ag te neem, en ’n tweede grondslag is opgestel vir wanneer twee maalkringe in parallel bedryf word

en die deurset en vrag gelyk tussen die twee gedeel word. In beide gevalle kan energiebesparings

verkry word deur die NMVB (in vergelyking met die grondslag) sonder merkwaardige opoffering

van die kwaliteit of kwantiteit van die produk.

Hierdie werk spreek drie onderwerpe aan wat nog nie voorheen in die literatuur behandel is nie,

naamlik: ’n neurale netwerk vir toestandsafskatting van die meul, ’n nie-lineêre beheerder met geïn-

tegreerde toestandsafskatting vir ’n maalkring wat onbehandelde erts maal, en energie-optimering vir

’n enkele maalkring asook vir veelvoudige maalkringe in parallel.
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LIST OF ABBREVIATIONS

CV Controlled variables

DI Dynamic inversion

FOPTD First order plus time delay

MIMO Multiple-input multiple-output

MPC Model predictive control

MV Manipulated variables

NMPC Nonlinear model predictive control

OP Operating point

PDF Probability density function

PID Proportional-integral-derivative

RNMPC Robust nonlinear model predictive controller

ROM Run-of-mine

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



TABLE OF CONTENTS

CHAPTER 1 Introduction 1

1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Overview of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 Run-of-mine Ore Milling Circuit 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Description of the run-of-mine ore milling circuit . . . . . . . . . . . . . . . . . . . 6

2.2.1 Controlled and manipulated variables . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Milling circuit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 State space description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 History of control of grinding mill circuits . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Non-linear model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 3 Combined neural network and particle filter state estimation 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.4 Combination of particle filter and neural network . . . . . . . . . . . . . . . 32

3.3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 Control of a ROM Ore Milling Circuit 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Control Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Control Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Control architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Nonlinear model predictive control (NMPC) . . . . . . . . . . . . . . . . . 39

4.2.4 Dynamic Inversion (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 State estimation for the sump states . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 State estimation for the mill states . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Noise and disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.3 Results with noise and disturbances . . . . . . . . . . . . . . . . . . . . . . 52

4.4.4 Have the control objectives been met? . . . . . . . . . . . . . . . . . . . . . 59

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

CHAPTER 5 Power Optimization 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Single ROM ore milling circuit optimization . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Control accuracy (8 h simulation) . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.3 Power consumption comparison (24 h simulation) . . . . . . . . . . . . . . . 64

5.3 Multiple ROM ore milling circuit optimization . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Neural network training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Power Optimization Formulation . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.5 Additional attempts and drawbacks . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

CHAPTER 6 Conclusion 95

6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



6.1.2 Control of a ROM ore milling circuit . . . . . . . . . . . . . . . . . . . . . 96

6.1.3 Power optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Suggestion for further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1

INTRODUCTION

The main goal of minerals processing is to convert ore with a low concentration of valuable minerals

to a final product that contains a much higher concentration of the most valuable minerals. This circuit

forms part of the minerals liberation process (Hodouin, 2011). These circuits are difficult to control

because of the significant nonlinearities, large time delays, large unmeasured disturbances, process

variables that are difficult to measure and modelling uncertainties (Olivier, Craig and Chen, 2012a;

Remes, Aaltonen and Koivo, 2010). A nonlinear model predictive controller with state estimation

could yield good control of the ROM ore milling circuit despite these difficulties. Additionally, the

ROM ore milling circuit is an energy intensive unit and a controller or power optimizer could bring

significant cost savings.

Nonlinear control makes use of a plant model that can cater for multiple equilibrium points whereas a

linear or linearized model only considers one equilibrium point. Since the ROM ore milling circuit can

operate at various set-points for mill load and circuit throughput, it would be of significant advantage

to make use of a nonlinear model. This study addresses the use of a nonlinear controller as a control

solution for the ROM ore milling circuit. A nonlinear controller requires state information, i.e. the

volume of components within the mill and sump. Good state estimation can result in better control

of the milling circuit and this study determines if a neural network can be used for state estimation

as an alternative to the particle filter approach (Olivier, Huang and Craig (2012b)). A combination

of a neural network and a particle filter is also investigated to improve the estimation results of the

neural network approach by utilizing the particle filters estimation for the volume of fines, solids and

water within the mill. A final investigation topic addresses the power consumption within a single

and multiple mill configuration. Power can be saved in two scenarios; firstly, by trying to minimize

the power draw from the mill motor when aiming to achieve set-point, and secondly, in a two parallel
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Chapter 1 Introduction

mill configuration, by identifying the more efficient milling circuit and determining various mill load

and throughput set-points to minimize total power consumption.

1.1 MOTIVATION AND BACKGROUND

The ROM ore milling circuit is the first step in the transformation process and improving the out-

put of this process will improve all further processing units. The first and main objective is to keep

the product quality and quantity consistent as possible while ensuring the load within the mill and

sump volume does not exceed the limits. The ROM ore milling circuit is a difficult process to con-

trol. Factors that make the ROM ore milling circuit difficult to control are (Hodouin, Jamsa-Jounela,

Carvalho and Bergh, 2001; Chen, Li and Fei, 2008):

• real-time measurements of component flow-rates (e.g. water flow-rate exiting the mill),

• characteristics of feed ore change and are not always available,

• reliability of measuring devices vary due to environmental conditions,

• constraints on manipulated and controlled variables,

• measurement noise, and

• inaccuracies in on-line measurements of flow-rates and particle size distributions.

Model predictive control (MPC) has the ability to handle constraints on manipulated and controlled

variables and has been implemented in industries, such as the petrochemical industry, over the past

three decades (Lee, 2011). The constraint handling ability of MPC ensures that the mill and sump

are within operating regions and prevents undesirable scenarios such as mill overloading (Bouche,

Brandt, Broussaud and van Wayne Drunick, 2005). A successful implementation of constraint hand-

ling was completed by Chen, Li, Fei and Zhai (2007a), where a hybrid control approach was used.

The hybrid control approach combined override control and MPC to prevent overload of the mill and

obtain an optimal feed rate set-point. A robust nonlinear model predictive controller (RNMPC) was

developed by Coetzee, Craig and Kerrigan (2010) and showed good results in maintaining product

quality despite disturbances. However, the study assumed full-state feedback and therefore a nonlin-

ear controller with state estimation integrated has previously been unsolved.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

A particle filter was used for state estimation by Olivier et al. (2012b) and can be seen as the most

applicable to the current ROM ore milling circuit. The results showed that the first three states were

estimated accurately despite disturbances; however, there is room for improvement when estimating

the volume of rocks and steel balls within the mill. Additionally, the particle filter requires ambitious

measurements, such as the component flow rates, in and out of the mill. This promotes the develop-

ment of a state estimation method that only takes into account practical or traditional measurements

such as particle size estimation, sump level, mill load, and the cyclone feed or sump density (Wei and

Craig, 2009).

The two major objectives for implementing control on the ROM ore milling circuit are to stabilize the

process as well as to optimize the economic performance of the process (Craig and MacLeod, 1995).

A subset of objectives that contribute to these major objectives are:

i. to improve the quality of the product either by increasing fineness or by decreasing variations in

product size,

ii. to maximize throughput,

iii. to minimize the resources such as steel balls used to produce the final product, and

iv. to minimize the power consumed for each ton of fines produced.

One can notice that it is impossible to satisfy all objectives at the same time, since sub-objectives (i)

and (ii) have a negative effect on objectives (iii) and (iv). Hence, a trade-off between these objectives

has to be found. The cost of electricity has increased significantly over the past few years and will

continue to do so (Creamer, 2013; Matthews and Craig, 2013). The increasing cost motivates control

objective (iv). However, aiming to minimize power could affect the product quality (objective (i)) and

therefore affect recovery, the desired material after separation processes.

1.2 CONTRIBUTION

The following contributions have resulted from this work and are presented in the following or-

der:

1. A neural network as an alternative state estimator for the mill model.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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2. A combination of a neural network and a particle filter as a state estimator for a mill module.

3. A new control configuration for the ROM ore milling circuit was developed.

4. A state estimator/calculator for the sump is covered.

5. Simulation results with a nonlinear model predictive controller and a dynamic inversion con-

troller are presented.

6. A combination of state estimation with a nonlinear controller is presented.

7. Power optimization within the nonlinear model predictive control is considered.

8. A conceptual supervisory power optimizer for multiple parallel ROM ore milling circuits has

been developed.

1.3 PUBLICATIONS

The following publications have resulted from this work:

• Naidoo, M.A., Padhi, R., Craig, I.K., Olivier, L.E., le Roux, J.D., 2014, Augmented nonlinear

MPC for control of a grinding mill circuit, Control Engineering Practice, Submitted for Review.

• Naidoo, M.A., Padhi, R. and Craig, I.K. August 2014., A New Nonlinear and Suboptimal

Control Design Approach for Milling Circuits, In: Proc: 19th IFAC World Congress, Cape

Town, South Africa.

• Naidoo, M., Olivier, L. and Craig, I. December 2013., Combined neural network and particle

filter state estimation with application to a run-of-mine ore mill, 10th International Symposium

on Dynamics and Control of Process Systems, pp. 397-402, Mumbai, India.

1.4 OVERVIEW OF STUDY

Fig. 1.1 illustrates a typical feedback control loop consisting of a plant, controller, measuring device

and reference values. This study aims to complete this control loop by targeting each block within

the control loop in a chapter. Chapter 2 describes the ROM ore milling circuit that was used through-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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out the study. Chapter 3 proposes a combined neural network and particle filter approach for state

estimation, essentially providing approximate values of the contents of the mill and sump. Chapter

4 consists of the new nonlinear control configuration integrated with state estimation. Chapter 5

looks at power optimization and development of a supervisory power optimizer for a parallel mill

configuration.

Controller Plant

Measurements 
Estimation

+ -
Reference/Set-

points Outputs

Nonlinear 
Controller

ROM ore 
milling 
circuit

Neural network 
Particle filter

+ -
Reference/Set-

points Outputs

Chapter 2

Chapter 3

Chapter 4Chapter 5

Parallel ROM ore 
milling circuits

Figure 1.1: Overview of study.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2

RUN-OF-MINE ORE MILLING CIRCUIT

2.1 INTRODUCTION

This chapter aims to provide a description of a ROM ore milling circuit and presents the milling

circuit in state space format which is used in designing a state estimator, nonlinear controller and

power optimizer in Chapters 3, 4 and 5 respectively. A brief background on the history of control of

grinding mill circuits is covered.

2.2 DESCRIPTION OF THE RUN-OF-MINE ORE MILLING CIRCUIT

The goal of mineral processing is to convert ROM ore into a product that has a high concentration of

the most valuable minerals. The ROM ore milling circuit, shown in Fig. 2.1, is the focus of this study,

and is used to liberate valuable minerals such that it can be concentrated. The major disturbances

affecting the ROM ore milling circuit are variations in feed size, grindability, model-mismatch and

variables that are difficult to measure (Coetzee et al., 2010; Remes et al., 2010). For completeness,

a brief description of the process is provided here, details of which can be found in Coetzee et al.

(2010).

In the ROM ore milling circuit, ore containing valuable minerals (such as copper, platinum or gold)

is fed into the mill where it is ground to a fine product. A semi-autogenous grinding (SAG) mill uses

rocks and steel balls as the grinding medium and is used throughout this work. The mill discharges

into a sump where the slurry is diluted with water to achieve the correct density before it is pumped

to a hydrocyclone. Ore that cannot exit the mill (because of the mill discharge grate) is referred to as

rocks whereas solids are able to pass through the mill discharge grate. Solids consist of product that
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Chapter 2 Run-of-mine Ore Milling Circuit

Figure 2.1: Run-of-mine milling circuit.

meet the specification size (fines) as well as product that is larger than the product specification size

(coarse). The cyclone separates the coarse and fine particles, with the fine particles leaving the circuit

as product while the coarse particles are recycled into the mill for further grinding.

A relationship between recovery, the desired material after the separation processes, and particle size

(PSE) is given in Matthews and Craig (2013) and shown in Fig. 2.2. Results show that a finer grind

results in better recovery, but this results in the throughput decreasing which increases the operating

cost per ton produced.

2.2.1 Controlled and manipulated variables

In this study, manipulated variables include the mill feed solids (MFS), the mill inlet water (MIW ),

mill feed steel balls (MFB), the flow rate of the sump feed water (SFW ), the cyclone feed flow (CFF)

and the mill speed (αspeed). Table 2.1 shows the constraints and operating values for the manipulated

variables and controlled variables. These operating values from Le Roux, Craig, Hulbert and Hinde

(2013b) are used in Chapter 4 and the operating values from Coetzee et al. (2010) are used in Chapter

5.
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Figure 2.2: Recovery as a function of particle size.

The controlled variables for the milling circuit are typically the particle size estimate (PSE), per-

centage of the mill volume filled (LOAD), sump volume (SVOL) and cyclone feed density (CFD)

(Wei and Craig, 2009). In this study, another controlled variable was introduced, namely throughput

(T HP). In past work, T HP was not a controlled variable but rather seen as a product of the system

while trying to maintain a good PSE (Coetzee et al., 2010; Matthews and Craig, 2013). However,

a high T HP is also an objective in the control design approach presented here. To account for the

additional controlled variable T HP, mill speed (αspeed) is added as a manipulated variable. It should

be noted that in practice a MPC typically outputs the set-points for local PID loops i.e. the set-point

for mill speed. This study assumes therefore that a variable speed drive (VSD) is fitted on the mill

motor.

2.2.2 Milling circuit model

The aim of this section is to present the Hulbert-model (Hulbert, 2005; Le Roux et al., 2013b) in a

more standardized state-space representation. This involves writing the change in state (ẋ) and output

(y) equations in the following form:

ẋ = f (x,u, p) (2.1)

y = g(x,u, p) (2.2)
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Chapter 2 Run-of-mine Ore Milling Circuit

Table 2.1: Constraints and operating point (OP) for states, manipulated and controlled variables.

Variable Min Max OP (Le Roux

et al., 2013b)

OP (Coetzee

et al., 2010)

Description

States

Xmw 0 50 4.849 8.280 Volume of water in mill [m3]

Xms 0 50 4.898 9.510 Volume of solids in mill[m3]

Xm f 0 50 1.087 3.340 Volume of fines in mill [m3]

Xmr 0 50 1.816 20.90 Volume of rocks in mill [m3]

Xmb 0 20 8.513 6.320 Volume of steel balls in mill [m3]

Xsw 0 10 4.108 2.530 Volume of water in sump [m3]

Xss 0 10 1.876 0.640 Volume of solids in sump [m3]

Xs f 0 10 0.416 0.230 Volume of fines in sump [m3]

Manipulated variables

MIW 0 100 4.639 27.17 Flow rate of water to the mill [m3/h]

MFS 0 200 65.24 88.20 Flow rate of solids to the mill [t/h]

MFB 0 8 5.685 2.000 Flow rate of steel balls to the mill [t/h]

CFF 200 450 373.5 423.1 Flow rate of slurry to the cyclone [m3/h]

SFW 0 300 140.5 261.6 Flow rate of water to the sump [m3/h]

αspeed 0.4 1 0.712 0.820 Fraction of critical mill speed [%]

Controlled variables

PSE 0.50 0.85 0.687 0.800 Product particle size [Fraction < 75 µm]

LOAD 0.20 0.50 0.339 0.450 Total charge in the mill [Fraction of total

volume]

SVOL 2 20 6.000 3.000 Volume of sump content []

T HP 0 74 19.45 32.60 Throughput (solids) [m3/h]

Important output variables

Pmill 0 2000 1830 2000 Power draw of the mill motor [kW]

ϕ 0 1 0.510 0.510 Rheology factor

CFD 1 2 1.690 1.340 Cyclone feed density [kg/m3]

The above equations show that the change in states and outputs are based on the state values (x),

inputs (u) and parameters (p). It should be noted that this description does not explicitly show that

the outputs are a function of the delayed states and inputs as well i.e. y = f (x,x(t−T ),u, p). There
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Chapter 2 Run-of-mine Ore Milling Circuit

are two time delays present within the milling circuit, between the sump and cyclone and cyclone and

mill.

A brief description of the Hulbert-model is presented then followed by the state space description for

the milling circuit. The ROM ore milling circuit considered in this study consists of four modules;

feeder, mill, sump and cyclone.

Table 2.2 provides a description of the subscripts used in the next section for flow-rates (V ) and states

(X). The first subscript indicates the process unit considered and the second subscript specifies one

of the five states. For the flow-rates, the final subscript shows if it is an inflow, outflow or underflow.

