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The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene
regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions
through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the
most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182
known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted
transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and
regulatory information, fromwhich we deduced functional relationships for 1966 uncharacterized genes andmany regulators. Using
gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally
validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene
regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053,
ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble
reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by
medium-throughput experimental validation.

INTRODUCTION

Plants are continuously exposed to changing environmental con-
ditions, such as low and high temperatures, shortage of water,
high salinity, radiation, and nutrient deficiencies. Responses to this
fluctuating environment are complex and involve a multitude of
signaling molecules triggering rapid changes in gene expression to
reprogram the plant’s metabolism and achieve a new state of
homeostasis (Kilian et al., 2007; Cramer et al., 2011). Functional
genomics studies have identified a portfolio of transcription factors
(TFs) and cis-regulatory motifs that are involved in stress-inducible
regulation (Chen et al., 2002; Zou et al., 2011; Petrov et al., 2012;
Naika et al., 2013).

However, we still lack a systems-level understanding of the
gene regulatory networks (GRNs) that orchestrate the complex
abiotic stress response through fine-tuned regulation (Cramer
et al., 2011). As genes that share a biological function tend to be
coregulated, coexpression analysis through statistical correlation

and clustering can infer functional associations based on the guilt-
by-association principle. Besides the availability of expression
database resources like Genevestigator (Zimmermann et al., 2004),
ATTED-II (Obayashi et al., 2007), CORNET (De Bodt et al., 2010),
and GeneMANIA (Warde-Farley et al., 2010), coexpression-based
gene association networks were generated for Arabidopsis thaliana
with different computational sophistication (Ma et al., 2007, 2014;
Horan et al., 2008; Bassel et al., 2011; Kourmpetis et al., 2011;
Less et al., 2011; Heyndrickx and Vandepoele, 2012; Bhosale
et al., 2013). Although these studies provide “functional modules”
of genes operating in abiotic stress, information on their specific
regulators is lacking.
Due to experimental challenges, only a limited number of gene

regulatory interactions between TFs and their target genes have
been experimentally mapped for Arabidopsis by yeast one-hybrid
(Y1H) (Brady et al., 2011; Gaudinier et al., 2011), chromatin immu-
noprecipitation (ChIP) (Kaufmann et al., 2010; Xie et al., 2010), or TF
perturbation studies (Bassel et al., 2012). Whereas the first two
monitor a direct physical association of a TF with genomic DNA, the
latter report on both direct and indirect regulatory effects of a TF on
downstream gene expression. AtRegNet, the Arabidopsis thaliana
Regulatory Network database, currently documents 11,355 binding
and regulatory interactions between 67 TFs and their target genes
(Palaniswamy et al., 2006; Yilmaz et al., 2011).
Potential interactions between TFs and their targets can be

predicted through reverse-engineering of transcriptomics data.
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Since TFs are themselves often regulated at the transcriptional
level, the activity of TFs is embedded in their expression profiles.
Therefore, the causal relationship between TFs and their target
genes is implicitly present in the correspondence between their
expression profiles. There are several reverse-engineering meth-
ods available ranging from correlation, mutual information, re-
gression, Bayesian networks, Gaussian mixture models, Hidden
Markov models, and Boolean networks to ordinary differential equ-
ations (De Smet and Marchal, 2010; Friedel et al., 2012; Marbach
et al., 2012). Reverse-engineering is a high-dimensional, under-
determined problem: The number of possible interactions be-
tween TFs and target genes by far exceeds the number of different
experimental conditions for which expression profiles are avail-
able. To reduce the search space, additional measures can be
taken. For instance, in contrast to direct network inference,
module-based network inference assigns the same regulatory
program to all genes with a similarly coordinated expression be-
havior (De Smet and Marchal, 2010). Each reverse-engineering
method generates a confidence score for a link between a TF and
target gene.

However, benchmark studies have shown that no single best
reverse-engineering method exists: Different methods show dif-
ferent biases in detecting regulatory relationships and act com-
plementary in revealing the true underlying GRNs (Michoel et al.,
2009; Marbach et al., 2012). Therefore, the combination of the
results of different network inference algorithms into one ensem-
ble solution has recently been explored in bacteria and yeast.
Ensemble solutions such as average rank aggregation and union
are consistently as good as or better than the top-performing in-
dividual methods and are more robust across different data sets
(Marbach et al., 2012; Qi et al., 2012; Hase et al., 2013). Moreover,
the more diverse the individual inference solutions are, the better
the performance of the integrated solution.

Prediction of GRNs from abiotic stress gene expression pro-
files could not only advance the holistic understanding of the
abiotic stress response and its key regulators, but also offer high
potential as hypothesis generators for time- and cost-efficient
design of experiments. Until now, reverse-engineering has only
limitedly been applied to plant transcriptomics data (Street et al.,
2011; Yu et al., 2011; Friedel et al., 2012; Hickman et al., 2013;
Misra and Sriram, 2013; Chávez Montes et al., 2014). Despite
generating useful biological hypotheses in plants, these studies
have applied one network inference algorithm accompanied by
no or very limited experimental validation.

Here, we applied different methods for network inference to
an abiotic stress-specific microarray compendium of Arabidopsis:
two different parameter settings of the stochastic Bayesian mod-
ule network algorithm LeMoNe (LearningModuleNetworks) (Joshi
et al., 2009), the mutual information direct algorithm CLR (Context
Likelihood of Relatedness) (Faith et al., 2007), and the double two-
way t test direct algorithm TwixTrix (Qi and Michoel, 2012). Pre-
viously, these methods have been shown to act complementary
for the reverse-engineering of GRNs in bacteria, yeast, and worm
(Michoel et al., 2009; Vermeirssen et al., 2009). We constructed an
abiotic stress GRN of the top 200,014 regulatory interactions from
the ensemble solution obtained by average rank aggregation of
these four predictions. Through extensive validation with experi-
mental data from literature, we captured many reported regulatory

interactions and known biological information. In addition, we per-
formed an unbiased, medium-throughput experimental validation,
where we identified an intricate abiotic stress GRN, where NO
APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION
FACTOR/CUP-SHAPED COTYLEDON (NAC) TFs NAC13, NAC053,
NAC032, ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR6
(ERF6), and WRKY DNA BINDING PROTEIN6 (WRKY6) function
in detoxification processes during oxidative stress. Not only does
our study provide insights into the gene regulation of the abiotic
stress response in plants at a systems level, it also exemplifies
the potential of ensemble reverse-engineering in combination with
medium-throughput experimental validation for the mapping of
GRNs in multicellular eukaryotes.

RESULTS

Integrating Different Reverse-Engineering Algorithms into
an Ensemble Abiotic Stress GRN

Three different network inference algorithms were applied to an
Arabidopsis abiotic stress-dedicated microarray expression ratio
compendium (199 conditions; Supplemental Data Set 1), using
1340 TFs listed in the Plant TF Database (PlantTFDB) (Zhang et al.,
2011) as putative regulators: LeMoNe (Joshi et al., 2009), CLR
(ClrR) (Faith et al., 2007), and TwixTrix (TwixTrixR) (Qi and Michoel,
2012). For LeMoNe, we assigned regulators to 25% tightly clus-
tered modules (LeMoNe_qopt25R) and 50% tightly clustered
modules (LeMoNe_qopt50R), respectively (Figure 1A; see Meth-
ods). Approximately 200,000 ranked regulatory interactions were
obtained for each reverse-engineering solution leading to a total of
785,913 uniquely predicted regulatory interactions. As expected,
we observed only 10% overlap between the different regulatory
predictions and less than 0.01% of all interactions were found by
all four methods (Figure 1B).
To assess the biological relevance of these complementary

predictions, we evaluated them against a set of 52,328 known
regulatory interactions that we created from the databases
AtRegNet and CORNET on the one hand and from Y1H and ChIP
protein-DNA interactions and TF perturbed expression profiles
found in literature on the other hand (Supplemental Table 1; see
Methods). This reference set contains interactions for only 15% of
TFs for which we had predicted regulatory interactions, and it
consists of both direct and indirect regulatory interactions. We
designate a regulatory interaction as “direct” if a TF binds nearby
a target gene and thereby controls the target gene’s expression.
In addition, we extended this reference set by calculating, based
on transitivity, all possible indirect paths between TFs and target
genes, obtaining 789,068 interactions: We derived a regulatory
interaction between protein A and target gene B if there is a path
through a combination of reported protein-DNA interactions and
regulatory interactions present from A to B, e.g., A binds C, C
regulates D, D binds E, and E regulates B (see Methods). In this
way, we allow for a maximal overlap between benchmark data
and predicted regulatory interactions. On the other hand, we re-
stricted the literature reference set to contain only 1307 direct
regulatory interactions, for which there was evidence of both
binding between a TF and its target gene and regulatory effect of
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Figure 1. Construction of the Abiotic Stress GRN by Ensemble Reverse-Engineering.
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a TF on transcription of its target gene. Hence, we removed all
interactions that might be due to indirect regulatory effects or
nonfunctional binding (Gitter et al., 2009). From the precision,
recall, F-measure, and the area under the precision-recall (AUPR)
curve, evaluating the top 200,000 predictions, we observed that
ClrR ranked first for the initial reference set, as well as for the
direct regulatory interaction set (Table 1). For the extended ref-
erence set, LeMoNe_qopt25R was the first in rank. F-measures
and AUPR values corresponded to what has previously been
reported for yeast (Marbach et al., 2012; Qi and Michoel, 2012).

Over a total of 785,913 unique predictions from all four meth-
ods, 35,034 true positives were uncovered in the extended ref-
erence set. All four methods largely inferred different parts of the
true gene regulatory networks: Only 12.5% of true positives were
found by at least two methods, but this was a significant enrich-
ment compared with all predictions (hypergeometric P value = 0),
indicating that interactions inferred by multiple algorithms were
more likely to be biologically relevant.

The benchmarking results of the different methods suggest
that we could obtain a better predictive power by integrating all
four solutions. Therefore, we computed ensemble solutions by
union, mean reciprocal rank aggregation, and average rank
aggregation (Figure 1C; see Methods). When we compared the
top 200,000 interactions to the reference sets (Table 1), we
observed that all ensemble methods generated a similar number
of true positives, F-measure, and AUPR and showed an equal or
higher performance compared with the individual solutions, in
accordance with what has been observed for ensembles in
bacteria and yeast (Marbach et al., 2012). We continued with the
average rank aggregation ensemble, since this ensemble was
first in rank over the other ensembles for the initial and the direct
reference sets. Moreover, this ensemble performed at least as
well as the best individually inferred solution in predicting direct
regulatory interactions. We constructed an abiotic stress GRN
by taking the top 200,014 predictions of the average rank aggre-
gation ensemble, containing 1290 TFs and 11,938 target genes
(Supplemental Data Set 2). In this abiotic stress GRN, 55% of the
predictions were made by LeMoNe_qopt25R, 52% by LeMoNe_
qopt50R, 36% by ClrR, and 3% by TwixTrixR, with 40% of the
interactions inferred by at least two algorithms and covering 99%
of the overlap between LeMoNe_qopt25R, LeMoNe_qopt50R,
ClrR, and TwixTrixR (Supplemental Figure 1). Predictions inferred
solely by TwixTrixR were not included in the network because the
more local nature of this algorithm differs the most from the more
global inference behavior of the others: Since TwixTrix is based
on differential expression testing, interactions predicted by TwixTrix
have significantly lower Pearson correlations between the

expression profiles of predicted TFs and target genes than inter-
actions predicted by LeMoNe and CLR (Qi and Michoel, 2012).

