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Abstract 

To assist in the development of mechanical structures which are subjected 
to dynamic loads, structural dynamic testing, using a test rig loaded by 
servo-hydraulic actuators to reproduce operational measured responses in 
the laboratory, may form an essential element of the development process. 

The input loads acting on the structure under operational conditions can 
in most cases not be measured directly, and instead the structural dynamic 
responses to these loads are recorded. The input forcing functions then 
need to be determined to effect a simulation of the operational conditions. 

With this work, a time domain based testing system has been developed 
to enable the reproduction of service-acquired dynamic responses on any 
actual full scale structure in the laboratory, taking into account the full 
multiple axis dynamics of the system. The system is able to determine 
the input forcing functions in such a way that, when applied to the test­
structure, an accurate reproduction of the in-service measured responses 
are reproduced on the computer controlled laboratory test rig. 

The test structure is instrumented with suitable transducers which are 
used to record the structural dynamic response under operational condi­
tions. The test structure is thereafter installed in a servo-hydraulic actua­
tor test rig in the laboratory. The test rig is excited with synthetic random 
inputs while simultaneously recording the responses to these inputs. Using 
the experimental input-output data, a dynamic model of the test system 
is found by using parametric dynamic system identification techniques. By 
using the service aquired vibration responses together with the dynamic 
model, the system inputs may be determined. A series of iterations around 
this first approximation finally provides a high degree of accuracy in the 
simulation. 

To prove the integrity of the developed system, it has been applied to 
a number of case studies using a variety of different engineering structures, 
and very accurate results were achieved. 
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Opsomming 

In die ontwikkeling van meganiese strukture wat onderwerp word aan 
dinamiese belastings, vorm struktuurdinamiese toetsing, met behulp van 
'n toetsopstelling wat van servo-hidrouliese aktueerders gebruik maak, 'n 
essensiele element. 

Die struktuuropwekkingskragte kan in die meeste gevalle nie direk gemeet 
word nie en die gevolglike struktuurdinamiese responsies word dus gemeet. 
Die opwekkingskragte moet dan uit hierdie responsies afgelei word ten einde 
'n simulasie van die operasionele toestande te kan uitvoer. 

Met hierdie studie is 'n tyddomein gebaseerde toetstegniek ontwikkel 
waarmee die operasioneel gemete dinamiese responsies van enige struk­
tuur in die laboratorium nageboots kan word, deur inagneming van die 
volledige multi-assige dinamika van die stelsel. Die tegniek bepaal die op­
wekkingskragte op so 'n wyse dat wanneer die struktuur daaraan blootgestel 
word, 'n akkurate simulasie van die operasionele responsie op die rekenaar 
beheerde multi-assige toetsopstelling in die laboratorium plaasvind. 

Die struktuur word met geskikte omsetters geinstrumenteer wat die 
struktuurdinamiese responsies tydens operasionele toestande opneem. Daar­
na word die toetsstruktuur in die laboratorium in 'n servo-hidrouliese ak­
tueerder toetsopstelling ingebou. Die toetsopstelling word dan met behulp 
van sintetiese, stogastiese seine opgewek terwyl die responsies tegelykertyd 
gemeet word. Uit die ingangsresponsie data word 'n dinamies~ model van 
die stelsel in die tyddomein bereken deur gebruik te maak van parametriese 
dinamiese stelselidentifikasietegnieke. Met behulp van die model sowel as 
die operasioneel gemete responsies, kan die stelselopwekkingseine bereken 
word. Enkele iterasies word daarna gebruik wat lei na 'n simulasie van hoe 
akkuraatheid. 

Die integriteit van die ontwikkelde stelsel is beproef deur verskeie ge­
vallestudies op ingenieurstrukture en akkurate resultate is verkry. 
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Chapter 1 

Introduction 

Dynamic synthesis, finite element techniques, fatigue prediction, modal­
and structural dynamic analysis and many other related fields have to­
day developed to an extremely high level of sophistication and accuracy. 
This is mainly due to the development of improved analysis algorithms 
and techniques together with the highly developed computer technology 
which allows these analysis techniques to be implemented with ease, see 
e.g. Coackley and Butcher [1992]. 

On the other hand, the design of mechanical engineering products dic­
tates optimized designs with lower safety margins but higher reliability, in 
the competitive markets today, with a resulfant strong emphasis towards 
product development, rather than a single design and manufacture. 

To assist in the development process laboratory testing of full scale 
prototypes or components has equally grown in sophistication, enabling 
the accurate simulation of operational conditions in the laboratory, Lund 
and Donaldson [1983]. 

To this end the ability to recreate actual measured service conditions 
in a laboratory is of great value in the development of dynamically loaded 
structures. The applications may be varied, ranging from endurance fa­
tigue testing of full scale structures or components, see e.g. Marsh [1988], 
deriving vibration test severities, see Richards (1990], studying vibration 
problems, optimizing vibration isolation systems and achieving a general 
understanding of the dynamic behaviour and resultant induced stresses of 
structures under actual operational conditions. 

18 
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1.1 System Overview 

The object is to measure the dynamic response of the test structure dur­
ing operational conditions and to recreate these conditions in a laboratory 
on the full scale structure mounted in a test rig loaded by servo-hyraulic 
actuators. It is in general not possible to measure the actual loads acting 
on the structure under operational conditions, and instead the dynamic 
responses to these loads are measured at positions remote from the load 
inputs. These remotely measured responses are subsequently utilized to de­
rive the system input forcing-functions, which means that this is an inverse 
dynamic problem. 

With this work, a time domain based system has been developed to 
enable the reproduction of service acquired dynamic responses on any actual 
full scale structure in the laboratory, taking the full multiple axis dynamics 
of the system into account. In short, the method functions as follows: 

• The structural dynamic response of the test structure is recorded with 
suitable transducers under operational conditions. 

• The test structure is thereafter installed in a laboratory test rig and 
excited by servo-hydraulic actuators, using synthetically generated 
input signals, while simultaneously recording the responses. 

• From the above experimental input and output data, a time domain 
based dynamic model of the complete system, including actuators, 
test rig and control electronics is determined, using parametric dy­
namic system identification techniques. 

• Using the dynamic model, together with the pre-recorded operational 
reponses, the input forcing-functions to the system which would result 
in these responses are determined in an off-line manner. 

• In most instances a linear dynamic model would be used, requiring a 
process of iterations around the initial estimate to achieve an accurate 
simulation of the desired operational responses. 

• Although not provided for in this study, in highly nonlinear systems 
it is also possible to employ a specific nonlinear model based on an 
analytical modelling of the system at hand. 

19 
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1.2 Existing Systems 

Similar systems functioning in the frequency domain, and essentially per­
forming the same function, have been in existence for a number of years. In 
a Phd dissertation by Dodds [1972], the frequency domain based concept 
was initially suggested, see also Craig [1975]. This led to an American sys­
tem "Remote Parameter Control" - (RPC), which was developed by MTS 
Systems Corporation and is described by Klinger & Stranzenbach [1979]. 
A similar German system "Iterative Transfer Function Compensation" -
(ITFC), was developed by Schenck AG, which is discussed by Craig [1979]. 
These systems are extensively used in the vehicle development industries. 
A system based on ITFC was also developed in South Africa by Mecalc, 
and is known as "Multi-Axis Structural Simulation Software" - (MAS3 ). 

The most recent significant development in the field of multiaxis test 
control is described in Fletcher [1990], where a technique was developed to 
accomodate more response transducers than actuators, i.e. a non-square 
system transfer matrix. This technique has been called global simulation. 
Sulisz, LaCombe & Fletcher (1992] also utilize the frequency domain ap­
proach in the "TS&SICS" software. They employed modal analysis tech­
niques to modify the test rig to improve the dynamic characteristics of the 
test rig. 

To the author's knowledge no such systems functioning in the time do­
main are in existence. The question arises why a time domain based system 
be used in preference to the already existing frequency domain techniques 
and what is to be gained by the development of such a system in the time 
domain ? These questions will be discussed in the next section. 

1.3 Frequency vs Time Domain Modelling 
and Analysis 

In paragraph 1.1 reference was made to a time domain model of the com­
plete system. Traditionally frequency response functions both in the elec­
tronic and structural disciplines are described in the frequency domain. 

Various considerations suggest substantial advantages in the time do­
main over the frequency domain. Over the past few decades the general 
trend in the fields of signal processing, structural dynamic synthesis, modal 

20 
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analysis, and control systems design has shown a marked movement to­
wards the time domain. Today's control systems literature refers to the 
frequency domain techniques as "classical techniques", whereas the time 
domain based techniques are called "modern methods". Two fundamental 
reasons have essentially contributed to this trend, firstly a great deal of 
research has been done over the past few decades into the time domain 
based control systems design and analysis, especially the understanding of 
multivariable control systems. Secondly, the ability of today's computers 
to handle the more intensive time domain based calculations, has enabled 
the practical implementation of these techniques. 

An interesting discussion is given by Soderstrom and Stoica [1989] who 
state that the nonparametric frequency domain techniques give moderately 
accurate results, whereas parametric time domain techniques are required 
for high accuracy. Burg's [1967] development of the Maximum Entropy 
Method (MEM) for spectral estimation as well as the AR and other time 
domain spectral estimators, see e.g. Priestly (1981], Kay [1988], are a clear 
indication of the general trend from the FFT based to the time domain 
based spectral estimation methodologies. 

This, and other factors, which will be enlightened below, prompted the 
author to investigate the feasibility of such a system, and the subsequent 
development thereof in the time domain. 

• Periodicity of Jignals: In frequency domain analysis all time signals 
need to be transformed to the frequency domain via an FFT algo­
rithm, which relies on the assumption of a periodic signal. In prac­
tice, neither the input, nor response signals are periodic, and period­
icity must hence be enforced by applying an appropriate weighting 
window, see Chatfield [1980]. This invariably results in a small dis­
tortion of the data, as well as loss of significant data, which leads to 
inaccuracies. On the other hand these problems are not present when 
analyzing in the time domain. 

• Amount of data required: The experimental determination of fre­
quency response functions, as is typical in modal analysis, requires 
a significant amount of data to ensure reliable results. Data of 10 
minutes to 1 hour is not uncommon when working in the frequency 
domain. Reliable results have on the other hand been obtained when 
analysing in the time domain from as little as 20 to 60 seconds of 
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data. This was also found in comparative studies on modal param­
eter estimation algorithms in both the time and frequency domains, 
see Galyardt and Quantz [1987]. Furthermore in the frequency do­
main the minimum amount of data required is one FFT length of 
typically 1024 data points, whereas these restrictions do not apply to 
the time domain, see Zhao [1985]. This is particularly advantageous 
when dealing with data consisting of short impulses. 

• Time versus frequency resolution: In structural fatigue testing a high 
degree of accuracy in the simulation is required. In particular, the 
accurate simulation of operational measured stress amplitudes is es­
sential since even small deviations in the stress amplitudes will cause 
significant errors in the actual endurance fatigue life. This fact may 
easily be verified through a Rainflow and cumulative fatigue damage 
analysis, see e.g. Bannantine [1990]. Accurate stress amplitudes may 
only be guarenteed by employing a sufficiently high sample frequency. 
In the frequency domain, the sample frequency is restricted by virtue 
of it's fixed relation to the spectral resolution. A high sample fre­
quency may ensure a high resolution of the time signals, but will 
cause a poor frequency resolution, which in certain applications in­
hibits the use of the frequency domain techniques. The time domain 
on the other hand is not affected by this problem. 

• Spectral leakage: Because of a discrete frequency spectrum which re­
sults in the leakage of specific frequencies to adjacent spectral lines, 
see Bendat and Piersol [1971], very low frequency components in the 
operational measured responses can very often not be simulated suc­
cessfully in the frequency domain. This situation typically occurs on 
vehicles, where low frequency trends are found in the measured re­
sponse data. To prevent leakage problems, it is generally required to 
filter out these low frequency trends when applying frequency domain 
techniques, see Raath and von Fintel [1989] and [1989 b]. In the time 
domain on the other hand, where the calculations are not frequency 
dependent, all frequencies can be accomodated with ease. 

• Local linearization of nonlinear systems: A further advantage in the 
time domain is the ability to re-identify a dynamic model using the 
actual simulation input-output data, which provides for a local lin-

22 

Digitised by the Library Services, University of Pretoria, 2015.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



earization of a nonlinear system. This technique was applied suc­
cessfully in the time domain by Raath [1991 b] on a highly nonlinear 
rubber component. In the frequency domain however the amount 
of data is insufficient from which to identify the frequency transfer 
function, and furthermore the simulation input excitation signals do 
not sufficiently cover all spectral lines, resulting in a poor transfer 
function. This is discussed by Raath and von Fintel [1989] and [1989 
b]. 

• Practical noiJe contaminated data: Dynamic System Identification 
techniques allow the process noise to be specifically modelled, result­
ing in a high accuracy in the identification process as discussed by 
Ljung [1987]. On the other hand, noise is treated in the frequency 
domain by simply taking a sufficient number of FFT averages, see 
e.g. Galyardt and Quantz [1987], Bendat and Piersol [1971]. 

• Ability to accomodate nonlinear and time-varying JyJtemJ: Although 
this aspect has not been dealt with in the present study, the time 
domain is best suited to accomodate both nonlinear, see Billings and 
Voon [1984], Leontaritis and Billings [1985] as well as time-varying 
systems, Astrom and Eykhoff [1971]. Nonlinear analysis cannot be 
dealt with in the frequency domain. Time-varying or non-stationary 
systems amongst others are best dealt with by adding a third, time 
axis onto the frequency response function, see Braun [1986]. 

Naturally there are also a number of disadvantages of the time domain 
over the frequency domain, which are listed below 

• Calculation intenJity: Time domain calculations are generally found 
to be more cumbersome than the frequency domain calculations. 

• Dynamic model order Jelection: In implementing the time domain 
techniques parametric modelling requires that both the structure and 
order of the dynamic model be specified. In the present study the 
structure of the model has been generalized, and it is only required to 
specify the model orders. Several techniques for the estimation of the 
model orders are available in the literature, some of which have been 
implemented. In the frequency domain however no prior knowledge of 
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model structures and orders are required, which is one of its greatest 
advantages. A pre-analysis in the frequency domain could provide 
a simple means of estimating the model orders for the subsequent 
time domain system identification process. Such a proposal has been 
detailed in section 10.2 . 

1.4 Detailed System Description 

The general functioning of the method has already been broadly outlined, 
and will now be described in more detail. 

1.4.1 Recording of Operational Responses 

The structure is instrumented with transducers which may be accelerom­
eters, strain gauges, displacement transducers or any other type of trans­
ducer which is able to render a signal analogous to the vibration response 
of the structure. The structure is then subjected to normal operational 
conditions, for instance aircraft flight tests, or a vehicle is driven over the 
desired road conditions, while recording the vibration response using the 
transducers. The recorded operational responses are utilized to derive the 
input signals to the test rig. The minimum number of transducers required 
would be equal to the number bf actuators to be used on the test rig. If 
fewer transducers than actuators are used, the system is in analogy to an 
over-constrained system, and cannot be solved. As far as the positioning 
of the transducers is concerned, each transducer should be positioned in 
such a way that the signal recorded by a specific transducer shows a high 
correlation with each corresponding intented actuator input load. 

1.4.2 System Model 

In the specific application, a general linear dynamic model is sought in 
which the user is not burdened by the requirement of specifying the analyt­
ical mechanics of the system at hand. This type of model is thus formulated 
to describe any linear dynamic system and is termed a "black-box" model. 
Figure 1.1 shows a typical laboratory test rig configuration. 
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Synthetic Excitation Signals 

Synthetic excitation signals are generated in the computer from a prescribed 
power spectral density function and conceptually constitute pseudo random 
white noise. These signals are sent simultaneously to all actuators, thereby 
exciting the entire test rig, while simultaneously recording the responses 
using the same transducers that recorded the operational vibrations. 

Dynamic System Model Identification 

It is important to realize that the identified model constitutes the entire 
path from the computer disc file containing the synthetic excitation signals 
u, and includes the DAC interfaces, smoothing filters, analogue PID feed­
back control system, servo-valves, actuators, loading members , test struc­
ture, transducers, signal conditioners, anti-aliasing filters, ADC interfaces 
up to the digital response file y on disc. This is clearly depicted in figure 
1.1 . 

From the known synthetic excitation signals, and the measured response 
to these excitations, a parametric dynamic model is identified in the time 
domain, using Dynamic System Identification techniques. This model takes 
the fully coupled multiple-input multiple-output dynamics of the system 
into account. 

1.4.3 System Model Inversion 

Having identified a dynamic model which describes the input-output char­
acteristics of the system, the model is used together with the remotely 
measured operational responses to calculate the system inputs, which re­
sulted in those responses. When applied to the test rig, these inputs would 
result in the desired operational responses on the test structure. In Sys­
tem Identification, and for that matter in all dynamic systems modelling 
and analysis, the model describes the response behaviour, given the system 
inputs ( y = J( u) ). In this case however, the inverse of this situation is 
desired, whereby the system responses are known, and the system inputs, 
which resulted in those responses , need to be determined. We therefore re­
quire an inver3e model for this purpose, in which two possible paths may be 
followed. The identified dynamic model is either inverted, or alternatively 
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Figure 1.1: Typical test rig configuration 
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an inverse model is directly identified, giving a description of the system 
from the responses to the system inputs ( u = J(y) ). 

1.4.4 Linear Solution to System Inputs 

Using the inverse model, the service acquired response data is transformed 
to the system input signals (or actuator drive signals), which should theo­
retically, when applied to the test rig, result in the desired operational 
responses. 

1.4.5 Iteration Process 

The test rig is then excited by these calculated drive signals, while the re­
sponses are again recorded. This operation should give the correct response 
signals had the system been linear, which is invariably not the case, and 
therefore requires some degree of iteration. Comparing the desired opera­
tional response to the laboratory achieved response, shows a response error, 
which is again input to the inverse model, and gives the required correction 
to the drive signals. 

The original drive signals are then updated by these corrections to 
achieve new drive signals. This process is repeated in a few iterations until 
the required accuracy between the operational responses and the laboratory 
responses has been achieved. 

1.4.6 Re-identification of System Model 

The iteration process primarily makes provision for nonlinearities. As al­
ready mentioned, a linearized model around the working point may be 
re-identified during the iteration cycles, using the input-output data from 
the test rig. These input-output signals are then already close to the true 
system inputs and outputs and should in most instances give an improved 
model around the working point. This feature is a further advantage of the 
time domain from which it is possible to re-identify a model as opposed to 
the frequency domain which would need significantly more data. 
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1.5 Structural Fatigue Testing through Ser­
vice Load Simulation Testing 

The main application of structural dynamic response reconstruction is in 
the field of structural fatigue testing through service load simulation test­
ing. This has also been the predominant emphasis of the applications of 
the developed time domain based system. A few comments regarding the 
background to service load simulation, especially in the vehicle durability 
fatigue testing environment are in order. 

Practical applications 

Service load simulation testing is an established field and is utilized success­
fully by many vehicle manufacturers. Probably one of the most compre­
hensive is the facility described by Petersen and Weissberger [1982]. Most 
of these applications are road simulators of varying complexity, see e.g. 
Zomotor, Schwarz and Weiler [1982]. Georgiev [1989] formalises a number 
of the input-output relations applicable to four channel road simulators. 

Necessity for Service Load Simulation Testing 

A great deal of engineering and scientific effort is spent on modelling the 
real world situation, and by replacing this real world situation by simplified 
equivalents. Yet in many situations realistic simulations of actual opera­
tional conditions are still demanded, e.g. Funk and Horst [1987], 

In multiaxialloading configurations it is in general not possible to reduce 
the actual service histories by means of reconstruction techniques from 
Rainflow counting and cumulative damage calculations, such as described 
in e.g. Conle and Topper [1983] . The only method of testing is by a realistic 
service load simulation test, since the applications lead to multiaxial fatigue 
where the dynamics of the test structure furthermore plays a major role in 
the generation of reactive stress levels. Rainflow counting and cumulative 
damage calculations may however still be utilized to accelerate the test, but 
this would have to be based purely on a relative damage content of different 
terrain types. Under specific conditions however acceleration of simulation 
tests are possible. Some of these techniques are discussed by Dodds [1992] 
and Hurd [1992] . 
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Digital Compensation in Single Channel Systems 

The application of adaptive control for single channel servo-hydraulic test­
ing systems is extremely valuable. Styles [1990] describes the model ref­
erence control technique which is implemented on-line, but utilizes a fixed 
frequency transfer function. Digital compensation using the inverse Fourier 
transform in the adaptive control mode is also discussed by Sherratt [1990], 
who points out the importance of utilizing adaptive control for testing of 
structures into the crack propagation regime, where the stiffness of the 
structure is reduced due to crack propagation. The need for these type of 
adaptive schemes are also becoming important in multi-actuator test rigs. 

1.6 Summary 

A system has been developed which enables the reproduction of operational 
measured responses on full scale structures using servo-hydraulic actuators. 
This requires a dynamic model of the system, which is identified by para­
metric system identification techniques. The inverse dynamic problem is 
encountered in the process, in which it is required to find the input forc­
ing functions from remotely measured responses. This means that it is 
necessary to find an inverse solution to the dynamic model. 

Similar systems have already been in existence for a number of years, 
which all function in the frequency domain. What makes this new devel­
opment unique is essentially that it is formulated in the time domain. The 
inverse dynamic problem is also solved in a unique manner in this appli­
cation, by reversing the data vectors, which allows the direct identification 
of an inverse dynamic model. The use of a time domain formulation in 
comparison to the frequency domain results in several advantages, which is 
seen as a new contribution to the field of service load simulation testing. 

1.7 Document Overview 

The development of this time domain structural dynamic response recon­
truction system has called for the synthesis of a number of disparate disci­
plines, amongst others dynamic system identification, structural dynamics, 
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digital signal processing, control systems analysis, fatigue analysis and test­
mg. 

The first six chapters are utilized to develop the required mathematical 
techniques, while the remaining chapters are devoted to case studies. 

• A short overview of the field of Dynamic System Identification is 
presented in Chapter 2, which establishes basic terminology from the 
literature. The theory in Chapter 2 in most instances applies to 
systems with a single input and single output. A number of key issues 
are proven there, which are specific to the intended application, and 
lay the basic foundations on which the entire study has been based. 

• The specific system requirements are laid down in Chapter 3, which 
deals with requirements relating to the identification process, dealing 
with noise contaminated data, and the model requirements. 

• Chapter 4 extends these techniques to the identification of multiple 
input-multiple output "black-box" dynamic models. 

• Techniques for inverting the model, stability analysis for both normal 
and inverted models, together with methods of selecting the appro­
priate inverting technique are dealt with in Chapter 5. 

• Having discussed all the building blocks in the preceding chapters, 
Chapter 6 is devoted to a detailed description of the system as a 
whole and how it is put together, and includes the iteration process. 
The development of computer programs is also discussed in Chapter 
6. 

• Several qualification tests were performed on various analytical test 
systems to prove the integrity of the computer programs, which are 
discussed in Chapter 7. 

• The developed time domain techniques were applied to four practical 
case studies on actual laboratory test rigs, which are presented in 
Chapter 8. 

• Comparisons to the frequency domain based techniques are drawn in 
Chapter 9. 
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• Finally, recommendations for future developments and refinements, 
are concluded in Chapter 10. 
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Chapter 2 

Relevant Aspects of Dynamic 
System Identification 

2.1 Introduction 

The procedure of the proposed testing system was detailed to some extent 
in section 1.4. The first step in realizing such a system is the development of 
a dynamic model, utilizing dynamic system identification techniques. The 
model would be derived from experimental input-output data, obtained 
from the laboratory test rig. This ~hapter is hence a short overview of the 
field of dynamic system identification, and is primarily intended to establish 
the basic principles and terminology from the literature. In certain cases, 
deviations are made from the literature, to develop additional terminol­
ogy and theoretical aspects which are specifically adapted to the intended 
aplication of simulating operational responses on a servo-hydraulic test rig. 
Further details on the field of dynamic system identification may be found 
in any textbook on the subject, see for instance Ljung [1987], Soderstrom 
and Stoica [1989], Goodwin and Payne [1977], Norton [1986] , Sinha and 
Kuszta [1983]. 

Dynamic system identification involves the construction of mathemat­
ical models of dynamic systems using measured input and output data 
from the system. It has found application in an extremely wide field, rang­
ing from ecology, econometrics, socio-economic systems, physics, medicine, 
biomedical systems, chemical processes, transportation, hydrology, electric 
power systems, aeronautics and astronautics. 
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In principle an experiment is performed on the dynamic system, from 
which the input and output data sequences are obtained. Using this data, 
a mathematical model of the system is constructed which describes the 
relation between the given input and output. 

In many applications, no measurable input acts on the system, and it 
is only possible to describe the dynamic response of the system. This is 
called Time SerieJ AnalyJiJ and is typically used in economic studies and 
signal processing systems. 

Nature can mathematically be described by nonlinear, time dependent, 
partial and ordinary differential equations, with data contaminated by non­
Gaussian non-stationary correlated noise. The goal of the engineer or ana­
lyst is to make sufficient and plausible assumptions to be able to describe 
this real world situation. It is then also the prime purpose of System 
Identification to construct models that are "good enough" for the specific 
intended purpose. 

A plaudible aspect of System Identification is the ability to create a 
model with the basic knowledge of the mathematical formulation of the 
system at hand and obtaining unknown constants or parameters describing 
the system. This type of analysis is therefore based upon prior knowledge. 
On the other hand we may not know anything about the structure of the 
system, in which case we may construct a "black-box" model. 

This chapter presents the underlying mathematical techniques for ob­
taining efficient and unbiased models of single-input single-output dynamic 
systems. The presentation is specifically adapted with the objective of prov­
ing several vital aspects, which are unique to the application of simulating 
operational conditions on a laboratory test rig. The resultant conclusions, 
are fundamental to the remaining chapters. A number of additional as­
pects on the background to dynamic system identification are given by 

· Raath [1989] and [1990]. 
Section 2.2 gives a basic overview of linear dynamic systems with spe­

cific attention to the impulse response and the description of the noise or 
disturbances. The key issue of prediction is covered in section 2.3, while 
the different model types and model formulations are studied in section 
2.4. Section 2.5 is devoted to the underlying principles of estimating the 
unknown model parameters and gives a discussion of some of the more pop­
ular parameter estimation techniques, which are relevant to the developed 
system. A surrunary is given in section 2.6 . 
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2.2 Linear Time-Invariant Dynamic Systems 

Consider a linear time-invariant dynamic system with a single input u(t) 
and single output y(t). The system is said to be causal if the output at a 
certain time depends on the input up to that time only. 

2.2.1 Impulse Response 

The response of a linear, time-invariant, causal system, can be described 
by: 

y(t) = 1:0 g( r)u(t- r)dr (2.1) 

where 
(2.2) 

is the impulse response, and is thus a complete dynamic characterization 
of the system. 

In practical applications, the input-output data would be sampled, giv­
ing a discrete version of equation ( 2.1), namely: 

00 

y(t) = L g(k)u(t- k) t = 0, 1, 2 ... (2.3) 
k=l 

The above equation is valid for an input signal which remains constant 
between sampling intervals and is generally referred to as a zero order hold, 
which simplifies the integration of equation 2.1. 