The parameter values used in this article are shown in Table 2.3.

Table 2.2: Description of subscripts

Subscript Description

X∆− m-mill; s-sump; c-cyclone

X−∆ w-water; s-solids; c-coarse; f-fines; r-rocks; b-balls

V−−∆ i-inflow; o-outflow; u-underflow

2.2.2.1 Feeder module

The feeder is a straightforward module that consists of MIW , MFS and MFB as inputs. The following

are discharges from the feeder module:

Vf wo = MIW (2.3)

Vf so =
MFS
DS

(1−αr) (2.4)

Vf f o =
MFS
DS

α f (2.5)

Vf ro =
MFS
DS

αr (2.6)

Vf bo =
MFB
DB

(2.7)

These outputs are fed to the mill module.
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Chapter 2 Run-of-mine Ore Milling Circuit

2.2.2.2 Mill module

The mill module consists of five volume classes. The mill receives water, solids, fines, rocks and

steel balls from the feeder module. Note that the mill model makes use of five states to describe the

contents of the mill (in m3): water (Xmw), rocks (Xmr), solids (Xms), fines (Xm f ) and steel balls (Xmb).

The following equations represent a population volume balance. A generalised mass balance equation

consists of firstly subtracting the output from the inputs and secondly subtracting or summing any

mass broken down or created within the module. Note that the discharge grate prevents the rocks and

balls from exiting the mill. The mill module has the potential to model various mill types, such as

semi-autogenous grinding (SAG) and ball mills.

d
dt

Xmw =Vmwi−Vmwo (2.8)

d
dt

Xms =Vmsi−Vmso +RC (2.9)

d
dt

Xm f =Vm f i−Vm f o +FP (2.10)

d
dt

Xmr =Vmri−RC (2.11)

d
dt

Xmb =Vmbi−BC (2.12)

The breakage functions terms are shown below:

RC =
Pmill ·ϕ
DSφr

(
Xmr

Xmr +Xms

)
(2.13)

BC =
Pmill ·ϕ

φb

(
Xmb

DS · (Xmr +Xms)+DB ·Xmb

)
(2.14)

FP =
Pmill

DS ·φ f ·
[
1+αφ f ·

(
Xmw+Xmr+Xms+Xmb

vmill
− vPmax

)] (2.15)

The rheology factor within the mill is represented as:

ϕ =

{
max

[
0,1−

(
1

εsv
−1
)

Xms

Xmw

]}0.5

(2.16)

Note that the definition for the rheology factor is specific to this work. In general, the term rheology

describes the behaviour of non-Newtonian fluids, with taking into account the applied stresses and

strain rates. Fig. 2.3 shows the relationship between the hold-up of solids and water and the effect

on the rheology factor. A good or recommended rheology factor for this work is 0.51 (Coetzee et

al., 2010). This implies that there should always be more solids than water within the mill.
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Figure 2.3: Empirically defined rheology factor (ϕ).

The mill model consists of three outputs because the rocks and steel balls are kept within the mill by

a discharge grate. These flow-rates are shown below:

Vmwo =VV ·ϕ ·Xmw ·
(

Xmw

Xms +Xmw

)
(2.17)

Vmso =VV ·ϕ ·Xmw ·
(

Xms

Xms +Xmw

)
(2.18)

Vm f o =VV ·ϕ ·Xmw ·
(

Xm f

Xms +Xmw

)
(2.19)

Vmro =Vmbo = 0 (2.20)

The mill consists of one controlled variable, LOAD, and one important output variable, Pmill . The

effect of the total charge on mill power (Zx) and the effect of slurry rheology on mill power (Zr)

are given by (2.23) and (2.24) respectively. To minimize mill power draw, Zx and Zr need to be as

large as possible. There are two parameters that need to be taken into account regarding mill power

draw i.e. mill filling for maximum power draw (vPmax), and the rheology factor for maximum power

draw (ϕPmax). If the aim of operation is to minimize mill power draw, then the difference between

LOAD and vmill · vPmax should be maximized. Similarly with the difference between ϕ and ϕPmax while

operating within constraints. This means that a highly diluted or very thick slurry within the mill

would minimize power consumption. These scenarios should be treated with caution as a diluted

slurry could cause a puddle within the mill and a thick slurry could form a mud ball, which could

negatively effect the overall quality and throughput of the milling circuit. An extremely high or
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Chapter 2 Run-of-mine Ore Milling Circuit

extremely low mill load should also be treated with caution.

LOAD = Xmw +Xmr +Xms +Xmb (2.21)

Pmill = Pmax{1−δPvZ2
x −2χPδPvδPsZxZr−δPsZ2

r } · (αspeed)
αP (2.22)

Zx =
Xmw +Xmr +Xms +Xmb

vmill · vPmax

−1 (2.23)

Zr =
ϕ

ϕPmax

−1 (2.24)

The three outputs from the mill are directly fed into a sump.

2.2.2.3 Sump module

Similarly to the mill volume balance equations, the sump consists of three volume classes. The model

of the sump uses three states to describe the contents of the sump: water (Xsw), fines (Xs f ) and solids

(Xss). The sump consists of two manipulated variables, SFW and CFF . The population volume

balance equations are shown below:

d
dt

Xsw =Vswi−Vswo +SFW (2.25)

d
dt

Xss =Vssi−Vsso (2.26)

d
dt

Xs f =Vs f i−Vs f o (2.27)

The discharge flow-rates of each volume are shown below:

Vswo =CFF ·
(

Xsw

Xsw +Xss

)
(2.28)

Vsso =CFF ·
(

Xss

Xsw +Xss

)
(2.29)

Vs f o =CFF ·
(

Xs f

Xsw +Xss

)
(2.30)

The two measurable outputs from the sump are as follows:

SVOL = Xsw +Xss (2.31)

CFD =
Vswo +DsVsso

Vswo +Vsso
=

Xsw +DsXss

Xsw +Xss
(2.32)

The outputs of the sump are controlled by a sump pump which pumps the slurry from the sump to the

cyclone.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2 Run-of-mine Ore Milling Circuit

2.2.2.4 Cyclone module

The aim of the cyclone is to separate the slurry feed with regards to weight, which usually relates to

the particle size. Ideally, the particles that satisfy the minimum specification size, 75 µm used in this

work, all exit the cyclone through the overflow. The oversize or “off-spec” material is fed back into

the mill exiting the cyclone through the underflow. In practice, the aim is that as much as possible

fines pass to the overflow of the cyclone.

The flow-rates at the underflow of the classifier is defined as:

Vccu

Vcci
=

(
1−C1 exp

(
−CFF

εc

))(
1−
(

Fi

C2

)C3
)(

1−PC4
i

)
(2.33)

Vcwu =
Vcwi (Vccu−FuVccu)

(FuVcwi +FuVc f i−Vc f i)
(2.34)

Vc f u =
Vc f i (Vccu−FuVccu)

(FuVcwi +FuVc f i−Vc f i)
(2.35)

The fraction solids in the total inflow volume is defined as:

Fi =
Vcsi

CFF
(2.36)

The fraction fines in the feed solids is defined as:

Pi =
Vc f i

Vcsi
(2.37)

The fraction solids in the underflow volume is defined as:

Fu = 0.6− (0.6−Fi) · exp(−Vccu/(αsuεc)) =
Vc f u +Vccu

Vcwu +Vc f u +Vccu
(2.38)

The flow-rates at the overflow of the classifier is defined as:

Vcwo =Vcwi−Vcwu (2.39)

Vcso =Vcsi−Vcsu (2.40)

Vc f o =Vc f i−Vc f u (2.41)

The cyclone module consists of two controlled variables, PSE and T HP shown in (2.42) and (2.43)

respectively.

PSE =
Vc f o

Vcso
(2.42)
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Chapter 2 Run-of-mine Ore Milling Circuit

T HP =Vcso (2.43)

2.2.3 State space description

The circuit model for the robust nonlinear MPC implemented in simulation by Coetzee et al. (2010),

was validated with real plant data by Le Roux et al. (2013b). The values for the mill and sump

states at the operating point of the mill are shown in Table 2.1. The full state-space description of

the milling circuit is shown in (2.44)-(2.57) and demonstrates the complexity and nonlinearity of the

circuit. Five population balance differential equations describe the change in the states of the mill,

and three population balance differential equations describe the change in the states of the sump. It is

assumed that there is a transport delay of 30 s and 10 s between the sump and the cyclone (τsc) and

between the cyclone and the mill (τcm) respectively.

2.2.3.1 Mill state equations

The mill contains five state equations shown in eq. (2.44)-(2.48).

d
dt

Xmw = MIW − VV ϕXmwXmw

Xms +Xmw
+Vcwu (2.44)

d
dt

Xms =
MFS
DS

(1−αr)−
VV ϕXmwXms

Xms +Xmw
+

Pmillϕ

DSφr

(
Xmr

Xmr +Xms

)
+Vcsu (2.45)

d
dt

Xm f =
MFS
DS

α f −
VV ϕXmwXm f

Xms +Xmw
+Vc f u +

Pmill

DSφ f

[
1+αφ f

(
Xmw+Xmr+Xms+Xmb

vmill
− vPmax

)] (2.46)

d
dt

Xmr =
MFS
DS

αr−
Pmillϕ

DSφr

(
Xmr

Xmr +Xms

)
(2.47)

d
dt

Xmb =
MFB
DB
− Pmillϕ

φb

(
Xmb

DS (Xmr +Xms)+DBXmb

)
(2.48)

2.2.3.2 Sump state equations

The sump contains three state equations shown in eq. (2.49)-(2.51).

d
dt

Xsw =
VV ϕXmwXmw

Xms +Xmw
− CFFXsw

Xsw +Xss
+SFW (2.49)

d
dt

Xss =
VV ϕXmwXms

Xms +Xmw
− CFFXss

Xsw +Xss
(2.50)

d
dt

Xs f =
VV ϕXmwXm f

Xms +Xmw
−

CFFXs f

Xsw +Xss
(2.51)
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Chapter 2 Run-of-mine Ore Milling Circuit

2.2.3.3 Output equations

The circuit contains six outputs shown in (2.52)-(2.57).

Pmill = Pmax · (1−δPvZ2
x −2χPδPvδPsZxZr−δPsZ2

r )(αspeed)
αP (2.52)

LOAD = Xmw +Xms +Xmr +Xmb (2.53)

SVOL = Xss +Xsw (2.54)

CFD =
Xsw +XssDS

Xsw +Xss
(2.55)

PSE =
Vc f o

Vcso
(2.56)

T HP =Vcso (2.57)

2.2.3.4 Intermediate equations

Equations (2.58)-(2.67) are intermediate equations for variables used in the state and output equations

to complete the model description. The effect of the total charge on mill power (Zx) and the effect of

the slurry rheology (ϕ) on mill power (Zr) are given by the empirically defined equations:

ϕ = max

(
0,
(

1−
(

1
εsv
−1
)

Xms

Xmw

)0.5
)

(2.58)

Zx =
Xmw +Xmr +Xms +Xmb

vmillvPmax

−1 (2.59)

Zr =
ϕ

ϕPmax

−1 (2.60)

The flow rate at the underflow of the cyclone is regarded as a mill input. The flow-rates of coarse

(Vccu), fines (Vc f u), and solids (Vcsu) material as well as water (Vcwu) at the underflow are described

as:

Vccu =
CFF (Xss−Xs f )

Xsw +Xss

(
1−C1 exp

(
−CFF

εc

))
(

1−
(

Xss

C2 (Xsw +Xss)

)C3
)
·

(
1−
(

Xs f

Xss

)C4
)

(2.61)

Fu = 0.6−
(

0.6− Xss

Xsw +Xss

)
· exp(−Vccu/(αsuεc)) (2.62)
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Chapter 2 Run-of-mine Ore Milling Circuit

Vcwu =
Xsw (Vccu−FuVccu)

FuXsw +FuXs f −Xs f
(2.63)

Vc f u =
Xs f (Vccu−FuVccu)

FuXsw +FuXs f −Xs f
(2.64)

Vcsu =Vccu +Vc f u (2.65)

The cyclone output flow-rates of the solids (Vcso) and fines (Vc f o) are:

Vcso =
CFFXss

Xss +Xsw
−Vccu−

Xs f (Vccu−FuVccu)

FuXsw +FuXs f −Xs f
(2.66)

Vc f o =
CFFXs f

Xss +Xsw
−

Xs f (Vccu−FuVccu)

FuXsw +FuXs f −Xs f
(2.67)

The parameter values used in this article are shown in Table 2.3 and were taken from Coetzee et al.

(2010) (used in Chapter 3) and Le Roux et al. (2013b) (used in Chapter 4).

2.3 HISTORY OF CONTROL OF GRINDING MILL CIRCUITS

A recent literature survey on the control of grinding mill circuits is illustrated in Fig. 2.4 (Craig,

2012). The literature survey aims to illustrate the various control techniques that have been applied to

grinding mill circuits over the years. The survey shows the new developments in control techniques

and the shortcomings.

Traditionally ROM ore milling circuits are controlled by classical single-loop PID controllers (Wei

and Craig, 2009) despite the multivariable nature of such circuits. Significant improvements in

product quality, throughput and power consumption are possible when using multivariable control

techniques. Numerous examples are available in literature, e.g. H∞ and µ synthesis based controller

designs (Craig and MacLeod, 1995; Craig and MacLeod, 1996), and linear model predictive control

(Chen, Zhai, Li and Li, 2007b).

A multivariable control scheme was developed by Hulbert, Craig, Coetzee and Tudor (1990) and

implemented on a ROM ore milling circuit. The study concluded that the milling circuit can be op-

timized by selecting suitable set-points. A year later, optimal control of a ball mill grinding circuit

was completed by Rajamani and Herbst (1991) and a comparison between optimal control and PI

control was investigated. The results of the study showed that an optimal controller can be imple-

mented. However, a shortfall was that an on-line systems identification tool is required. Following

this shortfall, Valenzuela, Najim, del Villar and Bourassa (1993) investigated a new process control
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Chapter 2 Run-of-mine Ore Milling Circuit

Table 2.3: Parameters and parameter values.

Parameter Value Value Description

(Le Roux et al., 2013b) (Coetzee et al., 2010)

Mill parameters

α f 0.055 0.1 Fraction of fines in the ore

αr 0.465 0.1 Fraction of rocks in the ore

φ f 29.57 28 Power needed per ton of fines produced [(kWh)/t]

φr 6.03 69 Rock abrasion factor [(kWh)/t]

φb 90 94 Steel abrasion factor [(kWh)/t]

εsv 0.6 0.6 Maximum fraction of solids by volume of slurry at

zero slurry flow

δPv 0.5 1 Power-change parameter for volume of mill filled

vpmax 0.34 0.45 Fraction of mill volume filled for maximum power

draw

vmill 59.1 100 Mill volume [m3]

χP 0 0 Cross-term for maximum power draw

δPs 0.5 1 Power-change parameter for fraction solids in the

mill

ϕPmax 0.57 0.51 Rheology factor for maximum mill power draw

αP 1 0.82 Fractional power reduction per fractional reduction

from maximum mill speed

VV 84 40 Volumetric flow per “flowing volume” driving force

[h−1]

αϕ f 0.01 0.01 Fractional change in kW/fines produced per change

in fractional filling of mill

Hydrocyclone parameters

αsu 0.87 0.16 Parameter related to fraction solids in underflow

εs 128.85 184 Parameter related to coarse split [m3/h]

C1 0.6 0.6 Constant

C2 0.7 0.7 Constant

C3 4 3 Constant

C4 4 3 Constant

technique that targets the issue of on-line systems identification and developed a learning controller

that showed good robustness while requiring minimal computational load.

Computational load has to be considered when developing a controller. If the controller cannot com-
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Figure 2.4: Literature survey on the history of grinding mill control.

pute a new control move within a sample time then the controller may be regarded as impractical.

The work by presented in Coetzee et al. (2010) is an example of a robust nonlinear controller taking

an average time of approximately 26 s per iteration and a maximum time of 123 s per iteration. The

authors regarded this as not feasible for practical implementation as this is significantly higher than

the recommended sampling time. Computation power has grown significantly over the past decade

and techniques such as a direct neural network (NN) controller can make use of this development. A

direct NN controller was developed by Duarte, Suarez and Bassi (2001) and compared to classical

and adaptive multivariable control algorithms. Three neural networks were used to form a control

solution, performing the roles of a state estimator, predictor and controller.