Functionally Coherent Modules of Coregulated Genes and
Stress-Related TF Hubs

To identify regulators of coregulated genes, we clustered the
abiotic stress GRN into modules based on the Jaccard similarity
index of shared predicted TFs (seeMethods). We retained at most 10
TFs per module, regulating the highest number of genes ($50%) and
displaying the highest average rank per module. In this abiotic stress
module GRN, we obtained 572 modules of between 3 and 92 cor-
egulated genes, regulated by 853 TFs. Since each gene ended up in
only one module, we recovered the most important regulators and
functional environment for each gene in the abiotic stress response.
Modules of coregulated genes and their predicted regulating TFs
were visualized as heat maps of the expression profile ratios in
function of annotated abiotic stress conditions, together with
information on functional coherence of the module and biological
relevance of the predicted regulators (Figure 2; ModuleViewer; see
Methods). We also generated a network view of the module and its
predicted regulators. All modules and regulating TFs can be queried
at http://bioinformatics.psb.ugent.be/supplementary_data/vamei/
module_display/. Many regulating TFs appeared to target multiple
modules, leading to a big well-connected component (Figure 1D).
Several TFs were also present in the modules as targets and, in
turn, regulated other modules, generating connections between
different modules of coregulated genes. The hubs of the abiotic
stress GRN were largely overlapping with the hubs of the module
network, with half of them having a known Gene Ontology (GO)
annotation for “response to stress” and/or “response to abiotic
stimulus” (Supplemental Table 2; see Methods).
Since coregulated genes are more likely to be coexpressed

and to function in a similar biological process, we analyzed the
functional coherence of the modules as a measure for the true
biological nature of the abiotic stress GRN (Supplemental Data
Set 3). First, 70% of the modules displayed a significant Biological
Process GO enrichment, 55% of which had one that was directly
related to “response to stress” or “response to abiotic stimulus.”
Secondly, 14% of all modules had a significant plant metabolic
pathway enrichment from AraCyc, the Plant Metabolic Network.
Third, 60% of all modules contained genes that are also con-
nected with one another in AraNet, with 90 modules having 50%
or more of the genes being linked. AraNet is a probabilistic func-
tional gene network of Arabidopsis that integrates species-wide
and diverse omics data (Lee et al., 2010). Since genes encoding
physically interacting proteins tend to be coregulated, we found

Figure 1. (continued).

(A) An abiotic stress microarray compendium and TFs from PlantTFDB were subjected to reverse-engineering, resulting in four network inference
solutions: LeMoNe_qopt25R, LeMoNe_qopt50R, ClrR, and TwixTrixR.
(B) The Venn diagram illustrates the percentage of 785,913 unique regulatory interactions predicted by each of the four network inference solutions and
their overlap.
(C) The regulatory predictions were combined by rank aggregation into three ensembles: union, mean reciprocal rank, and average rank.
(D) The top 200,014 predictions from the average rank ensemble made the abiotic stress GRN. Target genes were subsequently clustered into modules
of coregulated genes and only the most important regulating TFs per module (#10) were retained, generating the abiotic stress module GRN.
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experimentally validated protein-protein interactions from the
CORNET database to be present in 9% of all modules (De Bodt
et al., 2012). Besides, 37% of the modules were significantly en-
riched for genes related to “oxidative stress,” which is a stress that
accompanies other abiotic stresses (Gadjev et al., 2006). Finally,
since coregulated genes, certainly when sharing a biological func-
tion, tend to be coexpressed, we found a higher average Pearson
Correlation Coefficient (PCC) within modules of the abiotic stress
GRN (average PCC = 0.45) than within “random” modules where
we randomly distributed the 10,350 genes 1000 times in modules
of the same size as the abiotic stress module GRN (average PCC =
0.01) (Wilcoxon P value < 2.2e-16) (Supplemental Figure 2).

As a result of this functional coherence in the abiotic stress
module GRN, we could predict functional relationships for un-
characterized genes based on the guilt by association principle.
Of the 10,350 module genes, 3016 lacked a known GO Bio-
logical Process annotation, 1966 of which we attributed with one
based on the enriched GO annotation(s) of the module in which
they resided (Supplemental Data Set 3).

cis-Regulatory Motifs Link Modules and Predicted TFs

We investigated if cis-regulatory motifs listed in the PLACE (Higo
et al., 1999) and AGRIS (Palaniswamy et al., 2006) databases,

together with a complementary set of motifs identified using the
network-level conservation principle from ATCOECIS (Vandepoele
et al., 2009), and several binding sites from literature (Supplemental
Table 3) were uncovered significantly more frequently in the pro-
moters of genes belonging to the same module compared with all
promoters in the Arabidopsis genome (see Methods). We detected
141 different motifs in 124 modules (Supplemental Data Set 3).
Motifs AAACCCTA (UP2) (Tatematsu et al., 2005), ACGTGKC
(ABRE), VCGCGB (CGCG BOX) (Yang and Poovaiah, 2002), and
CACGTG (ABRE) were all found in 10 or more modules.
The abscisic acid (ABA)-responsive element (ABRE), with the

core sequence ACGTG, is a major cis-acting regulatory element
in ABA-dependent gene expression in adaptation to abiotic stresses
such as drought and high salinity, as well as in seed maturation and
dormancy. ABA promotes stomatal closure in guard cells and reg-
ulates the expression of many genes that may function in de-
hydration tolerance (Yamaguchi-Shinozaki and Shinozaki, 2006;
Lumba et al., 2014).
Only one module with an overrepresented ABRE motif was

predicted to be regulated by an ABRE binding factor (module 78;
ABSCISIC ACID RESPONSIVE ELEMENT BINDING FACTOR1
[ABF1]). Activation of the ABRE binding AREB/ABF TFs requires
ABA-dependent posttranscriptional phosphorylation (Furihata et al.,
2006). Therefore, the transcriptional expression of these TFs is less

Table 1. Performance Evaluation of the Top 200,000 Predictions of the Four Individual Reverse-Engineering Methods and Their Ensemble Solutions
on Correctly Predicting Known Regulatory Interactions

Npred TP Precision Recall F AUPR

Set of 52,328 known protein-DNA and/or regulatory interactions
LeMoNe_qopt25R 31886 972 0.030 0.019 0.023 0.00118
LemoNe_qopt50R 30056 862 0.029 0.016 0.021 0.00104
ClrR 31290 1301 0.042 0.025 0.031 0.00190
TwixTrixR 26353 955 0.036 0.018 0.024 0.00072
Union 31847 1092 0.034 0.021 0.026 0.00130
Rank_rp 31824 1091 0.034 0.021 0.026 0.00137
Rank_av 31546 1182 0.037 0.023 0.028 0.00158

Extended set of 789,068 known and “hidden” interactions
LeMoNe_qopt25R 31886 10696 0.335 0.014 0.026 0.00516
LemoNe_qopt50R 30056 8686 0.289 0.011 0.021 0.00352
ClrR 31290 10056 0.321 0.013 0.025 0.00466
TwixTrixR 26353 7647 0.290 0.010 0.019 0.00292
Union 31847 10798 0.339 0.014 0.026 0.00517
Rank_rp 31824 10677 0.336 0.014 0.026 0.00512
Rank_av 31546 10280 0.326 0.013 0.025 0.00461

Set of 1307 direct regulatory interactions
LeMoNe_qopt25R 561 26 0.046 0.020 0.028 0.00128
LemoNe_qopt50R 452 12 0.027 0.009 0.014 0.00032
ClrR 727 51 0.070 0.039 0.050 0.00537
TwixTrixR 311 16 0.051 0.012 0.020 0.00065
Union 569 40 0.070 0.031 0.043 0.00259
Rank_rp 574 40 0.070 0.031 0.043 0.00248
Rank_av 575 45 0.078 0.034 0.048 0.00272

The table shows the individual reverse-engineering methods LeMoNe_qopt25R, LemoNe_qopt50R, ClrR, and TwixTrixR, as well as their ensemble solutions by
union, mean reciprocal rank (Rank_rp), and average rank (Rank_av) aggregation (i.e., the abiotic stress GRN; underlined), against three reference sets: (1) an
assembled interaction set of 52,328 experimental protein-DNA and regulatory interactions, (2) an extended set of (1) containing all indirect hidden paths of 789,068
interactions (paths of length greater than one), and (3) a confined set of (1) containing only 1307 direct regulatory interactions. Npred = number of predictions made
for TFs and target genes belonging to the reference set; TP = number of true positives; Precision = TP/Npred; Recall = TP/number of interactions in the reference
set; F = 23 precision3 recall/(precision + recall) = 23 TP/(23 TP + FP + FN); AUPR = estimated AUPR curve. Due to the size of the reference sets, the AUPR
calculation of the confined set is based on only a few hundreds of points, while for the other two reference sets, this is thousands to tens of thousands of points.
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Figure 2. Literature-Based Evidence for the Biological Relevance of the Abiotic Stress Module GRN.
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a proxy for their activity, which explains why they are more difficult
to be predicted as regulators by network inference algorithms.
Nevertheless, 12 modules shared ABA-responsive TFs function-
ing in the dehydration stress response as predicted regulators,
such as homeodomains ARABIDOPSIS THALIANA HOMEO-
BOX7 and 12 (Valdés et al., 2012), NAC TFs RESPONSIVE TO
DESICCATION26 (RD26) (Fujita et al., 2004), ARABIDOPSIS NAC
DOMAIN CONTAINING PROTEIN2 (ATAF1), NAC019, and NAC
WITH TRANSMEMBRANE MOTIF1-LIKE6 (NTL6) (Kim et al.,
2012; Nakashima et al., 2012), basic helix-loop-helix (bHLH) TF
JASMONATE INSENSITIVE1 (ZBF1/MYC2) (Yadav et al., 2005),
and basic leucine zipper (bZIP) TF G-BOX BINDING FACTOR3
(GBF3) (Lu et al., 1996).

Promoters of genes in module 440 were significantly enriched
for the dehydration-responsive element (DRE), with core sequence
G/ACCGAC (Stockinger et al., 1997). The module genes are mostly
upregulated upon cold and osmotic stress (Yamaguchi-Shinozaki
and Shinozaki, 2006). Accordingly, we detected APETALA2 TFs,
RELATED TO AP2 1 (RAP2.1) and FLORAL MUTANT2 (FLO2), as
prominent regulators of this module, for which predictions were
confirmed by the extended reference set (Dong and Liu, 2010;
Akhtar et al., 2012).