2.2.2 Disturbances 

A practical system is always subjected to disturbances, which may be 
grouped into input disturbances or measurement noise. Input disturbances 
result for instance on an aircraft whose ailerons are controlled, but which 
is also subject to uncontrollable gusts. These input disturbances are also 
not directly measurable, only their effects on the output are measurable. 
For this reason, the totality of all disturbances and noise is lumped into an 
additive disturbance term v( t) at the output, resulting in 

00 

y(t) = Lg(k)u(t- k) + v(t) (2.4) 
k = l 

34 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

Classical descriptions of disturbances are steps, impulses, sine waves and 
ramps. It is natural to employ a probabilistic description of disturbances by 
describing them as realizations of stochastic processes, see Papoulis [1986]. 

With this framework, we may describe the disturbance sequence by 
00 

v(t) = L h(k)e(t- k) (2.5) 
k=O 

where e(t) is a sequence of independent identically distributed random 
variables with a certain probability density function, see Ljung [1987] sec­
tion 2.1. We normalize h(k) such that it is monic, which means h(O) = 1, 
gtvmg 

v(t) = e(t) + h(1)e(t- 1) + h(2)e(t- 2) + .......... (2.6) 

In practice, the second order properties of the sequence e( t) are de­
scribed namely the mean and variance ,\, 

A complete description of the output of the system is thus given by 
00 00 

y(t) = L g(k)u(t- k) + L h(k)e(t- k) 
k=l k=O 

2.2.3 Transfer Functions 

Introducing the forward shift operator q by 

q u(t) = u(t+ 1) 

and the delay operator by 

q-1 u(t) = u(t- 1), 

(2.3) may be written as 

00 

y(t) Lg(k)u(t-k) 
k=l 

k=l 

k=l 

G( q)u(t) 
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It is however essential that H( q) be stable; that is, 

00 

I: I h(k) I< oo (2.17) 
k=O 

2.3.2 One Step Ahead Prediction of Disturbance v(t) 

Having observed v up to time t- 1, we wish to predict the value of v(t) 
based on these observations. 

The inherent feature of a disturbance is that its value is not known be­
forehand. However information about past disturbances could be important 
for making qualified guesses about coming values. 

Since H is monic, (2.16) may be written as 
n 

v(t) e(t) +I: h(k)e(t- k) (2.18) 
k=l 

- e(t) + h(1)e(t -1) + h(2)e(t- 2) + .... + h(n)e(t- n)(2.19) 

v(t) up to timet- 1 is known, from which e(t) up to timet -1 may be 
computed. The computation of e(t), given v(t), is known as the invertibility 
of the noise model, and will be enlightened in the next section. 

Having computed e(t) up to timet- 1, means that the second term of 
(2.19) is known at timet- 1. Using this information, we may predict the 
value of v( t) at time t, which is given by 

n 

v(t) L:h(k)e(t-k) (2.20) 
k=l 

- h(1)e(t- 1) + h(2)e(t- 2) + ...... + h(n)e(t- n) (2.21) 

Note that the prediction is based on a probabilistic setting, where we 
predict the most likely value of v(t) based on the probability density func­
tion of the known values of {e(t)} which have been calculated by the noise 
model inversion. 

Invertibility of the Noise Model 

In the previous section we required that the noise model be invertible, which 
means that knowing { v( t)} up to time t - 1, implies that we are able to 
calculate {e(t)} up to timet -1, see Ljung (1987] section 3.2. 
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H-1 ( q) is consequently defined by 

(2.22) 

and require that the function 1/H(z) be analytic in lzl ~ 1; i.e. it has 
no poles on or outside the unit circle. We can alternatively require that the 
function H ( z) has no zeros on or outside the unit circle. 

2.4 Models of Linear Time-Invariant Systems 

2.4.1 General 

From (2.15) the description of a linear time-invariant system is given by 

y(t) = G(q)u(t) + H(q)e(t) (2.23) 

or alternatively by 

00 00 

y(t) = [L g(k)q-k]u(t) + [2: h(k)q-k]e(t) (2.24) 
k=O k= O 

Since it is not possible to enumerate the infinite sequences and as both 
g( k) and h( k) decay as k ---+ oo, one chooses to work with a finite number 
of values. This does not mean a finite number of terms in the summations, 
but that they are approximated by, for instance, a rational function, which 
may be approximated by an infinite series. 

The aim is therefore to specify the functions G(q), H(q) as well as the 
probability density function fe of the disturbance e(t). In general a Gaus­
sian (normal) distribution of e(t) is assumed and therefore a zero mean and 
variance A are specified . 

e(t) ~ N(O, A) (2.25) 

2.4.2 Generalized Linear Time Invariant Model Struc­
ture 

The generalised linear t ime-invariant parameterized model structure takes 
the form 
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B(q) C(q) 
A(q)y(t) = F(q) u(t) + D(q)e(t) (2.26) 

where A(q), B(q), C(q), D(q) and F(q) are polynomials in the delay op­
erator q-1 , Soderstrom and Stoica [1989] section 6.2, Ljung [1987] section 
4.2. Comparison with (2.23) gives a transfer function of 

and a noise model of 

B(q) 
G(q) = A(q)F(q) 

C(q) 
H(q) = A(q)D(q) 

(2.27) 

(2.28) 

2.4.3 Special Cases of the Generalized Model Struc­
ture 

ARX Model 

The auto regressive model with external input ARX, takes the form 

with 

A(q) 

B(q) 

A(q)y(t) = B(q)u(t) + e(t) 

(Note that A(q) is a monic function) 

(2.29) 

(2.30) 

(2.31) 

The ARX model may be represented in difference equation form as 

y(t) + a1y(t- 1) + ...... + an,.y(t- na) = 

bou(t) + blu(t-1)+ ...... +bnbu(t-nb)+e(t) (2.32) 

The error term e(t) describes that part of the output y(t) which cannot 
be predicted from past data and is also called the innovationJ term at 
timet 
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Defining y(t) = y(t)- e(t), the one step ahead predictor for the ARX 
model becomes 

y(t) = -a1y(t- 1) a2y(t- 2)- ...... - an .. Y(t- na) + 
bou(t) + b1u(t- 1) + b2u(t- 2) + ...... + bn0u(t- nb) (2.33) 

In terms of polynomial functions this becomes 

y(t) = B(q)u(t) + [1- A(q)]y(t) (2.34) 

ARMAX Model 

The auto regressive moving average model with external input ARMAX, 
takes the form 

A(q)y(t) = B(q)u(t) + C(q)e(t) (2.35) 

With noise contaminated data, this model is an improvement on the 
ARX model in that the noise is modelled as a moving average process. 

A(q) and B(q) are defined as in (2.30) and (2.31) and 

C( q) = 1 + cl q-1 + c2q-2 + ... Cncq-nc 

again C(q) is monic. 
The ARMAX model in difference equation form is 

y(t) + a1y(t- 1) + a2y(t- 2) + ...... an .. Y(t- na) = 
bou(t) + b1u(t- 1) + b2u(t- 2) + .... .. + bnou(t- nb) + 

(2.36) 

e(t) + c1e(t- 1) + c2e(t- 2) + ...... Cnce(t- nc) (2.37) 

Regarding e( t) = y( t ) - y( t) as the innovations term, then clearly the 
one step ahead predictor for the ARMAX model becomes 

y(t) = -aly(t- 1) - a2y(t- 2)- ...... - an .. Y(t- na) + 
bou(t)- b1u(t- 1) + b2u(t- 2) + .... .. + bnou(t- nb) + 

cle(t-1) + c2e(t - 2) + ...... +cnce(t - nc) (2.38) 
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Note that in the ARX model, a term b0 has been included in (2.31), 
(2.32) or (2.33). Ljung [1987] section 4.2 does not include such a leading b0 

term in the ARX formulation. The inclusion of this term indicates a zero­
delay term, which means that a term is present in the model which relates 
the current input at timet namely u(t) to the current output y(t). This is 
also used by Goodwin and Payne [1977] section 4.2, where the summation 
also runs from 1 instead of 0 as indicated in (2.12). The inclusion of the zero 
delay terms b0 also makes the analysis more complete as will be illustrated 
for the direct transmission matrix D of the state space formulation, see 
appendix B. The same principle has been applied to the ARMAX model. 

Recursive Nature of the ARMAX Model 

In the specific application of reproducing responses on a servo-hydraulic 
test rig, it will be shown below that the ARMAX model reduces to the 
ARX model. Now e( t - 1) is the innovation at time t - 1 and similarly for 
e( t - 2) ...... e( t - nc)· These innovations terms are not directly known or 
measureable. 
However by substituting terms like e( t - 1) = y( t - 1) - y( t - 1 ), the one 
step ahead predictor for the ARMAX model becomes: 

y(t) = -a1y(t- 1) 

b0 u(t) + b1u(t- 1) + 
c1(y(t- 1) 

...... + Cnc(y(t- nc) 

...... - anaY(t- na) + 

...... + bnbu(t- nb) + 
y(t- 1)) + c2(y(t- 2)- y(t- 2)) + 
y(t - nc)) (2.39) 

In attempting to predict the output at time t i.e. y( t ), not only know­
ledge of the predicted outputJ (y) up to timet- 1 would be required, but 
also the meaJured output up to time t - 1. 

u(t- nb) 

y(t- na) 

y(t- nc) 

u(t- 2), u(t- 1), u(t) 

y(t- 2), y(t- 1) 

y(t- 2), y(t- 1) 

(2.40) 

(2.41 ) 

(2.42) 

The above would thus be required to predict y(t) as y(t). This implicitly 
implies that the ARMAX model can only be used in a recursive fashion from 
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one sampling instant to the next. If it is not used in a recursive manner, the 
ARMAX model reduces to the ARX model. When simulating the output of 
the ARMAX model with another input sequence than was used to estimate 
the model parameters, the ARMAX model also effectively reduces to the 
ARX model. 

The ARMAX model is however a prime choice with superior perfor­
mance when used in on-line digital control systems. To start the recursion 
at t=1, requires 

u(1) 

y(O) 
(2.43) 

(2.44) 

In terms of polynomial functions the ARMAX one step ahead predictor 
becomes 

C(q)y(t) 

or y(t) 

Other Special Cases 

- B(q)u(t) + [C(q)- A(q)]y(t) 
B(q) A(q) 
C(q) u(t) + [1- C(q)]y(t) 

(2.45) 

(2.46) 

By employing different combinations of the polynomials A( q ), B( q ), C( q ), 
D( q) and F( q ), other special cases of the generalized linear time-invariant 
model structure are obtained. Typical cases are ARARMAX, ARARX, 
output error (OE), and the Box-Jenkins (BJ) model, see Soderstrom and 
Stoica (1989] section 6.2. 

Deterministic and Stochastic Models 

In the intended application, it becomes necessary to differentiate between 
two model types, on the basis of whether the noise is specifically modelled 
or not. This has lead to the following two definitions: 

Definition: A deterministic model is defined to be of the form 

y(t) = G(q)u(t) + e(t) (2.4 7) 
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Definition: A stochastic model is defined to be of the form 

y(t) = G(q)u(t) + H(q)e(t) (2.48) 

The above definitions differ slightly from those traditionally found in the 
literature where a deterministic model is usually defined as in (2.4 7) but 
without the e( t) term, see Ljung [1987] section 3.3, which should strictly 
speaking be referred to as y(t) = G(q)u(t) , since this is an aproximation 
to the true system output. Goodwin and Sin [1984] section 7.4 define a 
determiniJtic ARMA model and a JtochaJtic ARMA model with the same 
approach as Ljung. The desired definition in this application is however 
to distinguish between modelled and unmodelled noise, which leads to the 
above two definitions. 

2.4.4 Regression Form of Generalized Model Struc­
ture 

Linear Regressions 

Consider the one step ahead ARX predictor (2.33). 

y(t) = -aly(t- 1) ...... - anaY(t- na) + 
bou(t) + b1u(t- 1) + ....... + bnbu(t- nb) (2.49) 

By defining the regression vector ¢>( t) as 

¢>(t) = [-y(t- 1)- ... - y(t- na) u(t) u(t- 1) ..... u(t- nb)]T (2.50) 

and the parameter vector 

(} = [ al a2 ••••. ana bo b1 ..... bnb l (2.51) 

Equation (2.49) may be written as a linear regression equation 

y(t) = (}T ¢>(t) = <f>T(t)B (2.52) 

The linear regression form leads to a convenient least squares solution 
of the parameter vector, which will be enlightened in section 2.5.2 . 
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Pseudo Linear Regressions 

In analogy to the ARX model, the one step ahead predictor for the ARMAX 
model from (2.39) may also be considered 

y(t) = -aly(t- 1) ...... - anaY(i- na) + 
bou(t) + b1u(t -1) + ...... + bnbu(t- nb) + 

cl(y(t- 1)- y(t- 1)) + ...... + Cnc(y(t- nc)- y(t- nc)) (2.53) 

In this case however the regression vector rP is also a function of the 
parameter vector B, by virtue of the y(t- 1) ...... y(t- nc) terms. 

rP(t, B) - [-y(t- 1) ... .. - y(t- na)u(t)u(t- 1) ..... u(t- nb) 
(y(t- 1)- y(t- 1))(y(t- 2)- y(t- 2)) ...... (y(t- nc)- y(t- nc)] 

together with the parameter vector 

B = [al a2·····ana bo b1 ..... bnb c1 c2·····CnJ 

(2.53) may ~e written as 

y(t) = rPT (t, B)B 

(2.54) 

(2.55) 

(2.56) 

However this is no linear regression, due to the nonlinear effect of B in 
the regression vector rP(t, B) and is referred to as a pseudo-linear regression 
- Ljung [1987]. In this case the least squares approach is no longer valid. 

2.5 Parameter Estimation Techniques 

2.5.1 General Philosophy and Classification 

Having selected the model structure, the main purpose of system identifica­
tion is the calculation of the unknown parameters Bi. It will be assumed that 
the order of the system, i.e. the number of parameters to be determined, 
is known. In all parameter estimation techniques the aim is to minimize 
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the sequence of prediction errors { c(t)}. Fundamentally two classifications 
result, Ljung [1987] section 7.2, namely prediction error methods (PEM) 
and correlation methods. 

Prediction Error Methods (PEM) 

A loss function or performance index is defined as 

1 N 

JN = N I>~[c(k)] 
k=l 

(2.57) 

where R(.) is a scalar valued positive function . The parameter estimate is 
then obtained by minimizing J N . 

BN = arg min(JN) (2.58) 

This leads to a host of different techniques such as: 

• Least squares (LS) 

• Weighted least squares (WLS) 

• Maximum likelihood parameter estimation (ML) 

• Maximum a-posteriori method (MAP) 

Correlation Approach 

Having found a "good" model, means that the prediction error sequence 
should be uncorrelated with past data. The sequence { c(t)} should thus 
comprise white noise with no characteristic frequency spectrum. If the 
prediction error sequence is correlated with past data, it means that there 
was more information in the data than was picked up by y(t). 

To do this we select a finite dimensional vector sequence ( (t), which 
is derived from the given input-output data, and determine the parameter 
estimate from the condition that the prediction error be uncorrelated with 
this sequence, see Norton [1986]. This leads to 

1 N 
N L ((k)c(k) = 0 

k= l 

(2.59) 

45 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

In contrast to the PEM techniques which are based on minimizing some 
function, the correlation techniques give the parameter estimate {} from the 
solution of some equation. Typical correlation methods are: 

• Instrumental variable method (IV) 

• Four step instrumental variable techniques (IV4) 

Minimizing the the loss function 

A variety of different techniques are available for minimizing the loss func­
tion, depending on the precise model formulation. In the next paragraph it 
will be shown that the least squares technique applied to the ARX model 
leads to a convenient closed form solution. In the case of an autoregres­
sive (AR) time series model, a Toeplitz matrix follows and the Yule-Walker 
equations are formed which also gives a closed solution by using the Durbin­
Levinson algorithm, see Giordano and Hsu [1985] sections 3.1 and 3.2, or 
Bennett [1979] section 3.2.2. 

In most other cases a closed sulution is not possible, and iterative nu­
merical search schemes are required. A host of techniques are available for 
this purpose, the most common are the quasi-Newton methods, see Burden 
and Faires [1985] section 9.3, and in particular the Gauss-Newton algo­
rithm, see Soderstrom and Stoica [1989] section 7.6. A popular alternative 
algorithm was developed by Marquardt [1963], and is often used for the 
ARMA model. 

2.5.2 Least Squares Parameter Estimation 

The LS technique employs a quadratic norm for describing the loss function , 
see Ljung [1987] section 7.3. 

1 N 
VN = N L[E(k)V (2.60) 

k=l 

or 
1 

VN = 2eT(k)E(k) (2.61) 

The unique feature of the least squares method is that the loss function 
is quadratic and may be minimized analytically with respect to B. 
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The least squares technique is applicable to those model types which 
may be written in the form of a linear regression. The typical linear regres­
sion model is of the ARX type. 

Consider an ARX model with na = nb = n, and parameter vector 

B = [ -al - a2 · · · -an bo b1 b2 · · · bn ] 

and a regression vector 

(2.62) 

t/>(k) = [ y(k-1) y(k-2) · · · y(k-na) u(k) u(k-1) · · · u(k-nb) f (2.63) 

The predictor may therefore be written as a linear regression in the form 

Assume the input-output data is known from k = 1 to k = N. 
From the model 

y(k) -aly(k- 1)- a2y(k- 2)- · · · - anaY(k- na) 

(2.64) 

+bou(k) + b1u(k -1) + · · · bn11u(k- nb) + e(k), (2.65) 

N- n equations may be written as 

Yn+l 
Yn+2 

YN 

or 

Yn 
Yn+l 
Yn+2 

YN-1 

YN = tf>N()N + f.N 

Defining the loss function as 
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1 N 1 
JN = 2 :L €2(k) = 2€T(N)€(N) 

k=n+l 

(2.67) 

Temporarily dropping the arguments, 

(2.68) 

We wish to estimate the parameter vector (J by minimizing the perfor­
mance index JN with respect to fJ. 

8J = </JT </JO- </JTy = 0 ae 
From which the least squares estimate is obtained as 

0 = (</JT </Jtl</JT y 
provided that the matrix [<PT </JJ-1 is nonsingular. 

2.5.3 Weighted Least Squares 

(2.69) 

(2.70) 

In many applications the performance index is defined by weighing the 
predictions errors, 

(2. 71) 

using a positive definite weighting matrix W(N). This situation may typ­
ically arise when the noise after a certain time is reduced to a lower level 
than was previously measured. The remaining analysis is analogous to the 
ordinary least squares. 

2.5.4 Least Squares Estimation in the Presence of 
Noise Contaminated Data 

Two important aspects of the least squares estimate need to be considered, 
namely the bias and consistency of the estimates. From the basic model in 
a linear regression form we obtain 
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y( t) = 4>8 + e( t) 

which gives a least squares estimate 

9 = [<f>T <f>tl<f>T y 

Substituting (2.66) into the above gives 

9 - [<f>T <f>tl<f>T[</>8 +e) 
() + [<f>T <f>tl[<f>T e) 

(2.72) 

(2.73) 

(2.74) 

The second term [4>T 4>]-1[</>T e] thus gives the error in the estimated pa­
rameter vector, which we shall denote by 8. 

We have therefore 9 = () + 8. 
Taking expectations of 8 under the assumption that 4> is deterministic, 

leads to 

E[8] E[[<PT 4>tl[4>T e)) 
[4>T 4>t14>T E[t] = 0 

The estimate will therefore be consistent and unbiased if 

E[t(t)] = 0 

(2.75) 

(2.76) 

If 4> is of a stochastic nature and it is assumed that 4> and t( t) are 
independent, we may write 

(2. 77) 

if E[t( t)] = 0 
In summary then: the least squares estimate will be consistent and 

unbiased if 

• 4> and e( t) are uncorrelated and 

• the expected value E[e(t)] of the residual errors is zero. 
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The above are sufficient but not necessary conditions. 
When noise is present in the system the output data is correlated with 

the residual errors and the least squares technique does not give an unbiased 
estimate. The solution to this problem is given by the instrumental variable 
technique which is discussed in section 2.5. 7 . 

2.5.5 Maximum Likelihood Parameter Estimation 

The ML parameter estimation technique, which is based on a stochastic 
setting, is one of the most successful approaches to obtaining unbiased 
estimates of the parameter vector. 

Once the measurements y(l), y(2), ... y(N) have been made, the joint 
probability density function p(yiO) is a function of the unknown parameters 
0 only. The maximum likelihood estimate of 0 is that value which maximizes 
p(yiO). We therefore choose 0 in such a way that the observations y( i) are 
most likely to occur. In principle, given the data y, the global maximum of 
p(yiO) is found. In practice however p(yiO) is usually a complicated function 
of 0, making it difficult to find the glo hal maximum. If instead the measured 
data set y is arranged to consist of a number of smaller independent sets 
Y1, Y2, ···YN, then 

p(yl, Y2, ···YNIO) - P(YIIB)p(y2IO) ... p(yNIO) 
N 

II P(YkiO) (2.78) 
k::::l 

since the observations were assumed to be uncorrelated. 
This is called the likelihood function L . Finding the global maximum 

is still difficult from the above product of probability density functions. 
Taking the logarithm of (2.78) gives 

N 

log(L) = I:logp(ykiO) (2.79) 
k::::l 

which is referred to as the log likelihood function. Since log( L) is a 
monotonic function of L , attaining its maximum when Lis maximum, it is 
simpler to maximize log( L) rather than L. 

50 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

The maximum likelihood estimator is thus obtained from maximizing 
the log likelihood function with respect to the parameter vector. 

(2.80) 

Maximum Likelihood Estimation in the Presence of Gaussian 
White Noise 

It will be shown that for the special case of zero-mean white Gaussian 
observation noise, the ML estimator reduces to the least squares estimator. 
The following analysis is typically applicable to the ARX model. Recall the 
normal (or Gaussian) distribution of a variable x as 

1 (z-,.)2 

f ( x) = --e- '"'""'2;;2 
(7,.fii 

(2.81) 

where Jl and r72 are the population mean and variance. 
(r72 = ~ l:(xi- JL? and r7 =standard deviation). 

Assuming that {vi} is a zero-mean, (unknown variance) r72, Gaussian 
sequence {vi} ""' N(O, r72 ) uncorrelated with { ui}, the population mean of 
{vi} is zero i.e. E{ vi} = Jl = 0, then 

VN = YN- ¢>NO, 

the likelihood function can be expressed as 
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Taking logarithms, the log likelihood function becomes 

logL[yN·8] =-N log27r- N logu2 - (YN- ¢J8)T(YN- <P8) (2.85) 
' 2 2 2u2 · 

Setting to zero the partial derivatives with respect to the unknown quan­
tities 8 and u, we obtain 

olog L _ 0 [ -1 [ T T T T T T _ 
88T - 88T 2u2 y y- y </J8- 8 </J y + 8 </J <jJ8]] - 0 (2.86) 

(2.87) 

and 

(2.88) 

_!!_ _ vtvN = 0 
~ ~3 

O"ML 17ML 
(2.89) 

From (2.89) the ML estimate for the variance of the observation noise 
may be determined as: 

(2.90) 

where 

T~ 

ek = Yk - <Pk 8ML· (2.91) 

Furthermore, from (2.91) 

~ T 1 T 
8ML = [</J </Jt </J Y· (2.92) 

It is thus seen that for the special case of zero mean white Gaussian 
observation noise, the maximum likelihood estimate is identical to the or­
dinary least squares estimate obtained in (2.70). It may therefore also be 
stated that the ML and LS estimators are identical when applied to an 
ARX model. 
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2.5.6 Maximum A-Posteriori (MAP) Estimate 

In contrast to the ML estimator which considers the data to comprise ran­
dom variables with PDF P(yiB), the Bayesian approach considers the pa­
rameter vector itself to consist of random variables. We thus consider B to 
be a random vector with a prior (i.e. before the observations have been 
made) probability density P(B). 

After the observations have been made, the posterior PDF P(Biy) is 
determined, given the observed data and the prior PDF P(B). 

The optimal parameter estimate is then made by maximizing the pos­
terior PDF P( Bjy) - that parameter vector () which gives the most likely 
value given the prior information and the observed data. This is known as 
the maximum a-posteriori (MAP) estimate. 

We therefore have 

BMAP = argmaxP(Biy) 

where from Bayes's rule 

P(BI ) = P(yiB)P(B) 
y P(y) . 

Following the reasoning of the ML estimator, 

log P( Bjy) 
8P(y) 

ae 

- log P(yjB) +log P( B) -log P(y) 

0 

and the MAP estimate is given by 

OMAP = argmax[logP(yiO) + logP(O)]. 

The ML estimate ignores the prior information P( 0) , giving 

OML = argmax[logP(yiO)] . 

Note that 

N 

LLF(Oiy) = logP(yiB) = L:logP(YiiB) 
i= l 
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2.5. 7 Instrumental Variable Methods 

It was shown in section 2.5.4 that in the presence of noise, the least squares 
technique does not give unbiased estimates due to correlation between the 
output data and the residual errors. 

From (2.69) it was required that 

(2.100) 

or 

(2.101) 

However y- ¢>8 = v . Following a heuristic argument, equation (2.101) 
therefore requires E[¢>T v] = 0. This is in general not possible because ¢> 
and v are correlated. We therefore require a different vector to ¢>T, which is 
not correlated with the noise v, and consequently replace E[¢>T v] by E[(v] 
which will now give a zero expected value due to ( and v being uncorrelated. 

Returning to equation (2.101) it therefore follows that 

(T(y- ¢>B)= 0 (2.102) 

(Ty = (T ¢>0 (2.103) 

or 
eiv = [(T lf>rl(T Y (2.104) 

where 
E[(T v] = 0 (2.105) 

and [ (T ¢>] is nonsingular. 
This gives an unbiased estimate of the parameter vector B. The elements 

of ( are called the instruments or instrumental variables. 
The principle may further be clarified by repeating equations (2. 72) 

through (2. 74) for the IV estimate. In this case 

y(t) = ¢>8 + v(t) (2.106) 

which gives a least squares estimate 

(2.107) 
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Substituting (2.106) into the above gives 

It is required that 

B - ((T <fotl(T[<fo8 + v] 
8 + ((T <fotl((T v] 

- 8+0 

(2.108) 

(2.109) 

(2.110) 

(2.111) 

because by specific choice of (, v and ( are independent. It follows that 

if E(v] = 0 
In summary then the IV estimate is consistent and unbiased, 

• because ( and v are uncorrelated 

• E(v] is however still required to be zero. 

Determining Suitable Instruments 

As conditions for the choice of ( , 

• E[(Tv] = 0 and 

• [ (T <P] is nonsingular. 

(2.112) 

The instruments must therefore be uncorrelated with the noise, but 
correlated with the regression variables <fo. 

Following figure 2.1, an approximate model M(q)/N(q) is generated 
through say an ordinary least squares analysis, i.e. 

M(q) ~ A(q) 
N(q ) ~ B(q) 

(2.113) 

(2.114) 

The approximate model is then simulated with the input data to achieve 
((t) which is correlated with y(t) due to the common input and approximate 
model, but is uncorrelated with v. The final estimate is then obtained from 
(2.104) . 
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Figure 2.1: Block diagram representation of IV technique 

2.6 Summary 

This chapter was concerned with the underlying mathematical techniques 
for obtaining unbiased models of any linear dynamic system. Dynamic 
system identification is however an extremely wide field, and has a vast 
literature base. At this point the emphasis has primarily been on single­
input single-output systems, but will be extended to include multiple-input 
multiple-output systems in chapter 4. The bulk of the material in this chap­
ter has been taken from the literature. In the application for controlling 
servo-hydraulic test rigs, a number of issues have however been uniquely es­
tablished which will be shown to be fundamental to the specific application. 
These aspects are summarized below: 

• The concepts of stochastic and deterministic models for the present 
application were defined in section 2.4.3. 