Multiple-input and multiple-output (MIMO) techniques were developed because of the interactions

between input and output variables. These controllers, such as µ-synthesis controller design (Craig

and MacLeod, 1995) and model predictive control (MPC) (Ramasamy, Narayanan and Rao, 2005) are

able to perform well compared to decoupled proportional-integral-derivative (PID) control.
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Chapter 2 Run-of-mine Ore Milling Circuit

Fig. 2.4 shows the approximate years where advanced process controllers have been implemented in

industry. The survey also shows that some multivariable control methods have fairly recently been

implemented in an industry where single-loop PID controllers dominate (Wei and Craig, 2009). In

particular, an MPC implementation on a grinding circuit was first reported in the literature as late

as 2007 (Chen et al., 2007b). Compare this to the ubiquitous nature of MPC in for example the

petrochemical industry (Craig, Aldrich, Braatz, Cuzzola, Domlan, Engell, Hahn, Havlena, Horch,

Huang, Khanbaghi, Konstantellos, Marquardt, McAvoy, Parisini, Pistikopoulos, Samad, Skogestad,

Thornhill and Yu, 2011), there is great potential for increasing the number of MPC implementations

on mineral processing plants. Fig. 2.5, reproduced from Wei and Craig (2009), shows that over 60%

of milling circuits are controlled with PID controllers while less than 10% are controlled using model

predictive control.

 0% 10% 20% 30% 40% 50% 60% 70%

Dynamic matrix control (DMC)

Internal model control (IMC)

Nonlinear control algorithms or models

Constraint control

Dead−time compensation (Smith predictor)

Statistical process control

Linear programming (LP)

Model predictive control (MPC)

Neural network−based control

Adaptive/self−tuning control

Fuzzy logic control

Expert system−based control

Multivariable control

PID control

Figure 2.5: Control technologies used in milling circuits.

A robust nonlinear model predictive control (RNMPC), presented in Coetzee et al. (2010), for a ROM

ore milling circuit has been successfully simulated. Despite disturbances to the inputs, often a case

in the minerals processing industry where there is a variation in the ore size distribution, the results

show that a NMPC is worth investigating further. The ROM ore milling circuit was analysed further

by Olivier (2011) where a host of peripheral tools were developed (Olivier et al., 2012a; Olivier

et al., 2012b; Olivier and Craig, 2013). The tools were developed with the operating philosophy
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Chapter 2 Run-of-mine Ore Milling Circuit

described in detail in Olivier (2011). The ROM ore milling circuit has a desired operating region

that will aim to maximize the final product after leaching while minimizing production costs. This is

achieved by choosing good set-point values for the particle size estimate (PSE), throughput (T HP)

and load within the mill (LOAD).

Model predictive control is highly dependent on the accuracy of the model within the controller. The

model for the ROM ore milling circuit was verified by Le Roux et al. (2013b) with real plant data to

support the model accuracy. Further research by Matthews and Craig (2013) makes use of a linear

model predictive controller, verified plant model and an additional real time power optimizer. Power

consumption is a trending topic and all industries are investigating power saving opportunities. The

work by Matthews and Craig (2013) show that the cost per tons of fines produced can be reduced,

provided the circuit is not operating at maximum throughput.

State estimation is another factor that model predictive control is highly dependant on. A run-of-mine

(ROM) ore milling circuit is a process that is difficult to control because of significant model uncer-

tainties, large unmeasured disturbances and process variables that are difficult to measure (Olivier et

al., 2012b). This justifies estimation methods for process measurements.

Currently, the extended Kalman filter (EKF) is the most common choice for soft sensing/estimation in

minerals processing plants (Bouche et al., 2005). Inherently, if the initial guess for the state estimate

is incorrect or if the process model is inaccurate, because of for example linearization in an operating

region. The EKF can be seen as providing a first-order approximation and these approximations can

introduce large errors in the true posterior mean and covariance, and in some cases the filter results

may diverge quickly. Additional flaws of the EKF are discussed by Van der Merwe (2004). Neural

networks have previously been used to aid in the control of mineral grinding circuits. In a recent

publication, a radial basis function neural network was used to successfully predict the in-mill slurry

density and ball load volume in a ball-milling system (Makokha and Moys, 2012). Key process

variables have hitherto been difficult or expensive to measure. Provided an offset error correction

scheme is present, a neural network can be used as a direct neural controller and an inverse network

controller (Flament, Thibault and Hodouin, 1993). An inverse network controller refers to a neural

model based on inverting process dynamics allowing a process input to be computed from a desired

process output. Stange (1993) built on this work and states that neural networks can be used as

adaptive predictors. However, the issue with neural networks is that an extensive sampling campaign

may be required to generate training data and the cost of the training campaign may not be warranted.
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Chapter 2 Run-of-mine Ore Milling Circuit

The benefit of a particle filter is that the particle filter does not require any training data and can

deal with nonlinear non-Gaussian systems (Olivier et al., 2012b). The particle filter does not suffer

from the flaws of the EKF, e.g. even severely non-linear models may be used. Using inferential

based measurements is an alternative approach. Herbst and Pate (1999) use this approach to estimate

important process variables such as product particle size, ore grindability and mill filling. Additional

process variables such as total mill load and ball load values were estimated by (Apelt, Asprey and

Thornhill, 2001; Apelt, Asprey and Thornhill, 2002) using inferential based methods.

From the literature survey, a significant amount of work has been completed on the ROM ore milling

circuit. A complete nonlinear model based controller integrated with full state estimation has yet to

be completed. The work presented aims to fill this gap in the literature. In this study, a nonlinear

controller combined with state estimation has been implemented on a ROM ore milling circuit. State

estimation for the mill module has also been investigated and a combined neural network and particle

filter approach is proposed. Additionally, power optimization has also been researched further.

Choosing the correct manipulated and controlled variables will have an impact on how applicable this

simulation study is to industry. Wei and Craig (Wei and Craig, 2009) performed a worldwide survey

in 2008 on grinding mill circuits in the minerals industry. The measured variables in over 80% of

milling circuits are as follows: mill power, feed rate of water to the mill, feed density of the sump

discharge slurry and sump level. The model shown in Fig. 2.1 requires the particle size to also be

measured; this was measured in approximately 70% of milling circuits. The top three choices for

controlled variables were product particle size, slurry level in the sump and sump discharge slurry

density. In Craig and MacLeod (1996), Olivier et al. (2012a), Olivier et al. (2012b) and Coetzee

et al. (2010), the mill load and sump level were controlled to stabilize the circuit and the particle

size controlled to decrease variations in the product size. The top three choices for the manipulated

variables were: the flow rate of water to the sump, flow rate of water to the mill and feed rate of solids

to the mill. This conforms with the variables used in this study.

2.4 NON-LINEAR MODEL PREDICTIVE CONTROL

An advantage of non-linear model predictive control (NMPC) is that it allows the use of a non-linear

plant model to be used for prediction. The basic control loop structure for NMPC is shown in Fig.

2.6. NMPC can be designed for a specific cost function to be minimised while keeping the state and

control within specified constraints. NMPC aims to optimize future behaviour of the plant by testing

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

22

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2 Run-of-mine Ore Milling Circuit

a set of manipulated variable actions and choosing a set that minimises the cost function (Qin and

Badgwell, 2003).

Currently, the a main limitation with industrial MPC applications is the larger computational power

required and alternative structures that reduce the computational burden should be investigated (Qin

and Badgwell, 2003; Xi, Li and Lin, 2013).

Dynamic
optimizer

Cost function 
and 

constraints
System 
model

Plant

State 
Estimator

NMPC Controller

x

u y

^

Figure 2.6: Generalized non-linear MPC control loop.

2.5 CONCLUSION

In this chapter, a nonlinear model describing the ROM ore milling circuit has been described and

presented in state space format. This plant model will be used in the next three chapters to develop a

neural network for state estimation, a nonlinear model predictive controller and a power optimizer. A

brief look at the history of control of a grinding mill circuit showed that PID control is predominate

in milling circuits and that there is reason to investigate the use of nonlinear model predictive control.

A variety of estimation based methods have been implemented in the minerals processing industry.

However, there is no single dominate estimation technique that is an ideal solution for this nonlinear

estimation problem. This warrants the investigation of a neural network as a possible solution for

estimating mill states. The cost of energy has increased significantly in recent years. This increase in

price greatly affects the mineral processing industry because of the large energy demands. A run-of-

mine ore milling circuit provides a suitable case study where the power consumed by a mill is in the

order of 2 MW.
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CHAPTER 3

COMBINED NEURAL NETWORK AND PARTICLE FIL-

TER STATE ESTIMATION

3.1 INTRODUCTION

A run-of-mine (ROM) ore milling circuit is a process that is difficult to control because of significant

model uncertainties, large unmeasured disturbances and process variables that are difficult to measure

(Olivier et al., 2012b). Process and state variables that are impractical to measure on-line motivate

the investigation for state estimation. When designing a controller that requires full state feedback,

the internal states of the mill must be accurately measured or estimated to achieve good control of this

complex system. For example, model predictive control (MPC) requires full state feedback, which

is difficult to achieve, in this case because of model inaccuracies, parameter variations and lack of

on-line measurements. This work builds on the work of Olivier et al. (2012b) by investigating the

use of a neural network to estimate the states of the mill. The neural network approach is compared

to the particle filter technique implemented by Olivier et al. (2012b). Any improvements on state

estimation will result in a more accurate closed-loop control. The internal states of a grinding mill

model (Le Roux et al., 2013b) are estimated using a neural network, and results are compared to those

achieved when using a particle filter. A new method of state estimation using both a neural network

and particle filter is also presented.

The application of robust non-linear MPC to a ROM ore milling circuit was presented by Coetzee et

al. (2010). The controller described by Coetzee et al. (2010) requires full state feedback, an issue that

is partially addressed by Coetzee (2009) and by Olivier et al. (2012b). The state estimation technique

presented in this chapter could help improve the overall control accuracy of MPC and increase the
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Chapter 3 Combined neural network and particle filter state estimation

number of implementations in the mineral processing environment.

3.2 NEURAL NETWORKS

Neural networks have the ability to form predictive relationships between complex (such as non-

linear) inputs and outputs. They also have the ability to provide fast inferred output process values

that are difficult to measure (Willis, Montague, Di Massimo, Tham and Morris, 1992). This section

gives a description of neural networks, similar to that given by Stange (1993).

A network consists of three major layers, namely the input layer, the hidden layer and the output layer.

These three layers are shown in Fig. 3.1. The hidden layer shown in the figure is not limited to just one

layer. Each node, shown as a circle in Fig. 3.1, operates by summing all the inputs and outputting a

transformed value. The transformation comes from applying a weighting factor to the summed inputs.

Training needs to be completed first to determine the weighting factors in the nodes. A training set

of data is presented to the network and various training algorithms (such as back propagation) can

be used. This can be optimised by minimising an objective function that sums the squared error

between the predicted and actual output. This implies that with a significant amount of training data

a complex function or plant can be approximated without the need for complex mathematics. The

network requires three major settings, namely the number of layers, the number of nodes within each

layer and the type of transformation function used in each node. Applying a neural network becomes

a trial and error process as the network is highly dependant on the input-output data that it is presented

with.

Neural networks are robust with respect to noisy plant data. According to Stange (1993), neural net-

works can be trained to replace existing controllers, as shown by Conradie and Aldrich (2001) where

a neural network was used to control a ball mill grinding circuit. A symbolic adaptive neuro-evolution

algorithm was developed by Conradie and Aldrich (2001) to eliminate the controller interactions and

therefore making the controller more robust. This is feasible when controllers require practically dif-

ficult measurements to be made. Neural networks can be trained as adaptive predictors which means

future values of measurements can be estimated provided significant amount of past data is available.

Neural networks can be used for system identification if trained using input and output data. Addi-

tionally, neural networks can be trained to identify the inverse of the plant. This is achieved by using

the outputs at the input layer and output layer contains the systems inputs. This enables inputs to be

determined by specifying output values.
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Chapter 3 Combined neural network and particle filter state estimation

Inputs
Outputs

Hidden 
Layer

Weighted 
Network 

Connections

Input Layer
Output Layer

Figure 3.1: Generalized artificial neural network.

3.3 STATE ESTIMATION

3.3.1 Simulation setup

The aim of the state estimators are to estimate the five states that describe the contents of the mill (in

m3): water (Xmw), rocks (Xmr), solids (Xms), fines (Xm f ) and steel balls (Xmb). In order to illustrate

the accuracy of the estimation algorithms, a simulation run is performed while the milling circuit

is kept under feedback control by PI controllers for a 20-hour period. The same PI controllers and

simulation environment were used by Olivier et al. (2012b) who provide further details about the

controllers implemented. Disturbances are introduced as follows: the value of φ f is decreased by

10% at time 3 h, the value of αr is decreased by 10% at time 9 h and the value of α f is increased by

10% at time 15 h. The three parameters α f , αr and φ f are chosen as they have the largest influence

on the operation of the mill (Olivier, 2011). The “true" simulated states are estimated and therefore no

measurement noise is taken into account. Also, this comparison aims to show the estimation accuracy

and not the noise-handling capability. A 10-second sampling time was used in the simulation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3 Combined neural network and particle filter state estimation

3.3.2 Particle filter

3.3.2.1 Description

Particle filtering is the technique of implementing a recursive Bayesian filter by Monte Carlo simu-

lations. The setup of the particle filtering simulation run is the same as that used by Olivier et al.

(2012b), in which more information on the particle filter is presented. A brief description is given in

this section.

Particle filtering relies on the technique of representing the posterior density function (pdf), which is

used for estimation, by a set of random samples and associated weights. The locations of the particles

represent the locations at which the pdf is evaluated and the sizes of the particles represent the asso-

ciated weights, giving an indication of the value of the pdf at this location. This representation is ex-

pandable to an arbitrary number of dimensions and is applicable to any distribution, even multi-modal

and other non-Gaussian distributions. As the number of particles becomes very large, this method of

representing the pdf becomes equivalent to the functional description of the posterior pdf. The pdf at

time t may then be approximated as (Arulampalam, Maskell, Gordon and Clapp, 2002):

p(xt |Yt)≈
Ns

∑
i=1

wi
tδ (xt − xi

t) (3.1)

where Ns is the number of particles and
{

xi
t ,w

i
t
}Ns

i=1 is the set of particles and associated weights.

These weights are defined to be (Ristic, Arulampalam and Gordon, 2004):

wi
t ∝ wi

t−1
p(yt |xi

t)p(xi
t |xi

t−1)

q(xi
t |xi

t−1,yt)
(3.2)

where q(xi
t |xi

t−1,yt) is a proposal distribution called an importance density. Ideally the importance

density should be the true posterior distribution p(xt |Yt) (Ristic et al., 2004), but as this is not known

in general, a proposal distribution is used.

The optimal importance density function, that is presented in (Olivier et al., 2012b), minimizes the

variance of importance weights conditioned upon xi
t−1 and yt has been shown to be q(xt |xi

t−1,yt)opt =

p(xt |xi
t−1,yt) resulting in

q(xt |xi
t−1,yt)opt =

p(yt |xt ,xi
t−1)p(xt |xi

t−1)

p(yt |xi
t−1)

(3.3)

This optimal importance density is however only usable in a specific class of problems where it is
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Chapter 3 Combined neural network and particle filter state estimation

possible to sample from p(xt |xi
t−1,yt) and where

p(yt |xi
t−1) =

∫
p(yt |xt)p(xt |xi

t−1)dxt (3.4)

can be calculated up to a normalizing constant, which is not the case in general. One popular subop-

timal choice is the transitional prior

q(xt |xi
t−1,yt) = p(xt |xi

t−1) (3.5)

which, if it is furthermore assumed that the process noise is additive zero-mean Gaussian noise,

simply becomes

p(xt |xi
t−1) = N (xt ; ft−1(xi

t−1),Qt−1) (3.6)

which can easily be calculated. This assumption also means that particles can be drawn

from a Gaussian distribution with a mean equal to the previous particle location propagation

through the system equation and standard deviation equal to the noise standard deviation as xi
t ∼

N ( ft−1(xi
t−1),Qt−1).

3.3.2.2 State estimation

The particle filter has the following inputs (flow rates going in the mill): Vmwi, Vmsi, Vm f i, Vmri and Vmbi.

The following outputs are required: Vmwo, Vmso, Vm f o, LOAD and Pmill . The particle filter is specified

with 50 particles. A larger number of particles have been tried without too much improvement in the

estimation results. In this study (as in Olivier et al. (2012b)) the transitional prior is used. The initial

estimates of the mill states are randomly selected from a region (± 0.01) around the actual initial

values in each case. The “true" states and particle filter estimates are shown in Fig. 3.2.