A MYB binding site was found in six modules, five of which
displayed a function and predicted regulators that clearly corre-
sponded to this motif. Module 503 and 580, as well as their top-
ranked regulators the GRAS TF AT1G63100 and MYB DOMAIN
PROTEIN 3R-4 (MYB3R-4), function in cytokinesis by cell plate
formation. MYB3R-4 regulates multiple cell cycle G2/M phase-
specific genes, several of which were present in the modules, and
binds AACGG, the MYB cis-regulatory motif that we found to be
overrepresented in these modules (Haga et al., 2011).

The evening element, a marker of circadian control of gene
expression that induces peak expression in the evening, was
significantly enriched in module 159. This module contained
genes that function in the circadian rhythmic starch metabolic
process and that are highly upregulated by cold stress. The
circadian clock controls starch degradation to ensure continued
optimal growth during the night (Graf and Smith, 2011). Soluble
sugars protect plant cells from cellular damage caused by cold
stress by acting as osmoprotectants and nutrients as well as
interacting with the lipid bilayer. The circadian clock and cold
acclimation are intimately linked in plants (Bieniawska et al.,
2008), and the evening element was previously suggested to

integrate cold- and clock-regulated transcription (Mikkelsen and
Thomashow, 2009). Similarly, the module was predicted to be
regulated by circadian rhythmic TFs such as B-box zinc finger
TFs, which have been implicated in the regulation of light- and
cold-influenced processes (Soitamo et al., 2008; Gangappa and
Botto, 2014); GATA TRANSCRIPTION FACTOR28 (ZML2), which
is a regulator of the cryptochrome-mediated response to excess
light (Shaikhali et al., 2012); SQUAMOSA PROMOTER BINDING
PROTEIN-LIKE7, which controls the induction of sucrose-responsive
microRNAs (Ren and Tang, 2012); and DRE binding protein TFs
with a role in cold acclimation (Maruyama et al., 2009).
Module 531 was significantly GO enriched for “response to en-

doplasmic reticulum (ER) stress,” which refers to a condition where
stress leads to the accumulation of unfolded or misfolded proteins
in the ER. This triggers the protective cellular unfolded protein re-
sponse, which aims to restore normal cell function by halting protein
translation and activating the production of molecular chaperones
involved in protein folding. Correspondingly, seven module genes
out of 17 contained the ER stress response element CCAAT-N9-
CCACG and 11 module genes had the unfolded protein response
element core TGACGT in their promoters (Yamamoto et al., 2004).
In addition, several other abiotic stress-related cis-regulatory

motifs were detected, such as the I-box (GATAAG), a conserved
sequence in light-regulated promoters (Donald and Cashmore,
1990); the W-box (TTGAC(C/T), which is recognized by WRKY TFs
and is often involved in the defense response (Yamasaki et al.,
2012); and the heat shock element (GAANNTTC) that is targeted
by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2) (Barros
et al., 1992) (Supplemental Data Set 3). Moreover, several of the
motifs were previously identified to be singlet oxygen-responsive
motifs: ACGTGTC (ABRE), TTCACY (W-box), GCCGCC (GCC-
box), and ACCWWCC (MYB) (Petrov et al., 2012).
Taken together, many modules were enriched for a cis-regulatory

motif that often corresponded to the specific function of the module
genes in the abiotic stress response and to the binding site of the
predicted regulators. The latter points to the likely direct nature of
the predicted regulatory interactions.

Literature-Based Evidence for the Biological Relevance of
Predicted TF-Target Gene Interactions

Matching the “known” TF-target gene interactions from the ex-
tended reference set to the module network predictions, we

Figure 2. (continued).

(A) and (C) Module 17 was implicated in flavonoid biosynthesis.
(B) and (D) Module 223 functioned in the iron deficiency response.
(A) and (B) Illustrations by ModuleViewer (see text) were modified to display only the 20 most up- and downregulated conditions. Upper block = log2

expression ratios of regulatory TFs ordered by rank; lower block = log2 expression ratios of coregulated target genes. Blocks on the right indicate functional
coherence: top 5 BINGO GO Biological Process enrichment, top 5 AraCyc metabolic pathway enrichment, cis-regulatory motif enrichment, true positives in
extended reference set, and true positives from the nCounter experiments. The regulating TFs are ranked by the percentage of the genes in the module they
are predicted to regulate (%) and their average rank over the module interactions (R). It is also indicated if the TFs have the GO Biological Process annotation
that is enriched in the module. Abiotic stress conditions are annotated according to abiotic stress or/and hormone treatment (SA, salicylic acid; MJ, methyl
jasmonate; BR, brassinosteroids; ET, ethylene). Arrows on the left: green = AraNet links; black = CORNET experimental protein-protein interaction links.
(C) and (D) Network illustrations by Cytoscape. The size of the regulating TF node is proportional to the average rank of this regulator in the module, i.e.,
the importance of the TF for the module. Edges are colored if the predictions were validated by the extended reference set (purple), nCounter
experiments (red), or both (blue). Dotted node borders indicate module genes (including TFs) that lack a known GO Biological Process annotation.

7

http://www.plantcell.org/cgi/content/full/tpc.114.131417/DC1


retrieved 4172 interactions in 228 modules (Supplemental Data
Set 3), compared with 10,280 interactions in the abiotic stress
GRN (Table 1). Despite the fact that modules facilitate the in-
terpretation of the abiotic stress GRN, this emphasizes the im-
portance of also studying the whole GRN: More than 1500 genes
did not fit our definition of modules of coregulated genes and TFs
that regulate many genes in a module were favored over TFs with
a high ranking for a specific gene.

Although the reverse-engineering methods do not directly pre-
dict cooperativity between TFs, we investigated whether we could
detect known heterodimers within the predicted TFs of a coregu-
lated module through the experimental protein-protein interactions
from the CORNET database. Among the predicted regulators of 22
modules, we observed heterodimers between members of various
TF families, with most heterodimer formations occurring within
a TF family (Supplemental Data Set 3). It is very likely that there are
many more, but the data set of experimental heterodimer TF-TF
interactions in CORNET is limited to 1100 interactions between
462 TFs. For instance, the regulators BASIC LEUCINE-ZIPPER1
(BZIP1) and GBF6/BZIP11 of module 154, which functioned in
glycolysis and the tricarboxylic acid cycle, form a heterodimer.
These TFs belong to the C/S1 bZIP family, and heterodimers of
this family involving BZIP1 and GBF6 are able to reprogram sugar
and amino acid metabolism during low energy stress (Hanson
et al., 2008; Dietrich et al., 2011; Ma et al., 2011). To further illus-
trate the biological relevance of our predictions, we will discuss
below three modules and one transcription factor.

Module 17 was enriched for flavonoid biosynthesis genes and
flavonoid transporters (Yonekura-Sakakibara et al., 2008). The
bZIP TF HY5-HOMOLOG (HYH) and the MYB TF PRODUCTION
OF FLAVONOL GLYCOSIDES1 (PFG1/MYB12) were top-ranked
regulators, and the module was enriched for a MYB binding site
(Figure 2A). From the extended reference set, it was known that
PFG1 activates 9 out of 16 module genes (Supplemental Data Set 3).
PFG1 and the related, third-ranked predicted TF, PFG3 (MYB111),
have very similar target specificity in flavonoid biosynthesis but
function in different parts of the plant (Stracke et al., 2007). HYH is
a functionally redundant homolog of ELONGATED HYPOCOTYL5,
which is known to regulate PFG1 and PFG3 in flavonoid biosynthesis
(Stracke et al., 2010). The second-ranked predicted TF, BHLH34, is
part of a functional plant module with a role in flavonoid biosynthesis
and response to sucrose (Heyndrickx and Vandepoele, 2012).

Module 223 was enriched for the GO Biological Process “cel-
lular response to iron starvation” containing five out of eight genes
with a reported function in iron homeostasis (Figure 2B). The top-
ranked regulators bHLH TFs OBP3-RESPONSIVE GENE3 (ORG3/
BHLH039) and POPEYE (PYE/BHLH047) are important regulators
of the iron deficiency response (Yuan et al., 2008; Long et al.,
2010). The second-ranked regulator BHLH101 also governs iron
homeostasis (Yuan et al., 2008; Sivitz et al., 2012). In addition to
the TF FE-DEFICIENCY INDUCED TRANSCRIPTION FACTOR1
(FIT1/FRU) regulatory network in the epidermis, PYE, PYE ho-
mologs, and BRUTUS (BTS/EMB2454) form a regulatory network
for maintaining iron homeostasis in low Fe conditions in the vas-
culature (Hindt and Guerinot, 2012), the latter being clearly rep-
resented in module 223. In pye-1 mutants, significant expression
changes and a strong coexpression of all module genes, including
BHLH101, were reported and ChIP-on-chip analysis detected the

module gene FERRIC REDUCTION OXIDASE3 as a direct target
of PYE (Long et al., 2010). Accordingly, the module was enriched
for the presence of GCCACGTN (Supplemental Data Set 3), which
resembles the E-box CANNTG known to be bound by bHLH TFs.
Module 402 functioned in jasmonic acid biosynthesis and

was highly upregulated by salt stress and methyl jasmonate
(Supplemental Figure 3). In correspondence with the module
function and the presence of ABRE motifs, the top-ranked reg-
ulator JA-ASSOCIATED MYC2-LIKE1 (ATAIB/JAM1) acts as an
ABA-inducible transcriptional repressor of jasmonic acid signal-
ing (Nakata et al., 2013). The third-ranked predicted regulator
ZBF1 (MYC2) transcriptionally modulates the jasmonic acid sig-
naling pathway (Dombrecht et al., 2007) and was known from the
extended reference set to regulate all module genes. ZBF1, to-
gether with ATAIB, binds to the target sequence of ZBF1 (Nakata
et al., 2013). The regulators HIGH INDOLIC GLUCOSINOLATE1
(MYB51) and WRKY6 have also been implicated in jasmonic acid
signaling (Skibbe et al., 2008; Laluk et al., 2012). Jasmonic acid
signaling is not only involved in plant development, but also in
response to biotic and abiotic stress, especially salt stress
(Santino et al., 2013). This module also illustrates the success of
the ensemble approach, since half of the interactions with the
four relevant predicted TFs was found by only one inference
method. Whereas most interactions with ATAIB were predicted
by LeMoNe_qopt25R, LeMoNe_qopt50R, and ClrR, ZBF1 was
identified as a regulator of the module by LeMoNe_qopt50R and
ClrR, most interactions with MYB51 were found only by LeMoNe_
qopt25R, and most interactions with WRKY6 were inferred only
by LeMoNe_qopt50R (Supplemental Data Set 2).
Modules 61, 193, 381, and 491 had HSFA2 as the top-ranked

regulator (Supplemental Table 5). HSFA2 is highly induced in
response to oxidative stress caused by high light intensity and/or
heat, conditions where the module genes were mostly upregu-
lated (Nishizawa et al., 2006). Moreover, HSFA2 steers a heat
shock factor signaling network and the response to misfolded
protein accumulation in the cytosol in a later response to envi-
ronmental stress (Sugio et al., 2009). In the extended reference
set, HSFA2 was a known or hidden regulator of most module
genes, including several heat shock proteins. Whereas the other
HSFA2-regulated modules were significantly enriched for GO
Biological Process “response to heat,” 8 out of 14 genes in module
61 had an unknown GO Biological Process annotation.