• Under specific conditions when the prediction and measurement op­
erations do not follow one another from one sampling instant to the 
next, i.e. the model is not used in a recursive fashion, stochastic 
models reduce to deterministic models. 
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• The ARX model would attempt to describe the system dynamics as 
well as the measurement noise, although it is not suitably structured 
for that purpose. In such a case, the ARMAX model would be the 
preferred choice. 

• In the presence of Gaussian stationary white noise, the maximum 
likelihood estimator reduces to the ordinary least squares estimator 
for the ARX model. 

As far as the parameter estimation techniques are concerned, the PEM 
methods probably give the most convenient solution. This would exclude 
the least squares technique because of biased estimates in the presence of 
correlated measurement noise. To this end the maximum likelihood esti­
mators are better suited. The final estimate may thereafter be obtained 
through a follow-up using the correlation approach, and in particular the 
instrumental variable IV technique. Should the measurement noise levels 
however be relatively low, i.e. a high signal to noise level, then the least 
squares technique would on the other hand be employed, since the parame­
ter estimate gives a closed solution, which does not require the minimizing 
of a function. 
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Chapter 3 

Preliminary Model 
Requirements and Assessment 

3.1 Introduction 

The theory presented in Chapter 2 has also found application in the modal 
analysis field. Since the primary application of the present study is in 
structural dynamic response reconstruction, it is considered essential to 
firstly take a brief look at what has been done in modal analysis using time 
domain identification. This is briefly discussed in section 3.2. 

In Chapter 2 it was shown that Dynamic System Identification has 
matured into a well established field of techniques. The current chapter 
assesses these techniques in an attempt to establish a basic model structure 
and parameter estimation technique, which would be tailored to suit the 
specific intended application of simulating operational measured responses 
on a laboratory test rig. Section 3.3 establishes a general philosophy of the 
route which is followed in developing such a dynamic model. 

The general requirements of any mathematical model of a dynamic sys­
tem are highly applications dependent, meaning that both the type and 
structure of the model are a function of the intended use of the model. 
Broadly speaking, this would imply that a suitable model should be found 
which describes the input-output behaviour well enough and which may 
later be inverted for subsequent calculation of the system inputs from op­
erational measured responses. These requirements are detailed in section 

3.4. 
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The treatment of noise in the system input and output signals is dis­
cussed in section 3.5, where it is found that a model structure which specif­
ically models the noise may be used for the identification process per se, 
but cannot be used in the subsequent off-line application of the identified 
model. 

In section 3.6 an assessment is made of the generalized model structure 
from equation (2.26), against the background of the established model re­
quirements, and the ARX model is selected as the basic building block. An 
analogous assessment is also made in section 3. 7 for the parameter estima­
tion technique. 

Since it is desired to accomodate more than one actuator on the test 
rig, a multiple-input multiple-output dynamic model would be required. 
In Chapter 4 it will be shown that the MIMO model can be made up by 
combining single-input single-output models. It is hence firstly required to 
select the specific SISO model, together with a munber of other aspects. 
This may be done without restricting the final MIMO model. Chapter 
3 is hence primarily aimed at single-input single-output systems. The re­
quirements of finally establishing a multiple-input multiple-output dynamic 
model are dealt with in the next chapter. 

3.2 A Brief Look at Time Domain System 
Identification Applications in Modal Anal-

• ys1s 

Time domain system identification techniques have been applied to modal 
analysis, and because of the close relation to structural dynamic response 
reconstruction, these techniques will briefly be discussed. 

3.2.1 Modal Analysis versus Structural Dynamic Re-
sponse Reconstruction 

System identification in modal analysis essentially revolves around obtain­
ing the natural frequencies and mode shapes of a structure. The input to 
the structure is usually a force which may be measured via a loadcell di­
rectly at the point of load application, while the response is typically in the 
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form of an acceleration measured on the structure, which differs from the 
present study of structural dynamic response reconstruction, as detailed in 
section 1.4.2. Modal analysis is also primarily concerned with modal mass, 
stiffness and damping matrices, whereas the current requirement calls for 
a black box model description. 

3.2.2 Time Domain Structural Identification for Modal 
Analysis 

In the application of structural modal identification in the time domain, 
attention has essentially been concentrated on identifying the system eigen­
vectors when only output, or response, data is available. Time series analy­
sis is hence a characteristic of these methods. The response data is typically 
in the form of free response data. 

The time domain methods utilize a least squares procedure to fit a 
multi-degree of freedom model to the measured response, see Cooper and 
Wright [1986]. Depending on the type of model used, two basic categories of 
methods have been utilized. One category utilizes exponentially weighted 
trigonometric functions which require an iterative procedure. One of these 
methods has become known as the Smith Least Squares method, see Smith 
[1984]. 

The second cat~gory utilizes time series modelling in the form of AR 
or ARMA models, see Wang and Fang [1986], Zhao-qian and Yang [1984], 
Yingxian [1986]. The time series analysis makes extensive use of auto­
correlation and partial autocorrelation analysis to estimate model orders. 
The techniques are well presented by Makridakis, Wheelwright and McGee 
[1983] as well as Cryer [1979]. Other researchers have extended the time se­
ries metods to the state space formulation, see Helsel, Evensen and Pandit 
[1988]. 

A third category which is somewhat further removed from the current 
application is the multiple input Least Squares Complex Exponential or 
Polyreference technique, see Leuridan, Lipkens, Van der Auweraer, and 
Lembregts [1986]. 
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3.2.3 Applicability to Structural Dynamic Response 
Reconstruction 

The modal analysis applications differ in a number of respects to the present 
application, and are hence considered only to be related to structural dy­
namic response reconstruction. The main reasons are the lack of input 
modelling and the specific application of modal paramaters in comparison 
to a black box time domain model. 

3.3 General Philosophy for the Development 
of a Dynamic Model 

In the introduction to this Chapter it was pointed out that the model is 
applications dependent. In this case the application is the calculation of 
actuator input signals using the operational measured responses. This re­
quirement places a number of restrictions on the specific model formulation, 
which will be discussed below. 

3.3.1 The General System Identification Procedure 

The system identification procedure essentially involves making qualified 
choices of a number of aspects: 

• Experiment deJign: This means choosing the correct experimental 
conditions such as the type of excitation signals, the sampling fre­
quency, the frequency bandwidth to be covered, and many other as­
pects, to obtain informative experimental input-output data. 

• Pre-analyJiJ of data: It is normally required to analyse the above 
input-output data by a choice of various methods. 

• Pre-proceJJing of data: Prior to the actual identification, a certain 
degree of pre-processing of the data is required such as filtering or 
detrending. Also here, certain choices need to be made such as filter 
frequencies etc. 
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• Choosing the type of model set: This essentially entails choosing be­
tween physically parameterized and black-box models, time varying 
and stationary models, linear and nonlinear models etc. 

• Selecting the model order: This means selecting the number of pa­
rameters, or order of the model, to be estimated. 

• Choosing the model parameterization: The choice of model para­
meterization involves choosing between ARX, ARMAX, BJ, OE etc. 
models. It is also further required to select the manner in which 
certain models are parameterized. 

• Choosing the parameter estimation algorithm: Depending on the model 
type and structure, as well as a number of other aspects, a choice 
needs to be made about the parameter estimation algorithm, or even 
combinations of a few of the algorithms. 

In making the above choices the following questions amongst others need 
to be answered: 

• Is the model flexible enough? 

• Is the model too complex ? 

• Which model structure of two or more candidates should be chosen ? 

• Which model order of two or more candidates should be chosen ? 

3.3.2 Development Philosophy 

Development of a Generalized Structural Testing System 

Clearly the above procedure might be considerably simplified by prior 
knowledge. The prime objective is to develop a generalized structural test­
ing system. The implications of such a requirement means that the entire 
process should, broadly speaking, require a minimum of user inputs, and 
both the model type and structure should, where possible, be pre-defined. 
It would therefore be desirable not to burden the user with having to specify 
either the model type or structure. 
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Fixed Model Type and Structure 

The requirement of a fixed model type and structure means that the model 
should be of a general nature, capable of catering for any specific type of 
dynamic test structure, without retaining unnecessary flexibility, by allow­
ing model structures which would never be relevant for the specific intended 
application. It is however also essential that a fixed model structure should 
not restrict the ability to use the best possible model for the specific appli­
cation. 

Efficiency of Parameter Estimation Algorithm 

In contrast to most applications in dynamic system identification, where 
a great deal of effort might be required in estimating the parameters in a 
process of estimation and cross validation, in this case, it would be required 
to identify the dynamic model efficiently in the shortest possible time. This 
may sound trivial, but would nevertheless weigh very heavily in favour 
of efficient parameter estimation algorithms, especially in the event of a 
large number of input and response channels. In structural testing using 
servo-hydraulic actuators, it is common even for experienced operators to 
adjust various parameters such as the input excitation signal amplitudes, 
bandwidths, excitation signal length, PID settings and a great many other 
~ariables. The objective in doing so, is to optimize the specific test rig to 
achieve optimal performance and an acceptable dynamic model. During 
this process, it would be required to fit many models, in an attempt to find 
the best model, hence requiring an efficient parameter estimation algorithm. 

3.4 Dynamic model requirements 

A multitude of different types and structures of models are generally avail­
able, as was shown in chapter 2. The intended application dictates specific 
requirements from the model, and furthermore serves to narrow down the 
number of possible model candidates. This section lays down the basic 
requirements of the model for the specific application. 
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3.4.1 General model requirements 

A few general requirements could be stated as follows: 

• The model should lend itself to convenient analyses to study the be­
haviour of the system at hand. This is not an essential requirement 
for structural testing, but would be required when studying character­
istics like the response of the dynamic model, damping characteristics 
or other aspects. 

• It would be required to be able to use the model for simulation pur­
poses, because the model will be simulated with the operational mea­
sured responses to determine the system inputs. 

• Since the system would operate in a time independent situation it 
would be natural to assume a stationary model. 

3.4.2 Specific model requirements 

MIMO vs SISO 

A multiple-input multiple-output description is necessary since in most ap­
plications, more than one actuator would be applied to the test structure. 
The various input channels are in general not separable, leading in most 
cases to a significant amount of cross-coupling between the various inputs 
and outputs. This cross-coupling dependence should be fully encompassed 
in a completely coupled multiple-input multiple-output description of the 
entire system where the effect of all inputs on all outputs is taken fully into 
account. 

Model accuracy 

The model should describe the system dynamics as accurately as possible, 
without loss of parsimony. Since the model will primarily be used in the 
inverted state, an inaccurate model cannot be expected to produce accurate 
system inputs from measured responses. The model should however be 
parsimonious in the sense that by using an over specified model structure 
or order nothing is gained in terms of accuracy. 
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Modelling from physical knowledge vs Black-box models 

The intention is to be able to test any type of structure without prior knowl­
edge of the physical mechanics of the specific test structure. It is therefore 
desirable not to get involved in attempting to describe the physical nature 
of the test structure through modelling by various mechanical elements. 
This would necessitate the use of a general parameterized black-box type 
dynamic model. 

Invertability 

Since the prime objective is to determine the system inputs from knowledge 
of the system responses, an inverse model will finally be required. As will 
be discussed in chapter 5, the inversion of the system model very often 
creates an unstable inverse, which is of no use, unless pole placement or an 
optimal servo-system is employed. It would consequently be necessary to 
select a model which lends itself to convenient inversion, and furthermore 
ensures that a stable inverse may be achieved. 

Simultaneous multiple input excitation 

For a multiple-input multiple-output application it would be desirable that 
the dynamic model be identified through a process of simultaneous multiple 
input excitation, whereby all input actuators are excited at the same time. 
This approach is very convenient as the model identification process may 
be executed in a shorter time especially in the case of a high number of 
actuators, which is an important aspect, as was explained in section 3.2.2. 
The model and identification process will be required to accomodate such 
an excitation procedure. 

Continuous vs. discrete 

Since all data input to, and recorded from the system will be sampled, it 
would be natural to work in a discrete form, also from the model point of 
view. The sampling interval should in general be relatively small to ensure 
that the operational measured responses may be accurately simulated, es­
pecially in a structural fatigue testing application. The choice of sampling 

65 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

interval can however have implications on the stability of the model Astrom 
and Wittenmark [1984]. 

Linear vs nonlinear models 

As mentioned before, the intention is to be able to test any type of structure 
without prior knowledge of the physical mechanics of the specific test struc­
ture. Unfortunately, as is well known, a general nonlinear form of model 
does not exist. In any type of nonlinear analysis the type of nonlinearity 
must be known beforehand, and the dynamic modelling should be specif­
ically formulated for the nonlinearity. It would however be undesirable to 
burden the user with attempting to determine which form of nonlinearity is 
applicable for each test structure, and a linear model is therefore rather pro­
posed. By using a few iterations, the laboratory responses may be brought 
very close to the service measured responses using a linear model, which 
is re-identified between iterations, and is in fact a linearized model of a 
nonlinear system. 

Linear modelling is utilized in many applications of engineering analysis. 
In modal analysis, linear models are applied successfully. In the application 
to servo-hydraulic test rigs, the iteration process is specifically intended to 
provide for nonlinearities. This process is also extremely effective as is 
shown in Raath (1991 b] where a highly nonlinear rubber mounting was 
tested. 

3.4.3 Summarized model characteristics 

From the above requirements, as well as those established in section 3.2.2, 
the model would be: 

• Linear 

• Discrete 

• Multivariable 

• Time invariant 

• Black-box type 

• Parsimonious 
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• Allow convenient and stable inversion. 

• Allow use of the model for simulation purposes. 

• Accomodate simultaneous multiple input excitation during identifi­
cation. 

• Lend itself to convenient analyses to study the system behaviour. 

• Allow for a fixed pre-defined model type and structure, without re­
stricting the ability to employ the best possible model. 

• Employ an efficient, unbiased parameter estimation algorithm. 

The above summarized requirements rule out a number of model for­
mulations, and already narrow down the possible model candidates consid­
erably. 

3.5 Stochastic Modelling 

3.5.1 General 

The modelling of noise or disturbances requires specific discussion. Differ­
ent methods of how noise is introduced into models is discussed by Mah­
moud and Singh (1981]. The dynamic system description is a model, which 
describes the input-output characteristics of the system. It is important to 
realize that in the specific application however, the "system" refers to the 
entire path from an input digital disc file through the digital to analogue 
interfaces, smoothing filters, analogue servo-hydraulic control system, ac­
tuators, loading interfaces, test structure, response transducers and signal 
conditioners, anti-aliasing filters , analogue to digital interfaces up to the 
final digital response disc file. The "system path" is therefore from disc file 
to disc file, as shown in figure 1.1. The choice of a specific model struc­
ture from the family of general model structures (2.26) is, amongst others, 
governed by the position where the noise or disturbances enter the specific 
process. 
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3.5.2 Noise Disturbances on Servo-hydraulic Test Rigs 

Input Noise 

In contrast to a modal analysis where the inputs are defined as the force in­
puts measured at the excitation positions on the structure, in this case the 
system inputs will always be generated from within the controlling com­
puter, which implies that the input signals can inherently never contain 
noise or disturbances. Although the excitation signals during the identifi­
cation process are of a stochastic nature, they are completely known and 
hence do not contain any form of disturbances. Furthermore, disturbances 
as are generally found in controlled plants, are also not applicable, implying 
that-general state noise will not be found. 

Output Noise 

On the other hand, the response transducers could pick up noise and the 
digitally measured response will certainly contain stochastic noise. During 
the dynamic system identification phase, stochastic elements should be con­
tained in the model. This is particularly important to prevent the system 
dynamics from attempting to describe the stochastic part of the system, 
Ljung [1987]. 

Noise Due to Analogue Servo-valve Control 

The analogue PID controllers are optimized to suit the specific test struc­
ture in such a manner that when, for instance, an actuator is driven in 
displacement feedback control mode, the actuator displacement follows the 
command displacement input as accurately as the process will allow. The 
errors in the specific analogue control will in general be of a stochastic na­
ture, and may be treated as an additive noise or disturbance term in the 
response signals. 

3.5.3 Noise Modelling Formulations 

It has been stated in section 2.6 that in the presence of noise, the ARX 
model will attempt to model both the dynamics of the system as well 
as the noise. It will therefore be necessary to prevent the ARX model 
parameters from modelling the noise. The only method of achieving this 
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is to model the noise explicitly, thereby achieving ARX parameters which 
describe the dynamics only. Noise modelling would imply the use of either 
of the following model types: 

• An ARMAX model. 

• An ARARX model. 

• An ARARMAX model. 

• The state space Innovations representation usmg a time-invariant 
Kalman filter. 

• The directly parameterized state space Innovations formulation. 

• The Maine-Iliff MMLE3 state space formulation. 

The first three model types may be implemented in a single-input single­
output model. The last three formulations are implemented in the complete 
multiple-input multiple-output state space setting and are described in sec­
tion 4.6. 

ARMAX Model 

The ARMAX model is probably the most practical model to use since it · 
contains a moving average modelling of the innovations or noise. In most 
practical cases transducer output noise is found to be of a moving average 
nature. The specific assumption which has to be made is that the noise is 
indeed of a stochastic nature. 

ARARX or ARARMAX Models 

If it should be found that the noise is not well modelled by a moving average 
process, the above two model types may be more suitable. In the intended 
application however, where a robust modelling tool is sought, the ARMAX 
model would from a practical point of view be the preferred choice. 
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Innovations Representation Using a Time-invariant Kalman Fil­
ter 

This formulation, sometimes also referred to as the natural formulation, is 
complex, requiring solution of the stationary discrete Ricatti equation. Set­
ting aside complexity, this formulation is in practice very time consuming. 

The Maine-Iliff MMLE3 Formulation 

The above comments would generally also apply in this case. This formu­
lation would in general primarily be intended when modelling state space 
systems from physical knowledge of the actual system, see Maine and Iliff 
[1986]. 

The Directly Parameterized Innovations Formulation 

This formulation is simpler in that the innovations terms are directly pa­
rameterized, Ljung [1987]. In a black-box state space setting this would 
certainly be a preferred formulation compared to the Innovations represen­
tation using a time-invariant Kalman filter. 

3.6 Assessment of SISO Model Structures 

3.6.1 Off-line Application 

In contrast to on-line digital control systems, where stochastic control 
through state estimation is implemented, the proposed control of servo­
hydraulic test rigs to reproduce operational measured responses, functions 
in a completely off-line mode. This fact has specific implications on anum­
ber of aspects regarding the choice and use of the model structure. 

3.6.2 Reduction of Stochastic Models to Determinis­
tic Models in an Off-line Application 

It was shown in section 2.4.3 that in an off-line application the ARMAX 
model essentially reduces to the ARX model. When simulating an ARMAX 
model with data other than that used to identify the model, the ARMAX 
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model also reduces to an ARX model. In determining the system inputs 
from operational measured responses, the model would indeed be simulated 
using the operational responses, which is not the data used in the actual 
identification process, and an identified ARMAX model would hence in­
deed reduce to an ARX model. This would also apply to any of the other 
stochastic model structures like the ARARX or ARARMAX models, which 
would reduce to a deterministic ARX model. 

3.6.3 Reduction of the Generalized Linear Time-invariant 
Model Structure 

Recalling the generalized model structure from equation (2.26), 

B(q) C(q) 
A(q)y(t) = F(q) u(t) + D(q) e(t) 

it would hence only be required to implement the impulse response 

B(q) 
G(q) = A(q)F(q) 

(3.1) 

(3.2) 

without the noise model. The generalized model structure for this specific 
application would subsequently simplify to 

A(q)y(t) = ~~:~ u(t) + e(t) (3.3) 

which essentially narrows down to either the ARX model, with A( q) and 
B(q), or the complete above model as given by equation (3.3). 

3.6.4 ARX Model 

The ARX model structure is a prime choice from a simplicity point of 
view, as well as the advantage of being able to write the model as a linear 
regression. It has also found wide application in control systems. The 
most important reason for selecting the ARX model however, is the direct 
relation to the state space model, which is discussed in chapter 4. 
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3.6.5 Application of the Identified Model 

The sole purpose of modelling the stochastic components of the system is 
to prevent the dynamic model from attempting to model the noise as well. 
The conclusion is hence drawn that an initial noise model should be in­
cluded in the identification process. By definition, the noise and inputs do 
not form a causal system. Corrections for the stochastic part of the out­
put measurement is consequently not possible. After the actual modelling 
process the noise model is of no further use, since the stochastic model 
effectively reduces to a deterministic model in an off-line situation. The 
stochastic part of the model is thus omitted after the actual identification, 
and only the deterministic system dynamics is taken into account. 

3.7 Assessment ofParameter Estimation Tech-
• n1ques 

In section 2.5.1 two classifications were established, namely the prediction 
error methods, and the correlation approach. 

3.7.1 Bias and Consistency ofthe Least Squares Method 

If the process noise is not true white noise, and is correlated with the out­
puts, the ordinary least squares method does not give consistent, unbiased 
results, as discussed in section 2.5.4 . In this case the instrumental variable 
technique is a better choice, and in particular the IV 4 method. The neces­
sity of using the instrumental variable method would depend on the noise 
characteristics of a particular test rig setup. 

In section 3.4.3 it was mentioned that the ARX model parameters will 
attempt to model both the system dynamics as well as the noise. The solu­
tion to this problem was given by explicitly modelling the noise through one 
of the stochastic model formulations . An alternative method of overcoming 
this problem is to employ the instrumental variable technique instead of the 
least squares method. The IV technique is said to only model the system 
dynamics, and essentially ignores the noise, Ljung [1987]. 
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3.7.2 Suggested Parameter Estimation Procedure 

The following procedure is suggested, but may vary slightly from one test 
to another: 

• Identify a deterministic ARX model to obtain an initial parameter 
vector, using the ordinary least squares technique, or where necessary, 
the IV 4 method. 

• Identify a stochastic model, like ARMAX or ARARX, using the above 
determined parameters for A( q) and B( q ), while making a crude es­
timate for the C( q) parameters, utilizing a prediction error method 
(PEM). 

• Discard the C(q) parameters, while only retaining the A(q) and B(q) 
parameters for the final deterministic ARX model. 

The first step above, would only be required for large models, where it 
might be required to speed up the identification process. 

3.8 Summary 

From the vast field of dynamic system identification a number of important 
fundamental aspects have been established in the process of selecting both 
appropriate basic model structures as well as the parameter estimation 
techniques for the application to servo-hydraulic test rigs. 

After the identification process has been completed a deterministic model 
is required, since a stochastic model cannot be accomodated in the off-line 
application of determining the system inputs from the operational mea­
sured responses. The ARX model iJ conJequently JuggeJted aJ the baJic 
determiniJtic model Jtructure. 

During the actual identification process it will in general be required to 
use a basic model structure which specifically models the noise or distur­
bances. The reason for this requirement is that an ARX model will attempt 
to model the process noise if stochastic modelling terms are not provided in 
the model formulation. The ARMAX model structure is suggested for this 
purpose, however specific applications may require other structures like an 
ARARX model. The choice of the final basic model type to be used during 
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the identification process, could vary from one test rig to the next, and 
would be governed by specific aspects such as the chosen transducers, the 
control mode of the actuators and the general rig configuration. 

Should the ARMAX model, which consists of the three basic parameter 
polynomials A(q), B(q), C(q), for instance have been chosen for the initial 
identification process, only the A(q) and B(q) parameters would be re­
tained, while discarding the C(q) parameters, since the noise model serves 
no further purpose thereafter. 

As far as the parameter estimation technique is concerned, the following 
procedure is suggested: 

• Identify a deterministic model to obtain an initial parameter vector 

• Using this initial parameter vector, identify a stochastic model 

• Discard the noise model, retaining an ARX model 

The parameter estimation methods would be the ordinary least squares, 
followed by the IV approach. 

Thus far no attention has been given to the requirement of a multiple­
input multiple-output model. This aspect is addressed in the next chapter. 
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Chapter 4 

Development of the MIMO 
Dynamic Model 

4.1 Introduction 

In chapter 2 relevant aspects from the dynamic system identification theo­
ry were presented. Having furthermore established the necessary model 
requirements in chapter 3, we are now able to develop a specific model 
for the intended application. From the summarized model requirements in 
section 3.4.3, it has already been possible to eliminate a number of possible 
model types and model structures, which has led to the selection of a baJic 
ARX model. 

Having chosen the basic ARX model structure, it becomes necessary to 
turn attention to the multivariable aspects. For the specific application, 
a fully coupled model describing the complete dynamics of the multiple­
input multiple-output system is required. Various multivariable model for­
mulations are available to do this, and are discussed in this chapter. One 
possibility is the matrix fraction description which may be formulated for 
the various basic model types and gives matrix polynomials in the delay 
operator q. Alternatively the pulse transfer function may be used, but this 
requires the use of three-dimensional matrices, which in general is incon­
venient. A third alternative is the state space model formulation, which 
has been developed to a high degree especially in the control systems field. 
Texts on the state space formulation and its implications from a control 
systems point of view may be found in Rosenbrock [1970], Kailath [1980], 
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Strejc [1981] and Apte [1981]. 
The purpose of this chapter is to evaluate the various multiple-input 

multiple-output model structures in order to select the most appropriate 
type of model and thereafter to develop the chosen model structure into an 
appropriate form for subsequent determination of the system inputs from 
the measured responses. 

In section 4.3 which discusses multivariable model descriptions, it is 
found that the state space model structure is in general the most appropri­
ate model to describe the general multiple-input multiple-output dynamics 
of the system. It is however also found difficult in practice to implement a 
generalized black-box state space model. It will be shown that the coup­
led multiple-input multiple-output dynamic system may be separated into 
multiple-input single-output (MISO) ARX models, which becomes possible 
due to the fact that the separate models are independent of one another. 

These separate ARX models are then combined into a complete global 
state space model describing the total multiple input-output dynamics of 
the system. 

4.2 Multivariable ARX Model Parameterizations 

The general ARX model in polynomial form is given by 

A(q)y(t) = B(q)u(t) + e(t) ( 4.1) 

4.2.1 Multiple-input Multiple-output Systems Mod­
elling 

Consider a simple second order system with two inputs and two outputs. 
Assuming an ARX structure, output y1 would be influenced by both inputs 
u 1 and u 2 , which may be written as 

Yt(k) + a11 Y1(k- 1) + a21 Yt(k- 2) 

b101 u 1(k) + blhut(k -1) + b121 U1(k- 2) 
+b2o1 u2( k) + b211 u2( k - 1) + b221 u2( k - 2) 
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The response of any linear dynamic system at time instant k, is deter­
mined by two parameters namely, the inputs, as well as the current state of 
the system at time instant k. Analysing equation 4.2, it is clear that output 
Y1 is influenced by both inputs u1 and u2 , as well as the current and past 
states of Y1, by virtue of the autoregressive modelling of y1. The state of 
the system is however not only described by y1, but also by y2 , hence also 
necessitating the inclusion of y2 terms in the above equation. This would 
g1ve 

Y1 ( k) + a1 1 Y1 ( k - 1) + a21 Y1 ( k - 2) 

b101 u1(k) + bu1 u1(k -1) + b121 u1(k- 2) 
+b2o1 u2( k) + b21 1 u2( k - 1) + b221 u2( k - 2) 

+c10tY2(k) + Cu1Y2(k- 1) + c121Y2(k- 2) 

Similarly for the second output channel 

Y2(k) + a1 2 Y2(k- 1) + a22Y2(k- 2) 

b102 u1(k) + b112 u1(k- 1) + b122 u1(k- 2) 

+b2o2 u2(k) + b212 u2(k- 1) + b222 u2(k- 2) 

+c1~Y1(k) + Cu2 YI(k -1) + c122 Y1(k- 2) 
. 