3.3.3 Neural network

3.3.3.1 Training

The neural network requires the following input data: Vmwi, Vmsi, Vm f i, Vmri and Vmbi. The neural

network was trained using 480 hours of simulation data. This input data used to estimate the five

states of the mill. Over-training the neural network is a factor that was considered when training the

network, as an over-trained network will likely only work for the specified case it was trained on. A

positive and negative 20% step change was made to φ f , αr and α f . The data consisted of 20% positive
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Figure 3.2: Particle filter state estimates

and negative step changes with various combinations of αr, α f and φ f at 40 minutes, 480 minutes

and 700 minutes respectively, as shown in Fig. 3.3 and Fig. 3.4. Disturbance steps in both directions

for all three variables are shown in Fig. 3.5.

A two-layer feedforward backpropagation network with sigmoid hidden neurons and linear output

neurons was trained for state estimation. The input and output data sets were randomized (main-

taining input-output combination) as randomized combinations of the outputs according to the inputs

is preferred compared to an ordered combination. The neural network was trained according to the

Levenberg-Marquardt (Hagan, Demuth and Beale, 1996) optimization algorithm. This algorithm

determines the weights and the bias values for the network. The network consisted of five hidden

neurons.
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Figure 3.3: Training data set 1 with positive 20% disturbance changes
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Figure 3.4: Training data set 2 with negative 20% disturbance changes
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Figure 3.5: Training data set 3 with positive and negative disturbance changes

3.3.3.2 Results

The neural network was then tested on 10% changes using the same simulation environment as for

the particle filter defined in section 3.3.1. The aim is to determine if the neural network can estimate

the five mill states despite smaller changes made in the parameters, as compared to the training set.
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The state estimation results for the neural network are shown in Fig. 3.6.
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Figure 3.6: State estimation from neural network

The results show that the neural network performs well for the first four states and deviates after 10

h for Xmb, as shown in Fig. 3.6. The particle filter also does not estimate the hold-up of steel balls

(Xmb) accurately, as shown in Fig. 3.2. A comparison between Fig. 3.2 and Fig. 3.6 indicates that the

neural network performed better than the particle filter for states Xmr and Xmb; however, the particle

filter’s estimates for the first three states were more accurate.

When comparing the neural network and the particle filter estimators, it should be kept in mind that

the neural network estimator estimated the mill states based on only the mill input data. The particle

filter, however, requires output measurements and an initial estimate of the mill parameters (presented

in Olivier et al. (2012b)) to function. These were provided to the particle filter estimator as described

in section 3.3.2. The neural network estimator therefore had less information at its disposal when
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Chapter 3 Combined neural network and particle filter state estimation

estimating the mill states. Additional simulations showed that if the mill outputs, LOAD and Pmill , are

included in the training data for the neural network then the accuracy is improved. Additionally, using

accurate previous state values (X(t− 1)) to estimate the current state (X(t)) do improve estimation

accuracy. If the previous state value is not accurate and is provided as an input to the neural network

then the output state estimate is poor.

3.3.4 Combination of particle filter and neural network

An alternative method of combining the neural network and particle filter is described in this section.

Fig. 3.2 shows that the particle filter estimate is more accurate for the first three states than the neural

network estimate (Fig. 3.6); however, the neural network estimate was more accurate for Xmr and Xmb.

This section investigates the use of the particle filter to correct the offset found in the neural network

estimates for the first three states, similar to offset correction described by Flament et al. (1993). For

the first three states only, the average of the particle filter estimate at every hour is compared to the

average of the neural network estimate. The average of the particle filter estimate is then subtracted

from the neural network estimates. The results of the neural network method with particle filter offset

correction at every hour are shown in Fig. 3.7. The performance index as a function of time is shown

in Fig. 3.8. An average performance index was determined from ten simulation runs because particle

filtering is a Monte Carlo method and will therefore have a difference index for each iteration.

The algorithm, which shows how the particle filter method was used as an offset correction method

for the neural network method, is presented below. M is the time at which the offset error correction

will be implemented. N is the number of values used to determine the average value of each method.

At every hour the difference between the neural network estimation and particle filter estimation was

calculated based on N samples of historical data. The offset correction was then implemented to the

neural network estimation for M hours. The value of M was chosen based on an estimate on when

lab samples would be available to infer the component outputs of the mill (Vmwo, Vmso and Vm f o). The

particle filter approach can then be used with this output information. An estimate of six samples per

hour resulted in the choices for N and M respectively. The value of M should be reduced if the milling

circuit has the risk of becoming unstable before the next inferential calculation.

The combined method employs the particle filter method and therefore requires the mill parameter

estimates.
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Chapter 3 Combined neural network and particle filter state estimation

Algorithm

• Initialize average arrays to 0.

• Using three FOR loops, calculate the average of N time steps back at every M for each

state. This is done for both methods.

• Find the difference between the two matrices. This is the offset between the neural net-

work and the particle filter.

• For M time steps forward create a new matrix that subtracts the difference from the neural

network estimation.

• M was chosen to be 360 i.e. 60 minutes or 1 hour.

• N was chosen to be 6 i.e. 6 samples.
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Figure 3.7: State estimation from neural network with particle filter correction
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Chapter 3 Combined neural network and particle filter state estimation

3.3.5 Comparison

The performance index shown in Fig. 3.8 clearly shows that an improvement has been made using the

particle filter as an offset error correction method. The performance index used is shown in equation

(3.7) where Xyz represents the ideal state and Xyz represents the estimated state.

PI = (
Xmw−Xmw

Xmw
)2 +(

Xms−Xms

Xms
)2 +

(
Xm f −Xm f

Xm f
)2 +(

Xmr−Xmr

Xmr
)2 +(

Xmb−Xmb

Xmb
)2 (3.7)
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Figure 3.8: Squared error comparison of all three methods

Table 3.1 shows the results from 16 simulation scenarios. The first two scenarios illustrate the per-

formance of the neural network training and therefore should have very small state errors. Tests

number 3 to 7 illustrate a scenario when all three disturbance parameters are positive. This could

occur when the parameters are underestimated. It should be noted that in Test number 7 and 12 the

neural network could not estimate the states accurately, as a 30% disturbance change was made and

the network was only trained on a 20% change. This shows that the neural network needs to be

trained on a worse-case scenario of disturbance changes, up to 50% (Coetzee et al., 2010), else the

state estimation results are not reliable. Similarly, Test numbers 8 to 12 illustrate negative disturbance

changes. Test numbers 13 to 16 illustrate a scenario when positive and negative disturbance changes
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occur. The results show that as the magnitude of the disturbances increases, the estimation accuracy

for both particle filter and neural network decreases. The particle filter results are more consistent

compared to the neural network results. The combined method results are always better than the

individual neural network and particle filter results except in Test number 7 and 12.

Table 3.1: State estimation validation tests and corresponding performance index results

Test No. αr α f φ f State errora

Change (%) Time (mins) Change (%) Time (mins) Change (%) Time (mins) NN PF Combined

1 20 40 20 480 20 700 0.6893 16.849 0.4394

2 -20 40 -20 480 -20 700 0.8389 11.547 0.5505

3 5 540 5 900 5 180 0.3905 10.782 0.2399

4 10 540 10 900 10 180 1.0691 7.6039 0.7326

5 15 540 15 900 15 180 2.2655 15.126 1.4364

6 20 540 20 900 20 180 4.6991 13.889 2.2946

7 30 540 30 900 30 180 23.586 11.844 13.682

8 -5 540 -5 900 -5 180 1.2861 14.868 0.3885

9 -10 540 -10 900 -10 180 2.7745 13.913 1.0001

10 -15 540 -15 900 -15 180 3.4191 13.158 2.0793

11 -20 540 -20 900 -20 180 6.2087 17.003 3.5542

12 -30 540 -30 900 -30 180 75.278 13.967 14.469

13 -5 540 5 900 -5 180 1.4202 11.286 0.3881

14 -10 540 10 900 -10 180 2.6133 11.155 0.9994

15 -15 540 15 900 -15 180 3.3618 10.977 2.0905

16 -20 540 20 900 -20 180 7.7633 14.980 3.5137
a Based on the summation of equation 3.7 throughout a 20-hour simulation at the sampling interval

of 10 seconds.

3.4 CONCLUSION

The work presented shows that it is possible to do internal state estimation for a milling circuit using

a neural network trained on input data. The network was trained using disturbance changes in model

parameters of 20%, and then used to predict the effect of 10% disturbances. A new method that

combines a neural network and particle filter estimator for offset correction was presented. Initial

results indicate that such a method can work well.

Training the neural network in practice will be difficult, as the method is highly dependent on the

quality of the training data. It may also not be possible to train the neural network on one disturbance

at a time, as was done here. Plants outside the minerals processing industry are often accompanied
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Chapter 3 Combined neural network and particle filter state estimation

by accurate simulators (Garatti and Bittanti, 2008) and according to Garatti and Bittanti (2008) a

set of experiments using neural networks can be performed “virtually" by simulation trials. Further

research should be done on how much training data, for this application, is required and to what extent

the neural network method is accurate in mineral processing applications. A promising start has been

made.
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CHAPTER 4

CONTROL OF A ROM ORE MILLING CIRCUIT

4.1 INTRODUCTION

This chapter proposes a nonlinear suboptimal control approach with state estimation so that a high

quality product at a high throughput is produced by the milling circuit despite large disturbances.

The work presented in this chapter builds on the work of Olivier et al. (2012b) by developing a

controller that uses the mill states provided by the particle filter. The novelty of the work presented

in this chapter includes the estimation of the sump states, the augmented nonlinear controller and a

combination of the particle filter with the control formulation i.e. including state estimation in the

control loop. The formulations presented in this chapter aim to be as practically implementable as

possible.

In previous work the particle filter required on-line measurements at the input and output of the mill.

Because this is not always practically possible, various approximation and data filtering techniques

are used based on practically viable measurements.

An innovative combined nonlinear model predictive control and nonlinear dynamic inversion design

philosophy is presented in this chapter. State estimation of the contents of the mill and the sump,

required for control, has also been adequately addressed. The proposed approach uses a nonlinear

MPC for the overall circuit along with a fast acting dynamic inversion control for controlling the

sump level. In summary, the proposed approach simultaneously meets the objectives of high product

quality and high throughput, while ensuring manageable loads in the mill.
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Chapter 4 Control of a ROM Ore Milling Circuit

4.2 CONTROL FORMULATION

4.2.1 Control Objectives

The control objectives for the control formulation proposed are:

1. robust tracking of set-points or reference commands with independent control of PSE and T HP,

2. accurate compensation for plant nonlinearities and

3. tight regulation of water volume in the sump.

A generalised control loop for mineral processing, developed by Hodouin (2011), is shown in Fig.

4.1. This figure illustrates how all the building blocks are connected to achieve successful control

of a process. Successful control can be split up into the main controller (Block 2) and peripheral

tools. Peripheral tools assist with determining the best control moves to overcome issues such as

disturbances or model-plant mismatch. Block 1 and 6 can be optimized for power, material cost,

minimum time etc. (e.g. using the supervisory control in Matthews and Craig (2013)), and block 5

has been studied by Venkatasubramanian, Rengaswamy, Kavuri and Yin (2003). Blocks 2, 3, 4, 7 and

8 are (partly) covered in this study.

In the proposed design, relevant physical limitations of the ROM ore milling circuit are also explicitly

taken into account to the best possible extent. The variables in Table 2.1, excluding the rheology

factor, are required to be measured online.

4.2.2 Control architecture

The ROM ore milling circuit is controlled using a combination of a NMPC and DI controller. The

dynamics of the sump are significantly faster than the rest of the circuit and therefore it requires a

fast acting controller. The dynamic inversion method was chosen for the fast dynamics while the

NMPC manipulates the remaining variables. Instead of having these controllers isolated, the closed-

form solution produced by the DI controller is used by the NMPC. As can be seen from (2.66) and

(2.67), the volume of water in the sump (Xsw) has a significant effect on these equations and therefore

on PSE and T HP. This means that the dynamic inversion controller can assist the NMPC to aim

for an optimal sump water set-point that can aid in minimising the objective function in the NMPC.
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Figure 4.1: Generalised control loop for mineral processing.

Fig. 4.2 illustrates the connection between the NMPC and the DI controller. The volume of water in

the sump is seen as a controlled variable by the DI controller. The desired value of the sump water

(X∗sw) is determined by the NMPC and fed to the DI controller as a set-point from which SFW is

determined.

As shown in (2.56), Xsw has a significant impact on PSE, the ratio between the flow-rate of the fines

and the flow-rate of solids out of the circuit. The sump constraints are taken into account using a

convex combination, described in section 4.2.4.2, when the SVOL reaches its physical limits.

4.2.3 Nonlinear model predictive control (NMPC)

The NMPC was designed using the full non-linear state-space equations as described in section 2.2.3.

The objective of the controller is given by (4.1) where u represents the manipulated variables used to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4 Control of a ROM Ore Milling Circuit
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Figure 4.2: Block diagram illustrating the control configuration implemented.

solve the nonlinear optimal control problem by minimizing a performance index J.

minu J(u,x0,p) (4.1)

such that y ∈ Y,u ∈ U (4.2)

d
dt

x(t) = f (x(t),u(t),p) (4.3)

y(t) = g(x(t),u(t),p) (4.4)

In (4.1)-(4.13), x contains state variables with initial condition x0, y contains the controlled variables,

ysp contains the set-points, and p contains the parameter values for the system. The manipulated and

controlled variables as given as follows.

u = {MIW,MFS,MFB,αspeed ,CFF,X∗sw}T (4.5)

y = {LOAD,PSE,T HP}T (4.6)

The upper and lower constraints for the controlled variables are given by yu and yl respectively.

Similarly, for the input vector, uu and ul are the upper and lower constraints for the manipulated

variables respectively.

ul = {0,0,0,0.4,200,2}T (4.7)

uu = {100,200,10,1,450,12}T (4.8)

yl = {0.2,0.5,10}T (4.9)

yu = {0.5,0.85,30}T (4.10)

U= {u ∈ Rnu |ul ≤ u≤ uu} (4.11)

Y= {y ∈ Rny |yl ≤ y≤ yu} (4.12)
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Chapter 4 Control of a ROM Ore Milling Circuit

The objective function for the NMPC is given as

J(u,x0,p) =
Np

∑
n=1

(y−ysp)
T Q1(y−ysp)+

Np

∑
n=1

∆yT Q2∆y+
Nc

∑
n=1

∆uT Q3∆u (4.13)

where ∆y = yn−yn−1 and ∆u = un−un−1. In general, the ∆u term provides integral action as long

as there are no steady-state targets for the manipulated variables in the objective function. However,

in practice only this may be insufficient to get offset free tracking, because the state estimate returned

by the observer as an initial condition for the prediction model might result in a solution that reaches

the set-points during prediction, but a consistent disturbance or model mismatch is preventing that

from happening in reality. The integrating action of the MPC through ∆u will only work until the

model is predicting that set-point will be reached. If the model is, however, not being updated to

include the effects of disturbances or model mismatch, the results predicted by the model and reality

will not match. Model parameter update is highly recommended, however, is out of the scope of this

study.

The prediction horizon (Np) should be chosen based on the longest settling time between the manip-

ulated and controlled variables (Seborg, Edgar and Mellichamp, 2004). This results in an Np > 500

because of the PSE-αspeed interaction, which is impractical to implement. The milling circuit model

has a large range of such settling times, and to yield a controller that is feasible to implement, Np = 18

(corresponding to 18 minutes with a sampling time of one minute) was chosen. Good results are

achieved when the control horizon is selected to be 3 (Nc = 3). This is a good trade-off between

aggressiveness and computational expense.

The matrices Q1, Q2 and Q3 weight the controlled variables, and the rates of change of the controlled

variables and manipulated variables respectively. These are tuning parameters for the NMPC. PSE

and T HP have a significantly higher priority to meet set-point than LOAD. αspeed is included as

a manipulated variable to control PSE and T HP and is constrained between 0.4 and 1. In (4.15)-

(4.24), y−max and r−max represent the allowed deviation for the controlled and manipulated variables

respectively. Note that these are absolute value changes. The q̄− values represent the priority of the

controlled variables. The r̄− values control the smoothness of the manipulated variables with a large
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Chapter 4 Control of a ROM Ore Milling Circuit

value resulting in a small rate of change.