Experimental Confirmation of Predicted Interactions
Reveals an Intricate Oxidative Stress GRN

To experimentally assess the performance of the ensemble re-
verse engineering approach, we analyzed gain- and loss-of-function
mutants of seven TFs: the NAC TFs NAC13, NAC032, and NAC053;
the DRE binding protein TF RAP2.1; the ERF TFs RELATED TO AP2
6L (RAP2.6L) and ERF6; and the WRKY TF WRKY6. These TFs
were predicted to jointly regulate multiple target genes and modules
(e.g., module 10 and module 293; Supplemental Data Set 3), which
were induced upon salt, osmotic, and/or oxidative stresses. Six of
these TFs function in plant stress responses: NAC13, and likely
NAC053, as positive regulators in mitochondrial retrograde regula-
tion (MRR) (De Clercq et al., 2013); NAC053 as a positive regulator in
drought-induced leaf senescence (Lee et al., 2012); RAP2.1 as
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a negative regulator in cold and drought stress responses (Dong
and Liu, 2010); RAP2.6L as a positive regulator in salt and drought
stress responses (Krishnaswamy et al., 2011), in waterlogging stress
(Liu et al., 2012), and in tissue regeneration upon wounding (Asahina
et al., 2011); ERF6 as a positive regulator in jasmonic acid or
ethylene-mediated pathogen defense (Moffat et al., 2012; Meng
et al., 2013) and the osmotic stress response in leaves (Dubois et al.,
2013); and WRKY6 as a positive and negative regulator of senes-
cence and biotic defense responses (Robatzek and Somssich,
2002; Skibbe et al., 2008; Chai et al., 2014) and nutrient deficiency
stress (Chen et al., 2009; Kasajima et al., 2010; Castrillo et al., 2013).
Two-week-old transgenic and wild-type plants were mock-treated
or salt-stressed for 12 h, and transcript levels of 92 predicted target
genes, the 7 TFs, and 10 housekeeping genes were quantified by
the NanoString nCounter Analysis System in a total of 15 times
three biological replicate experiments (Geiss et al., 2008) (see
Methods; Supplemental Figure 4). Differential expression analysis
by a combination of DESeq and edgeR resulted in 289 unique
TF-target gene interactions (Supplemental Data Set 4). Appar-
ently, most TFs could act as activator and repressor, very likely
through indirect regulatory effects.

We compared the performance of the experimentally derived
regulatory interactions to those of the reference sets from liter-
ature and the reverse-engineering predictions (Table 2). Only
seven interactions between the selected TFs and target genes
were reported in literature, i.e., for ERF6 and WRKY6, of which
six interactions were recovered by the nCounter experiments
(Supplemental Data Set 4). For the extended reference set, where
indirect regulatory effects of TFs were explicitly modeled through
transitivity, 94 out of 192 relevant interactions were confirmed
experimentally by nCounter. This significant increase in recall
justified the construction of the extended reference set for
benchmarking. Upon evaluation of the reverse-engineering pre-
dictions by nCounter, the integrated abiotic stress GRN (rank_av)
ranked first in performance over the other ensembles and the
individual inference methods as indicated by the F-measure. We
experimentally validated 100 (50% precision) out of 199 pre-
dictions from the abiotic stress GRN and found an additional 189
(35% recall) regulatory interactions that were not predicted. For
these additional regulatory interactions, we identified 25 extra true
positives in the set of 785,913 total unique predictions, which
were predicted only by LeMoNe_qopt25R, LeMoNe_qopt50R, or
ClrR, and did not end up in the abiotic stress GRN. We retrieved
80 true positives in 14 modules, and found four additional true
positive interactions that were not originally predicted, but whose
prediction was inferred by the construction of the module abiotic
stress GRN of coregulated genes and their regulators. Many of
the differentially expressed genes might be the result of indirect
regulatory effects or secondary effects in stable mutants. To
account for the indirect influence of gain- and loss-of-function TF
mutants and to increase the number of predictions, we also
considered the relevant predicted targets of CYTOKININ RE-
SPONSE FACTOR6, NAC032, NAC13, SALT-INDUCIBLE ZINC
FINGER1 (SZF1), and WRKY6, which are TF targets of the per-
turbed TFs in nCounter, hence paths of length two in the GRN
(see Methods; Supplemental Data Set 4). If target genes are
considered the “children” of TF nodes, then we refer here to the
indirect links between the TF nodes and their “grandchildren”

nodes. In this way, 141 (52% precision) out of 271 predictions
were experimentally validated and 148 (49% recall) additional
regulatory interactions were recovered, leading to an F-score
increase of 23% (Table 2). When evaluating the predictions for
each TF separately, the performance of prediction was good for
all TFs and increased upon considering paths of length two.
We visualized predictions for the 102 selected target genes in

the abiotic stress GRN and whether they were previously known
from literature, inferred in the extended reference set, experi-
mentally validated by nCounter, or any combination of these in
Supplemental Figure 5. This illustrates the limited availability of
known regulatory interactions with few TFs and the potential
of reverse-engineering, generating regulatory hypotheses on a
systems-wide scale.
We analyzed the presence of the GCC-box (ERF6 and RAP2.6L)

(Hao et al., 1998), ERF6 GCC-box (ERF6) (Wang et al., 2013), DRE
(RAP2.1) (Dong and Liu, 2010), NAC (NAC13, NAC032, and
NAC053) (Duval et al., 2002; Tran et al., 2004; Olsen et al., 2005),
MDM (NAC13 and NAC053) (De Clercq et al., 2013), W-box
(WRKY6) (Yamasaki et al., 2012), and ARE (WRKY6) (Castrillo
et al., 2013) cis-regulatory elements at most 1000 bp upstream of
the translation start site of the nCounter target genes (Supplemental
Table 4). For 170 target genes, multiple copies of a relevant binding
site were present in their promoters (Supplemental Data Set 4).
Since the response to perturbation of a TF is strongest for its direct
targets and dissipates rapidly as it propagates through the network
(Haynes et al., 2013), we found that in 38 interactions, the target
genes were at least one log2-fold induced or repressed by the TF
mutants. Finally, eight NAC13 target gene promoters were pre-
viously shown to be bound by NAC13 in ChIP experiments (De
Clercq et al., 2013). These observations suggest that 65% of the
nCounter interactions and 76% of the true positives that were di-
rectly predicted are direct transcriptional regulatory interactions.
As NAC032 had not yet been functionally characterized, we

analyzed whether altered NAC032 levels affect tolerance to os-
motic stress, a condition under which its target module genes
were most prominently upregulated. Interestingly, NAC032 over-
expression lines displayed increased plant biomass and rosette
area under osmotic stress conditions (Supplemental Figure 6).
From the visualization of the nCounter data in a network, we

observed many regulatory interactions between the selected
TFs and detected multiple copies of relevant cis-regulatory
motifs in their promoters (Figure 3A; Supplemental Table 4). The
most influential TF in the experimental network appeared to be
NAC13, since it targeted the largest number of genes (83%),
including six out of the seven TFs, and gave rise to the highest
transcriptional responses (Supplemental Data Set 4). NAC053,
ERF6, WRKY6, and NAC032 targeted between 56 and 41% of
the genes, while RAP2.1 and RAP2.6L regulated only 5% of the
genes. The topological overlap, i.e., the number of overlapping
interacting nodes/modules between the TFs, normalized over
their out-degrees, was highest for NAC13 and NAC053 (Figure
3B; see Methods). The next best topological overlap was ob-
served between WRKY6, ERF6, and NAC032. Overall, these five
TFs showed a high overlap in transcription regulatory targets,
both at the module and the gene level.
To gain insight into the functional role of the selected TFs

within the abiotic stress GRN, we visualized the modules that
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contained or were predicted to be regulated by any of the seven
selected TFs and were tested in the nCounter experiments.
Figure 3C represents the predicted regulatory interactions of the
abiotic stress GRN, some of which were confirmed by the extended
reference set, while Figure 3D illustrates the experimental regulatory
interactions. These modules shared the following GO Biological
Process annotations: response to chitin, respiratory burst in the
defense response, regulation of the plant-type hypersensitive re-
sponse, regulation of programmed cell death, ER unfolded protein
response, toxin catabolic process, response to cyclopentenone,
and response to ethylene. They contained 16 mitochondrial dys-
function stimulon (MDS) genes, which are implicated in MRR and
contain the cis-regulatory motif MDM in their promoter (De Clercq
et al., 2013) (Figures 3C and 3D). Many of these modules shared
other predicted TFs: We counted the highest number of outgoing
edges for MYB51 and BZIP60, followed by WRKY15, WRKY40,
and NTL6, with MYB51 and WRKY15 being first rank regulators.
Other predicted first rank regulators of multiple modules included
JUNGBRUNNEN1 (NAC042), RD26, WRKY30, BR ENHANCED
EXPRESSION2, and SZF1. Several predicted interactions with
BZIP60, WRKY15, NAC042, and RD26 were confirmed in the ex-
tended reference set. Even more so in the nCounter regulatory
network, we found many modules to be regulated by combinations
of NAC13, NAC053, NAC032, WRKY6, and ERF6 or all these
TFs together (modules 8, 64, 150, 163, 293, 358, and 430). We

assessed modules 150 and 293 in more detail, since they con-
tained the highest number of target genes tested experimentally
(Figure 4).
The highly significant GO Biological Process terms for module

150 were “para-aminobenzoic acid (PABA) metabolism,” “toxin
catabolic process,” “response to cyclopentenone,” and “response
to water deprivation.” According to AraCyc, it was involved in
“indole glucosinolate breakdown” and “detoxification of reactive
carbonyls.” It was mostly upregulated by osmotic, salt, and oxi-
dative stress as well as ABA. Two regulatory interactions with
NAC019 were validated by the extended reference set. Out of 15
module genes tested by nCounter, we experimentally validated 10
targets for NAC032, all of which contained multiple NAC binding
motifs in their promoters, and three targets for RAP2.6L. Addi-
tionally, we detected one interaction with RAP2.1, four interactions
with WRKY6, seven with ERF6, eight with NAC053, and 14 with
NAC13 (Supplemental Data Set 4).
Highly significant GO enrichments for module 293 were “re-

sponse to cyclopentenone,” “toxin catabolic process,” “response to
ethylene stimulus,” “response to chitin,” and “hyperosmotic salinity
response.” The module was enriched for the AraCyc metabolic
pathways “2,4,6-trinitrotoluene degradation,” “glutathione-mediated
detoxification II,” and “quercetin glucoside biosynthesis.” An ad-
ditional connection with module 150 was that UDP-GLUCOSE
TRANSFERASE1 (UGT75B1) in this module glucosylates the folate

Table 2. Performance of the Literature Reference Set, the Extended Reference Set, the Individual Reverse-Engineering Methods, and Their Ensemble
Solutions on Correctly Predicting the NanoString nCounter Experimental Data