(4.3) 

( 4.4) 

Note that in equation ( 4.3), the c parameters are used to designate 
correspondence with the output y2, which acts as an input to the ARX 
model. The symbol "c" is traditionally utilized for the moving average 
modelling parameters of the ARMAX model. 

4.2.2 Independence of Fully Coupled Multivariable 
ARX Models 

In the previous section, it was established that in a two input two output 
system, y1 would be determined by ub u2, Y2 and similarly for the second 
output channel, i.e. 

YI = JI(u~,u2,Y2) 
Y2 = !2( u1, u2, YI) 
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The identified parameter vectors for these two models are however in­
dependent of one another, and may be written as the following matrices: 

and for the second output channel, 

4.2.3 Simulation of M ultivariable ARX Models 

To be of any use, it would be required to be able to simulate the model, 
as detailed in section 3.3. The separate ARX models defined by equations 
( 4.3) and ( 4.4) are difficult to simulate, since they are still coupled to one 
another. Values of y2 are required in a one step ahead prediction of y1 in 
equation ( 4.3), while the converse is true for equation ( 4.4 ). It is hence 
required to combine these separate ARX models in some manner to effect a 
convenient simulation of the complete MIMO dynamic system. It therefore 
becomes necessary to investigate alternative MIMO model formulations , 
which is done in the next section. 

4.3 Multivariable Model Descriptions 

Two basic formulations for multiple-input multiple-output systems are pre­
sented in this section. 
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4.3.1 Matrix Fraction Descriptions for Multivariable 
Systems 

Consider a multiple-input multiple-output (MIMO) system with r inputs 
and p outputs. The input now becomes an r dimensional vector u(t) and 
the output a p dimensional vector y(t). 

The matrix fraction description of the ARX model then becomes 

y(t)+Aly(t-1)+ ... An4 Y(t-na) = Bou(t)+Bl u(t-1)+ ... Bnb u(t-nb)+e(t) 
(4.7) 

Where 
Ai - are p x p matrices and 
Bi - are p x r matrices. 
Introducing the matrix polynomials 

A(q) - I+ A1q-1 + ...... + An"q-n" 

and B(q) - Bo + B1q-1 + ...... + Bnbq-nb 

( 4.8) 

(4.9) 

which means that A( q) is a matrix whose elements are polynomials in 
q-1 ; this leads to the Matrix Fraction De:Jcription (MFD) [Strejc, 1981]. 
Defining the parameter matrix 

8 = [A1 A2··· ···An" Bo Bl······Bnb]T 

we may also write ( 4. 7) as a linear regression 

y(t) = ()T <P(t) + e(t) 

Similar MFD descriptions exist for the other model structures 
like ARMAX. 

4.3.2 State Space Descriptions 

( 4.10) 

( 4.11) 

The state space formulation, which is detailed in Appendix A, gives a very 
convenient formulation for multivariable MIMO systems Astrom and Wit­
tenmark [1984]. 

For a system with r inputs and p outputs, the continuous state space 
formulation becomes 
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x(t) - Ax(t) + Bu(t) 

y(t) - Cx(t) + Du(t) 

( 4.12) 

(4.13) 

The state equation ( 4.12) may be integrated under the assumption that 
the input signal remains constant over a sampling period. Details of the 
integration may be found in Appendix A. This leads to the discrete state 
space description, which is given by 

x(k + 1) 

y(k) -
«Px(k) + ru(k) 

Cx(k) + Du(k) 

( 4.14) 

( 4.15) 

4.3.3 Relation Between SISO ARX and State Space 
Formulations 

A convenient relation exists between the ARX model and the state space 
formulation for single-input single-output systems Ogata [1987] . The re­
sults of this relation, applied to a third order single-input single-output 
ARX model, will simply be demonstrated here without proof. This rela­
tionship has been expanded to multiple-input multiple-output systems by 
the author, and will be discussed in detail in section 4.5, and Appendices 
Band C. 

Consider a single-input single-output system defined by a third order 
ARX model. The difference equation is given by 

y( k )+a1y( k-1 )+a2y( k-2)+a3y( k-3) = bou( k )+b1u( k-1 )+b2u( k-2)+b3u( k-3) 
(4.16) 

The corresponding state space description of the above model is given 
by 
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(4.18) 

4.3.4 Assessment ofMultivariable Model Descriptions 
and Final Choice of the State Space Formula­
tion 

It was shown above that a convenient direct relation exists between the 
ARX model and the state space formulation. This was shown for a SISO 
system, but will also be shown to hold true for a MIMO system in sec­
tion 4.5. It has often been stated in the literature that the state space 
formulation is virtually the only convenient formulation to work with in 
a multivariable setting, see Ljung (1988]. A vast theory base has further­
more also been developed for the state space formulation over the past few 
decades, see Phillips and Nagle (1990]. 

The state space model structure is thus considered to be the formulation, 
and is chosen as the final model structure. The actual parameterization of 
the state space model however remains to be defined, which is addressed in 
the next section. 

4.4 Multivariable State Space Model Para­
meterizations 

The general black-box state space model parameterization takes the form 
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Xt(k+1) 
x 2 (k+1) 
x 3 (k + 1) 
x4(k + 1) 
xs(k + 1) 
xs(k + 1) 
x7(k+1) 
x8 (k+1) 
Xg(k+1) 

01XOXOOOX 
ooxoxooox 
OOX1XOOOX 
ooxoxooox 
OOXOX100X 
OOXOX010X 
OOXOX001X 
ooxoxooox 
ooxoxooox 

with output equation 

Xt(k) 
x2(k) 
X3(k) 
x 4 (k) 
x 5 (k) 
x 6 (k) 
x1(k) 
xs(k) 
Xg(k) 

Xt(k) 
x 2(k) 
X3(k) 
x4(k) 
xs(k) 
xs(k) 
x1(k) 
xs(k) 
Xg(k) 

X X 
X X 
X X 
X X 

+ X X 
X X 
X X 
X X 
X X 

( 4.20) 

where the X elements indicate parameter positions. The above struc­
ture has thus been illustrated for n = 9 states, p = 3 outputs, r = 2 
inputs. 

The parameterization is uniquely defined by the p numbers Vi which 
together constitute the multi-index Dn where 

( 4.21) 

In this case 
Vn = {3,2,4} ( 4.22) 

This indicates the model orders of each channel and corresponds to the 
positions of the column numbers with parameters in the «P matrix of ( 4.19), 
as well as the non-zero column entries in the C matrix of ( 4.20). 
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The above state space parameterization is similar to Ljung [1987] Ap­
pendix 4A. The main difference being an exchange of the parameter rows 
with columns. This may be done since the state space representation is not 
unique. Ogata [1987] section 5.2 gives alternative formulations for trans­
forming z-transform type transfer functions into a number of different state 
space formulations through amongst others the direct programming method 
and the nested programming method. Appendix B of the current document 
uses a modified version of these principles to expand Ogata's formulations 
to multivariable state space formulations. 

4.4.1 State Space Model Structure Selection and Eval­
uation 

System identification with a MIMO state space model is well established 
in the literature, see e.g. Milne [1988], where a predetermined model struc­
ture is selected, and all parameters are determined simultaneously. See 
also Ljung [1991]. Various methods for selecting the multi-indices have fur­
thermore also been described in the literature, see Ljung [1987] appendix 
4A. 

What is however of concern in the state space formulation is the large 
number of parameters that constitute the model, and which have to be 
found (a total of 51 parameters in the above case). The state space iden­
tification technique could therefore be extremely cumbersome in practice, 
especially when the model order i.e. the multi-indices also have to be found . 
It is therefore essential to attempt to break the large multivariable problem 
down into smaller sub-problems, which is discussed in the next section. 

4.5 Conversion of MIMO ARX Models to a 
Single State Space Description 

The relation between the ARX difference equation model and the state 
space formulation was presented in section 4.3.3. This was shown for a 
SISO system according to Ogata [1987]. An analogous relation applicable 
to MIMO systems, has been derived by the author, and is dealt with below. 
This formulation leads to an observable canonical form. 

83 

Digitised by the Library Services, University of Pretoria, 2015.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.5.1 Combination of MIMO ARX Models to Ob­
servable Canonical Form 

The required combining of the separate ARX models into a single MIMO 
state space model in observable canonical description is derived in Appendix 
B. The application of this method to the two models in equations ( 4.3) and 
( 4.4) leads to a restriction in that t~e leading c terms c101 and c102 are 
required to be zero in order to realize an observable canonical description. 
This leads to: 

cui 
c121 
-a12 
-a22 ~ l 

[ 
( b111 - a11 b101 + c111 b102 ) ( b21t - alt b2o1 + c111 b2o2) l 

r = (bl2t- a2tbl0t + c12tb10J (b22t- a2tb20t + cl2tb2o2) 
( b112 + c112 b101 - a12 b102) ( b212 + c112 b2o1 - ah b2o2) 
( b122 + C122 b101 - a22 b102) ( b222 + c122 b2o1 - a22 b2o2) 

[ x 1(k) l 
[ Y1(k) l == [ 1 0 0 0 l x2(k) + [ b1o1 b2o1 ] [ u1(k)] 

Y2(k) 0 0 1 0 x3( k) b102 b2o2 u2( k) 
x 4(k) 

or 

y(k) = Cx(k) + Du(k) 

( 4.23) 

( 4.24) 

(4.25) 

( 4.26) 

The above formulation is in the well known observable canonical form. 

x(k + 1) - ~x(k) + ru(k) 

y(k) - Cx(k) + Du(k) 
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4.5.2 Combination of MIMO ARX Models to State 
Space Form 

When it is essential to retain the leading c terms c101 and c102 , an observable 
canonical form is not possible. A state space conversion is however still 
possible, Strejc [1981], and is presented in Appendix C . 

4.6 Noise Models in the State Space Formu­
lation 

From (2.15) we had the description of a dynamic system 

y(t) = G(q)u(t) + H(q)e(t) ( 4.29) 

where the noise was described by 

v(t) = H(q)e(t) ( 4.30) 

It is common for state space descriptions to split the noise term v(t) into 
contributions from measurement noise v( t) and process noise w( t) acting 
on the states of the system see Astrom and Wittenmark [1984], Goodwin 
and Sin [1984]. This gives 

x(k + 1) 

y(k) 
C)x(k) + ru(k) + w(k) 

Cx(k) + Du(k) + v(k) 

(4.31) 

( 4.32) 

where w( k) and v( k) are sequences of independent random variables 
with zero mean and covariances 

E[w(k)wT(k)] 

E[v(k)vT(k)] -
E[w(k)vT(k)] 
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4.6.1 Innovations Representation and the Time In­
variant Kalman Filter 

When the direct transmission matrix D = [0], the output prediction error 
of (4.32) leads to e(t) = y(t)- Cx(t) by virtue of (4.30), where x(t) is the 
estimate of the states at time t. The state space formulation together with 
the covariances may be used in a predictor Ljung [1987], given by 

x(t + 1) = ~x(t) + ru(t) + K[y(t)- Cx(t)] 
y(t) = Cx(t) 

where K is known as the Kalman gain, and is obtained from 

and P is the positive semi definite solution to: 

( 4.36) 

( 4.37) 

( 4.38) 

P = ~p~T + Rt- [~PCT + R12][CPCT + R2t1[~PCT + R12JT (4.39) 

The above equation is known as the stationary discrete matrix Ricatti equa­
tion. 

The covariance of the state estimation error is the matrix P, therefore 

p = E[x(t)- x(t)][x( t)- x(t)]T 

The prediction error denoted by e( t) is given by 

e(t) = y(t)- Cx(t) 

( 4.40) 

( 4.41) 

and is that part of the output which cannot be predicted from past data 
i.e. the innovation. ( 4.36) and ( 4.37) may now be written as 

x(t + 1) = ~x(t) + fu(t) + K[e(t)] 
y(t) = Cx(t) + e(t) 

The innovations covariance is given by 

( 4.42) 

( 4.43) 

( 4.44) 

Equations ( 4.42) and ( 4.43) are referred to as the innovations formula­
tion of the state space description, because the innovations term appears 
explicitly. 
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4.6.2 Directly Parameterized Innovations Represen­
tation 

A convenient simplified form of the innovations formulation is obtained by 
directly parameterizing K in terms of 0. This is called the directly para­
meterized innovations form. Astrom and Wittenmark (1984]. This means 
that the R matrices are no longer required and the solution of the discrete 
Ricatti equation is also alleviated. General black box models are essentially 
directly parameterized innovations models. 

4.6.3 Omitting the Noise Model 

As mentioned in section 3.5.5, the noise model is discarded after the actual 
identification process, since it serves no further purpose in the inverted 
model. Two alternatives are available namely: 

• Implement a noise model in each multiple-input single-output model. 
The stochastic part is then dropped before converting each model to 
the final multiple-input multiple-output state space model. 

• Implement a noise model in each multiple-input single-output model, 
convert these models to state space, retaining the stochastic parts. 
The state space model then contains a stochastic model which is then 
refined in a state space system identification process. Only thereafter 
is the noise model dropped. 

The latter alternative would however burden the user with specifying the 
innovations covariance matrix which would be undesirable, and the former 
solution will therefore further be pursued. 

4.7 Summary 

Summarizing what has been achieved up to this point: From the large 
field of dynamic system identification, the variety of possible structures has 
been narrowed down by selecting the ARX model as the basic identification 
process. This is achieved by a prior identification of a stochastic model such 
as the ARMAX model, whereafter only the A( q) and B( q) parameters are 
retained for the subsequent deterministic ARX model. 
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The state space formulation has been chosen as the final MIMO model 
structure. The complex multivariable problem has further been broken 
down into smaller problems by identifying a separate ARX model for each 
output channel, and thereafter combining these models into a complete 
coupled multiple-input multiple-output state space model. 

The multivariable state space model can now be further developed 
into such a form as is required to determine the system inputs from the 
known operational responses. This means that the identified model must 
be inverted to achieve the final inverse multiple-input multiple-output state 
space model. These aspects are dealt with in the next chapter. 
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Chapter 5 

Inversion of the dynamic 
model 

5.1 Introduction 

ThiJ chapter formJ the final Jtage in the development of an appropriate 
model for the Jpecific application. Having found a multivariable state space 
model which gives a complete description of the dynamic input-output be­
haviour of the system, the operational measured responses may be used 
together with the model to calculate the system inputs or actuator drive 
signals, which will then result in the desired responses. 

To achieve this objective requires an inverJe model, i.e. given the sys­
tem responses, the inverse model may be simulated to give the system 
inputs which caused those responses. In the frequency domain, the fre­
quency response function matrix is inverted, see Allemang [1980] , Craig 
[1979], Klinger & Stranzenbach [1979]. Alternative methods such as modal 
coordinate transformation have also been utilized to find excitation forces 
from response measurements, see Desanghere and Snoeys [1985]. 

A multitude of different techniques may be employed in achieving the 
final fully coupled inverse state space model, see Raath [1991 c]. Inversion 
of the dynamic model is however not a trivial exercise since the inverse 
model is more often than not found to be unstable and can therefore not 
be simulated. Pre-analysis of the eigenvalues of the state matrix provides an 
indication of the stability properties of the identified system. To alleviate 
the problem of instability, a number of different inversion techniques may 
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be employed, at least one of which should provide a stable inverse. Unstable 
inverses are not found in the frequency domain, although other problems 
arise in the frequency domain such as numerical instability near resonances 
and singular spectral lines i.e. singular FRF matrices at specific spectral 
lines, see e.g. Desanghere and Snoeys [1985]. 

If, during the identification of the dynamic model, one could simply 
exhange the inputs and outputs, it should then be possible to identify an 
inverse model directly. There is however a problem with such a scheme, in 
as much as the causality would be violated (see section 2.2) ie. the system 
would be expected to respond before any excitation had been applied. By 
reversing the input and output data sequences, the system would be able to 
react correctly, and the causality would again be restored. This proposal 
has been implemented, and is discussed in section 5.7.2. Apart from its 
simplicity it has furthermore proved to solve model instability problems, 
which will be enlightened in section 5.4.2. 

The general philosophy and classification of inversion techniques and 
their formulations has been developed in section 5.2. The key issue of 
stability, which fundamentally decides which inversion algorithm is to be 
applied, is discussed in section 5.3, while the various inversion techniques 
and formulations are presented in sections 5.4 through 5.9 . Finally guide­
lines as to which algorithm to select, are summarized in section 5.10 . 

The theoretical developments in sections 5.2, 5.4, 5.6 and 5. 7 are novel, 
while section 5.5 is taken from Strejc [1981] and is presented for the sake 
of completeness. The theory in section 5.9 is a slightly modified version 
of a presentation from Ogata [1987] and is well established in the control 
systems literature, but the application thereof in this specific form is novel. 

5.2 General Philosophy and Classification of 
Inverse Models 

5.2.1 General Philosophy 

Point of Inversion 

The process of obtaining the final inverse state space model may be broken 
down into three fundamental phases, namely 
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• The identification phase 

• The conversion to state space phase 

• The inversion phase 

It is however important to appreciate that the order of applying the above 
three phases need not necessarily be as given above. This considerably 
broadens the scope of possible inverse techniques and formulations by ap­
plying the inversion phase at different points in the complete process. 

• Firstly the following method may be pursued: 

- Identify an ARX model for each output channel 

- Combine each of the above models to one multivariable state 
space model 

- Invert the state space model 

• Secondly the path below may be followed: 

- Identify an ARX model for each output channel 

- Invert each model to give an inverse ARX model 

Combine each of the above inverse models to one multivariable 
state space model 

• Alternatively the inversion process may even be implemented during 
identification: 

- Identify a direct inverse ARX model for each input channel 

- Combine each of the above inverse models to one multivariable 
state space model 

If the true order of the system is known, then the above three alterna­
tives will give the same final resultant inverse state space model. 
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Type of Inverse Model 

It is furthermore possible to formulate a number of different inverse models, 
which all serve the same purpose. The reason for such a pursuance is 
the ability to find alternative stability properties for the different inverse 
models, which all represent an inverse description of the same dynamic 
system. 

5.2.2 Classification of Inverse Model Types 

The above mentioned formulations may be classified according to the order 
of the data, and are detailed below. 

Models having identical input-output characteristics but exhibiting dif­
ferent stability characteristics, may be formulated by inverting the order 
of the data. Consider for instance the input vector u consisting of N data 
points. The reversed data vector ii is then defined as follows: 

u(1) u(N) (5.1) 

u(2) u(N -1) 

u(k- 2) - u(r) 

u(k- 1) u(r- 1) 
u(k) u(r- 2) 

u(N- 1) u(2) 

u(N) u(1) 

A similar reversal of the output vector may be applied. By introducing 
the new index r , the reversed data vector may be conveniently used in the 
standard ARX model formulations. 

The classification may best be done by the following definitions. 

• Definition: A "Normal" model is defined such that, given the system 
inputs, the system responses may be simulated. 
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• Definition: An "Inverse" model is defined such that, given the system 
responses, the system inputs may be simulated. 

• Definition: A "Forward" model is defined such that, when simulating 
the model, the data is in its natural state. 

• Definition: A "Reversed" model is defined such that, when simulating 
the model, the order of the data is reversed. 

The above definitions may now be combined to give the following classifi­
cation of model types namely 

• Normal models 

• Forward Inverse models (fi) 

• Reversed Inverse models (ri) 

Other combinations of the above definitions may of course also be pos­
sible, but would make little sense, and the above three model classes are 
the only practical model types to formulate. 

5.3 Stability Analysis of Multivariable Dy­
namic Systems 

Following heuristic arguments, unstable dynamic models practically relate 
to an ever increasing output for a given bounded input. For a system which 
has an unstable inverse, the input shows an ever increasing amplitude when 
simulated from a bounded response. It may for instance be found that when 
simulating a model in the forward direction, i.e. determining the response 
output from a given input, that the system behaves perfectly well. However 
if the system has an unstable inverse, the input will diverge when simulat­
ing the inverted model with the given response data. When studying the 
problem from a numerical analysis point of view, it is found that instabil­
ity practically stems from a poorly conditioned numerical problem, with 
rounding-off errors being one of the major causes of numerical instability. 

Two fundamental issues need to be addressed: namely how do we de­
termine the stability of the inverted model from an analysis of the normal 
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model, and what can be done about the problem of instability. Several 
aspects need to be described beforehand to appreciate the key issues of 
stability. 

5.3.1 Solution to the Discrete State Equations 

Consider a system described by 

x(k + 1) = 4»x(k) + ru(k) 
y(k) = Cx(k)+Du(k) 

(5.2) 
(5.3) 

Given the initial state vector x(O), and assuming that u(O) = 0, the 
states may be propagated as follows, 

x(1) 4»x(O) 
x(2) - 4»x(1) + ru(1) 

4» 2x(O) + ru(1) 
x(3) - 4»x(2) + ru(2) 

- 4»3x(O) + 4»ru(1) + ru(2) 

x(k) 4»kx(O) + 4»k- 2ru(1) + 4»k- 3ru(2) + · · · + ru(k- 1). 
k-1 

4»kx(O) + L 4»k-j-t ru(j) (5.4) 
j=O 

The state vector at any instant k is thus a function of the initial states 
and all inputs up to point k - 1. Making use of the definition of the 
controllability matrix We from Appendix A, equation (5.4) may also be 
written as 

(5.5) 

5.3.2 Diagonal Form of the Discrete State Equations 

Returning the attention to stability, assume that 4» has distinct eigenval­
ues {.\1 , ... , .Xn}, where n is the order of the system. Then there exists a 
transformation matrix T such that 4» may be diagonalized 
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Comparing (5.4) or (5.5) with the above, q,k is found to diverge if the 
eigenvalues are such that I ..\i I~ 1. Since the eigenvalues of the state 
matrix may also be complex, this means that for stability, the eigenvalues 
are required to be inside the unit circle on the complex plane. 

5.3.3 Definitions of Stability 

Various forms of stability may be defined for state space systems: 

Poles and Zeros of Discrete M ultivariable Systems 

A total of eight different types of poles and zeros of discrete multivariable 
systems exist Patel and Munro [1982]. Only two of these which are rele­
vant to the determination of stability of models and their inverses will be 
discussed. 

Poles 

In discrete multivariable systems the poles are given by the eigenvalues of 
the discrete state matrix «P . 

Transmission Zeros 

The transmission zeros of a discrete multivariable state space system are 
calculated by solving the pseudo eigenvalue problem. 

Poles and Transmission Zeros of Models and their Inverses 

The poles and zeros of a Laplace form transfer function are given by the 
zeros of the numerator and denominator respectively. "'When inverting the 
transfer function the poles and zeros interchange. Likewise the poles and 
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transmission zeros of multivariable state space systems, similarly inter­
change. This applies only to the forward inverse model. 

Therefore the stability of a forward inverse model may be evaluated 
through the poles of the forward inverse model, or alternatively by the 
transmission zeros of the normal model. 

In the case of reversed inverse models, the model is first inverted and 
its stability evaluated by the poles. 

5.4 Inversion of Multivariable ARX Models 

The following simple analysis, applied to a two channel system, illustrates 
the inversion of multivariable ARX models. Conversion to both forward 
inverse and reversed inverse models are presented. 

For the first output channel assume a third order ARX model with two 
delays on both inputs, resulting in the following parameters: 

Similarly for the second output channel a second order model with one 
delay on each input channel may be assumed, resulting in 

The corresponding difference equations are given by 
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and 

Y1(k) + a11Y1(k- 1) + a21Y1(k- 2) + a31Y1(k- 3) 

b121U1(k- 2) + b131 u1(k- 3) 

+b221 u2( k - 2) + b231 u2( k - 3) 

+c101Y2(k) + Cu1 Y2(k -1) + c121Y2(k- 2) + c131Y2(k- 3) 

Y2(k) + a12 Y2(k- 1) + a22 Y2(k- 2) 

b112u1(k- 1) + b122 u1(k- 2) 

+b212 u2(k- 1) + b222 u2(k- 2) 

+c1<hY1(k) + Cn2 Y1(k- 1) + c122 Y1(k- 2) 

(5.6) 

(5.7) 

5.4.1 Forward Inverse Conversion 

Channel no. 1 

Incrementing k by 2, and solving for u 1 ( k) from ( 5. 6), results in the forward 
inverse model for input channel 1: 

b131 1 
u1(k) + -b -u1(k -1) = -b -[y1(k + 2) + ahy1(k + 1) + a21Y1(k) + a31 Y1(k- 1) 

121 121 
-c101Y2(k + 2)- Cu1Y2(k + 1)- C121Y2(k)- c131Y2(k- 1) 

- b221 u2( k) - b231 u2( k - 1) 

By shifting both output channels by -2, which shall be denoted by y, 
the standard ARX difference equation model is achieved: 

b131 1 
u 1(k) + -b -u1(k- 1) = -b -[!h(k) 

121 121 
-c101 ih( k) 

-b221 u2(k) 

+ ahfh(k- 1) + a21 j]I(k- 2) + a31Y1(k- 3) 

c111 iJ2(k -1)- c121Y2(k- 2) - c131Y2(k- 3) 
b231 u2( k - 1 )] 

The resulting final parameters for input channel u1 are therefore given 
by 
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Three points of interest need to be mentioned. Firstly A1 for the normal 
model was a third order Autoregressive model whereas A 11i has now, after 
inversion, become a first order Autoregressive model. This is clearly due to 
the two initial delays in both inputs. The second point of interest is that 
both outputs y1 and y2 have now been delayed by two sampling periods to 
ih and y2 , also because of the two initial delays. Finally it is noticed that 
B11i has no delays on its inputs, which in this case are y1 and y2 • 

Channel no. 2 

Attempting a similar analysis for the second channel leads to incrementing 
k by 1, and solving for u 2(k) from (5.7), which gives the forward inverse 
model for input channel 2 as: 

b222 1 
u2(k) + -b -u2(k- 1) = -b -[-c102Y1(k + 1)- Cn2Y1(k)- c122Y1(k- 1) 

212 212 
+Y2(k + 1) + a12y2(k) + a22Y2(k- 1) 

-bn2u1(k)- b122u1(k- 1) 

In this case, it will be necessary to shift both output channels by -1, 
which is also denoted by y, to achieve the standard ARX difference model: 

b222 1 
u2(k) + -b -u2(k -1) = -b -[-c102Y1(k) Cu2YI(k- 1)- c122Y1 (k- 2) 

212 212 
+y2(k) + a12Y2(k-1)+a22Y2(k-2) 

- b112u1(k) b122u1(k -1)] 
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The resulting final parameters for input channel u2 are therefore given 
by 

In the inversion of channel 1 we defined y( r) = y( k - 2) whereas in the 
inversion of channel 2 we defined y( r) = y( k - 1) . On the surface this 
seems acceptable, however when converting the two inverse models to the 
state space formulation this poses a problem, since the two models would 
not be compatible in a final state space model. We are therefore compelled 
to restrict the model structures in such a manner that in the normal models, 
the number of delays on the inputs are required to be equal. 

5.4.2 Reversed Inverse Conversion 

The reversed inverse conversion overcomes the delay restrictions required 
by the forward inverse conversion. In this case no data shifting is required. 