Q1 = diag(q1,q2,q3) (4.14)

q1 =
q̄1

y2
1max

,y1max = 0.05, q̄1 = 1 (4.15)

q2 =
q̄2

y2
2max

,y2max = 0.05, q̄2 = 10 (4.16)

q3 =
q̄3

y2
3max

,y3max = 0.5, q̄3 = 10 (4.17)

All of the weights above have been normalized by an acceptable variation e.g. an acceptable

variation for PSE is 0.05. The weight that determines the accuracy of the LOAD output was

chosen to be 1. As PSE and T HP are significantly more important than LOAD, these two out-

puts are given a weight of 10. The movement of the controlled variables is minimized with the

weight Q2 = 10−3diag(q1,q2,q3). The movement of the manipulated variables is minimized as fol-

lows:

Q3 = diag(r1,r2,r3,r4,r5,r6) (4.18)

r1 =
r̄1

r2
1max

,r1max = 20, r̄1 = 0.1 (4.19)

r2 =
r̄2

r2
2max

,r2max = 25, r̄2 = 10 (4.20)

r3 =
r̄3

r2
3max

,r3max = 2, r̄3 = 10 (4.21)

r4 =
r̄4

r2
4max

,r4max = 0.2, r̄4 = 1 (4.22)

r5 =
r̄5

r2
5max

,r5max = 50, r̄5 = 1 (4.23)

r6 =
r̄6

r2
6max

,r6max = 2, r̄6 = 10. (4.24)

The MIW variable has been allowed to vary the most as this variable is practically the simplest to

manipulate - it should however not be increased too quickly as this could have the effect of washing

out the fines in the mill. CFF and αspeed control the speed of the sump pump and mill motor and

are given a weight of 1. An additional constraint on αspeed was added to ensure smooth control:

∆αspeed ≤ 0.01. It is undesirable to see major movements in raw ore and steel balls into the mill

therefore these two manipulated variables have a weight of 10. Additionally, due to the slow grinding

process, it is preferred that the sump water not move rapidly.
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The fmincon function with the active-set algorithm in MATLAB1 was used to determine the six

control values. The objective function propagates the state and output functions for the prediction ho-

rizon. The Euler method was used for the propagation of states within the nonlinear model predictive

controller. The fourth order Runge-Kutta method (Press, Teukolsky, Vetterling and Flannery, 1992)

was used in the overall control loop after the control signals, obtained from the DI and NMPC con-

trollers, were calculated.

4.2.4 Dynamic Inversion (DI)

The sump volume is traditionally controlled using a single-loop PI(D) controller. From (2.49), it is

clear that the sump dynamics are nonlinear, even though a sump model for level control can often

be approximated as an integrator depending on the shape of the sump (Craig and MacLeod, 1996).

Dynamic inversion is used for SVOL and Xsw control because of its simple design structure. No

approximation of the system dynamics is necessary and the controller is easy to implement online.

This method leads to a closed form solution for the controller and guarantees asymptotic stability

for the error dynamics (Enns, Bugajski, Hendrick and Stein, 1994). The connection between the

two controllers is simply that the NMPC sends a desired value of Xsw to the DI controller so that

the NMPC can achieve specific aims. SFW has the largest impact on both Xsw and SVOL and was

therefore used as the manipulated variable.

Dynamic inversion allows the specification of a desired response path by choosing a proportional gain

value (Kp) and an integral gain value (KI) such that:

d
dt

E +KpE +KI

∫ t

0
Edτ = 0. (4.25)

where E = Y −Ysp (the difference between the measured value (Y ) and the set-point (Ysp)).

4.2.4.1 Synthesis of SFW

SFW consists of two parts: SFWSVOL and SFWXsw . SFWSVOL is the manipulated variable SFW that

is used to control SVOL only (ignoring the NMPC-DI connection) whereas SFWXsw uses SFW to

achieve the desired X∗sw obtained from the NMPC. Equation (4.26) is the result for SVOL control when

E = ∆Svol = SVOL− SVOL∗ where SVOL∗ represents the upper bound, when the sump volume is

greater than the midpoint of the sump, or lower bound, when the sump volume is below the midpoint.

1MATLAB is a registered trademark of The MathWorks Inc.
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Equation (4.28) results from algebraic manipulation and solving for the control variable SFW .

d
dt
(∆Svol)+Kp1(∆Svol)+KI1

∫ t

0
(∆Svol)dτ = 0 (4.26)

d
dt
(∆Svol) = (Vswi +Vssi)−CFF +SFWSVOL (4.27)

SFWSVOL = (CFF−Vswi−Vssi)−Kp1(∆Svol)−KI1

∫ t

0
(∆Svol)dτ (4.28)

Kp1 was tuned to be 30, based on a desired settling time of approximately 2 minutes. KI1 was chosen

to be ten times less than Kp1. This results in good sump volume control without exceeding any input

constraints on SFW . The sump volume must be maintained between 2 and 20 m3.

Similarly for sump water (Xsw) control: E = ∆Xsw = Xsw−X∗sw. The solution for SFWXsw is shown in

(4.29).

SFWXsw =
CFFXsw

Xsw +Xss
− VV φX2

mw

Xms +Xmw
−KI2

∫ t

0
(∆Xsw)dτ−Kp2(∆Xsw) (4.29)

Kp2 was chosen to be ten times larger than the SVOL Kp1 value as fast control was desired. The KI2

value was also chosen to be ten times less than the Kp2.

4.2.4.2 Convex combination

A convex combination of SFWSVOL and SFWXsw was chosen for smooth control of both outputs (SVOL

and Xsw). Fig. 4.3 illustrates the proposed concept. A safe region is defined, where there is no concern

of the sump overflowing or running dry, between the lower bound (LB) and upper bound (UB). In

the safe region the focus of the control variable SFW can primarily be on controlling Xsw. As the

sump volume approaches the constraints (Min and Max), more focus should be on bringing the sump

volume back to the safe region. This means that SFWSVOL should have preference over SFWXsw . This

concept is mathematically shown in (4.30) and (5.16).

SFW = (1−λ )SFWXsw +λSFWSVOL (4.30)
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0
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Figure 4.3: Conceptual figure illustrating convex combination.

λ (SVOL) =



0 if LB < SVOL <UB

1
Min−LB(SVOL−LB) if Min≤ SVOL≤ LB

1
Max−UB(SVOL−UB) if UB≤ SVOL≤Max

if SVOL < Min or

1 SVOL > Max

(4.31)

where Lower Bound(LB) = 4,Upper Bound(UB) = 16,

Min = 2, Max = 20

4.3 STATE ESTIMATION

In a recent paper by Olivier et al. (2012b), a particle filter was used for estimation of the states

representing the contents of a grinding mill. Only the volume of solids (Xms), water (Xmw) and fines

(Xm f ) were estimated accurately since it was assumed that the flow-rate of each component out of

the mill could be measured. However, measuring the flow-rate of these components is not practically

possible. The volume of rocks (Xmr) and balls (Xmb) were not accurately estimated, because by

definition these components do not exit the mill. The estimation accuracy of these two states (Xmb

and Xmr) can be improved by using a neural network alongside the particle filter as discussed by

Naidoo, Olivier and Craig (2013). Yet, only the particle filter was used in this study since it showed

more accurate and reliable results in the presence of disturbances and noise. Additionally, the neural

network approach requires a significant amount of training data that could be difficult to obtain from
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Chapter 4 Control of a ROM Ore Milling Circuit

an industrial plant. The combined method was not as accurate compared to using only the particle

filter method when parameter variations of 30% (see Table 3.1) were introduced. In this study, seven

parameters are varied from 5% to 50%. Therefore a more industrially viable and accurate option

under these conditions, the particle filter method, was chosen.

Because there are no direct measurements of the discharge of the mill, and because balls and rocks do

not discharge from the mill, observing the mill states is not straightforward. The only measurement

available for the material in the mill is the LOAD measurement. However, the sump states are readily

observable from the measurable outputs SVOL, CFD and PSE. If the sump states are known, it is

possible to determine the flow-rate of solids, water and fines out of the mill by means of a flow-rate

balance over the sump. Estimating the sump states separately from the mill states makes additional

information available for a more accurate estimation of the mill states.

The next two subsections describe the process followed to estimate the sump and mill states.

4.3.1 State estimation for the sump states

The sump state equations are given in (2.49) to (2.51). The sump volume (SVOL) and cyclone feed

density (CFD) contain two of the three sump states. Since the sump volume (SVOL) and cyclone

feed density (CFD) are measurable, algebraic manipulation of (2.54) and (2.55) results in (4.32) and

(4.33).

Xssest = SVOL
(1−CFD)

(1−Ds)
(4.32)

Xswest = SVOL−Xss (4.33)

The third state, the volume of fines in the sump (Xs f ), is difficult to estimate because a third measure-

ment is required. Because the fraction of fines in the sump outflow is not measured, the measurement

of the fines in the overflow of the cyclone (PSE) has to be used to estimate the volume of fines in

the sump (Xs f ). A weighted moving average is proposed to estimate the volume of fines in the sump

(Xs f ), as this ensures a smooth Xs f estimate. The mean of the previous four estimates are combined

with the new estimated X∗s f .

Xs fest (k) = 0.5X∗s f +0.5
1
n

n=4

∑
i=1

Xs fest (k− i) (4.34)

X∗s f is determined by writing the fraction of fines in the overflow of the cyclone (PSE) in terms of

the states and manipulated variables and only then solving numerically for X∗s f - see (4.35). This was
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implemented using the fsolve function in MATLAB.

(4.35)

PSE =
100

(
A− CFFX∗s f

Xss+Xsw

)
A− CFFXss

Xss+Xsw
+ C

Xss+Xsw

where

A =

(
X∗s f

Xss + Xsw

(
C −CFF(X∗s f − Xss)

((X∗s f

Xss

)C4

− 1

)
×

B

((
Xss

C2(Xss + Xsw)

)C3

− 1

)(
C1 exp

(
−CFF

εs

)
− 1
))/

(X∗s f B− X∗s f + XswB)

B =exp
(
− C

αsuεs(Xss + Xsw)

)(
Xss

Xss + Xsw
− 0.6

)
+ 0.6

C =CFF(X∗s f − Xss)

((X∗s f

Xss

)C4

− 1

)((
Xss

C2(Xss + Xsw)

)C3

− 1

)
(

C1 exp
(
−CFF

εs

)
− 1
)

4.3.2 State estimation for the mill states

A description of the particle filter has been discussed in section 3.3.2. The particle filter is required

to estimate the state vector x, where x = {Xmw,Xms,Xm f ,Xmr,Xmb}. The following inputs into the

mill are required: MIW , MFS, MFB, αspeed , Vcwu, Vcsu and Vc f u. The mill outputs are also required:

Vmwo, Vmso, Vm f o, LOAD and Pmill . A particle filter with 1000 particles is specified for estimating the

mill states. Note that a larger number of particles was also tried without much improvement in the

results. Table 4.1 illustrates that there is no significant improvement in state estimation when using

2000 particles however, there is a significant computation time difference. The computational time is

the average time (in seconds) per iteration. As in Olivier et al. (2012b), the transitional prior is used

as the importance density. This is a suboptimal choice when a more complex importance density is

not warranted. The transitional prior is also chosen because of the ease of implementation and good

accuracy. The initial estimates of the mill states are randomly selected from a region (± 10%) around

the actual initial values in each case. The formulation used here is exactly the same as described in

Olivier et al. (2012b).

The particle filter requires the mill outflows exiting through the discharge grate and the cyclone under-

flows entering the mill. The flow-rate components into the mill (4.41)-(4.43) can be determined from

knowing the sump states (Xsw, Xss, Xs f ) and using fraction solids in the total cyclone inflow volume Fi
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Table 4.1: Comparison between number of particles.

Number of particles Computational time (s) Error*

10 0.0109 0.3190

50 0.0245 0.2140

250 0.0809 0.2189

500 0.1516 0.2899

1000 0.2917 0.1808

2000 0.5663 0.1759

*Error = sum(abs(Xestimated−Xsimulated))

in (4.36), fraction fines in the cyclone feed solids Pi in (4.37), fraction solids in the cyclone underflow

volume Fu in (4.38) and the flowrate of coarse ore entering the cyclone Vcci in (4.39).

Fi =
Xss

(Xsw +Xss)
(4.36)

Pi =
Xs f

Xss
(4.37)

Fu = 0.6− (0.6−Fi) · exp(−Vccu/(αsuεc)) (4.38)

Vcci =CFF
(Xss−Xs f )

(Xss +Xsw)
(4.39)

Vccu =Vcci

(
1−C1 exp

(
−CFF

εc

))(
1−
(

Fi

C2

)C3
)(

1−PC4
i

)
(4.40)

Vcwu =
Xsw (Vccu−FuVccu)

FuXsw +FuXs f −Xs f
(4.41)

Vc f u =
Xs f (Vccu−FuVccu)

FuXsw +FuXs f −Xs f
(4.42)

Vcsu =Vccu +
Xs f (Vccu−FuVccu)

FuXsw +FuXs f −Xs f
(4.43)

The outputs of the mill are directly fed into the sump and therefore the mill component outputs are the

same as the sump inputs: Vmwo = Vswi, Vmso = Vssi and Vm f o = Vs f i. Equations (4.44) to (4.46) result

from using the sump state equations (2.49) to (2.51) and are used in the particle filter.

Vswi =
d
dt

Xsw +CFF
Xsw

SVOL
−SFW (4.44)

Vssi =
d
dt

Xss +CFF
Xss

SVOL
(4.45)
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Vs f i =
d
dt

Xs f +CFF
Xs f

SVOL
(4.46)

In the above equations, the derivative term can cause noise issues. Data filtering methods such as

an exponential filter, moving-average filter or a noise-spike filter (Seborg et al., 2004) applied to the

derivative terms will assist with noisy system measurements. The above input and output equations

for the mill module will allow the particle filter to be practically feasible.

Table 4.2 illustrates all the variables used in the proposed control configuration.

Table 4.2: Summary of the variables.

Type of vari-

able

NMPC DI controller Sump state

estimator

Mill state es-

timator

Plant

Manipulated

variables

(MVs)

MIW , MFS,

MFB, CFF ,

αspeed , Xsw

SFW - - MIW , MFS,

MFB, CFF ,

αspeed , SFW

Controlled

variables

(CVs)

PSE, T HP,

LOAD

SVOL, Xsw - - PSE, T HP,

LOAD, SVOL

Output vari-

ables (OVs)

Pmill , CFD, ϕ - - - Pmill , CFD, ϕ

State vari-

ables

Xmw, Xms,

Xm f , Xmr,

Xmb, Xsw, Xss,

Xs f

Xmw, Xms,

Xsw, Xss

- - Xmw, Xms,

Xm f , Xmr,

Xmb, Xsw, Xss,

Xs f

Measured

variables

Above MVs

and CVs

Above MVs

and CVs

SVOL,

CFD, PSE

PSE, T HP,

LOAD,

SVOL

-

Estimated

variables

- - Xsw, Xss, Xs f Xmw, Xms,

Xm f , Xmr,

Xmb

-
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4.4 RESULTS

The aim of the results section is to illustrate how well the proposed control configuration is able to

meet the control objectives set in section 4.2.1. It contains simulations that showcase the performance

of the controller configuration at various set-points in the presence of noise and disturbances.

4.4.1 Simulation setup

The set-point for throughput (T HP) was initially selected at 19.45 t/h and increased to 20.42 t/h

after 3 hours and increased further to 21.4 t/h after 9 hours. Similarly, the particle size estimate

(PSE) set-point was initially selected at 68.72 %, then increased to 72.16 % and further increased to

75.59 % after 3 and 9 hours respectively.

A twelve hour simulation was performed using the nonlinear controller and the particle filter for state

estimation described earlier. A sampling time of 10 seconds was used. The NMPC used a one minute

sampling time as the manipulated variables determined by the NMPC were only executed once a

minute. The dynamic inversion control (i.e. SFW ) executed every 10 seconds. These sampling time

choices provided a good balance between the fast sump dynamics and the slow mill dynamics.

The fmincon function requires an objective function and can cater for various constraint functions

(such as equality and inequality constraints). Within the objective function, the states and outputs

of the mill and sump are propagated (which are a function of the control moves). The outputs are

checked to be within inequality constraints defined in the constraint function. The constraint function

comprises of inequality input and output constraints defined in Le Roux et al. (2013b). This hard

limits the control moves and ensures that the inputs and outputs are always within the region of

interest. The inequality constraints for the inputs take the general form umin ≤ u1,u2, ...,uNc ≤ umax

and are given by:

0≤MIW ≤ 100 (4.47)

0≤MFS≤ 200 (4.48)

0≤MFB≤ 8 (4.49)

0.4≤ αspeed ≤ 1 (4.50)

|αN
speed−α

N−1
speed |< 0.01 (4.51)

200≤CFF ≤ 450 (4.52)
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Similarly, the output constraints are given by:

0.5≤ PSE ≤ 0.85 (4.53)

0.2≤ LOAD≤ 0.5 (4.54)

10≤ T HP≤ 30 (4.55)

4.4.2 Noise and disturbances

The aim of including significant noise and disturbances is to provide some indication of how the

controller might perform in practice. The model parameters and noise values were obtained from real

plant data (Le Roux et al., 2013b; Le Roux, Craig and Padhi, 2013a).