Npred Nknown TP Precision Recall F

Literature reference set 7 289 6 0.857 0.021 0.041
Extended reference set 192 289 94 0.490 0.325 0.391
LeMoNe_qopt25R 155 289 78 0.503 0.270 0.351
LemoNe_qopt50R 136 289 60 0.441 0.208 0.282
ClrR 195 289 96 0.492 0.332 0.397
Union 172 289 84 0.488 0.291 0.364
Rank_rp 177 289 86 0.486 0.298 0.369
Rank_av 199 289 100 0.503 0.346 0.410
All_pred 249 289 125 0.502 0.433 0.465
Rank_av_2 271 289 141 0.520 0.488 0.504
ERF6 11 49 10 0.909 0.204 0.333
NAC13 30 85 27 0.900 0.318 0.470
NAC032 41 42 22 0.537 0.524 0.530
NAC053 32 57 13 0.406 0.228 0.292
RAP2.1 18 6 2 0.111 0.333 0.167
RAP2.6L 26 4 3 0.115 0.750 0.200
WRKY6 41 46 23 0.561 0.500 0.529
ERF6_2 13 49 11 0.846 0.224 0.355
NAC13_2 32 85 29 0.906 0.341 0.496
NAC032_2 61 42 35 0.574 0.833 0.680
NAC053_2 52 57 23 0.442 0.404 0.422
WRKY6_2 69 46 38 0.551 0.826 0.661

The table shows the literature reference set of 52,328 experimental protein-DNA and regulatory interactions, the extended reference set, the top 200,000
predictions of the individual reverse-engineering methods LeMoNe_qopt25R, LeMoNe_qopt50R, and ClrR, and their ensemble solutions by union (Union),
mean reciprocal rank (Rank_rp), and average rank (Rank_av) aggregation, against the 289 NanoString nCounter experimental data. The “_2” also takes the
predictions of the TF targets of the perturbed TFs into account (paths of length two). For the final abiotic stress gene regulatory network (Rank_av and
Rank_av_2; underlined), each TF was also evaluated individually. All_pred points to the 785,913 predictions of all four individual inference methods. Npred =
number of predictions made for TFs and target genes belonging to the nCounter experimental data; Nknown = number of experimental nCounter interactions;
TP = number of true positives; Precision = TP/Npred; Recall = TP/Nknown; F = 2 3 precision 3 recall/(precision + recall) = 2 3 TP/(2 3 TP + FP + FN).
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Figure 3. Experimental Confirmation of Predicted Interactions Reveals a Core Oxidative Stress GRN with Intertwined Regulation by NAC13, NAC053,
ERF6, WRKY6, and NAC032.

(A) In gain- and loss-of-function mutants of seven TFs upon 12 h salt stress treatment, transcript changes of a hundred predicted target genes,
including the seven TFs, were quantified by nCounter and statistical analysis by a combination of DESeq and edgeR. These experiments revealed even
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precursor PABA into the storage form of PABA as a glucose ester
(Eudes et al., 2008). Module genes were highly induced by oxidative
stress and auxin inhibitors and were known to be regulated by
WRKY6 and WRKY15 from the extended reference set. Through
experimental validation on 14 module genes, we confirmed four
targets for NAC053, seven for WRKY6, eight for NAC032, and 13 for
NAC13, and we found in addition 12 targets for ERF6 (Supplemental
Data Set 4). Several of these targets contained multiple NAC or
W-box binding sites in their promoter, as well as the NAC13/
NAC053 MDM motif and the WRKY6 ARE motif (Supplemental
Table 4). Four module genes were MDS genes and three of them
were previously shown to be direct NAC13 targets in a ChIP ex-
periment (De Clercq et al., 2013).

Both modules 150 and 293 contained many catabolic de-
toxification enzymes such as cytochrome P450, oxidoreductase,
hydrolase, dehydrogenase, UDP-glucose transferase (UGT), and
glutathione S-transferase (GST). Like module 293, module 191
contained multiple UGTs and GSTs, was highly upregulated by
oxidative stress and auxin inhibitors, and was involved in the
AraCyc metabolic pathway “glutathione-mediated detoxification
II” and “ABA glucose ester biosynthesis” (Supplemental Figure 7).
Similarly to modules 150 and 293, it was highly enriched for GO
Biological Processes “PABA metabolic process” and “response
to cyclopentenone,” and predicted to be regulated by WRKY6,
which was confirmed by the extended reference set, NAC032,
NAC053, and WRKY45 (Supplemental Table 3). Moreover, this
module contained an overrepresented TGACGT motif, which is
found in as-1-like elements in promoters of early salicylic acid-
induced genes and is bound by class II TGACG SEQUENCE-
SPECIFIC BINDING PROTEIN (TGA) TFs that drive xenobiotic
detoxification (Fode et al., 2008; Blanco et al., 2009). This motif
was identified in 14 out of 20 module genes, many having two
copies in their promoter, the ideal as-1-like element (Qin et al.,
1994). This motif was also found, although not significantly en-
riched and in single copy, in 10 genes of module 150 and five
genes of module 293. Of the selected TFs, the NAC032 promoter
encodes three TGA motifs and its expression is highly dependent

on TGA TFs and its transcriptional coactivator SCARECROW-like
14 (SCL14) (Fode et al., 2008; Zander et al., 2014). The WRKY6
promoter had one TGA motif. Treatment with salicylic acid induced
genes of module 191 more than module 293 and even more than
module 150. Approximately 60% of all cyclopentenone-inducible
genes, many of them encoding detoxification-related genes such
as GSTs, cytochrome P450s, UDPs, and transporters, are de-
pendent on the TFs TGA2, TGA5, and TGA6 for their expression
and 40% of these genes contain a TGA motif in their promoter
(Mueller et al., 2008). We found large similarities, but also differ-
ences between the detoxification modules. Detoxification genes
have been shown to differ in their level of induction by cyclo-
pentenone but also in the specificity of induction by different TGA
factors (Stotz et al., 2013), which could be regulated by the copy
number of TGA binding sites in their promoter (Zander et al.,
2014). Several of these cyclopentenone-inducible genes and
TGA2/TGA5/TGA6-dependent genes were present in modules
150, 191, and 293, but none of the class II TGA TFs were pre-
dicted as regulators of these modules (Mueller et al., 2008;
Zander et al., 2014).
In a recent study on the role of the module 293 gene UGT73B5

in the redox balance during the hypersensitive stress response to
pathogen treatment, multiple genes of modules 191 and 293, and
to a lesser extent module 150, as well as NAC032 and NAC053,
were coexpressed with this UGT, which has a TGA motif in its
promoter (Simon et al., 2014).
Hence, these modules are likely implicated in the detoxification

of cyclopentenone oxylipins and by-products of secondary
metabolites, such as camalexin (Mueller et al., 2008; Simon
et al., 2014), hormone metabolism and transport (e.g., ZINC
INDUCED FACILITATOR-LIKE1 [Remy et al., 2013], UGT73B1
and UGT75B1 [Lim et al., 2005], INDOLE-3-ACETATE b-D-
GLUCOSYLTRANSFERASE, UGT74E2 [Tognetti et al., 2010],
SULFURTRANSFERASE1 [Marsolais et al., 2007], UGT74F2 [Dean
and Delaney, 2008]), and protection against oxidative stress
(e.g., PHYTOENE DESATURATION1 [Norris et al., 1995]; UGT73B1,
UGT73B4, and UGT73B5 [Lim et al., 2004]). The detoxification

Figure 3. (continued).

more interconnected regulatory interactions between the perturbed TFs than was predicted by ensemble reverse-engineering. NAC13 activated all TFs
except RAP2.6L. WRKY6 was found to repress NAC13, NAC053, and ERF6. In turn, NAC053 had an inhibitory effect on WRKY6, creating a negative
feedback loop between these two TFs. NAC13 and NAC032 activated WRKY6, and there was a mixed feedback loop between NAC13 and WRKY6.
Similarly, ERF6 activated NAC13, which resulted in a positive feedback loop between NAC13 and ERF6. D = indication of direct interaction by multiple
copies of a relevant binding site in the promoter, more than one log2-fold transcriptional change upon TF perturbation, and/or reported TF binding by
ChIP (see text).
(B) Topological overlap between the perturbed TFs in the nCounter experiments on a gene basis (left) or module basis (right). This is the number of
overlapping target genes or modules between two TFs normalized over their out-degrees. The width of the edge is proportional to the topological
overlap coefficient. NAC13, NAC053, WRKY6, ERF6, and NAC032 showed a high overlap in transcription regulatory targets, both at the gene and the
module level.
(C) Predicted regulatory network for modules containing nCounter target genes that were predicted to be regulated by the seven selected TFs or
contained these TFs themselves as target gene. The size of the circular node, i.e., the module, is proportional to the number of nCounter target genes
present in the module. In addition to the selected TFs, only TFs predicted to regulate multiple modules were displayed. Modules that contained or were
predicted to be regulated by any of the seven selected TFs shared predicted regulators and GO Biological Process annotations in detoxification and
oxidative stress responses.
(D) Experimental nCounter regulatory network for modules containing nCounter target genes that were predicted to be regulated by the seven selected
TFs or contained these TFs themselves as target gene. Interpretation is as in (C). We found many modules to be regulated by combinations of NAC13,
NAC053, NAC032, WRKY6, and ERF6 or all these TFs together.
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Figure 4. Experimental and Literature-Based Evidence for Modules Involved in Detoxification Processes of the Oxidative Stress Response.
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process starts with the introduction of functional groups by en-
zymes like cytochrome P450 (phase I), which are subsequently
conjugated to glucose or glutathione by enzymes such as UGTs
and GSTs (phase II).

In conclusion, we validated the ensemble reverse-engineering
approach and hence revealed an intricate oxidative stress net-
work regulated by NAC13, NAC053, ERF6, WRKY6, and NAC032
that is implicated in detoxification processes aimed at removing
reactive compounds created by cellular stress.

DISCUSSION

Reverse-engineering of gene expression profiles or network in-
ference offers great potential for elucidating GRNs. Here, we ap-
plied three different, highly complementary reverse-engineering
algorithms to a microarray expression compendium of abiotic
stress conditions resulting in four network inference solutions.
Next, an abiotic stress GRN was created by taking the top
200,014 predictions of an ensemble solution through average
rank aggregation of the different individual predictions. Through
benchmark analysis against a data set of known protein-DNA and
regulatory interactions, as well as unbiased, medium-throughput
expression profiling of TF gain- and loss-of-function mutants, we
demonstrated that this ensemble solution was the most robust in
predicting regulatory interactions and attained precision and recall
as high as 50%. Evaluation of the biological relevance of the
predicted regulators also indicated that the ensemble provided
a more complete picture of the regulatory landscape than in-
dividual inference methods could. Ensemble reverse-engineering
by average rank aggregation significantly increases the coverage
of biologically meaningful regulatory interactions and compen-
sates for the peculiar biases of the different reverse-engineering
algorithms (Michoel et al., 2009; Marbach et al., 2012).