Channel no. 1 

Solving for u1( k - 3) from (5.6) results in the reversed inverse model for 
input channel 1 being 

b12t 1 ) 
u1(k- 3) + -b -u1(k- 2) = -b -[aJ1 YI(k- 3) + a21 Y1(k- 2) + a11 Y1 (k -1) + YI(k 

13t 131 
- c131 y2(k- 3) c121Y2(k- 2)- Cn1Y2(k- 1)- c1o1Y2(k) 

-b231 u2(k- 3) - b221 u2(k- 2)] 

By reversing the order of the data which is denoted by ii and y, and 
introducing the new index r as defined in (5.1), this results in 
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- ( ) b121 - ( ) 1 [ - ( ) u1 r + -b -u1 r - 1 = -b - a31 y1 r + a21Y1(r- 1) + a11Y1(r- 2) + Y1(r- 3) 

c121Y2(r- 1)- Cu1Y2(r- 2)- C101Y2(r- 3) 

b221 u2(r - 1 )] 

131 131 
-c13di2(r) 

-b231fi2(r) 

The resulting final parameters for input channel u1 are therefore given 
by 

A [1 ~]-1 . = b ul r• 131 

1 [ a3, a21 a11 1 l YI 
Blri = -b - -c131 -c121 -cnl -cl<h Y2 

131 -b23J -bnl u2 

Channel no. 2 

Solving for u2( k - 2) from (5. 7) results in the reversed inverse model for 
input channel 2: 

Ct22YI(k- 2)- Cn2YI(k- 1)- C1o2Y1(k) 

+ a22Y2(k- 2) + a12Y2(k- 1) + Y2(k) 

b122u1(k- 2)- bn2ui(k- 1)]. 

After reversing the order of the data, and introducing the new index r 
as defined in (5.1), the above equation becomes 

- ( ) b212 - ( ) 1 [ - ( ) u2 r + -b -u2 r- 1 = -b- -c122Y1 r 
222 222 

+a22Y2(r) 

-bn2 fit(r) 

c112Y1(r- 1)- Cto2Yt(r- 2) 

+ a12Y2(r- 1) + Y2(r- 2) 

bn2fit(r -1)]. 

The resulting final parameters for input channel u2 are therefore given 
by 
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1 [ -c.,, -c112 -~~~ l Y1 

B2r; = -b - a22 al2 Y2 

222 -bl22 -bn2 ul 

In the inversion of the first channel we defined 

u(1) - u(N) 

u(2) u(N -1) 

u(k- 3) u(r) 

u(k- 2) u(r- 1) 

u(k- 1) - u(r - 2) 

u(k) u(r- 3) 

u(N- 2) - u(3) 

u(N -1) - u(2) 

u(N) u(1) 

while in the inversion of the second channel the following definition was 
utilized: 

u(1) u(N) 

u(2) u(N- 1) 

u(k- 2) - u(r) 

u(k- 1) u(r-1) 

u(k) u(r- 2) 
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u(N- 2) - u(3) 
u(N- 1) - u(2) 

u(N) - u(1) 

These seemingly differing definitions however pose no problems since 
the two inversions are independent of each other. The conversion of the 
above two reversed inverse models to the state space formulation will also 
not be influenced by these two differing definitions. 

Inverting an ARX model to the reversed inverse formulation therefore 
requires no restrictions on the input delays, and is in general the preferred 
formulation over the forward inverse case. 

Delays in the Reversed Inverse Model 

Comparing the inverse model parameter matrices B1r 1 and B2r 1 for the re­
versed inverse model with those obtained for the forward inverse model 8 11, 

and 8 21,, the reversed inverse model always has zero delay terms. In the di­
rect identification of reversed inverse ARX models, which will be presented 
in section 5.7.2, the estimation of delays becomes unneccessary since the 
number of delays will always be zero. Advantage is taken of this fact, which 
is further pursued in section 6.2.2 . 

5.5 Inversion of Multivariable State Space 
Models: Forward Inverse 

In this section the inversion of a normal multivariable state space model to 
a forward inverse model is presented. This theory was taken from Strejc 
[1981), where it is simply referred to as an "inverse", and is presented here 
for the sake of completeness. 

We start with a definition, Brockett [1965), relating to the transport 
delay of the system: 

Definition: Let the system be described by the equations 

x(k + 1) - fPx(k) + ru(k) 
y(k) - Cx(k) + Du(k) 
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Denoting 

ho - D 
ht - C<P0r 
h2 C<P1r 
h3 - C<P2r 

h· I 

then m defined by the relation 

m = mini=0,1,2 .... { i : hi =I 0} 
is the so-called relative order of the system . 
Three points are of interest: 

(5.10) 

(5.11) 

• Comparing (5.10) with (2.3) and (5.4), the series h0 , h1 , h2 , • • · repre­
sents the ordinates of the discrete impulse response. 

• If ho = h 1 = h2 · · • = hm-l = 0, and hm =I 0, then m is the number of 
delay periods of the output with respect to the input. 

• In the discrete transfer function of the system the relative order is 
given by the difference in degree of the denominator and numerator 
polynomials. 

The inverted system may now be defined as follows: 

Relative Order m = 0 

Consider first a system with relative order m = 0, for which 
D =/; [0] 

From (5.9) u(k) is solved: 

u(k) = [-D-1C]x(k) + [D-1]y(k) (5.12) 

This gives the output equation, which may be substituted into (5.8), giving: 

x(k + 1) = [<P- rn-1C]x(k) + [rD-1]y(k) (5.13) 

which is the state equation 
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Relative Order m = 1 

Next consider a system with relative order m = 1. In this case 
n = [OJ; cr # (o] 

From ( 5. 9) k is incremented: 

y( k + 1) = Cx( k + 1) 

Substituting (5.8) into the above equation, we again solve for u(k) giving 
the output equation 

u(k) = [-(Crt 1CCI»]x(k) + [(Cr)-1)y(k + 1) (5.14) 

Substituting the above into (5.8), gives the state equation 

x(k + 1) = [«<»- r(Cr)- 1 CCI»]x(k) + [r(Cr)-1]y(k + 1) (5.15) 

Relative Order m = 2 

For a system with relative order m = 2, 
n = cr = [OJ; c«<»r # (o] 

Incrementing k from (5.8) and (5.9) results in 

x(k + 2) 
y(k + 2) 

- CI»x(k + 1) + ru(k + 1) 
Cx(k + 2) 

(5.16) 

(5.17) 

Substituting (5.8) into (5.16), the result of which is substituted into 
(5.17), the following equation is obtained: 

y(k + 2) = CCI» 2x(k) + CCI»ru(k), 

from which we may solve for the output equation 

Substituting the above into (5.8) gives the state equation 
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Relative Order m 

In general, 

x(k + 1) (4»- r(cq,m-lrt1C4»m]x(k) + (r(cq,m-lrf1]y(k + m) 

(5.20) 

u(k) = [-(cq,m-1rt1C4»m]x(k) + [(cq,m-1rt1]y(k + m) (5.21) 

Employing the definition of relative order from (5.10), 

the inverted model's state and output equations become 

x(k + 1) 
u(k) 

(4»- r(hmt1 C4»m]x(k) + [r(hmt1 ]y(k + m) (5.22) 

- [-(hm)-1C4»m]x(k) + (hmt1y(k + m) (5.23) 

Depending on the specific dynamic system the above forward inverse 
model may however exhibit unstable eigenvalues and one of the other in­
version techniques would then be required. 

5.6 Inversion of Multivariable State Space 
Models: Reversed Inverse 

Very often the forward inverse conversion is unsuitable due to an unstable 
inverse. As described in section 5.2, it is possible to formulate an alternative 
inverse description of the dynamic system by reversing the order of the 
data. The resultant model was termed a rever3ed inver3e model, which was 
derived for multivariable ARX models in section 5.4.2 . In this section the 
inversion to a reversed inverse model will be developed in two alternative 
methods for multivariable state space systems. 
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5.6.1 Relative Order Dependent Reversed Inverse Con­
version 

We first consider the conversion of a normal multivariable state space model 
to the reversed inverse model where the relative order of the system, which 
was defined in section 5.5, must be taken into account. 

Let the system be described by the equations: 

x(k + 1) = ~x(k) + ru(k) 
y(k) = Cx(k)+Du(k) 

(5.24) 
(5.25) 

By reversing the order of the data we define a new index r as follows 

r - k 

r-1 - k+1 
r-2 k+2 

In terms of our new indices we obtain 

x(r- 1) 
y(r) 

Relative Order m = 0 

~x(r) + ru(r) 
- Cx(r) + Du(r) 

Consider first a system with relative order m = 0, for which 
D # (0) 

From the output equation (5.28) u(r) is solved directly: 

u(r) = - D-1Cx(r) + n-1y(r) 

(5.26) 

(5.27) 
(5.28) 

(5.29) 

which gives the output equation for the inverse model. We increment both 
the above equation and the state equation ( 5.27) and obtain 

u(r + 1) 
x(r + 1) 

- D-1Cx(r + 1) + n-1y(r + 1) 
~-1x(r) - ~-1 ru(r + 1) 
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By substituting (5.30) into (5.31), and solving for x(r+1), gives the inverted 
system's state equation 

x(r+1) =[(I- q;-1rD-1C)-1 «P-1]x(r)-[(I- cp-1rD-1Ct1 «P-1rD-1]y(r+1) 
(5.32) 

Note that it will be necessary to shift y( r + 1) to y( r) to effect the simulation 
of the state equation. 

Relative Order m = 1 

Next consider a system with relative order m = 1. In this case 
n = [OJ; cr =f. [OJ 

The output equation (5.28) incremented by -1 which is substituted into 
the state equation (5.27) from which u(r) is solved. This gives the inverted 
system's output equation: 

u(r) = [-(Crt1C«P]x(r) + (Crt1y(r -1) (5.33) 

The state equation ( 5.27) is incremented by 1 into which the above equation 
is substituted. Solving for x(r + 1) gives the state equation for the inverse 
system: 

x(r + 1) = [«P- r(Cr)-1C«Pt1x(r)- [4»- r(Cr)-1C«Pt1r(Cr)-1y(r) 
(5.34) 

In this case it will be necessary to shift y( r) to y( r - 1) in order to simulate 
the inverted system's output equation. 

Relative Order m = 2 

For a system with relative order m = 2, 
n = cr = [OJ; c«Pr =f. [o] 

The state equation (5.27) is incremented by -1 while also substituting 
( 5.27) into this equation 

x(r- 2) = «P 2x(r) + «Pru(r) + ru(r- 1) (5.35) 
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The output equation (5.28) is incremented by -2 into which (5.35) is sub­
stituted to obtain 

y(r- 2) = Ccp2x(r) + Ccpru(r) + cru(r -1) 

Solving for u( r) from the above leads to the output equation for the inverted 
system. 

u(r) = [-(Ccprt1Ccp2]x(r) + [(Ccpft1]y(r- 2) (5.36) 

Substituting (5.36) into the state equation (5.27) and incrementing by 1 
leads to the inverted system's state equation 

x(r+1) = (cp- f(Ccpft1 Ccp2t 1x(r)-[cp- f(Ccpft1Ccp2t 1f(Ccpft1y(r-1) 
(5.37) 

In this case it will be required to 

• shift y( r) to y( r - 1) for simulating the state equation ( 5.37) 

• shift y(r) to y(r- 2) for simulating the output equation (5.36). 

Relative Order m 

In general we have for the relative order dependent reversed inverse con­
versiOn 

x(r + 1) - (cp- f(Ccpm- 1rt1Ccpmt1x(r) 

and 

(cp- f(Ccpm-lr)-tccpmttr(Ccpm-lrfty(r- m + 1) 

(5.38) 

Utilizing the definition of relative order (5.10), 

hm = Ccpm-tr 

the inverted model's state and output equations for the relative order de­
pendent reversed inverse conversion become 

x(r+1) = (cp - f(hm)- 1Ccpmt1x(r)-(cp- f(hm)-1Ccpmt1f(hmt1y(r-m+1) 
(5.40) 
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and 
u(r) = [-(hmt1 C~m]x(r) + [(hm)-1]y(r- m) 

In applying these equations it will be required to 

(5.41) 

• shift y( r) to y( r - m + 1) for simulating the state equation ( 5.40) 

• shift y(r) to y(r- m) for simulating the output equation (5.41). 

This reversed inverse model may likewise exhibit unstable eigenvalues, 
and one of the other inversion techniques would then be required. 

5.6.2 Relative Order Independent Reversed Inverse 
Conversion 

The inconvenience of taking account of the relative order of the system, 
together with the necessity of shifting the output vectors in the above for­
mulations, may be avoided by an alternative inversion formulation. By 
reversing the data, it is found as in equations (5.27) and (5.28) that 

x(r- 1) 
y(r) 

~x(r) + ru(r) 
Cx(r) + Du(r) 

A new state vector, which is denoted by x is defined such that 

x(r) 

x(r + 1) 

x(r- 1) 

- x(r) 

The state and output equations (5.42) and (5.43) then become 

x(r) 
y(r) 

~x(r + 1) + ru(r) 
Cx(r + 1) + Du(r) 

from which we may solve for x(r + 1) 'giving 
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(5.42) 

(5.43) 

(5.44) 

(5.45) 

( 5.46) 

( 5.4 7) 

(5.48) 
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Substituting the above equation into (5.47) and solving for u(r) , leads 
to the final output equation of the reversed inverse system: 

(5.49) 

The state equation is found by substituting the above output equation 
into (5.48) 

x(r+l) = ~-1 [1 + r(D- c~-1rt1c~-1]x(r)+[-~-1r(D- c~-1r)-1]y(r) 
(5.50) 

The convenience of the above formulation lies in the independence of 
the relative order. With any of following conditions: 

D - 0 

cr - o 
c~r o 
c~2r o 

(5.51) 

the above state and output equations (5.50) and (5.49) remain valid, which 
makes this a very convenient reversed inverse formulation. This formulation 
is however restricted by the existence of ~-l 

Any one or both of the above reversed inverse formulations may of course 
exhibit unstable eigenvalues which would then make them unsuitable. 

5. 7 Direct Identification of Multivariable In­
verse ARX Models 

Pending the outcome of the stability properties of the final multivariable 
state space model, it could be found that the model is not invertable, and 
the effort of identifying the model has been fruitless. By identifying an 
inverse model directly the stability properties are automatically checked in 
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the process. Since the ultimate goal is an inverse model the direct iden­
tification of inverse models is also the simplest approach to follow. This 
is achieved by a simple reversal of all input and output channels. Again 
two alternatives are possible through either the forward inverse or reversed 
inverse models. 

5.7.1 Identification of Forward Inverse models 

Consider a two channel system which consists of a third order system with 
two delays for channel 1, and a second order system with one delay for the 
second channel, as in section 5.4 . The corresponding difference equations 
are given by (5.6) and (5.7) and are repeated below. 

and 

YI(k) + a11 Y1(k -1) + a21 Y1(k- 2) + a31 Y1(k- 3) 
b121 u1( k - 2) + b131 u1( k- 3) 

+b221 u2( k - 2) + b231 u2( k- 3) 

+c101 y2(k) + c111 y2(k -1) + c121 y2(k- 2) + c131 Y2(k- 3) 

Y2(k) + a12y2(k- 1) + a22 Y2(k- 2) 

bu2 u1(k- 1) + b122 u1(k- 2) 

+b212 u2(k- 1) + b222 u2(k- 2) 

+c1<>2 Y1 ( k) + c112Y2( k - 1) + c122 Y2( k- 2) 

(5.52) 

(5.53) 

Employing the notation ui( k) = ui~c and a similar notation for Yi( k), we 
may then write N- 3 equations from the model as in section 2.5.2: 
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Y13 Yh Yh u12 uh u22 u21 Y2• Y23 Y22 Y21 

Ylt Y13 Y12 U13 u12 u23 u22 Y2s Y2• Y2a Y22 

~ Yls Y1. Yla U1• U13 U2• U23 Y26 Y2s Y2. Y23 

-ah 

-a2t 

-a31 

b12t 

b13t 

b22t 

b231 

ClQl 

cnt 

c121 

c131 

(5.54) 

or 
(5.55) 

where EN is the innovations vector. The above may now be converted to 
a forward inverse system according to the procedure outlined in section 
5.4.1 where it was also required to shift both output channels by -2, which 
was denoted y, in order to obtain the standard ARX formulation. For the 
forward inverse model it hence follows that 

-b13t 

1 
a11 

ul. u13 Ylt fh3 Y12 fhl fh. ih3 Y22 ihl u2. u23 a21 

Uls ul. Yls fh. Y13 fh2 fhs Y2. Y23 Y22 U2s u2. 
1 a31 

U1s uls fhs fhs ih. fh3 fhs fhs Y2. Y23 U2s U2s 
b12t 

-c1o1 

-cut 

u1N 
-c121 

-c131 

-b22t 

-b23t 

The parameter vector BN is seen to coincide with the results obtained 
in section 5.4.1. A similar formulation may also be written for the second 

112 

(5.56) 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

channel. The comments on shifting the data by -2 for channel 1, and by 
-1 for channel 2 as mentioned in section 5.4.1, will again lead to incom­
patibility when combining the two models to the state space formulation . 
The restriction of ensuring equal delays on each channel is therefore also 
valid in the identification of forward inverse ARX models. 

5. 7.2 Identification of Reversed Inverse Models 

Over and above the restrictions on equal delays on all channels in the 
identification of forward inverse models it is also necessary to know the true 
order and structure of the system. This inconvenience can be overcome by 
the formulation of the reversed inverse data, where both the inputs and 
outputs, as well as the order of the data is reversed. 

By simply reversing the order of the data, and simultaneously also re­
versing the order of the N- 3 equations of (5.54), results in a change in 
order of the last column giving: 

-a21 

-a It 

1 
YI. YI3 YI2 Y1t ui. U13 u2. U23 Y2. Y23 Y22 Y21 bl3t 

Yis YI. Y13 YI2 uls ui. U2s • u2. Y2s Y2• Y23 Y22 bl2t 

a31 Yls - Yls YI. YI3 UJs uls U2s U2s Y2s Y2s Y2. Y23 b23t 

b22t 

YIN CI3t 

c121 

c11t 

ClOt 

Solving for the fourth column results in 
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-a3t 

-a21 

-a It 

YI. YI3 Yh Y11 U13 u2• u23 Y2• Y23 Y22 Y21 -1 

U1s 
[ u,, Yls YI. YI3 Yh ui• U2s u2. Y2s Y2. Y23 Y22 -b121 

-b13 - - Y16 Yls YI. YI3 U1s u2s U2s Y2t. Y2s Y2. Y23 b23t 1 uls 

b22t 

YIN C131 

CI2t 

cut 

ClOt 

Rearranging the above matrix equation finally gives 

-b12t 

a31 

a21 

[ ~'·] 
U13 YI. YI3 YI2 Y11 Y24 Y23 Y22 Y21 u24 u23 alt 

u14 Yls YI4 YI3 Y12 Y2s Y24 Y23 Y22 u2s u24 1 
Uls 1 
U1s 

- U1s Yls Yls YI4 Y13 Y2s Y2s Y24 Y23 u26 U2s 
b13t 

-c131 

-c121 

YIN -cut 

-ClOt 

-b23t 

-b22t 

The parameters obtained in this way are directly related to those ob­
tained in section 5.4.2 for the first channel. A similar analysis may be done 
for the second channel. Furthermore no data shifting is required, which 
makes the identification of reversed inverse ARX models an attractive ap­
proach. It must however be bourne in mind that the above identified models 
may likewise be unstable. 
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I 

Figure 5.1: Application of a servo-controller to determine the system inputs 
from desired system responses 

u(k) 

5.8 Linear Quadratic Optimal Servo-controller 

In some instances it is not possible to implement any of the previous tech­
niques, due to the system exhibiting an unstable inverse. The most appro­
priate solution then is the synthesis of the model using a linear quadratic 
optimal servo-controller. A servo-controller is by definition a system which 
lets the output of the plant follow a pre-specified desired path, using the 
output feedback. In on-line multivariable systems control this is one of the 
most successful methods of controlling the plant in such a manner that the 
desired responses are achieved. In single input single output systems it 
is of course also possible to implement a controller using pole placement. 
However multi variable systems will invariably be tested, therefore dictating 
the use of a linear quadratic optimal servo-controller. 

Figure 5.1 shows the application of a typical closed loop servo-controller. 
In this case however the system inputs are extracted during the simulation 
of the closed loop system, which is indicated on the right hand side of the 
figure. These system inputs are then stored and thereafter used to excite 
the actual test rig. It is important to realize that the inputs, outputs and 
states in figure 5.1 are vectors, indicating a multiple-input multiple-output 
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system. 

5.8.1 Development of the LQ Servo-controller 

The development of the closed loop servo-controller is given in Appendix 
D. Only the basic principles of how the servo-controller is employed in 
the specific application for determining the system inputs from the desired 
responses are discussed here, and the reader is referred to the appendix for 
relevant details. 

5.8.2 System Performance 

The general performance of any dynamically controlled plant may be de­
scribed in terms of the step response of the closed loop system. Aspects 
such as rise time, overshoot and damping ratio are common parameters 
when describing the performance. It must however be bourne in mind that 
a dynamic plant with poor performance in terms of its step response may 
be extremely difficult to control. Closed loop control in the true sense of 
the word essentially relates to stability. There is however a small degree of 
control over the plant performance in the sense of optimizing the analogue 
PID controllers of the actuator servo-valves. Apart from this we have no 
control over the dynamic performance of the test structure. Although the 
dynamic performance of the test system, or plant, may be poor in terms 
of its step response, the optimal servo-controler will always improve the 
performance of the closed loop system. 

5.8.3 Iterative Corrections 

When testing a system with poor dynamic response, the servo-controller 
may be unable to give an absolute "perfect" response, and the closed loop 
system output will follow the desired system responses as well as possible, 
but with a certain degree of error. This response error, being the difference 
between the desired response and the closed loop response, is thereafter 
again input to the closed loop system as a desired response from which the 
system inputs are determined to correct for this deviation in response. The 
overall procedure may be described as follows: 
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• Simulate the closed loop system using the desired system responses 
as reference inputs r( k) = y de$ired, giving the system inputs u0 ( k) 

• Subtract the closed loop system responses from the desired system 
responses eyo ( k) = y de$ired - Yo 

• Simulate the closed loop system using the response error as reference 
inputs ey0 ( k) to determine the error in system inputs eu0 ( k) 

• The error inputs euo(k) = 6.Uo(k) are added to the previously deter­
mined inputs to give a corrected input u 1(k) = u0 (k) + 6.u0 (k) 

• The corrected input u 1 is input to a simulation of the system8 
to give the system response y 1 

• Subtracting the above determined responses from the desired system 
responses again gives an error in system response ey1 ( k) = y desired- Yt 

This procedure is repeated in a number of iterative corrections, until 
the difference between the model simulated responses and the desired op­
erational responses is within acceptable limits. 

5.8.4 Dynamic System Delays 

When simulating the response of the servo system, a certain amount of delay 
is found between the reference input and the system output. This is natu­
rally to be expected, since we are simulating a closed loop dynamic system. 
The Linear Quadratic optimal servo-controller is designed for two funda­
mental purposes! namely to implement in an on-line real time controller, 
or alternatively to simulate the system response through deterministic syn­
thesis. In both these cases the transport delay through the complete closed 
loop system is of no significance. However, when using the servo-controller 
to calculate the system inputs from the desired responses in an iterative 
fashion, this poses a problem. The response signals from one iteration to 
the next are required to be in phase when attempting to subtract them from 
one another to supply a response error. Likewise the system inputs need 
to be in phase from one iteration to the next in order to apply corrections 
to the system inputs. 
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A simple yet effective method of estimating the delays is to shift the 
servo system response phase by incremental sample intervals from say 1 to 
20 with respect to the desired system response. At each phase shift the 
sum of squared errors between the servo response and desired response is 
calculated, and the minimum value found. This would give the "correct" 
required phase shift. The actual phase shift may however not be a multiple 
of the fixed sample interval - therefore the quotes. This poses no serious 
difficulties since shifting the data to the nearest multiple of the sample 
period gives a slightly higher error, which is then corrected for in the next 
correction step. 

5.9 Other System Inverting Methods 

Several other techniques for finding the inverse of multivariable dynamic 
systems have been developed over the past few decades. Most of these 
methods are also applicable to the continuous state equations. 

One of the more well known techniques is Silverman's structure al­
gorithm, Silverman [1969]. Other methods developed by Dorato [1969], 
Bengtsson [1974], Moylan [1977], Patel [1977] and other researchers have 
also concentrated on three fundamental aspects, namely: 

• The.stability of the inverse 

• The existence of an inverse, where existence relates to stability 

• Minimal order inverses 

The fundamental problem with these techniques is the necessity of hav­
ing to differentiate the response data in order to determine the system in­
puts. In a deterministic setting there is no problem, and these algorithms 
perform exceptionally well. However when the responses exhibit a general 
stochastic nature, and it is required to numerically differentiate the data, 
practical implementation problems arise. Even with the most sophisticated 
numerical differentiation algorithms inaccuracies dominate so strongly that 
the methods break down completely. 

Silverman's structure algorithm was implemented, with surprizingly 
poor results. The minimal sampling rate for reasonably acceptable results, 
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was found to be at least fifteen times the maximum frequency content of 
the data. This is necessary simply due to the inherent poor performance 
of numerical differentiation in general. 

Due to these difficulties, these techniques were not further pursued. 

5.10 Guidelines on Selecting the Appropri­
ate Inversion Technique 

The key issue to selecting the inversion method is stability. However when 
an unstable inverse is found other issues need to be considered for selecting 
the appropriate technique. Figure 5.2 shows the summarized procedure 
in selecting the appropriate inversion technique, which gives a complete 
picture of the entire process. Application of the techniques to a number of 
numerical experiments has shown that three of the possible seven routes 
seem to give the most practical methods. These are discussed below. 

5.10.1 Direct Inverse Method 

The most natural choice is the identification of an inverse model, and in 
particular the reversed inverse model, where the inputs and outputs are 
exhanged and the order of the data is reversed. In doing so we immedi­
ately get an indication of the final performance of the model in the desired 
inverted state, without having to find out afterwards that the model is not 
invertable due to the system exhibiting an unstable inverse. The identi­
fied model is thereafter converted to the state space formulation using the 
procedures outlined in Appendices B or C. Should the direct identification 
of a reversed inverse model however prove unsuccessful, a normal forward 
model needs to be identified. It has been found most convenient to convert 
the normal model to the state space formulation prior to inversion. 

5.10.2 Inverting the State Space Model 

Having identified a normal ARX model which has been converted to the 
state space formulation, thereafter requires the inversion of the state space 
model, which may be done either through a forward or a reversed inverse 
conversion. 
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IDENTIFICATION J 
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ARX model state space Inverse Inverse 

! ! 
Stable 

Convert to Transmission 
zeros? 

? 
state space 

. No 

Forward Reversed 
Yes Inverse Inverse (Implement ) 

Invert S/S Invert S/S 
Convert to to Forward to Reversed 
state space Inverse Inverse 

(Implement ) 
(Implement ) l l 

Relative Relative 
order order 

dependent independent 

j_ l 
(Implement ) (Implement ) 

Figure 5.2: Summarized procedure in selecting the appropriate inverting 
technique 
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Inverting to a Forward Inverse 

In section 5.3.3 it was pointed out that the transmission zeros of the normal 
forward model become the poles of the forward inverse model. Attempting 
the inversion to the forward inverse model therefore requires the precon­
dition that the the transmission zeros fall within the unit circle on the 
complex plane. Should this be the case, equations (5.22) and (5.23) give 
the state and output equations of the forward inverse model. 

Inverting to a Reversed Inverse 

If stable transmission zeros are not found, the state space model may be 
inverted to a reversed inverse. As mentioned in section 5.6, the relative 
order independent reversed inverse would be the preferred choice. The 
inversion is given by equations (5.49) and (5.50). 