Noise values were randomly determined from the normal distribution for each of the outputs shown

in Table 4.3. Table 4.3 shows the standard deviation of the noise.

Table 4.3: Output noise added to the system.

Output Noise upper bound

LOAD 0.3396e-4 (0.01%)

SVOL 0.6e-3 (0.01%)

PSE 0.0137 (2%)

T HP 0.1751 (1%)

Pmill 18.3 (1%)

CFD 0.0084 (0.5%)

In practice, parameters are constantly changing due to changes in the ore fed to the milling circuit.

Therefore, the following parameters were varied sinusoidally as indicated: α f , αr, αsu, εs, φb, φ f and

φr by 50%, 50%, 5%, 5%, 5%, 50% and 20% respectively. Fig. 4.4 illustrates the parameter variations

implemented in the twelve hour simulation. The percentages represent the maximum allowable amp-

litude in the sinusoidal variation, and the values used are given in Coetzee et al. (2010). A random

amplitude variation occurs every 40 minutes given the sinusoidal function. The random variation fol-

lows a uniform distribution. The mean value of the parameter times the allowed percentage change

gives the range of the distribution around the mean value. An example is shown in eq. (4.56) and
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(4.57).

αr ∼ U
((

1− 50%
2

)
E(αr),

(
1+

50%
2

)
E(αr)

)
(4.56)

φr ∼ U
((

1− 20%
2

)
E(φr),

(
1+

20%
2

)
E(φr)

)
(4.57)

The means that the distribution of φr is uniform where the minimum allowed value is
(
1− 20%

2

)
E(φr)

and the maximum allowed value is
(
1+ 20%

2

)
E(φr) and E(φr) is the expected value of φr.
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Figure 4.4: Parameter variations implemented in simulation.

Note that all these disturbances were only fed to the plant and not the state estimation models or the

controller models.

4.4.3 Results with noise and disturbances

The accuracy of the particle filter described in section 4.3.2 is shown in Fig. 4.9. The added noise

resulted in a deterioration of the state estimates, requiring modifications to the ideal state equations

to improve accuracy. For the sump, the average values for SVOL and CFD are used in the equations
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describing the volume Xss (4.32), Xsw (4.33) and Xs f (4.34). These average values were determined

from the four most recent measured values. Equations (4.44)-(4.46) contain derivative terms which

need to be filtered when noise is present. The MATLAB functions polyfit and polyval are used to fit a

fifth order polynomial to the last 18 data points and the derivative of the polynomial function is used

in (4.44)-(4.46). This resulted in a significantly smoother flow-rate term compared to using the last

two data points and an algebraic difference equation.

Two simulations were implemented. The first simulation assumes full state feedback (no state es-

timation was used) to illustrate the performance of the controller under ideal conditions. The second

simulation includes state estimation and illustrates the performance of the complete proposed control

configuration.

Fig. 4.5 illustrates the performance for the LOAD, SVOL and PSE. PSE followed the set-point well

despite the noise and parameter variation added. However the LOAD does not perform as well, this

is due to the high weight, in the NMPC, for PSE and the low weight for LOAD. The accuracy of the

LOAD can be easily increased by increasing the weight in the NMPC. The SVOL is safely within the

bounds and there is no risk of overflowing or running dry.

The simulation with state estimation shows a more noisy output as the controller is now based on an

estimated value as opposed to the actual state value.

Fig. 4.6 illustrates the controlled variable T HP as well as additional outputs Pmill and CFD. T HP

is controlled well however, the variations, especially φ f (based on numerous trial simulations), effect

this controlled output the most. This shows that the proposed solution can perform well when aiming

for a feasible desired quality and quantity. The simultaneous objectives of PSE and T HP control have

not been adequately covered by previously, see e.g. Coetzee et al. (2010).

When state estimation is included in the loop, the T HP variation is larger than when using ideal

states. Updating the parameters over time will increase the accuracy of T HP significantly. Simul-

taneous parameter and state estimation (Olivier et al., 2012b) should prove to be beneficial in this

scenario.

Fig. 4.7 shows the performance of the dynamic inversion controller. From the figure it can be seen that

the tracking performance is good. This is because the sump volume is safely within the constraints.

If the sump volume moves towards the maximum or minimum bounds then the tracking performance
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Figure 4.5: Controlled outputs with state estimation and control.

shown in the figure will deteriorate and more emphasis will be placed on moving away from limits,

invoking the convex combination of (5.16).

In this scenario the upper bound was at 16 m3 for the SVOL. After 8 hours, from Fig. 4.5, the SVOL

moves slightly above 16 m3 and therefore there is a drive to bring the sump volume back within the

bound. This results in Xsw reaching approximately 11.5 m3 instead of 12 m3 just after 8 hours.

Both simulations, with and without state estimation, show a slightly delayed response because of the

average SVOL and CFD values used for calculation of the sump states.

The three sump states are shown in Fig. 4.8 which show that the sump states can be estimated

accurately despite the noise and disturbances. To ensure that these estimates are smooth, the average

of the last five values for SVOL and CFD were used in (4.32) and (4.33). The last state (Xs f ) is

calculated using the formulation in (4.34). The estimated states are marginally delayed compared to

the actual state values, but this difference is small and can be regarded as negligible. Note that the

sump states need to be as accurate and smooth as possible as the mill state estimation is dependent on
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Figure 4.6: Controlled outputs with state estimation and control.
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Figure 4.7: Dynamic inversion control.
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these results.
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Figure 4.8: Sump state estimates.

The five mill states are shown in Fig. 4.9. The first two states are estimated accurately despite the

noise and disturbances. The estimate of the third state (volume of fines) is deemed acceptable and is

dependent on the accuracy of the estimate for Xs f . The estimate of the volume of rocks within the

mill is acceptable even though αr significantly affects this estimate. The estimate for the volume of

steel balls is reasonable despite the added noise and disturbances. The rocks and steel balls do not

leave the mill and are therefore more difficult to estimate.

Fig. 4.10 shows the manipulated variables for the mill. All the variables are within the constraints.

The MIW hits the lower constraint of 0, if this is undesirable, the MIW could be removed as a

manipulated variable and set as a fixed ratio to the MFS.

Fig. 4.11 shows the αspeed , SFW and CFF . SFW and αspeed do not hit any constraints. CFF
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Figure 4.9: Mill state estimates.

does reach the upper and lower constraints, and T HP and PSE do not reach set-point when this

happens.

Fig. 4.12 represents a performance index that was used to compare the two simulations. The figure

aims to illustrate the difference in error between using ideal state variables and using the state estim-

ation proposed. The performance index is calculated based on (4.58) to (4.62). Equation (4.58) takes
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Figure 4.10: Manipulated variables.

a similar form as the objective function of the NMPC and uses similar weights to the NMPC.

J(u,x0,p) = (y−ysp)
T Qa(y−ysp)+∆uT Qb∆u (4.58)

u = {MIW,MFS,MFB,αspeed ,SFW,CFF}T (4.59)

y = {LOAD,PSE,T HP}T (4.60)

Qa = {1/0.05,10/0.05,10/0.5} (4.61)

Qb = {0.1/20,10/25,10/2,1/0.2,0.1/50,1/50} (4.62)

Fig. 4.12 shows that the proposed state estimation technique shows good overall control results. As

expected, the error with state estimation is greater than when the ideal state values are used.

The nonlinear model predictive controller and state estimation was implemented using MATLAB

R2012b. The controller formulation executed with an average time of 3.84 seconds and a maximum

time of 7.02 seconds per iteration. The state estimation process executed with an average time of 0.345

seconds and a maximum of 0.59 seconds per iteration. An average time of 4.19 seconds is required

to determine a single control move. This is promising when compared to the average computation
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Figure 4.11: Manipulated variables.

time of about 26 seconds per iteration in Coetzee et al. (2010). However, in this study an Intel Core

i7 2.7 GHz processor with 8 GB RAM was used and this is typically faster than the implementation

platforms available on most mineral processing plants (Coetzee et al., 2010).

4.4.4 Have the control objectives been met?

Objective 1

Robust tracking of set-points for PSE and T HP is illustrated in Figures 4.5 and 4.6 respectively.

Tracking was achieved despite the addition of significant noise and disturbances as described in sec-

tion 4.4.2.

Objective 2

Good overall control has been achieved despite significantly varying the operation point as illustrated

in Figures 4.5 and 4.6. Adequate state estimation was achieved for all eight states despite variations

in the state variables as illustrated in Figures 4.8 and 4.9.
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Figure 4.12: Performance index.

Objective 3

The sump volume has been successfully maintained within the sump limits as illustrated in Fig. 4.5.

The water in the sump has been additionally optimized by a NMPC and DI controller as discussed in

sections 4.2.3 and 4.2.4 and good control of sump volume and water is evident from Figures 4.5 and

4.7.

4.5 CONCLUSION

A combined nonlinear dynamic inversion and nonlinear model predictive control design approach

is followed to propose a new effective control design philosophy for ROM grinding mill circuits,

which meets the ambitious objectives of high product quality, high throughput and manageable loads

in the mill. These objectives are an implicit result of good control of the milling circuit. The novel

contribution of this work is the integration of a nonlinear controller and state estimator for the control

of a ROM ore milling circuit. The results show that the particle size estimate (PSE) can be maintained

adequately despite the introduction of significant noise and disturbances to the plant model. Six
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Chapter 4 Control of a ROM Ore Milling Circuit

parameters were constantly varied in a sinusoidal fashion with deviations of up to 50%. The sump

volume and mill load where successfully maintained within the desired limits. All parameters as well

as noise and disturbances were based on real plant data. Simulation results show that the proposed

approach has the potential to successfully control a ROM milling circuit as only variables that can

practically be measured are relied upon.
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CHAPTER 5

POWER OPTIMIZATION

5.1 INTRODUCTION

The drive to reduce energy consumption is a growing interest because of the increase in the cost to pro-

duce energy. The cost of energy has increased significantly in recent years, and in South Africa an an-

nual increase of 8 % is expected for the period 2013/2014 to 2017/2018 (Eskom, 2013). This increase

in price greatly affects the mineral processing industry because of the large energy demands.

A run-of-mine (ROM) ore milling circuit provides a suitable case study where the power consumed

by a mill is in the order of 2 MW. Grinding mill circuits have been identified as the most energy and

cost intensive unit processes in the minerals processing industry (Wei and Craig, 2009) and hence

energy savings can have a substantial impact. In a recent study (Matthews and Craig, 2013) a ROM

ore milling circuit was power optimized using a time-of-use (TOU) tariff structure following the

concept of demand side management. This study showed that power can be saved by implementing

a real time optimizer (RTO) on a supervisory outer-loop level. For regulatory control, a linear model

predictive controller (MPC) was used. This chapter, on the other hand, tries to save energy in the

inner loop by additionally penalizing an energy factor as part of the cost function of the nonlinear

model predictive control design (described in Chapter 4), and hence is fundamentally different from

the RTO philosophy described in Matthews and Craig (2013).

In this chapter, an additional parallel milling circuit power optimization problem was researched.

In the minerals processing industry a large amount of raw material is required to be processed and

increasing production commonly requires a parallel mill configuration. Companies such as Anglo

American Platinum operate with parallel milling circuits (Rule, 2011). Significant power is consumed
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when running multiple milling circuits in parallel. This configuration yields an interesting power

optimization problem due to the variability in a milling circuits power usage as a result from factors

such as equipment degradation. Note that in this Chapter the parameter set from Coetzee et al. (2010)

was used.

5.2 SINGLE ROM ORE MILLING CIRCUIT OPTIMIZATION

The aim of single ROM ore milling circuit optimization is to use the control configuration described

in Section 4.2 with an additional power minimisation objective. The control system therefore needs to

achieve a high throughput and maintain a high quality product while additionally aiming to minimise

the power draw from the mill. Since the power draw from the mill is at least ten times more than any

other unit in the milling circuit, the focus was predominately on the mill motor.

Nonlinear model predictive control allows for the set up of a unique objective function. In Chapter

4, it can be seen that the objective function (eq. (5.1)) was set up to minimise three expressions.

The first expression (
Np

∑
n=1

(y−ysp)
T Q1(y−ysp)) aims to achieve set-point while the second and third

expressions (
Np

∑
n=1

∆yT Q2∆y and
Nc

∑
n=1

∆uT Q3∆u) are used to minimise the movement of the controlled

and manipulated variables. To minimise the power draw from the mill an additional power expression

is added with results in the objective function:

J(u,x0,p) =
Np

∑
n=1

(y−ysp)
T Q1(y−ysp)+

Np

∑
n=1

∆yT Q2∆y+
Nc

∑
n=1

∆uT Q3∆u+q4

Np

∑
n=1

Pmill

Pmax
. (5.1)

Note that the prediction horizon (Np) equals 12 (two minutes). This value was chosen based on the

work by (Coetzee et al., 2010) where the study showed that it is possible to control the system with

a prediction horizon of one minute and a sampling time of ten seconds. Pmill equals the power draw

from the mill motor and Pmax equals the maximum mill motor power draw.

5.2.1 Simulation setup

To illustrate the control capability and the effect of including a power factor in the nonlinear MPC

objective function, an 8 h and 24 h simulation run was performed using the control formulation

described in Section 4.2. The 8 h simulation run aims to illustrate the control performance despite

disturbances and the 24 h simulation run aims to illustrate the control performance with various

set-point changes to PSE and T HP. Dynamic inversion and a nonlinear MPC was used to control
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a nonlinear ROM ore milling circuit described in Section 4.2.2. However, in this chapter the DI

controller and NMPC both have a sampling time of 10 seconds. State estimation is not the focus of

this section and full state feedback is assumed. In practice, observers will have to be used as all states

are not measured, see e.g. Chapters 3 and 4. Also, this study aims to show the accuracy and not the

noise-handling capability of the controller. An additional constraint on αspeed was added to ensure

smooth control: ∆αspeed ≤ 0.005.

5.2.2 Control accuracy (8 h simulation)

Two input disturbances to SFW and MIW and one set-point change to T HP was applied during the 8 h

simulation. Additional spillage water was added to the sump between 2 h and 2.5 h with a magnitude

of 30 m3/h. The MIW was reduced by 10 m3/h from 4 h to 4.5 h to simulate an input pipe leak.

A T HP set-point change was made at 6 h moving from 88 t/h to 90 t/h, PSE and LOAD remained

constant.

Fig. 5.1 illustrates how well the control configuration performs with disturbances and a set-point

change. Note that the sump volume is within the desired limits. Fig. 5.2 illustrates how well the

nonlinear dynamic inversion control technique operates. Fig. 5.3 illustrates resulting changes in addi-

tional important variables such as the power output, rheology factor and the cyclone feed density. All

these outputs are within acceptable regions. Figures 5.4 and 5.5 show that the manipulated variables

are all within constraints.

5.2.3 Power consumption comparison (24 h simulation)

Various set-point changes were made to the throughput (T HP) and particle size (PSE) every 4 hours.

The total charge of the mill (LOAD) was kept constant at 45% full. An energy factor was added to the

nonlinear MPC to illustrate the additional possibilities that this control configuration possesses. The

results show that the power from the mill is tightly linked with the circuit outputs i.e. changing Pmill

will have a direct effect on whether the outputs reach set-point. The power consumed by the pump,

after the sump, was regarded as negligible compared to the power consumed by the mill.

In the first run, the energy factor was not taken into account (q4 = 0). Note that this run is regarded

as the base case and that the energy savings have been compared to these results. The weight q4

was introduced in the second simulation run with a starting value of 30. The error between the PSE
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Figure 5.1: Output variables and set-point tracking
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Figure 5.2: Dynamic inversion control. Desired and output value for the hold-up of sump water.
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Figure 5.3: Important output variables for the milling circuit.
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Figure 5.4: Manipulated variables.
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Figure 5.5: Manipulated variables.

measured value and the set-point value was determined every hour and if the error was larger than 0.1

%, the run was flagged as unsuccessful. Similarly for T HP, an unsuccessful run resulted if the T HP

error was larger than 1 %. Once a run was flagged as unsuccessful, the run was restarted with a new

q4 value. The new q4 value at the next step is 90 % of the current q4 value.