Gene regulatory network validation is difficult, since each
benchmark set or experimental validation setup has its own lim-
itations and the best practice is to combine multiple methods
(Walhout, 2011). Despite the fact that the in silico benchmark set
contained regulatory interactions for only 15% of TFs with predicted
regulatory interactions, that GO, AraCyc, CORNET protein-protein
interactions and known cis-regulatory elements are incomplete and
might contain false positives, and that TF perturbation experiments
and nCounter analysis might create false positives and negatives,
we still recovered several interactions of which the biological rele-
vance was supported by the extended reference set, the functional

and regulatory coherence analysis, and the nCounter experiments
together. Nevertheless, due to the limited coverage of the bench-
marking in general (Supplemental Figure 5), it is justified to consider
all abiotic stress GRN predictions as useful hypotheses, with the
ones being validated obtaining a higher confidence (Walhout, 2011).
Furthermore, we showed that the abiotic stress GRN can be

clustered into functionally coherent coregulated gene modules,
which facilitated the biological interpretation of the GRN net-
work. These gene modules made it also possible to attribute GO
Biological Process annotations to 1966 uncharacterized genes
using the “guilt by association” principle. Interestingly, we detected
stress-related modules that operate in response to environmental
conditions that were not included in the microarray compendium,
such as biotic stress (module 443) and iron deficiency (module
223). This could be explained by the fact that the modules are part
of a “general plant core environmental stress response” (Kilian
et al., 2007) but could also indicate specific crosstalk (Suzuki et al.,
2014).
Reverse-engineering based only on expression profiles has

limitations in recovering true direct regulatory interactions and
will generate false positives. First, the predicted interactions are
not necessarily direct interactions but might constitute longer
paths consisting of hidden direct regulators between the detected
regulator and target gene (Vermeirssen et al., 2009). This can
partially be overcome by identifying cis-regulatory motifs in the
promoters of target genes, either within the network inference
algorithm or postprocessing, as is done in this study. We dem-
onstrated coregulation of module genes through the significant
overrepresentation of abiotic stress cis-regulatory motifs, which
for several modules corresponded to the predicted TFs, indicative
of direct regulatory interactions. The availability of known cis-
regulatory motifs for specific TFs is limited, even for a well-
studied model species such as Arabidopsis (Higo et al., 1999;
Palaniswamy et al., 2006; Vandepoele et al., 2009). Furthermore,
there is not a one-to-one relation between a specific TF and a cis-
regulatory motif (Badis et al., 2009). Hence, reverse-engineering
methods that do incorporate cis-regulatory motifs might be too
strict. Additionally, we had binding evidence from Y1H and ChIP
experiments in the reference sets indicating that several of the
predicted interactions were direct (Supplemental Table 1).
Moreover, we were able to correctly predict the direct regulation
by NAC13 of eight genes, promoters of which were bound by
NAC13 in a ChIP experiment in our previous study (Supplemental
Data Set 4) (De Clercq et al., 2013). Second, many network

Figure 4. (continued).

(A) and (C) Module 150 had as top significant GO Biological Process term “PABA metabolism.” Conditions where the module genes were most highly
upregulated consisted of osmotic, salt, and oxidative stress. Two regulatory interactions with NAC019 were confirmed by the extended reference set.
Out of 15 module genes tested by nCounter, we experimentally validated 10 targets for NAC032, all of which contained multiple NAC binding motifs in
their promoters, and three targets for RAP2.6L. Additionally, we detected one interaction with RAP2.1, four interactions with WRKY6, seven with ERF6,
eight with NAC053, and 14 with NAC13.
(B) and (D) Module 293 was highly significantly GO enriched for “response to cyclopentenone” and “toxin catabolic process.” Conditions where the
module genes were most highly induced included oxidative stress and auxin inhibition. All module genes were found to be regulated by WRKY6 and
WRKY15 in the extended reference set. Through nCounter experiments on 14 module genes, we confirmed four targets for NAC053, seven for WRKY6,
eight for NAC032, and 13 for NAC13. Additionally, we found 12 targets for ERF6. Several of these targets contain multiple NAC or W-box binding sites in
their promoter, as well as the NAC13/NAC053 MDM motif and the WRKY6 ARE motif. This module is likely involved in MRR.
Interpretation is as in Figure 2. Asterisk indicates MDS gene.
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inference methods, including LeMoNe and CLR, have difficulty in
distinguishing between coexpression and regulation based on
expression profiles (Michoel et al., 2009). Nevertheless, average
rank aggregation will result in the top predictions having a higher
chance of being predicted by multiple methods, although the
ranks of a specific interaction in the individual methods also play
a role. Our benchmarking points out that regulatory interactions
predicted by multiple reverse-engineering algorithms were more
likely to be true positives.

Experimental validation indicated that many regulatory inter-
actions were also missed by network inference. Only regulators
with a clear correspondence between their transcriptional readout
and their regulatory activity can be readily retrieved. Interactions
with TFs that are tightly regulated through posttranslational mod-
ifications including redox modifications, protein-protein interactions,
phosphorylation, ubiquitination, sumoylation, proteolytic activation,
or a combination thereof (Qin et al., 2011; Vaahtera and Brosché,
2011), or that are controlled by microRNAs, might be missed.
However, we were able to recover functional heterodimers among
the predicted regulators, despite the limited availability of experi-
mental protein-protein interactions. Additionally, TF perturbation
combined with differential expression analysis also identified direct
and indirect interactions, complicating the recovery of the true un-
derlying direct GRN. We partially circumvented this by considering
paths of length two in the network, hence increasing our predictions.
False negatives could possibly be further reduced by adding more
diverse algorithms to the ensemble. Overall, experimental protein-
DNA interaction mapping combined with gene expression data
could provide an even more biologically relevant picture of the GRN.

TF perturbation experiments revealed an interconnected GRN,
with many genes targeted by multiple TFs from the selected set,
as predicted. Moreover, the selected TFs regulated one another,
with NAC13 as a potential major regulator. Several of the selected
TFs have previously been reported to act in oxidative stress re-
sponses. WRKY6 is a positive regulator of a thioredoxin (Laloi
et al., 2004). RAP2.6L induces antioxidant defense under water-
logging stress by an ABA-dependent pathway (Liu et al., 2012).
ERF6 is a positive regulator of reactive oxygen species (ROS)-
responsive genes in the oxidative stress response (Wang et al.,
2013). NAC053 promotes ROS production by binding directly to
the promoters of genes encoding ROS biosynthetic enzymes
during drought-induced leaf senescence (Lee et al., 2012).
NAC13 and likely also NAC053 are direct regulators of the mi-
tochondrial retrograde regulation of the oxidative stress response
(De Clercq et al., 2013). These membrane-bound NAC proteins
(NTL TFs) are part of a phylogenetic subgroup (NAC2) of the NTL
TFs (Kim et al., 2010) and share the MDM cis-regulatory element
present in mitochondrial retrograde regulated genes (De Clercq
et al., 2013). Therefore, it is not surprising that their topological
overlap was the largest. NAC032 interacts with NAC019 upon salt
and osmotic stress in an ABA hormone interactome (Lumba et al.,
2014), in agreement with both TFs targeting modules 150 and
174, which are highly induced upon these stresses and ABA
(Figure 3C). Therefore, together with our observed phenotype of
improved growth performance during osmotic stress, it is likely
that the ABA-responsive NAC032 mediates the oxidative stress
aspect of the osmotic stress response. While RAP2.1 and RAP2.6L
targeted only a minority of genes and modules, NAC032 and

ERF6 mostly activated, NAC053 and WRKY6 mostly repressed,
and NAC13 both activated and repressed over 40% of the target
genes experimentally tested. These five TFs regulated modules
that function in detoxification processes during oxidative stress
in plants, such as modules 150, 191, and 293. Abiotic stress is
associated with the perturbation of ROS homeostasis. Increased
ROS levels are able to damage cellular components and might
also act as secondary messengers (Apel and Hirt, 2004; Baxter
et al., 2014). Nonenzymatically formed compounds derived from
the oxidative metabolism of polyunsaturated fatty acids, cyclo-
pentenone oxylipins, are triggered by increasing ROS levels and
serve important roles in diverse processes such as detoxification,
defense response by the production of secondary metabolites, and
programmed cell death (Thoma et al., 2003; Mueller et al., 2008;
Stotz et al., 2013). These oxylipins induce detoxification enzymes,
which in turn metabolize them. NAC032, WRKY6, NAC053, and
RAP2.6L have been associated with response to cyclopentenone
and detoxification processes (Mueller et al., 2008; Heyndrickx and
Vandepoele, 2012; Simon et al., 2014; Zander et al., 2014). TFs that
govern detoxification of xenobiotics and possibly endogenous
harmful metabolites, such as cyclopentenone, are TGA2, TGA5,
and TGA6, which bind a motif with consensus sequence TGACGT
in promoters of salicylic acid-inducible genes, as a heterodimer
with SCL14 (Fode et al., 2008; Blanco et al., 2009). We did not
detect these TFs as predicted regulators of our modules. However,
NAC032 is most likely a direct target of the TGA-SCL14 complex
(Fode et al., 2008; Zander et al., 2014), and WRKY6 as well, since
both TFs contain TGA motifs in their promoters and were found to
regulate detoxification-related genes, several of which are reported
to be TGA regulated (Mueller et al., 2008; Zander et al., 2014; this
study). Therefore, detoxification-related genes in the oxidative stress
network could be regulated by TGA TFs indirectly, through NAC032
or WRKY6, or other TFs in the oxidative stress GRN. In addition, the
expression of 40% of all cyclopentenone-inducible genes was in-
dependent of TGA2, TGA5, and TGA6 (Mueller et al., 2008), and
TGA’s TFs can recruit different interacting proteins for hetero-
dimerization (Fode et al., 2008), suggesting that other regulatory
factors influence cyclopentenone oxylipin detoxification. In this
respect, treatment with an ethylene precursor of the triple mutant
tga2 tga5 tga6 identified 136 induced genes whose expression is
TGA dependent, including genes encoding the TFs NAC032,
WRKY45, and ZAT10 of our oxidative stress GRN, while 227 TGA-
independent upregulated genes were detected, including those
encoding NAC019, RAP2.6L, WRKY40, and WRKY75 (Zander
et al., 2014).
Several of the modules of the oxidative stress GRN were also

predicted to be regulated by other TFs with a reported function in
the oxidative stress response, such as MYB51 (Gigolashvili et al.,
2007), BZIP60 (Iwata et al., 2008), WRKY15 (Vanderauwera
et al., 2012), WRKY40 (Van Aken et al., 2013), WRKY30 (Scarpeci
et al., 2008), NTL6 (Yang et al., 2014), and NAC042 (Wu et al.,
2012); with a reported function in osmotic stress, such as WRKY15
(Vanderauwera et al., 2012), and salt stress, such as SZF1 (Sun et al.,
2007); or with a reported function in detoxification, such as RD26
(Fujita et al., 2004). Regulatory interactions with BZIP60, WRKY15,
NAC042, RD26, and NAC019 were even confirmed by the reference
sets from literature (Figure 3C). Whereas previous studies elaborate
on the individual roles of these TFs in the oxidative stress response,
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we demonstrated here the coordinated and intertwined regulation
by NAC13, NAC053, ERF6, WRKY6, and NAC032, and very likely
MYB51, BZIP60, WRKY15, and the other TFs, of the oxidative
stress and detoxification response in Arabidopsis.