5.10.3 Optimal Servo-controller 

Deterministic synthesis using an optimal servo-controller may finally be 
used when all of the above techniques fail to give satisfactory results. The 
dynamic performance, in terms of the system step response, determines 
the success of applying the optimal servo-controller, which is not the case 
with any of the other inversion algorithms. Because of the off-line applica­
tion, the servo-controller may be used in an iterative fashion by applying 
corrections to the system inputs until the desired responses are accurately 
achieved. 

5.11 Summary 

This chapter has been the final step in the development of a multiple­
input multiple-output inverse description of the laboratory test system. 
Instability of the inverse model was addressed, and a variety of techniques 
were established to find an appropriate inverse formulation which is able to 
render a stable inverse. 

The direct identification of inverse ARX models on each input channel, 
with subsequent conversion to the state space formulation, is considered 
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to be the approach. Naturally the initial stochastic modelling, through for 
instance an ARMAX model, still remains valid. 
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Chapter 6 

System Implementation 

6.1 Introduction 

All the relevant building blocks have been discussed in the first five chapters. 
In particular, the basic system description was given in chapter 1, while 
relevant system identification aspects were established in chapter 2. In 
chapter 3 the basic SISO model structure was selected, and expanded to 
MIMO systems through the state space formulation in chapter 4. Finally 
the development of an inverse multivariable state space description was 
presented in chapter 5. 

The current chapter describes in detail how these building blocks are 
combined into a complete system which enables the practical application 
to real engineering problems. This is achieved by a parallel discussion of 
the developed computer programs which are required to accomplish such a 
system. 

The techniques have been implemented on an 80386 based IBM-compatible 
computer. Because of the excessive number of matrix and vector operations 
required, the most suitable environment was found to be MATLAB's 386 
package together with several of the tool boxes, see Laub and Little (1986] 
and Ljung (1988]. MATLAB extensively makes use of the LINPACK and 
EISPACK algorithms, which are generally known to be some of the most 
reliable and computationally efficient matrix handling routines. 

As far as the hardware is concerned, existing analogue to digital and 
digital to analogue interfaces on an HP1000 mini computer were used, and 
files transfered to and from the mini computer and the 386 machine. An 
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I Main program "TIM" I 
l l l l 

Model Final Select Calculate 
structure Identi-

. . 
linear Iteration mvers10n 

estimation fication technique solution 

l l J l 
(Fig 6.2) (Fig 6.3) (Fig 6.4) (Fig 6.6) (Fig 6.7) 

Figure 6.1: Main program structure 

ADC/DAC front-end which interfaces directly to a 386 or 486 machine has 
since been developed to alleviate the necessity of having to transfer data 
files between the two computers. 

The main program has been called TIM. Figure 6.1 shows the main 
program structure, which consists of five basic steps required to simulate 
operational measured responses on the laboratory test rig. 

T_he complete procedure may essentially be grouped into three basic 
functions. 

• Identification of the dynamic model 

• Inversion of the dynamic model 

• Application of the inverse dynamic model 

These procedures are discussed in sections 6.2 through 6.4 

6.2 Identification of the Dynamic Model 

The following basic steps are required to obtain a complete description of 
the dynamic system: 

• Generation of synthetic excitation,signals 
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• Determination of experimental input-output data 

• Selection of the model structure for each channel 

• Estimation of the model parameters for each channel 

• Combination of ARX models to a MIMO state space description 

6.2.1 Experimental Input-output Data 

Synthetic Excitation Signals 

Giving sufficient attention to the selection of excitation signals is imper­
ative in achieving a useful, descriptive dynamic model. Pseudo random 
white noise, sines, sine sweeps, impulses, pseudo random binary sequences 
and ARMA processes are but a few of the many typical input signals used 
for parametric system identification. In the field of modal analysis, chirps, 
periodic random signals etc. have been used to overcome the periodicity 
problems of FFT analysis. In time domain parametric modelling, period­
icity is of no concern, and a greater degree of freedom is available in the 
selection of the input excitation signals. On servo-hydraulic test rigs, it 
is common to use pseudo random white noise generated from a prescribed 
power spectral density function. 

Persistent Excitation 

Identifiability is ensured by persistently exciting inputs, see Soderstrom 
and Stoica [1989] chapter 5. In principle this means that all modes of the 
dynamic system should be excited during the identification experiment. 

A signal is said to be persistently exciting of order n if the covariance 
matrix of order n : 
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is nonsingular. In the frequency domain this condition is equivalent to 
requiring that the spectral density is nonzero in at least n points. This will 
ensure that a linear system of order n/2 may be consistently identified. 

Spectral Properties 

The spectral bandwidth of the input signals is an indicator of the bandwidth 
for which the model is applicable. The frequency content of the operational 
measured desired responses tell which bandwidth is to be covered by the 
model, and therefore dictates the bandwith of the excitation signals dur­
ing the identification process. The frequency domain gives a very efficient 
indication of the acceptability of the input signals through the coherence 
function between the inputs and outputs. 

6.2.2 Model Structure Estimation 

Figure 6.2 shows the flow chart logic for the estimation of the multiple­
input single-ouput model structures on each channel. A short section of 
the experimental input-output data is required for this purpose. Standard 
system identification procedures of cross validation through simulation of 
the identified model, as well as residual analysis, are followed in estimating 
the model structures. It furthermore becomes necessary to also perform 
a stability analysis on the identified models, since a model exhibiting an 
unstable inverse is of no use in the particular application. 

Model Type 

The identification of a direct inverse model is always first attempted. Should 
this prove to be unsuccessful, a normal model is then identified, upon which 
it will be required to perform a stability analysis for subsequent inversion 
of the model. 

Order Estimation 

One of the most important aspects in dynamic system identification remains 
the selection of the order of the system. In a multiple-input multiple­
output setting this choice becomes even more difficult and the problem 
of evaluating the different multi-indices is encountered. As mentioned in 
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Figure 6.2: Flow chart logic for model structure estimation 
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section 4.4, this process is in general a difficult one, and the problem is 
solved easier by breaking down the complex multiple-input multiple-output 
problem into smaller multiple-input single-output problems, and thereafter 
combining these separate models into one complete state space system. The 
problem of order estimation has now been reduced, but still remains. 

One of the simplest methods of order estimation is to fit increasing order 
models and evaluate the prediction errors from each model by plotting. It is 
however essential to employ a cross-validation dataset to ensure consistent 
results. The model with the lower prediction error is then selected, bearing 
in mind the important aspects of parsimony, i.e. not choosing a higher 
order model if there is not a significant decrease in the prediction errors. 
Akaike's final prediction error Ljung [1987] is useful in comparing a variety 
of model orders. 

Delay Estimation 

The estimation of delays, which is only applicable to normal models, is 
also a simple exercise in evaluating the leading b terms in the ARX or 
ARMAX model. The leading b terms are zeroed when they are less than 
a pre-selected ratio of the maximum b parameter. In doing so, the number 
of small leading b terms are found. The model is thereafter re-identified, 
and would generally result in a small change in the nonzero parameters. As 
shown in section 5.4.2, reversed inverse models always have zero delays, and 
delay estimation is therefore not applicable to these models. This makes 
the identification of reversed inverse models an attractive approach. 

Order Reduction 

It is always necessary to reduce the order of a model to the minimum, 
retaining only the important input output characteristics of the system. 
To achieve this objective means eliminating states that have little or no 
influence on the input output behaviour of the system. 

Residual Analysis 

Under ideal conditions, the residuals should be white and independent of 
the MISO model inputs. If this is not the case, then the model structure 
was insufficient, and did not pick up all the information from the data. The 
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correlation function of the residuals, as well as the cross-correlation between 
the MISO model inputs and the output, are computed and analysed for 
whiteness and independence. Makridakis, Wheelwright and McGee [1983] 
give descriptions of these procedures. 

"Full Order" Approach 

The estimation of the structure of a multiple-input single-output ARX 
model involves selection of the following: 

• Selection of the number of a parameters ( na) 

• Selection of the number of b parameters (nb), for each input channel 

• Selection of the number of delays (nk), for each input channel 

In a MIMO dynamic system the above decisions need to be made for 
each output channel. If the number of inputs or outputs are equal to m, 
then it is required to select m( 4m - 1) different numbers, giving a total of 
3, 14, 33, 60, .... . numbers form= 1, 2, 3, 4, ... that need to be pre-selected, 
in order to define the structure of the MIMO model. This most certainly 
seems like an enormous task, and is indeed the case. Furthermore, taking 
the possible combinations of these numbers into account the task may quite 
rightly be considered to be virtually impossible in a practical application. 
Various techniques are available in the literature for determining the or­
der of linear dynamic systems, Woodside [1971], Guidorzi [1975], Tse and 
Weinert [1975], however, in the intended application, where a high number 
of channels would apply, these techniques become extremely cumbersome. 
The incentive for a simpler approach is hence enormous. 

By adopting a "full order" approach, the values of 3, 14, 33, 60, 
may be reduced to 1, 2, 3, 4, .. .. . i.e. to the number of channels m. 
Definition: A "full order" model is defined such that 

na + 1 

0 \;j Ui 

1 V Yi 

(6.2) 
(6.3) 

(6.4) 

This means that it is only required to select the number of a parameters 
(na) for each output channel, which vastly simplifies the model structure 
selection process. 
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The motivation for the "full order" approach may be found by consid­
ering the conversion of the ARX models to the observable canonical state 
space formulation, given in Appendix B, for which a simple two channel 
application was shown in section 4.5. Essentially this means that all en­
tries in the state and output equations are utilized by the identified ARX 
parameters or combinations of these parameters. 

When applying the ARX to state space conversion of appendix C, equa­
tion ( 6.4) becomes 

V Yi (6.5) 

The "full order" approach to estimating the model structure, is in particular 
applicable to the direct identification of reversed inverse models. 

Stability Analysis 

When identifying a reversed inverse model the stability analysis is automat­
ically done in the model fit validation process. Stability analysis is hence 
only applicable to normal models, and is done by analysis of the zeros or 
poles, as detailed in section 5.3.3. 

6.2.3 Final Identification of the Model 

After the model structures or parameter indices have been defined, it is 
required to determine the model parameters. Where only a short section 
of the input-output data was required to find the parameter indices, all the 
data is now used in the final parameter estimation phase. The procedure 
of estimating the ARX model parameters is outlined in figure 6.3, which 
also includes the combination of the ARX models to the final MIMO state 
space formulation. 

Initial Parameter Vector 

The ordinary least squares parameter estimation technique for the ARX 
model, as described in section 2.5.2, is employed as an initial identification 
phase in order to estimate the initial parameter vector. When the data 
is contaminated by stochastic disturbances, the IV 4 technique is generally 
selected, which gives an improved estimate of the parameters since the 
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FINAL MODEL IDENTIFICATION 
AND CONVERSION TO STATE SPACE 
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Figure 6.3: Flow chart logic for final model identification and conversion 
to state space formulation 
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instrumental variable technique is said to care less about the noise and 
only estimates the desired system dynamics. 

Final Parameter Identification 

The above initial parameter vector is subsequently used in the estimation of 
the stochastic model by means of a Gauss-Newton search scheme in a pre­
diction error method PEM. The C( q) parameters are thereafter discarded 
to give the final deterministic ARX model. 

Combination of ARX Models to the MIMO State Space Descrip­
tion 

Depending on the zero delay terms, and the requirement of an observable 
canonical description, the ARX models for each channel are combined to the 
state space formulation according to the procedures detailed in Appendices 
B or C. 

6.2.4 Assessing the model fit 

In order to assess how well the model describes the experimental data, a 
"fit" parameter T/, which is applied separately to each channel, has been 
defined. For a forward model, the error in response prediction ey( k) = 
y( k) -f)( k) may be written as 

(6.6) 

Assume that we haveN data points. The model fit is then defined as 

[%] (6.7) 

When a direct inverse model is identified, it is required to define how well 
the model describes the actual inputs u( k) which were used to excite the 
structure. In analogy to the above, the error in input prediction eu ( k) = 
u(k)- u(k) may be written as 

(6.8) 
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The model fit for the inverse model may then be defined as 

[%] 

6.3 Inversion of the Dynamic Model 

6.3.1 Stability of the Identified Model 

(6.9) 

Depending on the model order together with the parameter estimation algo­
rithm used, some models are found to be unstable. Using the least squares 
technique, a stable ARX model may be found, but when attempting to 
estimate the same order of model using the four step instrumental variable 
technique, the resulting model may be found to be unstable. In a number 
of experiments the IV 4 technique was found in general to give unstable 
models more readily than the least squares estimation technique. 

The stability of the model is also a function of the order of the model. 
Unnecessarily high order models were found to give more stability prob­
lems than do lower order models, although both models may seem to give 
virtually the same small prediction errors. The same can be said about the 
stability of the inverse model, where it is preferable to use a minimal order 
model to prevent stability problems. 

6.3.2 Selection of the Inversion Technique 

The inversion of a normal model has already been described in detail in 
chapter 5. Section 5.10 gives an overview of the suggested procedures in se­
lecting the correct inversion technique, which is shown in figure 6.4. Testing 
for stability of the forward inverse model is done by plotting the transmis­
sion zeros of the normal model which become the poles of the inverted 
system. In the case of the reversed inverse model the inversion is first 
completed and thereafter the poles of the inverse model evaluated. 

The direct identification of a reversed inverse model through reversal of 
the input-output data vectors is considered to be a prime choice by virtue of 
its simplicity. Transport delay through the estimation of the system delays 
is also not necessary in this case, as is the requirement of equal delays on 
each channel, which is required for the forward inverse formulation. 
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Figure 6.4: Flow chart logic for selecting the inversion technique 

134 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

6.3.3 Linear Quadratic Optimal Servo-controller 

When all of the previous techniques fail to yield a stable inverse model 
the linear quadratic optimal servo-controller is employed in determining 
the system inputs from the remotely recorded operational responses. The 
normal model is however not inverted in this case. This procedure, which 
was detailed in section 5.8 and Appendix D, is schematically shown in figure 
6.5 

6.4 Application of the Model 

The procedures for obtaining an inverse state space model, giving a com­
plete description of the MIMO dynamic system, were detailed in sections 
6.2 and 6.3. It now remains to be shown how this model is utilized in 
obtaining the system inputs from the remotely measured responses. 

6.4.1 Calculation of the Linear Solution Inputs 

Details of this procedure are shown in figure 6.6. The initial conditions of 
the test rig are recorded during the identification process, and are applied 
in pre-processing the operational responses. The system inputs are found 
by a simulation of the inverse state space m9del, using the operational 
measured responses. The inputs calculated in this manner are termed the 
linear .wlution, and represent an initial attempt at the system inputs. In 
the case of the optimal servo-controller, a number of iterative corrections 
may be required for systems which exhibit a poor step response. 

6.4.2 Iteration Process 

The laboratory test rig is subsequently excited with the above determined 
linear solution inputs, while simultaneously recording the system responses, 
with the same transducers that were utilized during the recording of the op­
erational responses. The accuracy of the laboratory simulation is thereafter 
ascertained by a comparison of the laboratory responses with the opera­
tional measured responses. The difference between the desired operational 
and measured laboratory responses, leads to the error in response. This re­
sponse error is then simulated with the inverse model to give the resultant 
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Figure 6.6: Flow chart logic for calculation of system inputs from remotely 
recorded operational responses 
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error in inputs, which are added to the linear solution inputs. In this way 
corrections are applied to achieve updated input signals. By repeating this 
process in a number of iterations, provision for nonlinear systems is quite 
easily made. The iteration procedure is detailed in figure 6.7 . 

6.4.3 Assessing the simulation accuracy 

In order to quantify the simulation accuray which is indicated by the im­
provement in response accuracy from one iteration to the next, a "fit" 
parameter has been defined. In analogy to the model fit parameters T}y and 
1Ju defined in equations 6. 7 and 6.9, a fit parameter 1Jsim has been defined 
which describes how well the laboratory achieved response corresponds to 
the desired operational response. Defining the response error as 

(6.10) 

Assume that we have N data points. The simulation accuracy may then 
be defined as 

. _ 100 L:f=lle(k)l 
1Js1m- * N 

Lk=l IYde•ired( k) I 
[%] (6.11) 

6.4.4 Re-identifying a Model 

Should the linearized worki~g point for the operational measured responses 
differ greatly from the corresponding working point which was found during 
the identification process, it is then possible to use the input-output data of 
the linear system inputs to re-identify the model, and thereby find a model 
which is more suited to the specific desired working point. This procedure 
is particularly advantageous when testing systems which contain rubber 
elements with inherent nonlinear stiffness characteristics, as is typical in 
automotive structures. 

6.5 Summary 

This chapter concludes the development of the time domain based struc­
tural testing system for the simulation of operational responses on servo­
hydraulically driven test rigs. 
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Figure 6.7: Flow chart logic for iteration process 
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A number of important issues were established in this chapter, which 
are essential to the practical application of these techniques: 

• To alleviate the inverse instability problems, a reversed inverse model 
is directly identified. 

• This choice also has no restrictions on equal delays on each output 
channel, as was established in section 5.4.2. 

• The estimation of the model structures for each channel was shown 
to be virtually an impossible task and the concept of a "full order" 
model was introduced to solve this problem. 

• The model fit parameters 7711 and T/u as well as the simulation accuracy 
parameter TJ$im were developed. 

The feasibility of the developed system remains to be proven, and the 
remaining chapters are hence devoted to case studies. 
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Chapter 7 

Applications: Qualification 
Tests for the Integrity of 
Computer Programs 

7.1 Introduction 

The first six chapters dealt with the theoretical development and the im­
plementation of the proposed sytem. The remaining chapters are devoted 
to the application of the system in a variety of case studies. Three issues 
are addressed in the next three chapters: 

• Proof of the integrity of all computer programs is presented in this 
chapter. 

• Practical case studies are discussed in chapter 8. 

• A comparison to the frequency domain techniques is finally done in 
chapter 9. 

The integrity of the computer programs were proven by applying them 
to a number of test cases. The nature of the developed techniques are 
such that results cannot be compared to standard text book solutions as is 
normally done. In this case synthetic single-input single-output as well as 
multivariable state space models were devised. These models were simu­
lated with pseudo random excitation signals giving the required input and 
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output data from which to identify an appropriate model. Both direct 
inverse and normal forward models were identified, together with all the 
different inversion techniques. 

The purpose of the tests performed in this chapter is only to qualify the 
postulated system. The most practical method of achieving this objective is 
the direct qualification of the actual computer programs. All tests described 
in this section made use of initial synthetic state space models which served 
as "test rigs". 

Four case studies are presented, which illustrate various aspects of single­
input single-output as well as multivariable systems, thereby proving the 
integrity of the computer programs: 

• A simple second order single-input single-output system is firstly stud­
ied to illustrate the various different alternatives to both the identifi­
cation and inversion techniques. 

• Secondly the above methods are expanded to include multivariable 
systems by consideration of a two input two output discrete system. 
Both forward and reversed inverse identification methods are applied 
together with the multivariable inversions. 

• Next, a two channel spring-mass-damper system is used to show the 
identification of multivariable black-box state space models. The nor~ 
mal forward inversion algorithm together with the iteration process 
is also dealt with. . 

• Finally the optimal servo-controller is applied to a two channel system 
to prove the integrity of this system inversion technique. 

7.2 Single-input Single-output System 

The purpose of this case study is essentially to illustrate stability aspects 
in the inversion of models, as well as to illustrate alternative identification 
procedures. Depending on the location of the poles and zeros of the model, 
different techniques are required to obtain a stable inverse. 
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Figure 7.1: Pole and zero locations of the normal model 

Nor mal Model 

We start by defining a simple second order model with the following pa­
rameters: 

A = [ 1 -0.5 0.2 ) (7.1) 

B = [ 0.2 -0.1 0.4 ) (7.2) 

The poles of this model are located at 0.2500 ± 0.3708i and the zeros at 
0.2500 ± 1.3919i, and are shown in figure 7.1 . 

Forward Inverse Model 

Applying an analysis similar to section 5.4.1 leads to the forward inverse 
model whose parameters are given by 

Afi = [ 1 -0.5 2 ] (7.3) 

(7.4) 
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Figure 7.2: Pole and zero positions of the forward inverse model 

The poles of the forward inverse model are located at 0.2500 ± 1.3919i 
and the zeros at 0.2500 ± 0.3708i, which shows the expected interchange of 
the poles and zeros between the normal and forward inverse models. 

Figure 7.2 shows the pole positions of the forward inverse model, in­
dicating instability. Identical results are obtained by first converting the 
model to state space and thereafter applying the inversion algorithm, which 
was discussed in section 5.5. The forward inverse conversion therefore fails 
to give a suitable solution, and a reversed inverse is required to achieve 
stability. 

Reversed Inverse Model 

The reversed inverse model may be found by applying the inversion pro­
cedure described in section 5.4.2, resulting in the following parameters for 
the reversed inverse model: 

Ari = [ 1 -0.25 0.5 ] 

Bri = [ 0.5 -1.25 2.5 ] 

(7.5) 

(7.6) 

Figure 7.3 shows the pole and zero positions for the reversed inverse 
model, which are located at 0.1250 ± 0.6960i and 1.2500 ± 1.8540i respec­
tively, and in thiJ caJe Jtability iJ achieved. 
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Figure 7.3: Pole and zero positions of the reversed inverse model 

By simulating the normal model with any input signal the reversed 
inverse model may be identified on the input-output data, as described in 
section 5.7.2 , giving the same parameters for the above reversed inverse 
model. Alternatively, identical results are obtained by converting the model 
to state space, and applying the relative order independent reversed inverse 
conversion given by equations (5.49) and (5.50). 

By simulating the reversed inverse model the system input signal is 
achieved identically. 

7.3 Two Channel Discrete State Space Sys­
tem 

The above case study may similarly be applied to a system with two inputs 
and two outputs. In this case a system with a high degree of cross coupling 
is chosen to illustrate the applicability to the inversion of multiv-ariable 
systems. The analysis is presented on two models, which only differ in one 
element of the input matrix r 
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Normal Model 

We start by defining a system with four states in discrete form. Since we 
are generating the dynamic model, we have the convenience of also using 
the observable canonical form to compare with results obtained by both 
the identification and inversion techniques. 

The discrete state equation is given by 

0.1 l -0.3 [ u 1(k) l 
0.8 u2(k) 

-0.6 

with output equation 

(7.8) 

The eigenvalues or poles of the above model, shown in figure 7.4, are 
given by 

[ 
0. 722 + 0.505i l 

. (<P) = 0.722 - 0.505i 
ezg 0.078 + 0.377i 

0.078 - 0.377i 

(7.9) 

7.3.1 Stable Reversed Inverse- Unstable Forward In-
verse 

Using equations (5.49) and (5.50) , we may convert to the reversed inverse 
model, while equations (5.22) and (5.23) give the forward inverse model. 
The eigenvalues of these two inversions are given below, and are also indi­
cated in figure 7.5 . 
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Figure 7.4: Pole positions of the normal model 

[ 
0.4 78 + 0.541i l 

0 (.T.. ·)- 0.478- 0.541i 
ezg '.l:'n - 0 

0 

Reversed Inverse Model 

[ 
0.917 + 1.038i l 

eig( Oj; Ji) = 0.917 ~ 1.038i (7.10) 

Figure 7.5 (A) shows the pole positions of the reversed inverse model, in­
dicating stability. Having established a stable reversed inverse model, the 
identification of a direct reversed inverse model now becomes possible, for 
which identical pole positions are obtained. By simulating the reversed 
inverse model the system input signals are identically achieved. 

Forward Inverse Model 

Attempting the forward inversion algorithm however, leads to instability 
with the eigenvalues shown in figure 7.5 (B) 
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Figure 7.5: Pole positions of the reversed- and forward inverse models 

7 .3.2 Stable Forward Inverse - Unstable Reversed In­
verse 

Modifying one element of the input matrix r results in the reversed inverse 
model becoming unstable, while the forward inverse now gives stability. 
By replacing the value of r(2, 1) = -0.05 with a value r(2, 1) = -0.5, the 
following eigenvalues are obtained, which are shown in figure 7.6 . 

[ 
1.261 + 0.325i l 

0 (..T.. ·) - 1.261 - 0.325i 
ezg ':l."rl - 0 

0 

Reversed Inverse Model 

[ 
0. 7436 + 0.1919i l 

eig(~/i) = 0.7436 ~ 0.1919i (7.1l) 

For the reversed inverse model the unstable eigenvalues shown in figure 
7.6 (A) are now obtained. Because of the unstable reversed inverse, it is 
now not possible to identify a direct reversed inverse model. (It was found 
possible to identify the reversed inverse model only on the second input 
channel, but not on the first input channel). 
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Figure 7.6: Pole positions of the reversed- and forward inverse models with 
r(2, 1) = -0.5 

Forward Inverse Model 

In this case the eigenvalues shown in figure 7.6 (B) are obtained, which are 
now clearly stable. 

7 .3.3 Unstable Forward- and Reversed Inverses 

From the above analysis, it is clear tbat depending on the model, a stable 
inverse may be found either through the reversed inverse or the forward 
inverse conversion. Unfortunately in some cases, both these methods fail 
to yield a stable inverse, and other methods need to be applied. Such a 
situation is found by replacing the value of f(3 , 2) = 0.80 with a value 
f(3, 2) = 0.20 in the original model of equation (7.7). In this case the fol­
lowing real eigenvalues for the -reversed inverse and forward inverse models 
are obtained: 

[ 
3.000 l 

. (.;w;. ·) - 0.800 ezg '*'r 1 - O 

0 

[ 
1.250 l 

. (.;w;. ) 0.333 
ezg '*" fi = 0 

0 

(7.12) 

These results are also shown in figures 7.7 (A) and (B). Due to the 
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Figure 7. 7: Pole positions of the reversed- and forward inverse models with 
r(3, 2) = 0.2 

unstable reversed inverse it is again not possible to identify a direct reversed 
inverse model. (In this case, it was found possible to identify the reversed 
inverse model only on the first input channel, but not on the second input 
channel). 

In the above case the model cannot be inverted, and another solution 
must be found. One possible method of finding the system inputs from the 

· responses is to apply the linear quadratic optimal servo-controller which 
will be discussed in section 7.5. 
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7.4 Two Channel Spring-mass-damper Sys­
tem 

Figure (7.8) shows a modified version of a simple two degree of freedom 
spring-mass-damper system taken from D'Souza and Garg [1984], together 
with the relevant model parameters. Applying Newtonian or Lagrangian 
dynamics results in the equations of motion: 

(7.13) 

The numerical values of the mass, damping and stiffness matrices are 
chosen so as to achieve significant cross-coupling between the channels, 
since it is also desired to demonstrate the applicability of the identification 
process in a highly cross-coupled situation. These are given by: 

[ 25 -10 l 
c = -10 60 ' 

K = [ 1100 -300 l (7 14) 
-300 400 . 

with the basic units of [kg], [Ns/m] and [N /m] respectively. Employing 
Xi as generalized coordinates, the continuous state and output equations 
are given by 

--Wl-W­
~ 

Figure 7.8: Two degree of freedom system 
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[ ~~ l 
0 1 0 0 [ ~; l + [ ~ ~ l [ ~: l -(kl +k2) -(c1 +c2) .1£2... .£2... 