The results show that in 24 h, and an energy term weight (q4) of 18, a 332.7 kWh reduction in energy

resulted with a 0.6% drop in T HP and 0.1% drop in PSE. The simulation run with q4 = 18 is regarded

as the second and optimized run. Optimized in the sense that maximum power saving is achieved with

a small effect on PSE and T HP, ≤ 0.1% and < 1% respectively. These results shows that the system

is tightly integrated with power and that if the end result is to minimize power, there will, as expected,

have to be some sacrifice in T HP or PSE. The energy difference was calculated using the trapezoidal

rule for the Pmill output variable.

Fig. 5.6 shows the difference in Pmill between the base case (q4 = 0) and the minimized energy

case (q4 = 18). The spikes shown in Fig. 5.6 are mainly due to the mill motor speed during a set-

point change. The second run showed that the controller slowly manipulated the mill motor speed to

achieve set-point, the less aggressive movement resulted in the power difference. Fig. 5.7 illustrates
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the difference in the additional outputs, rheology factor and cyclone feed density. The rheology factor

shows very similar outputs while the density shows a slight change.
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Figure 5.6: Pmill output difference between base case and optimized case in kW. Optimized case

contains energy factor in NMPC objective function.
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Figure 5.7: Output variables for base case and optimized case simulation.

PSE, T HP and LOAD tracking is shown in Fig. 5.8. In the optimized run, the LOAD is around 47

m3 (47% full). This result is expected as the Pmill value is reduced as the mill load moves away from
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45% full. However, when looking at the parabolic mill power versus mill load curve it would be safer

to operate at less than 45% full rather than close to the maximum constraint of 50%.

[t/
h]

Figure 5.8: Controlled variables for base case and optimized case simulation.

Fig. 5.9 shows the dynamic inversion controller tracking the Xsw set-point from the NMPC. The

energy factor run shows the effect of the convex combination (described in (4.30)). The water in the

sump does not track the Xsw set-point from the NMPC perfectly because the controller is preventing

the sump from running dry. Fig. 5.10 and 5.11 show that the manipulated variables are all within

constraints.

Depending on the product processed and the type of mill used, the cost of electricity may be signi-

ficantly less than the value of the product produced. However, as the cost of electricity increases the

re-evaluation of cost-vs-profit will be worthwhile. The results show that this milling circuit model is

close to power optimized when including αspeed as a manipulated variable.

The results show that to save energy the mill has to run between 45m3 and 50m3, shown in Fig.

5.8, and there should be no steel balls added to the mill, shown in Fig. 5.11. These conditions are

undesirable as operating with a high mill load could result in a deteriorated breakage rate within the

mill. Since no steel balls are added, the breakage rate could continue to deteriorate. The CFF is
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Figure 5.9: Dynamic inversion control for base case and optimized case.
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Figure 5.10: Manipulated variables for base case and optimized case simulation.

additionally very high, shown in Fig. 5.10, meaning that the sump pump is transferring as much as

possible to the cyclone, this could be a result of the breakage within the mill.

An attempt has been made to overcome some of these issues by limiting the mill load below 45% in

the NMPC. Additionally the weight of the mill load (LOAD−LOADsp) has been reduced from 1 to

0.01 in the NMPC. This aims to allow a larger movement of LOAD to an energy optimized steady
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Figure 5.11: Manipulated variables for base case and optimized case simulation.

state value.

The results show that a 223.3 kWh reduction in energy resulted with a 0.4% drop in T HP and 0.1%

drop in PSE. This is 109.4 kWh less than initially with a 0.2% higher T HP. The major difference

is that the mill operates at 45m3 for both cases, shown in Fig. 5.14. This is a much better operating

point than initially proposed at 47m3.

Fig. 5.12 shows a similar trend to Fig. 5.6 with spikes at set-point changes. Fig. 5.13 shows a similar

trend to Fig. 5.7. PSE, LOAD and T HP are show good tracking despite the reduced LOAD weight in

the NMPC (Fig. 5.14). The DI controller, shown in Fig. 5.15, shows similar performance compared

to Fig. 5.9.

The major difference in inputs can be seen in the steel balls rate, shown in Fig. 5.17, compared to Fig.

5.11. The addition of steel balls will assist with the breakage rate within the mill. However, the CFF ,

shown in Fig. 5.13, is still high and a concern as the pump is still operating close to the maximum

limit.
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Figure 5.12: Pmill output difference between base case and optimized case in kW. Optimized case

contains energy factor in NMPC objective function (LOAD constrained).
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Figure 5.13: Output variables for base case and optimized case simulation (LOAD constrained).

The results from this section showed that energy can be saved in the inner loop but may result in an

undesirable breakage rate within the mill. Additionally the cost of a higher CFF has to be taken into

account. The next section targets power optimization when multiple mills are available, in an outer

loop power optimizer.
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Figure 5.14: Controlled variables for base case and optimized case simulation (LOAD constrained).
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Figure 5.15: Dynamic inversion control for base case and optimized case (LOAD constrained).

5.3 MULTIPLE ROM ORE MILLING CIRCUIT OPTIMIZATION

This section considers minimizing the power consumption of two parallel ROM ore milling circuits.

The aim of the power optimization is to come up with “dynamically changing set-point reference” for

the operation of individual mills such that:
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Figure 5.16: Manipulated variables for base case and optimized case simulation (LOAD constrained).
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Figure 5.17: Manipulated variables for base case and optimized case simulation (LOAD constrained).
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1. Total power usage should be minimized

2. Quality of product output (PSE) of individual mills must be maintained

3. Total throughput must remain same

4. Load in the mills should always be within the allowable limits

Fig. 5.18 illustrates the configuration that will be used to implement the power optimization. This

figure shows that the complete control configuration presented in Chapter 4 was used to control each

individual mill. The set-points, however, were determined by a power optimization block. The details

of which will be covered in the sections that follow.

The first step in determining how to optimize two milling circuits for power is to determine the power

consumption by each milling circuit. Note that this study only takes into account the mill motor

power draw and not the power draw from any of the other modules. However, this method caters for

the expansion to all other equipment. To determine the power draw from a milling circuit a neural

network can be used. The neural network used the measurable outputs from the mill and determined

the power consumption. This power estimation was used in the objective function of the set-point

power optimizer block.

The LOAD and T HP set-point values are varied by the power optimizer. Since the aim is to maintain

the product quality, each milling circuit receives the same PSE set-point. The aim for the sump

volume (SVOL) is to be maintained within acceptable limits.

The power estimation that follows assumes that the milling circuit power consumption is comprised

of only the mill motor draw. To expand the study to include all other components, the power meas-

urement should be replaced with the summation of all the power draw components within the milling

circuit. The assumption has been made since the mill motor power draw is at least ten times more

than any other equipment in the milling circuit.

Two models for power estimation were implemented. Fig. 5.19 and Fig. 5.20 illustrate this concept.

The first method consisted of using PSE, LOAD, T HP, αspeed as inputs to a neural network and

outputting mill power. While the second method contained the same inputs as well as αspeed , δPv,

δPs, vPmax and ϕPmax. This model was considered because these parameters directly affect the power

consumption, as shown in eq. (2.52). The validation results showed that both methods predicted
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Figure 5.18: Power optimization complete control configuration.
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the power very accurately. Therefore, only the first method was used as less information is re-

quired.

Neural Network 
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" #
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Figure 5.19: Formulation 1 using only measurable variables.
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Figure 5.20: Formulation 2 using measurable variables and milling circuit parameters.

5.3.1 Neural network training

It is required as good practice and for good estimation to scale both the inputs and the outputs of the

neural network. An additional requirement is to randomise the data set. This prevents that neural

network from training the weights on cyclic data. The output of the network is scaled using the

maximum power as shown in equation 5.2.

Out put/Power(P) =
Pmill

Pmax
(5.2)

The inputs were normalised using the root mean square (rms) value as shown in equation 5.3.

xin =
xi

xi
where xi =

1
N

√
∑

j
x2

i j (5.3)

The network has the following structure: 4 X 6 X 6 X 1. The network used the ‘tansig’ basis functions

for the hidden layers and the ‘purelin’ function for the output layer. The number of epochs was set
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to 20. Fig. 5.21 shows the validation results for power estimation. From this figure it can be seen

that the power estimation of Pmill can be accurately captured if PSE, LOAD, T HP and αspeed are

known.
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Figure 5.21: Validation of neural network with no noise

Fig. 5.22 shows the accuracy when the output variables are subjected to noise as in Section 4.4.2.

The results show that power can be accurately estimated.

An attempt to estimate power with just PSE, LOAD and T HP was investigated. The results were

unsatisfactory as the average error (Pmill(measured)−Pmill(Estimated)) was 50 kW (2.5 %). When

including αspeed as an input to the neural network the average error was 7 kW (0.35 %).

Fig. 5.23 and 5.24 illustrate how different the power output changes as the T HP and LOAD vary. Also

how different the power curves look with the following parameter value changes. These changes were

implemented as ROM ore milling circuit 2.

1. α f was increased by 10%

2. αr was increased by 10%
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Figure 5.22: Validation of neural network with noise

3. φ f was decreased by 10%

5.3.2 Power Optimization Formulation

A power formulation is applied to multiple mills as shown in (5.4) - (5.5). PSE1 and PSE2 have a

desired value (80% less than 75 µm), shown as c11 and c21 respectively, as well as αspeed1 and αspeed2

are regarded as constants, shown as c12 and c22 respectively (because of the NMPC dependency).

This leaves T HP and LOAD as variables for the power optimization. Therefore the power optimizer

has four manipulated variables, as shown in (5.6) - (5.7), in a two parallel mill configuration. The

neural network outputs p1 and p2 represent the power draw from the respective ROM ore milling

circuit. The neural networks N1 and N2 have been trained using historical data where various step

changes were made to LOAD and T HP.

Plant 1 : p1 = N1(PSE1,T HP1,LOAD1,αspeed1) (5.4)

Plant 2 : p2 = N2(PSE2,T HP2,LOAD2,αspeed2) (5.5)
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LOAD  [m  ] THP  [m  /h]3 3

Figure 5.23: Surface plot of mill 1 power as a function of LOAD and T HP.

LOAD  [m  ] THP  [m  /h]3 3

Figure 5.24: Surface plot of mill 2 power as a function of LOAD and T HP.
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Chapter 5 Power Optimization

The optimizer has a handle on T HP and LOAD for each milling circuit i.e. T HP for circuit 1: u11,

T HP for circuit 2: u21, LOAD for circuit 1: u12 and LOAD for circuit 2: u22.

Plant 1 : p1 = N1(c11,u11,u12,c12) (5.6)

Plant 2 : p2 = N2(c21,u21,u22,c22) (5.7)

5.3.2.1 Objective and constraint for optimizer

The main objective is the minimization of power consumption as shown in (5.8). The weights r1 and

r2 are given a value of 1 but caters for further optimization. The weights could be used to further

penalize a specific milling circuit.

J =
1
2

∫ t f

t0
(r1 p2

1 + r2 p2
2)dt

=
1
2

∫ t f

t0
(r1N1(u11,u12)+ r2N2(u21,u22))dt

(5.8)

An isoperimetric constraint on T HP was implemented. An average of 90 t/h per mill was used to test

this method i.e. two mills running for 8 hours have a desired throughput of 1440 tons. An 8 hour

period was chosen as this is a typical period for the shift of a plant operator.∫ t f

t0
(T HP1 +T HP2)dt =C ((90 t/h)/mill) (5.9)

The outer loop formulation does not perturb the existing inner-loop control configuration (can be

interpreted as ‘guidance’ of mills). This optimization is computationally simple as only one state

equation has to be implemented (because of the isoperimetric constraint on throughput). However,

success of the formulation critically depends on the successful training of the neural networks for a

range of operation.

5.3.2.2 Cost function implementation

The cost function was formulated with the control (set-point) as piece-wise constant functions. This

is illustrated in Fig. 5.25. Set-points for LOAD and T HP were divided into one hour intervals. This

allowed for the output variables PSE, LOAD and T HP to reach set-point. Note that PSE was kept

constant.

Equation (5.10) shows the cost function that was used in terms of piece-wise constant func-
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Figure 5.25: Piece-wise constant control

tions.

J =
1
2

∫ t f

t0
(r1N2

1 (u11,u12)+ r2N2
2 (u21,u22))dt

=
1
2

∫ t2

t1
(r1N2

1 (u
1
11,u

1
12)+ r2N2

2 (u
1
21,u

1
22))dt + ...

...
1
2

∫ tN

tN−1

(r1N2
1 (u

N−1
11 ,uN−1

12 )+ r2N2
2 (u

N−1
21 ,uN−1

22 ))dt

=
∆T
2
[(

r1N2
1 (u

1
11,u

1
12)+ r2N2

2 (u
1
21,u

1
22)
)
+ ...

...+
(
r1N2

1 (u
N−1
11 ,uN−1

12 )+ r2N2
2 (u

N−1
21 ,uN−1

22 )
)]

(5.10)

5.3.2.3 State constraint

As described earlier, the combined milling circuits need to produce a minimum throughput output

over the working shift (8 hours). The throughput constraint was implemented as a state constraint.

The state constraint was implemented as shown in (5.11).

ϕ(t2) = (u1
11 +u1

21)(t2− t1)+ϕ(t1)

ϕ(t3) = (u2
11 +u2

21)(t3− t2)+ϕ(t2)

ϕ(tN) = (uN−1
11 +uN−1

21 )(tN− tN−1)+ϕ(t2)

ϕ(tN) = ∆T
[
(u1

11 +u1
21)+ ...+(uN−1

11 +uN−1
21 )

]
=C[

(u1
11 +u1

21)+ ...+(uN−1
11 +uN−1

21 )
]
=

C
∆T

(5.11)

5.3.2.4 Position Constraints

The T HP and LOAD set-points have constraints that are dependant on the physicals limits of the

milling circuit. This is enforced using (5.12). A feasibility study was completed to determine the

physical bounds of each milling circuit.

umin ≤ u1,u2, ...,uN−1 ≤ umax (5.12)
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T HPmin < u11,u21 < T HPmax (5.13)

LOADmin < u12,u22 < LOADmax (5.14)

5.3.2.4.1 Feasibility Study The aim of the feasibility study was to determine the range of opera-

tion for each of the milling circuits in terms of LOAD and T HP variation.

After several trial simulations, it was noticed that at various LOAD and T HP combinations the system

would not need reach set-point as the inputs to the milling circuit would saturate. This was a concern

as the αspeed values, used in the neural network, had to be realistic unsaturated values. The study

would allow the power optimization to extend the position constraints as much as possible. A study

was conducted to determine where each milling circuit will reach set-point (shown as ∗) within 20

minutes subject to the following criteria.

1. |PSE−PSE∗|< 1 [% < 75µm]

2. |LOAD−LOAD∗|< 1 [m3]

3. |T HP−T HP∗|< 5 [t/h]

The following jump constraints were implemented during the study (maximum step size

change).

1. 5% of total load volume

2. 5% of average throughput

Fig. 5.26 and 5.27 illustrate the successful regions of operation for mill 1 and mill 2 as a function of

LOAD and T HP. The red points indicate that the set-points were successfully reached. It should be

noted that mill 2 has a significantly higher T HP range compared to mill 1.

From the above study, the new constraints were determined as shown below. These are shown as lines

on Fig. 5.26 and 5.27.

1. ROM ore milling circuit 1 constraints:

(a) 35 < LOAD < 50
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Figure 5.26: Feasibility study for mill 1.
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Figure 5.27: Feasibility study for mill 2

(b) 65 < T HP < 105

(c) -0.44*(T HP)+74 < LOAD
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(d) 0.583*(T HP) - 15.58 < LOAD

2. ROM ore milling circuit 2 constraints:

(a) 35 < LOAD < 50

(b) 70 < T HP < 118

(c) -0.55*(T HP)+88.06 < LOAD

(d) 0.268*(T HP) + 10.15 < LOAD

5.3.2.5 Jump Constraints

Jump constraints restrict the movement of the set-point values (such as LOAD) as it is undesirable for

the mill load to change by large amounts every hour. Likewise T HP cannot change rapidly ensuring

smooth operation.

ûmin
12 ≤

(
ui+1

12 −ui
12
)
≤ ûmax

12

ûmin
22 ≤

(
ui+1

22 −ui
22
)
≤ ûmax

22

for i = 1,2, ...,(N−2)

(5.15)

5.3.3 Implementation

The difficulty with the power optimization formulation is that the outer loop (set-point optimizer) is

dependant on αspeed (which is a manipulated variable in the Chapter 4 control configuration). This

is a problem because the optimization of power is based on a αspeed value (shown in (5.4)). The

ideal scenario would be to set αspeed from the power optimizer ensuring that the power estimate and

optimization is accurate. However, because of the inner loop objective to control both product quality

and quantity this is not possible. Numerous attempts have been made to remove αspeed from the power

optimizer loop. In most of the attempted scenarios, CFF would saturate and not be able to control

the two conflicting output variables.