More specifically, we found several connections of the core
oxidative stress GRN with conditions in which mitochondrial
function is impaired due to adverse environmental conditions and
mitochondria signal to the nucleus to trigger feedback responses
(De Clercq et al., 2013). Several TFs in the network bind the pro-
moters of nuclear genes encoding mitochondrial proteins, such as
GBF3, NAC13, NAC053, WRKY15, WRKY30, WRKY40, WRKY45,
and WRKY75 (Ng et al., 2014). Several MDS genes were part of
the selected modules (Figure 3C). In addition to the MRR regula-
tory role of NAC13 and NAC053, WRKY TFs have also been re-
ported to regulate MRR (Van Aken et al., 2013). There is also
a connection between detoxification and MRR. Genes of modules
involved in detoxification were highly upregulated by auxin tran-
scriptional inhibitors, which have been reported to induce MRR
(Kerchev et al., 2014). In mammalian cells, cyclopentenone pros-
taglandins are potent inhibitors of nuclear factor-kappaB activation
(Rossi et al., 1997), which also mediates MRR upon mitochondrial
dysfunction (Butow and Avadhani, 2004). This points to MRR
steering detoxification processes during oxidative stress, likely
through the TFs in the oxidative stress GRN.

Taken together, through extensive in silico and experimental vali-
dation of an abiotic stress regulatory network constructed by en-
semble reverse-engineering, we demonstrated its value in unraveling
system biological insights into the plant abiotic stress response.

METHODS

Expression Profile Compendium

We gathered Raw Affymetrix ATH1 expression profile data (CEL files) from
GEO, TAIR, ArrayExpress, NASCArrays, and in house for 45 series of
experiments, representing 642 arrays and 283 different control and ex-
perimental conditions (Supplemental Data Set 1) (Petrov et al., 2012). Ex-
perimental conditions were annotated according to the type of abiotic stress
and hormone treatment. The microarray data were preprocessed in Bio-
conductor R. Through the robustmultiarray averagemethod, a background-
adjusted, quantile normalized, and summarized log-transformed expression
value was obtained for each Arabidopsis thaliana probe set. Different rep-
licate conditions were summarized and 199 ratio expression values were
derived for each probe set by dividing experiment over control. To limit off-
target hybridization, we used a custom Arabidopsis cdf file that consists of
19,937 probe sets of at least eight probes, each targeting with perfect
sequence identity to its transcript and not aligning to any other gene’s
transcript with zero or onemismatches (Casneuf et al., 2007). Gene symbols
and TAIR functional descriptions throughout the article are based on
gene_aliases.20130130.txt and TAIR10_functional_descriptions from
TAIR (www.arabidopsis.org). We removed genes for which the ratio hardly
changed over all conditions (SD lower than 0.25) to identify regulation
programs for different types of abiotic stresses as opposed to the overall
regulation of the general abiotic stress response. Hence, we obtained an
Arabidopsis gene expression profile compendium consisting of average
expression ratios for 13,805 genes in 199 conditions.

Regulator List

We selected 1340 TFs based on the presence on the ATH1 array and
described in the database Plant TFDB v2.0 Peking University, which

contains 1709 TFs in 58 families (only ATG identifiers, PlantGDB-generated
Unique Transcripts, and UniGene identifiers) (Zhang et al., 2011).

LeMoNe Analysis

We ran 20 independent Gibbs sampler LeMoNe runs (software available at
http://bioinformatics.psb.ugent.be/software/details/LeMoNe) (Joshi et al.,
2008, 2009), generating 20 local optima module clusters solutions, from
which an ensemble-averaged solution of coexpression modules was
created. We varied the ensemble clustering parameter qopt (at least cluster
together in 5 out of the 20 runs _ qopt25 and at least cluster together in 10
out of the 20 runs _ qopt50, with a higher stringency leading to smaller size
modules). LeMoNe assigns each gene to only one cluster. For qopt25 and
qopt50, we obtained 380 and 998module clusters, respectively, containing
three or more genes, with a total of 6683 and 7698 genes. Using the
regulator list described above and now also including regulators with low
variation in gene expression for the regulator assignment, LeMoNe pre-
dicted a ranked list of weighted regulators for each module (Vermeirssen
et al., 2009). We considered only the top 2% of all regulators assigned,
having a weight of 10 or higher. For both cluster solutions qopt25 and
qopt50, the regulator assignment was performed twice and the solutions
were combined by mean reciprocal rank aggregation, i.e., the final rank of
a predicted interaction is the reciprocal mean of the ranks of the underlying
LeMoNe_qopt25R and LeMoNe_qopt50R solutions. Finally, we obtained
215,656 and 220,841 predicted regulatory interactions for LeMoNe_
qopt25R and LeMoNe_qopt50R, respectively.

CLR Analysis

We applied CLR (Faith et al., 2007) to the microarray compendium de-
scribed above, to which the expression profiles of remaining TFs from
Plant TFDB present on ATH1 with low expression ratio variability were
added and now consisted of average expression ratios for 14,219 genes
in 199 conditions. We retrieved mutual information z-scores for target
gene interactions with the 1340 regulators defined above. With a cutoff for
the z-score at 3.5 (P value < 2.15 3 1025), we obtained a total of 243,530
predicted regulatory interactions.

TwixTrix Analysis

We also applied TwixTrix (software available at https://code.google.com/
p/twixtrix/) to the same microarray compendium of 14,219 genes (Qi and
Michoel, 2012). We obtained a total of 199,985 predicted regulatory in-
teractions with a cutoff for the z-score at 3 (P value < 0.0027).

Combining Predictions Made by LeMoNe, CLR, and TwixTrix

The four predictions made by different, individual reverse-engineering
methods were combined by unweighted rank aggregation. Every pre-
dicted regulatory interaction received a final rank that was calculated by
averaging the ranks of the four individual inference solutions (average rank
aggregation), by taking the highest ranking given by the individual sol-
utions (union), or by averaging the reciprocal ranks of the individual
solutions (mean reciprocal rank aggregation) for that specific interaction.
When an interaction was not predicted by a certain method, it received for
that method a rank that was equal to the number of predictions (around
200,000) plus one (Marbach et al., 2012).

Reference Sets

From different resources we compiled a set of “known” experimental
regulatory and protein-DNA interactions to benchmark our predictions
(we incorporated only interactions that contain genes and TFs for which
predictions were made): (1) AtRegNet (last updated September 15, 2010;
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Yilmaz et al., 2011): 7221 interactions between 57 TFs and 4903 genes (of
which 648 interactions between 37 TFs and 581 genes were direct
confirmed interactions); (2) TF perturbation expression interactions from
literature (mostly microarray): 8772 interactions between 43 TFs and 5456
genes (Supplemental Table 5); (3) Brady Y1H (Brady et al., 2011; Gaudinier
et al., 2011): 157 interactions between 82 TFs and 20 genes; (4) TF tool
from CORNET: 36,550 interactions between 48 TFs and 10,336 genes (De
Bodt et al., 2012); (5) additional ChIP experiments from literature, where
high-confidence targets were identified (combination of binding and ex-
pression profiling): 659 interactions between 7 TFs and 624 genes
(Supplemental Table 5). In total, this known reference set has 52,328 in-
teractions between 201 TFs and 12,072 genes (Supplemental Table 1).
From this reference set, we assembled two additional reference sets. We
constructed an extended reference set of 789,068 interactions in an iter-
ative way as follows:We derived a regulatory interaction between protein A
and target gene B if there is a path through a combination of reported
protein-DNA interactions and regulatory interactions present from A to B,
e.g., A binds C, C regulates D, D binds E, and E regulates B (Supplemental
Table 1). The derived regulatory interactions are the “hidden” interactions
present in the known protein-DNA interactions and regulatory interactions
data sets, with paths of length greater than one in the known reference set.
We also built a direct reference set that consisted of 1307 “known” reg-
ulatory interactions between 43 TFs and 1115 genes that had evidence of
both binding between TF and target gene and regulatory effect of TF on
transcription of target gene (Supplemental Table 1). The latter reference set
likely consists of “true” direct transcriptional regulatory interactions.

Measurement of Algorithm Performance

Weconstrained the predicted interactions to include only the TFs and target
genes of the reference sets, and we also restricted the reference sets to the
14,219 genes and 1340 TFs for which predictions were made. For every
algorithm and every reference set, we evaluated the algorithm performance
as follows. We calculated precision, i.e., number of true positives over
number of predictions, and recall, i.e., number of true positives over number
of known interactions, for every rank for which predictions for the specific
reference set were made to make precision-recall curves and to estimate
AUPR, using trapezoid rule numerical integration. We computed the
F-measure, which is the harmonic mean of precision and recall with a best
value of 1, for the top 200,000 total predictions.

Clustering Genes into Coregulation Modules

We calculated the overlap in predicted regulators for all 11,938 genes in
the abiotic stress GRN using the Jaccard similarity index and used this to
group the genes into modules of coregulated genes through k-means
clustering. The optimal number of clusters (k = 600) was chosen based on
coregulation correctness and functional coherence of the obtained
coregulated modules. We retained at most 10 regulating TFs per module:
TFs were ordered by the number of genes in the module they regulate,
where we required that they regulate at least half of the genes in the
module and by their average rank calculated over all the genes they
regulate in the module. We removed few clusters containing less than
three genes, one cluster containing over 1000 genes, and few clusters
that had no single TF regulating 50% or more of the cluster genes.

We calculated the out-degree of the TF nodes in the abiotic stress GRN
and the module network to identify the 5% most connected TFs and
denoted them “hubs.”

Visualization of Gene Modules

Togenerate figures that visualize coregulatedmodules as heatmaps, both for
the article and for the online supplemental data, we developed a standalone
Java tool called ModuleViewer. ModuleViewer can read an expression matrix

in combination with data that cluster genes into coregulated modules and
assigns regulators to each module. On top of this, biological data can be
loaded that link information on the functional coherenceof themodule and the
biological relevance of the predicted regulators, such as GO and AraCyc
annotations, cis-regulatory motifs, condition categories, and protein-protein
interactions to each module. These data can be represented in several visual
styles, like color matrices, interaction arrows, or gene highlights. After loading
the data, the tool will automatically compose the figures and return a GUI
allowing the user to browse through the generated figures and export a se-
lection as vector graphics. The network figures for the article were drawn in
Cytoscape. To create the interactive networks in the online supplemental
data, we used the cytoscape.js JavaScript libraries.