- m1 ml m1 m1 
0 0 0 1 

.1£2... .£2... -(k2+k3) -(c2+c3) 
m2 m2 ffi2 ffi2 

and 

0 0 [ ~: l [ 10000 
0 1000 ~ l [ ~; l (7.15) 

With the above matrices, the units for the force vector [u] are in New­
tons, while the displacement vector [y] has its units in millimeters. The 
reason for this choice is to achieve values for [u] and [y] which have the 
same order of magnitude, resulting in a well conditioned numerical problem, 
which is essential for good results in the identification process. The model 
has furthermore also been chosen so as to achieve a significant amount of 
cross-coupling for the purpose of identifying the model in a multivariable 
situation. The continuous state equation may be integrated according to 
equations (A.12) and (A.13) from appendix A, to give t:Q.e equivalent dis­
crete state equation. 

7 .4.1 Model Identification 

Pseudo random white noise excitation from 0.2 to 6 Hz was input as forces 
to both masses. Figure 7.9 shows the inputs and resultant output responses 
of the two masses, and is referred to as the "experimental" data. This data 
was used to identify the model. A direct reversed inverse model could not 
be identified successfully due to instability, and instead it was necessary to 
identify normal forward ARX models for each output channel. These ARX 
models were thereafter combined to the state space formulation, giving 
a total of four st ates. Figure 7.10 shows the simulated model outputs 
plotted over the experimental outputs. Also shown in dotted lines, are 
the residuals, indicating a perfect fit, which proves the integrity of the 
identification process in a multivariable setting. 
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Figure 7.9: "Experimental" input-output data for m-c-k system 

7 .4.2 Model Inversion 

Since a reversed inverse model could not be identified, the inversion to 
a reversed inverse model naturally also gave an unstable inverse. Stable 
transmission zeros were however found, and the state space model was 
consequently inverted to a forward inverse model. 

7.4.3 "Practical Test Rig" 

Since the correlation between the "experimental" and simulated model data 
was identical, the original system was slightly modified to achieve a slight 
"practical mismatch" between the identified model and the original sys­
tem, similar to which one might typically find between any mathematical 
model and the actual measured practical test rig. The mass, damping, and 
stiffness matrices were hence modified to: 

M = [ 1.1 0 l 
0 1.9 ' 

[ 27 -12] 
c = -12 52 ' 
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Figure 7.10: Model fit for m-c-k system 

Using the above system, which will be referred to as the "test rig", new 
pseudo random signals with spectral content ranging from 0.1 to 6 Hz for 
the first input channel, and 0.05 to 2Hz for the second input channel, were 
input to achieve the "operational measured" desired responses, which are 
shown in figure 7.11 . 

7 .4.4 Linear Solution Responses 

The desired responses were input to the inverted state space model to give 
the "test rig" drive signals, which were again used to excite the "test rig" . 
Figure 7.12 shows the "test rig" achieved responses plotted with the desired 
"operational measured" responses. Also shown in dotted lines in the figure, 
are the errors in responses for the two output channels. 

7 .4.5 Iteration Process 

Using the response error signals the drive signal corrections could be found 
from the inverted model to determine the updated drive signals. Applying 
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Figure 7.11: "Operational measured" desired responses from "test rig" 

STAGE OF PERCENT "FIT" FIGURE 
TEST Chan. 1 Chan. 2 NUMBER 

Linear solution ( 17sim) 26.4% 17.0% 7.12 
Iteration No. 1 ( 77 sim) 7.0% 4.1% 7.13 
Iteration No. 3 ( 77 sim) 0.5% 0.3% 7.14 

Table 7.1 : Simulation results 17sim for m-c-k system 

these updated drive signals to the "test rig", resulted in an improved re­
sponse as shown in figure 7.13 . Similar results after three iterations are 
presented in figure 7.14, which ultimately also proves the integrity of the 
iteration process in a multiple-input multiple-output application. 

Recalling the simulation accuracy parameter 17sim defined in equation 
( 6.11 ), the simulation results are summarized in table 7 .1. 
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Figure 7.12: Desired and achieved responses- linear solution 

7.13 "OPERATIONAL" vs. SIMULATED RESPONSES- ITERATION No. 1 

'E 500 
E 
...... 
s:: 
0 
E 

0 0 
u 
ro 
0.. 
Vl Chan No.1 a 

0 1 2 3 4 5 6 7 8 9 10 

I 200 
...... 
s:: 
6 o~---~· 
0 
u 
ro 

~ -200 a 
0 

Chan No.2 

1 2 3 4 5 6 7 8 9 10 

Solid = "Operational"; Dash = Simulated; Dot = Error) TIME [Seconds] 

Figure 7.13: Desired and achieved responses- Iteration No. 1 
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7.5 Application of the Optimal Servo-controller 

By simply introducing no-delay terms in the previous two channel system, 
instability can occur for both the forward inverse and reversed inverse mod­
els. 

For this purpose the direct transmission matrix is modified to 

D = [ 0.1 0.2] 
0.3 0.4 

(7.17) 

Following a similar procedure to the previous section, pseudo random 
excitation inputs are applied, giving the system input-output data, from 
which a normal forward model is identified. Attempting both forward in­
verse and reversed inverse conversions leads to the following poles or eigen­
values 

[ 
-1.828 l 

. 0.506 + 0.872i 
ezg( cpri) = 0.506- 0.872i 

0.130 

[ 
7.680 l 

. 0.498 + 0.858i 
ezg( cp Ji) = 0.498- 0.858i (7·18) 

-0.547 

which are clearly unstable in both cases. The identification of a direct 
inverse model is naturally also not possible. 

The only solution to finding the system inputs from the system responses 
is the implementation of the linear quadratic optimal servo-controller. 

Dynamic System Delays 

The dynamic system delays are found to be 3 on each input channel as 
discussed in section 5.8.4, and are found by varying the number of delay 
periods as shown in figure 7.15 . 

Response to Initial Inputs 

Using the system inputs as extracted from the LQ optimal servo-controller 
synthesis, the responses to these optimal inputs from a subsequent simula­
tion of the dynamic model, give the result shown in figure 7.16. Although 
being optimal in the sense of the LQ controller, the calculated inputs are 
clearly not entirely correct, and a number of corrections are required. 
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Figure 7.15: Determination of the required number of input delay periods 

Iterative Corrections 

As was explained in section 5.8.3, iterative corrections are required to 
achieve the final inputs. The sum of absolute errors is reduced by each 
correction step, which is shown in figure 7.17. Figures 7.18 and 7.19 show 
the results for the first two correction steps. The simulation results are also 
shown in table 7.2. 

Clearly the linear quadratic optimal servo-controller performs well in 
obta1ning the system inputs from the system responses. The success of this 

STAGE OF PERCENT "FIT" FIGURE 
TEST Chan. 1 Chan. 2 NUMBER 

LQ optimal input (17$im) 9.4% 14.6% 7.16 
Input correction No. 1 (17,im) 1.3% 3.4 % 7.18 
Input correction No. 2 (17sim) 0.5% 1.1% 7.19 

Table 7.2: Simulation results T7sim for LQ optimal servo-controller applica­
tion 
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Figure 7.16: Response to LQ optimal servo-controller calculated inputs 

method is however also a function of the dynamic performance in terms of 
its step response of the specific system at hand. 
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7.18 DESIRED vs SIMULATED RESPONSE AFTER 1st INPUT CORRECfiON 
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Figure 7.18: Desired and simulated responses after first input correction 
step 
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7.6 Summary 

The objective of this chapter was to prove the integrity of the computer 
programs. This was achieved by applications to a variety of analytical 
simulation tests. 

Dynamic System Identification in a M ultivariable Setting 

This aspect was addressed in section 7.4, where the specific system was 
chosen in such a way that significant cross-coupling between the two chan­
nels was achieved. The identification of multiple-input single-output ARX 
models on each output channel was utilized, whereafter these models were 
combined into a complete multivariable state space model. A comparison 
of the experimental outputs with the simulated outputs gave a perfect fit , 
indicating that the generation of a multivariable model from experimental 
input output data may in fact be achieved successfully. 

Inversion Techniques 

Virtually all inversion algorithms presented in chapter 5 were applied, giv­
ing identical stability results for the various chosen inversion methods. 
Where instability was found, alternative inversion algorithms were required 
to invert the model. 

Identifiability of Reversed Inverse Models 

In section 7.3 it was shown that if the system exhibits unstable eigenvalues 
after converting to the reversed inverse model, it is then also not possible 
to directly identify a reversed inverse model. At most, it may be possible 
to identify the reversed inverse model only on some of the input channels, 
but not on all. An important point to be mentioned however , is that a 
normal model may always be found, however the inversion of the normal 
model may then not be possible due to unstable inverse model eigenvalues. 

Linear Quadratic Optimal Servo-controller 

When instability of the inverse model cannot be overcome it is still possible 
to find the system inputs from the desired responses by implementing a lin-
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ear quadratic optimal servo-controller. This was demonstrated in the case 
study of section 7.5, where a number of off-line corrections were required 
to achieve the final input signals. 

164 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

Chapter 8 

Applications: Practical Case 
Studies 

8.1 Introduction 

Four practical case studies, in order of increasing complexity, were per­
formed, each addressing different important aspects of typical real world 
practical engineering problems: 

• The first case study involves a single servo-hydraulic actuator test rig, 
which serves as a high speed spring tester. 

• A three channel vehicle suspension was used for the next case study 
by simulating actual measured operational conditions on a laboratory 
test rig. 

• A four channel simulation of measured responses on a passenger ve­
hicle was employed for the third case study. 

• Finally a five channel simulation of measured responses on a pick-up 
truck chassis served as the final practical case study. 

Photographs of the mechanical laboratory test rigs are presented in 
Appendix E. For comparative purposes the first two case studies were also 
repeated using the frequency domain techniques, which is dealt with in 
chapter 9. 
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Accuracy of Laboratory Simulations 

In all practical case studies, measured response signals were recorded during 
actual operational conditions and simulated on laboratory test rigs. In none 
of the cases were any form of synthetic "operational responses" utilized. 
This results in a much tougher and revealing test. It is therefore essential 
to appreciate that the simulation inaccuracies are essentialy ascribed to the 
mechanical restrictions of the various servo-hydraulic test rigs. 

8.2 Case Study 1: Single Servo-hydraulic 
Actuator High Speed Spring Tester 

The fatigue life of shock loaded springs as is found in engine valve springs 
or pneumatic equipment may conveniently be simulated in the laboratory 
using a servo-hydraulic actuator. In these applications the springs are in­
variably exposed to extremely high velocities and accelerations. Typical 
displacement response curves were chosen and simulated on a test rig. Full 
details of the tests may be found in Raath (1991]. This section describes 
the application of the time domain based techniques, whereas a comparison 
to the frequency domain techniques is presented in the next chapter. 

8.2.1 Test Rig and Transducers 

A diagrammatic layout of the test system is given in figure 8.1 which con­
sists of a single actuator with its analogue PID controller capable of testing 
five springs simultaneously. Since the servo-hydraulic actuator is capable 
of producing a maximum velocity of 1.8 m/s, a 1 : 6.2 ratio crank was used 
to increase the velocity. Also shown in the figure is a linear hydrostatic 
bearing to guide the main shaft transmitting the loads to the springs. The 
actuator was driven in displacement control using it's internal LVDT as 
feedback to the analogue PID controller. An external LVDT measuring the 
actual spring displacement was used as the system response transducer. 

8.2.2 Desired Operational Response 

The displacement of the springs was digitized from a high speed film of a 
light pneumatic jack-hammer. Two cases were considered, namely a single 
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cycle as well as a continuous operation of twenty cycles, which are depicted 
in figure 8.2 . 

8.2.3 Dynamic Model Identification 

In the specific application it was essential to simulate the shape of the 
desired response curve accurately and not only the peak amplitudes. The 
wave form was shown to influence the dynamics of the spring, which in turn 
influenced the spring stresses and hence the fatigue life. To achieve this 
objective, required a relatively high sampling frequency, which was chosen 
at 256 Hz. The spectral content of the operational measured response 
data is shown in figure 8.3, dictating the high sample frequency. A total 
of 4 seconds of data was used in the identification, resulting in 1024 data 
points. The experimental input-output data is shown in figure 8.4 . A 
direct reversed inverse model of 19th order was identified, and figure 8.5 
shows the actual vs predicted input excitation. The identified model was 
thereafter transformed to state space using the equations from appendix B, 
resulting in 19 states. 

8.2.4 Results for Single Cycle Operation 

The single cycle desired operational response from figure 8.2 was input 
to the reversed inverse state space model to give the linear solution to 
the actuator drive signal. The test rig was excited with this signal, and 
figure 8.6 shows the laboratory achieved response plotted with the desired 
operational measured response. Also shown in the figure is the error in 
response. Figure 8. 7 shows the same results after one iteration, while figure 
8.8 shows the results after four iterations. Results for the model fit and 
simulation accuracy are shown in table 8.1. 

8.2.5 Results for Continuous Operation 

The above results were similarly also obtained for the continuous operation 
desired response of figure 8.2 . The corresponding results are shown in 
figures 8.9 through 8.12 as well as table 8.2. 
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STAGE OF PERCENT FIGURE 
TEST "FIT" NUMBER 

Model fit ( 7Ju) 7.6% 8.5 
Linear solution ( 7J~im) 10.0% 8.6 
Iteration No. 1 (7J~im) 3.1% 8.7 
Iteration No. 4 (7J~im) 1.8% 8.8 

Table 8.1: Model fit 7Ju and simulation results 71~im for single cycle operation 

STAGE OF PERCENT FIGURE 
TEST "FIT" NUMBER 

Linear solution ( 1Jsim) 9.7% 8.9 and 8.10 
Iteration No. 1 ( 77 sim) 3.4% 8.11 and 8.12 

Table 8.2: Simulation results 71sim for continuous operation 

8.2.6 Conclusion 

The simulation of operational responses on impact loaded systems is easily 
achieved by the time domain technique. These systems are invariably re­
stricted by very little data, which makes the time domain technique ideal 
for such an application. 
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Figure 8.1: High speed spring loading simulator 
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Figure 8.3: Spectral content of desired operational response 
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8.3 Case Study 2: Simulation of Operational 
Responses on a Vehicle Suspension 

The local manufacturers of a minibus modified the design of their rear gear­
box crossmember to accomodate a new gearbox in the vehicle. Due to a 
number of fundamental problems, several failures occurred and the Centre 
for Structural Mechanics was approached by the vehicle manufacturers to 
solve the problem. As part of the final qualification of a newly designed 
crossmember, an equivalent distance of 300 000 km was simulated on a 
laboratory test rig in an endurance fatigue test. Details of this investiga­
tion may be found in Raath [1990 c). Both the frequency and time domain 
techniques were employed to determine the actuator inputs for the simu­
lation of the operational measured responses. This section describes the 
time domain application, while section (9.3) gives a comparison with the 
frequency domain techniques. 

8.3.1 Instrumentation of Vehicle 

The crossmember serves as reaction point to the two front suspension tor­
sion bars, and furthermore supports the gearbox. The loading of the cross­
member thus consists of two very large moments, as well as a vertical load 
from the gearbox. Figure 8.13 shows the general configuration of loadings 
on the crossmember. The vehicle components were therefore instrumented 
to record signals analogous to these three loads. Shear strain gauges were 
applied to the two torsion bars to record the torsional strain data. For the 
loads exerted by the gearbox two smallloadcells were installed between the 
gearbox and crossmember mounting interface. 

8.3.2 Recording of Operational Data 

The vehicle was driven over a number of pre-selected routes while recording 
the two strain gauged channels and the two loadcells onto an analogue FM 
tape recorder. These signals served as operational responses, which were 
subsequently duplicated on the laboratory test rig. For practical reasons, 
the data from the two loadcells were summed to give the total load onto 
the crossmember as exerted by the gearbox. Figures 8.14 and 8.15 show 
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two of the recorded operational response sections. These two sections were 
chosen from a total of twelve possible sections with the specific intention 
of comparing results with those obtained with the frequency domain tech­
nique, which are presented in section 9.3 . It was found that of all twelve 
data sections, the frequency domain technique gave the most favourable 
results on data section "A" (figure 8.14). On the other hand, data section 
"B" (figure 8.15) was found difficult to simulate in the frequency domain. 

8.3.3 Laboratory Test Rig 

To achieve the correct stiffness on the crossmember mounting interfaces, 
part of the vehicle chassis was mounted to the laboratory strong floor onto 
which the crossmember and other relevant suspension components could be 
installed. The torsional loads acting on the crossmember were transmitted 
via the torsion bars which in turn used two 40 kN servo-hydraulic actua­
tors loading the wishbones through bell-cranks as shown in figure 8.13. The 
bell-cranks have a 1:2 ratio which enables a high vertical velocity on the 
wishbones, as is typically required for the simulation of vertical wheel vi­
brations. A certain degree of geometric nonlinearity is also introduced into 
the system by the bell-cranks due to the conversion of linear to rotational 
motion and vice versa. All three servo-hydraulic actuators were driven in 
displacement control. The same transducers used for data aquisition pur­
poses were also used as response transducers on the test rig. 

8.3.4 Determination of System Model 

Test Rig Excitation 

An estimation of the spectral content of the road recorded data served 
as an indication of the required frequency bandwidth as well as dictating 
the sample frequency of 64 Hz, which was specifically chosen to suit the 
frequency domain techniques, discussed in section 9.3 . Synthetic excita­
tion signals were derived from a prescribed power spectral density function 
using an inverse Fourier transform. All three actuators were driven simul­
taneously while also recording the responses, providing the experimental 
input-output data required for the model identification. 

177 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

STAGE OF PERCENT "FIT" FIGURE 
TEST Chan. 1 Chan. 2 Chan. 3 NUMBER 

Model fit ( 7Ju) 5.0% 5.7% 6.1% 8.16 
Linear solution ( 7J3 im) 2.7% 4.2% 7.7% 8.17 
Iteration No. 1 ( 1J3im) 0.8% 4.3% 3.6% 8.18 

Table 8.3: Model fit T/u and simulation results 7J3 im for data section "A" 

Identification of Model 

An extract of 6 seconds of data, ( 384 data points) was used to estimate the 
model orders for the three channels. A direct reversed inverse model was 
attempted and the orders for the three channels were quite easily found to 
be a 9th order for each torsion bar channel and a 14th order for the gearbox 
loading actuator. The inverse model was found to be successful and the 
final model was identified using 32 seconds of data ( 2048 data points ) 
giving a total of 32 states for the final state space parametric model. Figure 
8.16 shows an extract of the true actuator inputs and the model predicted 
inputs, showing an acceptable model fit for the three channels. 

8.3.5 Results for Data Section "A" 

The desired operational responses from figure 8.14 were input to the in­
verse parametric state space model to give the linear solution to the actu­
ator drive signals. The test rig was excited with these signals, and figure 
8.17 shows the laboratory achieved responses plotted with the desired op­
erational measured responses. Also shown in the figure is the error in 
responses. 

Using the response error signals, the drive signal corrections could be 
found from the inverse parametric model to finally achieve the updated 
drive signals. Applying these updated drive signals to the test rig resulted 
in an improved response, as shown in figure 8.18. 

The model fit and simulation accuracy for data section" A" is shown in 
table 8.3. 
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STAGE OF PERCENT "FIT" FIGURE 
TEST Chan. 1 Chan. 2 Chan. 3 NUMBER 

Linear solution ( TJ,im) 3.5% 5.2% 20.2% 8.19 
Iteration No. 1 (TJ,im) 2.2% 2.0% 18.3% 8.20 

Table 8.4: Simulation results TJ,im for data section "B" 

8.3.6 Results for Data Section "B" 

The same procedure was also applied to data section "B" (figure 8.15), 
giving the results depicted in figures 8.19 and 8.20, together with table 8.4. 

8.3. 7 Conclusion 

The simulation of operational responses on a vehicle suspension for the 
purpose of a durability test was accurately achieved using the time domain 
based testing system. As mentioned before, the same test was also repeated 
using the frequency domain techniques, and is described in section (9.3), 
which essentially concentrates on the specific advantages of the time domain 
compared to the frequency domain in a practical application. 
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Figure 8.13: General configuration of crossrnernber loadings 
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Figure 8.14: Operational measured responses (Data section " A") 
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Figure 8.15: Operational measured responses (Data section "B") 
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8.17 OPERATIONAL vs. LAB SIMULATED RESPONSES- LINEAR SOLUTION 
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Figure 8.17: Desired operational- and laboratory achieved responses (Data 
section "A") - linear solution 
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;> 8.18 OPERATIONAL vs. LAB SIMUlATED RESPONSES- ITERATION No. 1 
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Figure 8.18: Desired operational- and laboratory achieved responses (D ata 
section "A") - after one iteration 
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section "B") - linear solution 
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Figure 8.20: Desired operational- and laboratory achieved responses (Data 
section "B" ) - after one iteration 
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8.4 Case Study 3: Four Channel Simulation 
of Operational Responses on a Passen­
ger Vehicle 

The structural integrity of the rear longitudinal beams of a passenger vehi­
cle was established through a durability test on a laboratory test rig. The 
precise details of this test may be found in Raath (1991 (b)], but are con­
sidered superfluous for the purpose of this discussion and only the essential 
results are presented here. 

8.4.1 Test Configuration 

Photographs of the test configuration are shown in Appendix E. The vehicle 
body was mounted on a test stand and loaded by four servo-hydraulic 
actuators, two of which provided the rear wheel displacements, and two 
applied vertical loading inputs to the rear longitudinal beams, simulating 
the boot load. 

The relative displacement of the semi-trailing arms was recorded via 
two displacement transducers, while two strain gauge channels provided 
an indication of the bending strains on the longitudinal beams. These 
four transducers acted as response transducers both for the recording of 
operational data during road recordings, as well as on the laboratory test 
rig. A significant amount of cross-coupling was found in as much as the 
strain gauge readings are influenced by contributions from the wheel loading 
actuators as well as those utilized to simulate the boot load. 

8.4.2 Dynamic Model Identification 

After exciting all actuators simultaneously a direct reversed inverse model 
was identified on the experimental input-output data, giving a sixth order 
model on each of the wheel displacements, and a ninth order on each of 
the longitudinal strain gauge channels. This produced the final state space 
model with 30 states. 
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PERCENT "FIT" STAGE OF 
TEST Chan. 1 I Chan. 2 I Chan. 3 I Chan. 4 

!!Iteration No. 3 (rl,im) I 0.8% 0.8% 6.9% 3.6% 

Table 8.5: Simulation results 7]6im for passanger vehicle (figure 8.21) 

8.4.3 Simulation Results 

Three iterations were required to achieve the desired results, and an extract 
of the road recorded and laboratory simulated responses is shown in fig­
ure 8.21, with the simulation accuracy parameter of the final drive signals 
shown in table 8.5. 
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Figure 8.21: Road recorded- and laboratory simulated responses on pas­
senger vehicle 

190 

52 

52 

52 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

8.5 Case Study 4: Five Channel Simulation 
of Operational Responses on a Vehicle 
Chassis 

The final case study involved the application to the simulation of opera­
tional responses on the front section of a pick-up truck chassis using five 
simultaneous servo-hydraulic actuators. As with the previous case study, 
only the essential results are presented, and details of this test may be 
found from vVannenburg and Immelman [1991]. 

8.5.1 Test Configuration 

The rear end of the chassis was mounted to a test stand while applying 
the vertical displacements to the front wheel spindles, using two actuators 
working through bell-cranks. Two additional actuators simulated the verti­
cal loads exerted by the vehicle cab through the front cab mountings on the 
chassis. Finally the fifth actuator applied the loads which are transferred 
by the engine onto the chassis via the rubber engine mountings. Due to 
severe resonance problems, the test rig was later modified by moving the 
chassis mounting to the front . Figures E.7 through E.10 show the original 
test rig prior to the modifications. 

Strain gauges were utilized to record the shear strains on the two front 
torsion bars, while another set of strain gauges provided the bending strains 
on the longitudinal chassis beams to the rear of the two front wheels. The 
engine load was recorded using strain gauges on one of the engine mounting 
brackets. These five strain gauge channels were used as response transduc­
ers during both the operational road recordings on the vehicle, as well as 
the subsequent simulation of the operational data on the chassis in the 
laboratory. 

8.5.2 Test Excecution and Results 

Upon excitation of the test rig a direct reversed inverse model was identified 
giving a total of 34 states for the final reversed inverse state space model. 
A number of different data sections were simulated in the endurance test , 
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STAGE OF PERCENT "FIT" 
TEST Chan. 1 I Chan. 2 I Chan. 3 I Chan. 4 I Chan. 5 

. II Iteration No. 3 (TJ8im) I 1.8% I 0.8% I 2.1% I 3.1% I 8.6% II 

Table 8.6: Simulation results TJ&im for vehicle chassis (figure 8.22) 

and figure 8.22 shows a typical extract of one of these sections, while the 
final simulation results are given in table 8.6. 
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8.6 Summary 

Dynamic Model Identification 

Estimation of the model order and delays for each channel was done by sim­
ply fitting a number of models and displaying the sum of squared residuals 
upon which the order of the system could be determined. 

In all four case studies it was found most convenient to fit a direct re­
versed inverse model in each case, which has the further advantage that the 
delays need not be estimated. Normal forward models were also attempted, 
and found to exhibit unstable eigenvalues both for the forward inverse and 
reversed inverse conversions. The linear quadratic optimal servo-controller 
was also applied in the case of the second case study (section 8.3), and 
performed exceptionally well, but was found to be very time consuming 
and could probably prove impractical in a production testing environment. 
Should no stable inverse be found through any of the other methods, the 
linear quadratic optimal servo-controller can as a last resort always supply 
the system inputs from the the given operational measured responses. 

Simulation Accuracy 

The accuracy of simulation was found to be good in all case studies. Even 
in the case of extremely short impulses, as was the case with the high 
speed spring tester, the time domain technique seems to perform excep­
tionally well. As was mentioned in section 8.1 , the deviations between the 
operational measured- and laboratory simulated responses may essentially 
be ascribed to the mechanical inability of the test rig and servo-hydraulic 
actuators to achieve a perfect simulation. 
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Chapter 9 

Applications: Comparison 
with Frequency Domain 
Techniques 

9.1 Introduction 

Referring to section 1.3, several advantages of the time domain compared 
with a frequency domain based system were postulated, such as the sample 
frequency, the amount of data required, frequency resolution restrictions, 
and the consequential general accuracy of the two methods. Several of 
these aspects were addressed by comparing results using the developed time 
domain technique with those obtained through the frequency domain tech­
nique. The first two case studies presented in the previous chapter, namely 
the high speed spring tester and the simulation of operational responses on 
a vehicle suspension, were utilized for this purpose, by also applying the 
frequency domain techniques to these case studies. 

195 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

9.2 Frequency Domain Application: Single 
Servo-hydraulic Actuator High Speed Spring 
Tester 

The first case study which was discussed in section 8.2, was also attempted 
with the frequency domain based techniques. Identical conditions were 
utilized to arrive at an accurate comparison. 

9.2.1 Identification of Transfer Function 

Using the same excitation signal as shown in figure 8.4 the system trans­
fer function was identified, giving an acceptable coherence. It is usually 
required to utilize significantly more data in the frequency domain; how­
ever a direct comparison with the results from section 8.2 was required, 
necessitating the short identification data process. 

9.2.2 Results for Single Cycle Operation 

It was firstly attempted to simulate the single cycle operational response of 
figure 8.2 . Since the frequency domain technique requires a minimum of 
two FFT's, (2048 points or 8 seconds) for the desired operational response, 
a section of zeros was inserted in the data before and after the single cycle of 
figure 8.2. Figure 9.1 shows the desired operational response together with 
the laboratory achieved response for the linear solution to the system input 
data. Also shown is the error in response. One iteration was attempted, 
the results of which are shown in figure 9.2 . 