An implementation process was developed to try and work with the αspeed issue. Fig. 5.28 shows this

implementation process and the inner and outer loop link. In the simulation, two mills run in parallel

and have a desired T HP value at the end of an eight hour shift. The quality of the product (PSE) must
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remain at 80% throughout the shift. The desired throughput value results in an average of 180 t/h for

both mills. The initial guess is to split this equally at 90 t/h for the shift. The process continues as

follows.

1. Run eight hour simulation with all manipulated variables in the inner loop control configuration.

The objective of the inner loop is to reach set-point. Dynamic inversion control configuration

remains the same throughout optimization process. Once the simulation is completed, extract

the eight α1
speed values at i+45 min (where i=0,1,...,7) intervals. After an eight hour period, a

vector containing both mills speed at the sample times specified is then passed to the outer loop

optimizer.

2. The power optimization formulation operates using the α1
speed values extracted and PSE at 80%

for both milling circuits. The output of the formulation results in LOAD and T HP set points

for the two ROM ore milling circuits.

3. An eight hour simulation is run with the new set points. The simulation set-up is that same as

in step 1. The power and the throughput values are determined and compared to the values in

the initial run. The eight α2
speed values were extracted.

4. It was noticed that the α2
speed values that resulted from the second, power optimized, run were

not the same as the α1
speed values initially extracted. This is intuitively correct as the milling cir-

cuit that consumed less power initially is then pushed to produce the majority of the throughput.

Therefore a way to make the two different αspeed values converge had to be determined. Con-

vergence would mean that the power optimizer is accurately predicting the power draw from

the mills and therefore an optimal solution can be achieved. The first αspeed value is a result of

initial set-points given and the second αspeed value is a result of new set-points from the power

optimizer. Using the convex approach, an αnew
speed was determined using equation (5.16).

α
new
speed = τα

1
speed +(1− τ)α2

speed

τ =±0.05
(5.16)

5. Another eight hour simulation was run with αspeed removed as a manipulated variable. The

combined αnew
speed vector was used to set αspeed as a constant in this simulation. A feasibility

check is completed at i+45 min (where i=0,1,...,7) intervals to determine if the circuit reaches

the desired set-points using only the remaining manipulated variables. If unsuccessful then step
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1 is repeated with τ = 0 (i.e. α2
speed values) else step 1 is repeated with αnew

speed values.

Initial guess for 
LOAD and THP

50/50 split in THP
Nominal value for 

LOAD

8 hr simulation
Output: 8 

alpha_speed 
values

MIW
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MFB
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If No then use tau=0 

Figure 5.28: Block diagram illustrating inner and outer loop link.

5.3.4 Results

Fig. 5.29 shows the initial T HP set-points and the set-points from the power optimizer. Initially the

T HP set-points were set to 33.33 m3/h or 90 t/h for the eight hour shift for both ROM ore milling

circuits. After the power optimizer, it can be seen that the throughput was decreased in milling circuit

1 (shown in blue) while the throughput was increased in milling circuit 2 (shown in green). This

would indicate the milling circuit 2 consumes less power than milling circuit 1. This is a good result

considering that in the milling circuit 2 the parameter φ f (power needed per ton of fines produced)

was decreased by 10 %.

Fig 5.30 shows the difference between the initial LOAD set-points and the optimized LOAD set-points.

The variation in LOAD set-points are due to the position constraints ensuring that each mill will reach

set-point. These results are also positive, from (2.22)-(2.23) it can be seen that a LOAD set-point

of 45 m3 will maximize the power draw. The optimizer aims to select a LOAD set-point with the

maximum deviation from 45 m3 however, must still remain in the feasible region for the respective

milling circuit.

The outputs of the two ROM ore milling circuits are shown in Fig. 5.31 and Fig. 5.32. Note that the

initial conditions used were varied and therefore an initial jump is expected. These figures illustrate

the variation in LOAD and T HP set-points. The set-point filter assists with the outputs reaching

set-point quickly. The PSE is successfully maintained at 80 % < 75µm for both milling circuit

throughout the eight hour shift. Minor deviations can be seen to PSE every hour when the LOAD and
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Figure 5.29: T HP set-point changes for milling circuits obtained from the power optimizer. Milling

circuit 1 is shown in blue and milling circuit 2 is shown in green.

Figure 5.30: LOAD set-point changes for milling circuits obtained from the power optimizer. Milling

circuit 1 is shown in blue and milling circuit 2 is shown in green.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

88

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Power Optimization

T HP change.

t/h
]

Figure 5.31: Output variables for milling circuit 1, note the LOAD and T HP set-point changes.

t/h
]

Figure 5.32: Output variables for milling circuit 2, note the LOAD and T HP set-point changes.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Power Optimization

The manipulated variables for the two milling circuits are shown in Fig. 5.33 and Fig. 5.34 for the

respective ROM ore milling circuits. All the manipulated variables are within the constraints.
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Figure 5.33: Manipulated variables for milling circuit 1.
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Figure 5.34: Manipulated variables for milling circuit 2.
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The Pmill result for each mill is the main focus in this power optimization formulation. These results

are shown in Fig. 5.35 and Fig. 5.36 for the respective milling circuits. The blue line indicates

the initial power consumption based on a constant LOAD and T HP set-point of 45 m3 and 90 t/h

respectively.

Fig. 5.35 illustrates that the initial run for milling circuit 1 had an average Pmill value of approximately

1800 kW while the Pmill value for milling circuit 2 averaged around 1580 kW . This clearly shows that

milling circuit 2 consumes less power than milling circuit 1. This result justifies the power optimizers

T HP set-point increase for milling circuit 2.

There will be an increase in power consumed by increasing the T HP set-point of milling circuit

2. This is evident in Fig. 5.36 where the optimized output exceeds the initial output. The αspeed

manipulated variable has a significant impact on this result. In milling circuit 1, there is a significant

drop in the T HP set-point which yields a lower power consumption. These figures illustrate the aim

of the power optimizer which is to essentially minimize the combined area under the Pmill curves

while still operating in a feasible region.

The initial simulation combined energy consumption of the two milling circuits was 26805.6 kWh

in the eight hour shift. This was reduced by 2.5% to 26130.1 kWh. In the eight hour shift, energy

was reduced by 675.5 kWh. This is a noteworthy amount of energy saving without significantly

compromising on product quality or quantity. The product quality remained very similar before and

after optimization, while a 0.2 % drop in overall throughput resulted. The initial throughput of both

milling circuits was 1427.97 t/8h or 89.25 (t/h)/mill and the optimized throughput resulted in 1425.11

t/8h or an average of 89.07 (t/h)/mill. These results show that the power optimization formulation

was successful in determining the milling circuit that consumed less power and then driving that

milling circuit to produce more product.

On an actual plant, the power optimizer would only run once per eight hour shift. The optimizer

would make use of sampled values from the previous shift to determine the new set-points for the

next shift.

Additional results showed that a significant amount of power can be saved by sacrificing product

quality or quantity, however this is not desirable in the current scenario. The cost of electricity is very

small compared to the value of the product. Numerous other attempts have been made to increase the

power saving and is discussed in the section that follows.
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Figure 5.35: Power output from milling circuit 1. Initial run shown in blue and optimized run shown

in red.
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Figure 5.36: Power output from milling circuit 2. Initial run shown in blue and optimized run shown

in red.
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Chapter 5 Power Optimization

5.3.5 Additional attempts and drawbacks

The list that follows describes some of the attempts made and the drawbacks of each proposal.

• Changing the inner loop control strategy to exclude αspeed was considered. The region of oper-

ation is very small especially when trying to control two conflicting output variables. In many

simulations it was seen that the MIW would increase significantly and result in the rheology

factor exceeding 0.7. Once this happens then the milling circuit does not reach set-point.

• The number of control moves and prediction horizon for the NMPC was varied with no signi-

ficant improvement. If the prediction horizon is too short then CFF often saturates.

• ROM ore milling circuit 2 parameters were varied in the opposite direction and similar power

savings were seen. Additional parameters such as ϕPmax and vpmax were varied. There was no

significant change in power savings.

• Alternative inner loop control configurations were considered, such as only using nonlinear

model predictive control for the complete milling circuit. The SVOL would saturate at the

maximum level and therefore compromising on product quality while trying to increase the

flow rate out of the sump. This could be further investigated and tuned to prevent SVOL from

reaching the upper constraint. Keeping MFB constant and MIW as a ratio to MFS also yielded

positive saving results.

• Removing LOAD as a set-point from the optimizer resulted in a positive savings however, not

as much as when LOAD is considered.

• An attempt to estimate the αspeed value using a neural network based on the LOAD-T HP values

was made. Unfortunately the accuracy was not acceptable and resulted in inaccurate Pmill

estimates.

• The simulation time was extended to 24 hours and a similar power saving resulted.

• Setting αspeed a function of the T HP set-point yielded very similar positive results i.e. αspeed =

K×T HP. However, the constant K would need to be determined based on the different milling

circuit models.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

93

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5 Power Optimization

5.4 CONCLUSION

The control configuration proposed in Chapter 4 is utilised in this chapter to propose a new effective

control design philosophy for complex milling circuits, which meets the objectives of high product

quality and manageable loads in the mill as well as minimizing the power consumption for the mill.

Effectiveness of the proposed approach has been demonstrated by taking various combinations of

throughput and load within the mill.

It can be noted that recent studies show that power can be saved by implementing a real time optimizer

on a supervisory outer-loop level. This chapter, on the other hand, tries to save energy in the inner

loop (by additionally penalizing an energy factor as part of the cost function). Hence, there is a scope

to combine the two philosophies to obtain a better energy savings, which is a topic for future research.

Future research should also contain noise and effects of modelling errors.

A multiple ROM ore milling circuit power optimization formulation has been developed. The formu-

lation starts with estimating the power consumption using a neural network. The power consumption

can be expanded to include all equipment within a ROM ore milling circuit however, just the mill

is considered in this work. The formulation is highly dependant on αspeed , which is required as a

manipulated variable in the inner loop control configuration. Despite this interaction, the power op-

timization formulation, in the outer loop, resulted in an energy saving of 675.5 kWh, in an eight

hour period. Numerous attempts have been made to increase the power saving while keeping to the

main goal to control product quality and quantity. The power optimization formulation successfully

identified the more efficient ROM ore milling circuit and increased throughput while remaining in a

feasible operating region.
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CHAPTER 6

CONCLUSION

This dissertation proposes a nonlinear control solution for the run-of-mine ore milling circuit. The

control solution comprises of a state estimator and nonlinear controller for the ROM ore milling

circuit. Power optimization has also been considered, both in the inner loop control configuration as

well as in an outer loop multiple milling circuit configuration. An attempt has been made to make the

solution as practical as possible and does not require any ambitious measurements. The aim of the

control solution is to always ensure a consistent product quality and quantity.

State estimation was initially studied since nonlinear model predictive control is highly dependent on

accurate state estimates. A neural network has been compared to a particle filter for state estimation.

A novel combination of the two state estimation methods has been proposed. The novel work also

includes the control configuration proposed as well as the power optimization research.

The control configuration has been divided into a nonlinear model predictive controller and a dynamic

inversion controller which can also be seen as an advanced process control configuration linked with

a fast base layer configuration.

6.1 SUMMARY OF RESULTS

6.1.1 State estimation

Chapter 3 consisted of a neural network to estimate the internal states in a mill model. The neural

network results were successful when the estimated five states were subjected to disturbances within

the training data. However, when disturbances that were larger than in the training area the neural

network method does not estimate accurately. The neural network method was compared to the
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particle filter method where the particle filter method is more robust and can handle larger unknown

disturbances and it was found that the neural network also makes use of fewer measurements. The

particle filter method struggled with estimating the rocks and balls within the mill. This is because

these two materials do not leave the mill and therefore there is no output measurement available to

improve the state estimate.

A novel method of combining the particle filter and neural network estimates has been studied. The

combined technique always performs better than the neural network alone however, when the dis-

turbance is above the training region then the particle filter approach is more accurate. The com-

bined method could be said to use sample data to determine state estimates using the particle filter.

The particle filter estimates are then used to correct the offset present with the neural network res-

ults.

6.1.2 Control of a ROM ore milling circuit

Chapter 4 builds on the work by Coetzee et al. (2010) where a robust nonlinear model predictive

controller was used for the control of the ROM ore milling circuit. Here on the other hand, the

control of the milling circuit was broken up into a nonlinear model predictive controller and a dynamic

inversion control technique. This control configuration meets the additional goal to achieve a high

product quality and consistent product quantity. Downstream processes will benefit by ensuring that

consistency of the ROM ore milling circuits outputs are maintained.

The novel work completed involves not only the design approach for the control configuration but

also the integration with state estimation. This fills the gap in the literature with regard to a ROM ore

milling circuit. In essence, a complete nonlinear control solution is presented while making use of

minimal plant measurements.

The controller was tested with noise and disturbances and the particle size estimate was maintained

despite this. The disturbances introduced were changes in the size distribution of the feed to the mill

(the fraction of rocks and fines to the mill) and changes in the hardness of the rock (the power needed

per ton of fines produced). For the disturbances, only the plant model was adjusted and not the model

within the state estimator or controller.

The simulation results show that this control configuration has the potential to be successfully applied
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to a ROM ore milling circuit.

6.1.3 Power optimization

Chapter 5 target two concepts, power optimization with a single milling circuit as well as multiple

milling circuits that operate in parallel. In both of these cases, the underlying control configuration

of Chapter 4 is followed. The first case however, penalizes power consumption within the objective

function of the nonlinear model predictive controller. Therefore the nonlinear model predictive con-

troller aims to reach set-point for PSE, T HP and LOAD while minimizing the power draw from the

mill motor.

The results show that a energy reduction of 332.7 kWh resulted from the eight hour simulation. A drop

of 0.6 % and 0.1% resulted for T HP and PSE respectively. Various operating points were simulated

to demonstrate the effectiveness of the proposed approach.

In the multiple ROM ore milling circuit configuration, an outer loop power optimizer was formulated.

The outer loop formulation would provide set-points for PSE, T HP and LOAD. The inner loop con-

sisted of the nonlinear control configuration proposed. A scenario with two parallel ROM ore milling

circuits was simulated with the second milling circuit slightly modified. The following modifications

were made, α f (fraction of fines in the ore) was increased by 10 %, αr (fraction of rocks in the ore)

was increased by 10 % and φ f (power needed per ton of fines produced) was decreased by 10 %. In-

tuitively this would result in milling circuit 1 consuming more power for the same outputs as milling

circuit 2. The power optimization formulation made use of a neural network to predict the milling

circuits power consumption and with that information the more efficient milling circuit would operate

with the majority of the throughput.

The results showed that milling circuit 2 was more efficient and the T HP set-point was increased

for that milling circuit compared to the base case. The difference between hourly set-points was

restricted to ensure a smooth stable operation. The formulation is highly dependant on αspeed which

is a required for the inner control to achieve a high throughput and product quality. The effect of

αspeed resulted in the reduction of energy consumed by milling circuit 1 but an increase in energy

consumed by milling circuit 2. The overall effect was a energy saving of 675.5 kWh in the eight hour

shift.
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6.2 SUGGESTION FOR FURTHER WORK

An attempt has been made in this work to increase the real world application of model predictive

control in the minerals processing industry. State estimation is required for model predictive control

and there is room to conduct a full comparison between state estimation techniques. The comparison

would hopefully yield the best state estimator under various scenarios such as limited measurements

available, significant noise, disturbance performance or model mismatch. The suggested state es-

timation techniques would e.g. use the particle filter, neural network, extended Kalman filter or the

unscented Kalman filter.

The control configuration developed has many tuning parameters and because of the current computa-

tional power, some of these are not viable to constantly vary. Since computational power is increasing,

future work should look at nonlinear model predictive control with a very large prediction horizon

and increases the number of control moves made. Another concept/study could target optimizing the

prediction horizon and other tunable variables for a model predictive controller based on a desired

computational time.

Power optimization of two milling circuits in parallel was studied and the effect of scaling this formu-

lation could potentially yield much better results. Suggestions for future work would be to implement

no less than 5 milling circuits in parallel with a possible simpler inner loop control configuration.

Each milling circuit should contain a slight varied parameter set. The power formulation can be

extended to include all equipment in the milling circuit such as the pump after the sump.
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