Functional Analysis on Gene Modules

Each module was analyzed for GO Biological Process enrichment with
BiNGO using a gene-based custom annotation file for Arabidopsis (created
from annotation and ontology files downloaded from www.geneontology.
org on May 3, 2013; Berardini et al., 2004), the whole annotation as a
reference set (22,813 Arabidopsis genes with Arabidopsis Gene ID have
a Biological Process annotation), and Benjamini and Hochberg false dis-
covery rate multiple hypothesis testing correction for multiple testing with
a confidence level of 95% (Maere et al., 2005). In a similar manner, each
module was assessed for AraCyc 10.0 metabolic pathway enrichment
(2785 Arabidopsis genes are annotated with a specificmetabolic pathway).
We kept the significant GO or AraCyc enrichment only if more than one
gene in the module had the GO Biological Process or AraCyc metabolic
pathway annotation. The functional coherence of genes in themoduleswas
independently assessed by identifying the percentage of genes in the
module that shared functional gene-gene links in AraNet (1,062,222 gene-
gene links in total between 19,647 genes) and the percentage of AraNet
gene-gene links compared with all possible gene-gene interactions within
the module (Lee et al., 2010). Through 33,202 experimental protein-protein
interactions between 7936 different proteins present in CORNET (De Bodt
et al., 2012), we also calculated for eachmodule the percentage of genes in
the module that shared protein-protein interactions in CORNET and the
percentage of CORNET protein-protein interactions compared with all
possible gene-gene interactions within the module. Finally, the modules
were analyzed for the enrichment in 831 known oxidative stress response
marker genes (Supplemental Tables II to IV from Gadjev et al. [2006]).

cis-Regulatory Motif Detection

We searched Arabidopsis promoters for known cis-regulatory motifs from
the PLACE (Higo et al., 1999) and AGRIS databases (Palaniswamy et al.,
2006), motifs identified using the network-level conservation principle
present in ATCOECIS (Vandepoele et al., 2009), and additional binding sites
reported in the literature (Supplemental Table 3) through dna-pattern and
RSA-tools (van Helden et al., 2000). Promoters are defined as 1 kb up-
stream of translation start sites or in the intergenic region if the adjacent
upstream gene is located within a smaller distance, of all Arabidopsis
genes, which were obtained from PLAZA2.5 and correspond to TAIR10
(Van Bel et al., 2012). In total, 33,104 genes are associated with a cis-
regulatory motif. cis-regulatory motif enrichment was calculated for each
module using hypergeometric enrichment and Bonferroni multiple hy-
pothesis testing correction with a confidence level of 95%. To further
reduce the inclusion of false positives, we considered only motifs that were
present in at least 50% of the module gene promoters and that were more
than 1.5 times enriched in the module compared with the genome.

Generation of Transgenic Arabidopsis Plants

Several transgenicArabidopsis lines were previously described: NAC13_OE
(overexpression) and NAC053_OE (De Clercq et al., 2013), ERF6_KO
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(knockout) (Dubois et al., 2013), RAP2.6L_OE (Krishnaswamy et al., 2011),
RAP2.6L_KO (Che et al., 2006), and WRKY6_OE lines (Robatzek and
Somssich, 2002). For ERF6_OE and NAC032_OE, the full-length open
reading frames of ERF6 and NAC032 were amplified by PCR from first-
strand cDNA of Arabidopsis ecotype Columbia-0 (wild type) with gene-
specific primers extended with the attB sites for Gateway cloning
(Invitrogen; Supplemental Table 6). PCR reactionswere runwith high-fidelity
Phusion DNA polymerase (Finnzymes), and fragments were cloned into the
Gateway entry vectors according to the manufacturer’s instructions. Next,
a constitutive promoter-driven expression construct was generated for
NAC032 and ERF6 in the binary destination vector pK7WG2D (Karimi et al.,
2007). Constructs were transformed into Arabidopsis by Agrobacterium
tumefaciens-mediated floral dipping (Clough andBent, 1998). Homozygous
lines with a single T-DNA locus and high transgene expression were se-
lected via segregation analysis, followed by RNA gel blot and quantitative
RT-PCR analysis. For NAC13_ami, NAC13-specific sequences were
identified with the Web MicroRNA Designer (www.weigelworld.org). The
miR precursors were constructed according to Schwab et al. (2006) and
cloned into pK7WG2D as described by De Clercq et al. (2013). For the loss-
of-function plants, we obtained T-DNA insertion mutants from the ABRC at
Ohio State University (Supplemental Table 7). Homozygous plants were
selected by genomic PCR with gene-specific and T-DNA-specific primers.
Residual expression levels of the genes were determined by quantitative
RT-PCR.

Plant Growth Conditions and Stress Treatments

Arabidopsis ecotype Columbia-0 plantswere grown until stage 1.04 (Boyes
et al., 2001) on half-strength Murashige and Skoog (MS) medium (Duchefa
Biochemie) at 21°C with a 16-h/8-h light/dark photoperiod and 100 mmol
m22 s21 light intensity. For the nCounter experiments, a combination of
wild-type and three transgenic lines were grown for 2 weeks on a nylon
mesh (20-µm pore size; PROSEP) on half-strength MS agar medium and
subsequently transferred to half-strength MS supplemented with 150 mM
NaCl. Twelve hours after transfer, three biological samples of 5 to 10
seedlings were harvested. Total RNA was prepared with TRIzol reagent
(Invitrogen). The nCounter analysis of 100 ng RNA from each sample was
performed according to the gene expression assay protocol of the man-
ufacturer NanoString Technologies (Geiss et al., 2008). For the mannitol
stress assays, the wild type, two independent transgenic NAC32_OE
plants (NAC032_OE1, which was also used for nCounter analysis, and
NAC032_OE2 as a second independent transgenic line for the mannitol
stress assays), and NAC032_KOwere grown together on a nylonmesh on
half-strengthMS supplemented with 75mMmannitol for 17 d. Rosette area
was measured using ImageJ software (http://imagej.nih.gov/ij/). Green
biomass was separately harvested from the root tissue to determine the
shoot biomass.

nCounter Data Analysis

We identified the differential expression analysis between wild-type and
perturbed TF plants using both the DESeq and edgeR packages for count
data in Bioconductor R (Anders and Huber, 2010; Robinson et al., 2010;
McCarthy et al., 2012). DESeq and edgeR are compatible statistical
methods that are based on a negative binomial distribution model of read
counts (Nookaew et al., 2012; Robles et al., 2012). The raw nCounter data
needed to be rescaled by dividing (per experiment) by two factors: (1) the
sum of the positive controls per experiment divided by the median of the
sums of the positive controls over all experiments, to correct for technical
errors, and (2) the geometric mean of the three most stable household
genes, selected by geNorm (Vandesompele et al., 2002), per experiment
divided by the total geometric mean of these three household genes over
all experiments, to correct for differences in mRNA content of the sam-
ples. The raw nCounter data were fed into the R packages and the above

rescaling factors were written in the sizeFactors slot of the CountDataSet
object for the package DESeq and in the norm.factors slot of the samples
slot of the DGElist object for the package edgeR. For DESeq, we applied
a local fit for the estimation of the dispersions using the method “per-
condition.” In a nonpaired design, we compared three replicate perturbed
TF plants against three replicate wild-type plants that were together with
the former on the same experimental plates. For edgeR, we estimated the
dispersions per group of samples that were together on the same plates.
Plotting the sample relations by multidimensional scaling indicated a batch
effect for the salt-treated NAC13_ami, NAC032_KO, and NAC053_KO
samples and the Wassilewskija background samples (WS-RAP2.6L_OE)
(data not shown). Hence, these samples were analyzed in a paired design,
using the GLM functionality and the Cox-Reid profile-adjusted likelihood for
the estimation of the dispersions (McCarthy et al., 2012). The other samples
were analyzed in a nonpaired design, using the classical quantile-adjusted
conditionmaximal likelihood for the estimation of the dispersions (Robinson
et al., 2010). Raw P values were adjusted for multiple comparisons by the
Benjamini-Hochberg procedure, which controls the false discovery rate.
Genes with an adjusted P value < 0.1 were considered to be differentially
expressed. Upon evaluation of the reverse-engineering predictions by
nCounter, EdgeR detected 56%of the true positives, 24%byDESequation,
and 20% by both methods. We found that true positive interactions were
more likely to be detected by both DESeq and edgeR (two-tailed Fisher
exact test, P value = 0.0022).

Topological Overlap Coefficient

For the nCounter experimental network, a topological overlap matrix was
created for promoters of target genes and interacting TFs, respectively, by
calculating the (directed) topological overlap coefficient for every node
that had more than one link (Vermeirssen et al., 2007). The topological
overlap coefficient or mutual clustering coefficient is a relative measure of
the number of neighboring nodes that are shared between two nodes. The
geometric formula was used (Goldberg and Roth, 2003).

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome
Initiative or GenBank/EMBL databases under the accession numbers
provided in Supplemental Table 8.

Supplemental Data

Supplemental Figure 1. Venn Diagram Illustrating the Percentage of
the Top 200,014 Predictions of the Rank Aggregation Ensemble
Predicted by Each of the Four Network Inference Solutions and Their
Overlap.

Supplemental Figure 2. Histograms of the Pearson Correlation
Coefficient on the Expression Profile Ratios within Modules of the
Abiotic Stress GRN and within Random Modules.

Supplemental Figure 3. Literature-Based Evidence for the Biological
Relevance of the Abiotic Stress Module GRN: Module 402 Was
Implicated in Jasmonic Acid Biosynthesis.

Supplemental Figure 4. Number of Differentially Expressed Genes in
the Different TF Perturbation Experiments Analyzed by nCounter and
Considered Statistically Significant by edgeR, DESeq, or Both.

Supplemental Figure 5. Visualization of all the Predictions in the Abiotic
Stress GRN for the 102 Selected Genes in the nCounter Experiments.

Supplemental Figure 6. Osmotic Stress Resistance Phenotype of
NAC032 Overexpression Plants.
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Supplemental Figure 7. Module 191 Was Involved in Detoxification
Processes of the Oxidative Stress Response.

Supplemental Table 1. Number of Interactions by Source and Type of
Experiment of the Reference Sets of Known Protein-DNA and
Regulatory Interactions.

Supplemental Table 2. Properties of the 5% Most Connected TFs in
the Abiotic Stress Gene Regulatory Network and the 5% TFs That
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Supplemental Table 3. Known cis-Regulatory Motifs from the PLACE,
AGRIS, and ATCOECIS Databases and Some Additional cis-Regulatory
Motifs from Literature, Which Are Listed Below, Were Searched in 1-kb
Arabidopsis Promoters.

Supplemental Table 4. Known cis-Regulatory Motifs for the Tested
TFs Present in 1-kb Promoters of nCounter Target Genes.

Supplemental Table 5. ChIP and Perturbed TF Expression Profiling
Experiments from Literature Used in the Reference Sets.

Supplemental Table 6. Sequence of Primers Used to Clone the
Coding Sequence of NAC032 and ERF6.

Supplemental Table 7. SALK T-DNA Insertion Lines Used in This
Study as Knockout Lines.

Supplemental Table 8. Accession Numbers of the Genes Mentioned
in This Study.

Supplemental Data Set 1. Microarray Compendium from Which
Expression Profile Ratios (Perturbation over Control) in 199 Different
Abiotic Stress Conditions Were Calculated.

Supplemental Data Set 2. The Abiotic Stress Gene Regulatory
Network: Predictions, Rank, Symbolic Names, Individual Methods,
and Module Number.

Supplemental Data Set 3. Overview of the 572 Modules of Coregu-
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vance of Their Predicted TFs.

Supplemental Data Set 4. Overview of the 289 nCounter Experimen-
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