9.2.3 Results for Continuous Operation 

The continuous operation desired response of figure 8.2 was also attempted. 
Again only one iteration was applied, whereafter the test was aborted. 
Results of this test are shown in figures 9.3 and 9.4 . 
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9.2.4 Discussion of Results 

In both the single cycle and continuous operation modes the responses show 
significant steps in the data. This may be explained by the FFT processing 
which is affected by the frequency resolution. Using a 1024 point FFT 
with a 256 Hz sample frequency results in a spectral resolution of 0.25 Hz, 
which causes leakage of specific frequencies to neighboring spectral lines. 
Due to the requirement of a high sample frequency to ensure an acceptable 
time resolution, the sample frequency of 256 Hz could not be reduced to 
increase the spectral line resolution. It would seem that these results also 
indicate that the frequency domain techniques are unsuited to short data 
sections. In particular, applications of simulating systems where impulses 
are experienced, makes the frequency domain techniques difficult to apply 
successfully. 
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9.3 :Frequency Domain Application: Simu­
lation of Operational Responses on aVe­
hicle Suspension 

9.3.1 General 

The frequency domain techniques were also applied to the case study pre­
sented in section 8.3 . All testing conditions remained as before, including 
the test rig, sample frequency of 64Hz, excitation signal PSD, as well as 
the identification signal length of 32 seconds. 

As mentioned in section 8.3, two specific sections of data, from a possible 
twelve data sections, were chosen for reasons of comparing results of the 
time- and frequency domain techniques. 

9.3.2 Identification of Transfer Function 

The identification signal length of 32 seconds was applied as in section 
8.3, except that the frequency domain technique identifies one channel at 
a time, therefore using a total of 96 seconds of data for the three channels. 
The coherence functions on the diagonal elements of the system transfer 
function were found to be very good, and from the system transfer function 
only a small amount of cross coupling was found between the gearbox force 
response and the two torsion bar input loads, as was expected. Following 
the inversion of the system transfer function, the linear solution inputs to 
the drive signals could be determined. 

9.3.3 Test Results and Discussion for Data Section 
"A" 

This data section was chosen specifically due to superior performance in the 
frequency domain application when compared with all the other possible 
data sections. 

The response to the linear solution system inputs is shown in figure 9.5, 
together with the desired response signals and the response error. The same 
results are shown in figure 9.6 after one iteration. The simulation accuracy 
results are given in table 9.1. 
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STAGE OF PERCENT "FIT" FIGURE 
TEST Chan. 1 Chan. 2 Chan. 3 NUMBER 

Linear solution ("him) 37.6% 48.3% 48.1% 9.5 
Iteration No. 1 (TJsim) 9.3% 35.4% 18.6% 9.6 

Table 9.1: Simulation results TJsim for data section "A" - Using frequency 
domain technique 

A part from a small offset on the second channel a close inspection of 
figure 9.6 indicates a good simulation. Results for the time domain applica­
tion for the same section of data were given in figures 8.17 and 8.18. Tables 
8.3 and 9.1 also compare the simulation accuracies T/sim for the time- and 
frequency domain methods. Both techniques show an accurate simulation, 
with the time domain results marginally superior to the frequency domain 
results. 

9.3.4 Test Results and Discussion for Data Section 
"B" 

In contrast to the data section discussed above, section "B" was chosen 
specifically due to very poor performance in the frequency domain applica­
tion when compared with all the other possible data sections. 

The linear solution responses are shown in figure 9.7, together with the 
desired response signals and the response error. The same results after 
one iteration are shown in figure 9.8. A global view of the same data 
is presented in figure 9.9, which shows steps in the laboratory simulated 
responses around 16 seconds and around 24 seconds. A close up view of the 
data around 24 seconds is shown in figure 9.10 . In this case the frequency 
domain determined responses compare poorly with the desired responses. 

The reason for this poor response is the very low frequency component 
present in the data, which typically stems from data obtained when driving 
the vehicle over a culvert. An estimate of this low frequency is approxi­
mately 0.06 Hz, which cannot be well described by the transfer function 
exhibiting a spectral resolution of 0.125 Hz . The result of this low fre­
quency component causes leakage to the first spectral line of the transfer 
function, which in turn results in offset problems and in fact corrupts the 
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data. 
A comparison with figure 8.20, shows that the time domain technique 

is not affected by such low frequency trends. 
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9.5 OPERATIONAL vs. LAB SIMULATED RESPONSES- LINEAR SOLUTION 
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Figure 9.5: Results for data section" A"- Using frequency domain technique 

- Linear solution 
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9.6 OPERATIONAL vs. LAB SIMULATED RESPONSES- ITERATION No. 1 
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Figure 9.6: Results for data section" A"- Using frequency domain technique 
- After one iteration 
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;:>' 9.7 OPERATIONAL vs. LAB SIMULATED RESPONSES- LINEAR SOLUTION 
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9.10 OPERATIONAL vs. LAB SIMULATED RESPONSES - ITERATION No. 1 
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9.4 Summary 

In this chapter a comparison between the developed time domain and the 
existing frequency domain techniques was drawn by an application of both 
techniques to the high speed spring tester case study, as well as the simu­
lation of operational responses on a vehicle suspension. 

From the results it seems that the new time domain technique exhibits 
a number of advantages over the existing frequency domain technique, in 
as far as versatility, and accuracy is concerned. In particular, two features 
have been enlightened by these two case studies, namely the ability of 
the time domain technique to successfully deal with short data sections 
especially where an impulse is concerned. The second feature is that the 
time domain technique is not affected by low frequency components which 
cause difficulties in the frequency domain through the discrete spectral 
resolution. 

209 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 10 

Conclusions and 
Recomendations for Future 
Research 

10.1 Conclusion 

The simulation of operational measured responses on a servo-hydraulic ac­
tuator loaded laboratory test-rig requires that the correct actuator input 
signals be determined. These inputs can in most cases not be measur~d 
directly, and instead the response to these inputs are measured under op­
erational conditions, at positions remote from the inputs. 

A time domain based computer controlled testing system has been de­
veloped which is able to determine the input signals to a servo-hydraulic 
test rig using remotely measured operational responses, taking the fully 
coupled multiple axis dynamics of the test system into account. 

Parametric dynamic system identification techniques were adapted in a 
number of ways for the specific application. In particular, a direct reversed 
inverse model is identified on each input channel, using the principle of a 
"full order" model. These separate models are subsequently combined in 
a fully coupled multiple-input multiple-output state space model. Using 
the pre-recorded operational responses, the test-rig inputs are determined. 
Provision for nonlinearities is made by a process of iterations, which finally 
provides an accurate simulation of the remotely measured operational re­
sponses on the laboratory test structure. 
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The test system has been implemented on an 80386 IBM-compatible 
computer in the MATLAB environment. To prove the integrity of the 
developed computer software, a number of simple test runs were done on 
computer simulated "test rigs". 

The system was furthermore applied to four practical case studies. The 
first was a single servo-hydraulic actuator high speed spring tester. Sec­
ondly the operational measured responses on a vehicle suspension were re­
produced on a full scale laboratory test rig. The third case study concerned 
the simulation of service acquired vibrational responses on a passenger vehi­
cle. The final case study utilized five serv<rhydraulic actuators to simulate 
operational measured vibrations on a pick-up truck chassis. 

As a comparison with existing frequency domain based systems the 
frequency domain techniques were also applied to two of the above case 
studies. 

These initial tests have indicated several advantages of the time domain 
based method compared with the existing frequency domain techniques 
namely: 

• The time domain method is not restricted by a discrete spectral res­
olution and is hence not affected by spectral leakage when the opera­
tional responses contain low frequency trends, as is typical in vehicle 
response data. 

• Significantly less data is required for the time domain method. 

• Accuracy is generally higher. 

• Offsets in the operational measured response data are easily handled. 

The development of the time domain technique naturally drew heavily 
on established dynamic system identification and digital control systems 
methodologies. Also the basic concept i.e. identification, linear solution 
and iteration steps come from the original equivalent frequency domain 
systems. However, to the author's knowledge, a number of aspects might 
be considered novel to the field of service load reconstruction testing. These 
might hence be seen as specific contributions to the field of service load 
reconstruction testing, notably the following: 
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• The concept of utilizing a time domain approach for obtaining the 
servo-hydraulic actuator inputs from remotely measured response data, 
in contrast to the existing frequency domain based approach. 

• Identification of separate models for each channel, and the subsequent 
combination of these separate models into the state space formulation. 
The conversion of SISO models as well as complete MIMO models to 
state space is well known in the literature. 

• The concept of a "full order" model. 

• The formalization of inverse model types and the terminology of a 
reversed inverse model. 

• Reversal of the data vectors in obtaining the reversed inverse models. 

• The direct identification of reversed inverse models. 

• Off-line application of a linear quadratic optimal servo-controller in 
calculating the system inputs from the desired operational responses, 
together with the concept of utilizing iterative corrections to the 
system inputs from the LQ optimal servo-controller, as well as the 
method of finding the system delays. 

10.2 Recomendations for Future Research 

It was naturally not possible to cover all aspects in this study and a number 
of issues still need to be improved. 

Recursive Identification Techniques 

The current system does not make use of recursive system identification 
techniques. A recursion in the number of data points, will certainly prove to 
be advantageous in the laboratory testing environment where the accuracy 
of the dynamic model may be improved by adding additional input-output 
data to an already identified model. This procedure is well established and 
is described by Ljung and Soderstrom [1985]. The traditional approach 
to recursive identification is in the on-line application. Solbrand, Ahlen 
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and Ljung [1985] also describe an off-line recursive procedure applied to a 
concatenated string of repeated data sequences. 

Scaled Corrections During Iteration Process 

In applications with the frequency domain techniques, under certain con­
ditions, it has been found advantageous to apply a scaled down correction 
to the system drive signals between the iterations. This feature has as yet 
not been implemented in the time domain technique. In comparison with 
the frequency domain, the time domain technique is able to deal with very 
large offsets, which can naturally not be scaled down. The offsets will hence 
have to be dealt with separately. 

Coherence Function 

The coherence function is probably one of the best indicators to establish 
optimized input excitation signals for the identification process. Whether 
the coherence function, which gives the coherence at each spectral line, is 
as relevant in the time domain as is the case for the frequency domain, 
would probably have to be established experimentally. 

Model Order Estimation 

One· of the disadvantages of the time domain technique is the requirement of 
specifying the model orders on each channel prior to the actual identification 
process. Several techniques are available in the literature which allow the 
estimation of the order oflinear systems. Norton [1986] section 8.4 describes 
a recursive technique whereby the recursion is in the model order. Although 
none of these methods were used in this study, they could certainly prove 
to be very useful and should be implemented in the computer programs. A 
further method which is proposed, is the prior identification of a frequency 
domain transfer function to enable the estimation of the order of the system 
for the subsequent time domain identification. The method is envisaged to 
comprise the following steps: 

• Identify a frequency domain transfer function and ensure a favourable 
coherence. 
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• Simulate the transfer function using the input data to obtain simu­
lated output data, or alternatively invert the transfer function and 
simulate the inverted transfer function using the measured responses 
to give simulated inputs. 

• Using the above simulated input-output data, which is based on a 
mathematical description, attempt to estimate the model orders on 
each channel. 

• Having so obtained the model orders identify the final model, using 
the actual experimental input-output data. 

Computer Software 

The computer software is reasonably friendly, but could certainly improve. 

Provision for Nonlinear Systems 

Nonlinear systems can only be analysed in the time domain, which makes 
the developed system superior to the frequency domain techniques. In 
highly nonlinear systems, provision should be made to identify such models 
directly, possibly through a direct state space identification procedure. The 
prediction error methods should prove to give consistent results by using 
small perturbations on the system parameters. 

Generation of Synthetic Input Signals for Identification 

In the time domain it is possible to use higher sample frequencies, without 
spectral resolution problems, and ari 8192 point FFT may be considered 
in the conversion from the PSD to the time signals, which would not be 
possible in the frequency domain unless the entire analysis including the 
actual frequency domain transfer function provides for such a high number 
of spectral lines. 

Adaptive Control for Fatigue Testing 

After the test rig inputs have been determined, the actual fatigue test may 
be executed using these calculated inputs. The validity of these inputs will 
however deteriorate as fatigue cracks start to develop in the test structure, 
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since this will cause a subsequent deterioration of stiffness, see Sherratt 
[1990]. A solution to this problem would be to drive the test in force 
control mode, and hence ensure stationary load inputs. Where suspension 
components in vehicles are tested, large displacements are generally applied, 
and the test can then only be run in displacement control mode. The only 
solution would then be to identify a second dynamic model between the 
actuator displacement inputs and the actuator loadcells. Using the initial 
measured loads from the loadcells as desired responses, this second dynamic 
model would be re-identified from time to time to update the actuator 
displacement drive signals, so as to ensure stationary load inputs to the 
test rig. 

On-line Control 

Implementing the test system in an on-line setting, could probably have 
significant advantages. Aspects such as adaptive control might even be 
considered in such an application. 

Hoo and Robust Control 

The Hoo and robust control techniques, which are probably considered as 
state-of-the-art in nonlinear multivariable control system design, might be 
applied to the present application. 

10.3 Applications in Areas Other than Struc­
tural Testing 

The current time domain technique has been developed essentially for the 
structural fatigue testing environment as well as other applications requir­
ing the simulation of operational measured responses on servo-hydraulically 
driven test rigs. The scope for further applications in a variety of differ­
ent fields is considered to be vast. A few of the many possible areas of 
investigation are given below. 
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Dynamic Finite Element Analysis at Critical Points 

Forced response dynamic finite element analyses are in general excessively 
time consuming, especially when attempting to perform a time domain fi­
nite element analysis from structural inputs for subsequent fatigue analysis 
through rainfl.ow counting and cumulative fatigue damage techniques. By 
employing dynamic system identification on the finite element model, such 
an analysis may be done within a considerably shorter time. Since a struc­
tural finite element model is in most cases linear, this technique should give 
very accurate results. 

The procedure is envisaged as follows: 

• Assume that the dynamic structure is loaded by m input loads. 

• Perform a dynamic finite element analysis using a short section of 
input data - typically one to two seconds of data (say 200 to 300 data 
points), with a reasonably wide frequency bandwidth. The data for 
the various inputs should be uncorrelated. 

• Select at least m critical points of interest on the structure, which 
will be utilized as response positions. These points could be chosen 
as critically stressed points, but should exhibit a strong correlation 
to the m input degrees of freedom. 

• From the above finite element system inputs and responses identify a 
dynamic model for each channel, and combine to a complete discrete 
state space model. 

• Very large amounts of data may now be simulated in a fraction of 
the time required by the finite element analysis using the state space 
model. 

• The simulated stress vs. time data may thereafter conveniently be 
used for subsequent fatigue analyses. 

• Another m points may thereafter be chosen without repeating the 
finite element anaysis. 
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Deriving Input Loads to a Finite Element Analysis from Remotely 
Measured Response Data 

The prime objective of the developed time domain technique is to derive 
the system inputs from remotely measured response data, since the system 
inputs can in most cases not be measured directly. This principle is also 
directly applicable to a finite element analysis by following similar steps to 
those described in the previous paragraph. As an example, the procedure 
could be implemented on a vehicle chassis by deriving the suspension input 
loads to the chassis from remotely mea.mred operational strain data. This 
would in general give significantly improved results over the usual procedure 
of attempting to determine the input displacements from measured input 
acceleration data. Such a system called Remote Parameter Analysis (RPA) 
has also recently come into being, see Pountney and Dakin (1992], but is 
based on static modelling. The time domain method makes provision for a 
dynamic modelling. 

Measurement of Vehicle Terrain Profiles 

The measurement of the vertical profile of various roads and terrains for 
the purpose of vehicle inputs, is an area of possible application for dynamic 
system identificat ion techniques. It is envisaged to apply the developed 
techniques as follows: 

• A fifth wheel equipped with an accelerometer may be used to traverse 
the terrain of which the profile is required. 

• By exciting the wheel, using a simple single actuator vertical input, a 
dynamic model may be identified between the displacement input and 
the accelerometer response. In this specific application, a nonlinear 
dynamic model of the tyre may produce improved results over a linear 
model. 

• Having traversed the terrain and recorded the system response, an 
inverse dynamic model could supply the vertical input which caused 
the measured response. 
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Identification of Nonlinear Vehicle Models 

It is very often required to determine how a vehicle would perform on a spe­
cific terrain from a fatigue point of view. A variety of dynamic modelling 
packages are commercially avaliable to model the specific suspension com­
ponents, whereafter a finite element model would be required to translate 
these results into a stress time history for a number of critically stressed 
areas. Significant improvements in accuracy may be achieved by identi­
fying the complete vehicle between vertical terrain profile inputs and the 
critically stressed areas . This model should ideally be nonlinear and may 
be realized by driving the vehicle over a short section of test track with 
known vertical profile to supply the experimental input-output data for the 
identification process. The model may thereafter be used to relate various 
terrains with one another from a fatigue point of view by predicting the 
stress time response of the vehicle from any other known terrain profile. 
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Appendix A 

State Space Descriptions 

A.l Continuous Time State Space Formula­
tion 

Time-invariant linear dynamic systems may be described by linear constant 
differential equations. The state space formulation stems from the mathe­
matical principle of writing an n-th order linear differential equation into 
n first-order differential equations, using an n dimensional auxiliary state 
vector. 

For a system with r inputs and p outputs the continuous state space 
formulation becomes 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) + Du(t) 

where x(t) = n-dimensional state vector 
u( t) = r-dimensional input vector 
y(t) = p-dimensional output vector 
A = n x n state matrix 
B = n x r input matrix 
C = p x n output matrix 
D = p x r direct transmission matrix 

(A.l) is referred to as the continuous state equation, while 
( A.2) is referred to as the continuous output equation 
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A.2 Discrete State Space Description 

In digital control and system identification it is common to work with a 
discrete version of the state equations. This is achieved through a zero­
order-hold sampling of the continuous state equations, under the funda­
mental assumption that the input signal remains constant over a sampling 
interval. Under this assumption we may integrate (A.l). Given the state at 
sampling instant tk, the state at some future time t is obtained by solving 
(A.l). 

The state at the next sampling instant tk+l is given by 

Because u is constant between tk and tk+t· 
The sampled system therefore becomes 

x(tk+t) - <.Px(tk) + ru(tk) 

y(tk) - Cx(tk) + Du(tk) 

We shall henceforth write the above equations as 

or 

x(k + 1) 
y(k) 

<.Px(k) + ru(k) 

- Cx(k)+Du(k) 

Xk+ 1 - <.Pxk + ruk 

Yk - Cxk + Duk 
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(A.3) 

(A.4) 

(A.5) 

(A.6) 
(A.7) 

(A.8) 

(A.9) 

(A.lO) 

(A.ll) 
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where k signifies the sampling instant and 

~ eAh 

r - foh eA3 dsB 

where h is the sampling period. 

Computation of ~ and r 

(A.12) 

(A.13) 

Several different ways of evaluating (A.12) and (A.13) are available [ Astrom 
and Wittenmark 1984). Since the purpose here is a computer application, 
the series expansion of the matrix exponential will be used, which is a good 
machine calculation method. We define 

lh Ah2 A2h3 
Y= eAsds=lh+-1-+-1-+ ........... . 

0 2. 3. 
and compute ~ and r from 

~ - I+AY 
r - YB 

(A.14) 

(A.15) 

(A.16) 

With a sufficient number of terms, the series expansion is quite feasible. 

A.3 Canonical Forms 

The discrete state and output matrices may be transformed to, amongst 
others, two convenient forms using transition matrices. The observable 
canonical and the controllable canonical forms are standard control and 
system identification forms. The observable and controllable forms are also 
called companion forms, see Apte (1981). 

A.3.1 Observable Canonical Form 

We define the nonsingular observability matrix by 
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I c I Ccp 
Wo= . (A.17) 

cq;n-1 

The observable canonical form is then 

-a1 1 0 0 b1 
-a2 0 1 0 b2 

0 
x(k + 1) = 0 x(k) + u(k) (A.18) 

0 
-an-1 0 0 1 bn-1 
-an 0 0 0 bn 

y(k)=[1 0 0 . .. o]x(k)+[bo]u(k) (A.19) 

where cp has the characteristic equation 

(A.20) 

The advantage of the observable canonical form is the convenient way 
of finding the input-output model. 

A.3.2 Controllable Canonical Form 

We define the nonsingular controllability matrix by 

We = [ r q;r ... q;n-2r q;n-1r] 

The controllable canonical form is then given by 

-al -a2 -an-1 -an 
1 0 0 0 

x(k + 1) = 0 1 0 0 x(k) + 

0 0 1 0 

231 

(A.21) 

1 
0 
0 u(k) 

0 
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Appendix B 

Conversion of ARX to 
Observable Canonical State 
Space Models 

The derivations in this appendix are based on a similar presentation taken 
from Ogata [1987], which is valid for SISO systems. In this appendix how­
ever, the formulations have been expanded to accomodate MIMO systems. 
The formulation of the discrete input matrix (equation B.29) in its present 
form is also novel, see also Raath [1990 b]. 

A mathematically rigorous treatment of the conversion from the ARX · 
difference equation models to the state space formulation in terms of r­
inputs and p-outputs is not given because of the difficulty in presenting 
partially filled matrices. Instead a specific example for a 3 input and 3 out­
put system is presented. In this way all the necessary steps are illustrated 
far more clearly, from which it is quite simple to extend to any number of 
inputs and outputs. 

It is furthermore assumed that no delays are present from the system 
inputs ui, which makes the presentation more complete. Introducing delays 
is a simple exercise by zeroing leading b terms. 

We start by defining a third order ARX model for output channel y1 . 

The ARX parameters may be written in matrix form as follows: 

(B.l) 
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blOl bul bl21 b131 ul 

b2o1 b2h b221 b231 u2 

Bt= b3o1 b3h b32t b33t UJ (B.2) 
Cn1 C121 C131 Y2 
C211 c221 C231 Y3 

For output channel 2 we select a second order ARX model, with the 
following parameters: 

(B.3) 

b102 b112 bl22 Ut 

b2o2 b212 b222 u2 

82 = b3o2 b312 b322 U3 (B.4) 
c112 C122 YI 

c212 c222 Y3 

And for output channel3 we have a fourth order ARX model, with third 
orders on input u1 and outpu_t y1 , while a second order model is employed 
for output Y2. 

(B.5) 

b103 buJ bl23 bl33 bl4J Ut 

b2o3 b21J b22J b233 b24J u2 

Bt= b3o3 b313 b323 b333 UJ (B.6) 
cu3 C123 C133 YI 

C21J c223 Y2 

The above three ARX models will be combined into a complete three 
input three output state space model in the observable canonical form. 

The corresponding difference equations may be written as follows: 
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Y1(k) + a11Y1(k- 1) + a21Y1(k- 2) + a31Y1(k- 3) = 
b101 u1 ( k) -'--I bu1U1(k -1) + b121u1(k- 2) + b131 U1(k- 3) 

+b2o1 u2(k) + b211 u2( k - 1) + b221 u2( k - 2) + b231 u2( k - 3) 

+b3o1 u3(k) + b311U3(k -1) + b321u3(k- 2) + b331U3(k- 3) 
-'--I Cu1Y2(k -1) + c121Y2(k- 2) + c131Y2(k- 3) 
-'--I c211 Y3(k -1) + c221Y3(k- 2) + c231Y3(k- 3) (B.7) 

and for output channel y2 we have 

Y2(k) + a12Y2(k- 1) + a22Y2(k- 2) = 

b102 u1( k) + b112 u1(k- 1) + b122 u1(k- 2) + 

+b2o2 u2(k) + b212 u2( k - 1) + b222 u2( k - 2) + 

+b3o2 u3(k) + b3hu3(k -1) + b322U3(k- 2) + 
+ Cn2 YI(k- 1) + Ct22Yt(k- 2) + 

+ c212 Y3(k- 1) + c222Y3(k- 2)+ (B.8) 

and for output channel y3, 

Y3(k) + a13 Y3(k- 1) + a23 Y3(k- 2) + a33 y3(k- 3) = 

b103 Ut( k) + bu3 u1(k- 1) + b123 u1(k- 2) + b133 u1(k- 3) + b143 u1(k- 4) 

+b2o3 u2(k) + b213u2(k- 1) + b223 u2(k- 2) + b233 U2(k- 3) + b243 U2(k- 4) 

+b3o3 u3(k) + b313 U3(k -1) + b323 u3(k- 2) + b333 U3(k- 3) 

+ Cu 3YI(k- 1) + C123 Y1(k- 2) 

+ c213Y2(k- 1) + c223 Y2(k- 2) 

Taking the z-transform of (B.7), gives 

Yi(z) b101U1(z) + b2o1U2(z) + b3o1 U3(z) + 

+ z- 1(bul ul + b21t u2 + b3h u3 + Cul y2 + c2h y3- ali Yl) 

+ z- 2(b121 U1 + b221 U2 + b321 U3 + c121 Y2 + c221 Y3- a21 YI) 

+ z-3(b131 ul + b231 u2 + b331 u3 + Ct31 y2 + C231 y3- a31 Yl) 

(B.9) 

(B.10) 
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where we have dropped the z argument in the latter part of the equation. 
This may be written as 

Yi(z) - b1o1U1(z)+b2o1U2(z)+b3o1U3(z)+ 

+ Z-1 {bnl U1 + b211 U2 + b31t U3 + Cllt Y2 + C211 Y3- alt Y1 

+ Z-1 (b121 U1 + b221 U2 + b321 U3 + C121 Y2 + C221 Y3 - a21 Yi 

+ Z - 1 ( b131 ul + b231 u2 + b331 u3 + C131 y2 + C2Jt y3 - a31 Yl)]} 
(B.ll) 

similarly taking z-transforms of (B.8) and (B.9) we obtain 

Y2(z) b102U1(z) + b2o2U2(z) + b3o2 U3(z ) + 

and 

+ Z-1{bn2Ul + b212u2 + b312u3 + Cn2Yl + c212y3- a12y2 

+ z-1[b122U1 + bn2 U2 + b322U3 + c122Y1 + c222Y3- a22Y2]} 

(B.l2) 

Y3(z) b103 U1(z) + b2o3 U2(z) + b3o3 U3(z) + 

+ z-1{bu3 UI + b213 U2 + b313 U3 + cu3 Yl + c213 Y2- a13YJ 

+ z-l [b123 ul + b223 u2 + b323 u3 + c123 Yi + c223 y2 - a23 y3 

+ z- 1(b13Jul + b233u2 + b333 u3- a33y3 

+ z-1(b143U1 + b243 U2))]} (B.13) 

Using the above three equations we may now define state variables as 
follows: 

x3 - z-1 ( b131 ul + b231 u2 + b331 u3 + C13! y2 + C231 1'3- a31 YI) 

x2 z-1 [b12I u1 + b22I u2 + b32! u3 + c12I y2 + c221 1'3- a21 Yi + X3] 

x1 z-1 { bul u1 + b21 I u2 + b311 u3 +Cui y2 + c21I 1'3 - allyl + X2} 

(B.l4) 

X 5 z-1[b122U1 + b222 U2 + b322U3 + c122Yi + c222 Y3 - a22 Y2] 
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x4 z-1{bn2Ul + b212u2 + b312u3 + Cu2Yl + c212y3- a12y2 + Xs} 
(B.15) 

X 9 - z-1(b143U1 + b243U2) 

Xs z-1(b133U1 + b233 U2 + b333 U3- a33 Y3 + Xg) 

X1 z-1(b123U1 + b223 U2 + ~23 U3 + c123 Y1 + c223Y2- a23 Y3 + Xs] 

Xs - z-1{b11Jul + b213u2 + b313u3 + CllJyl + C21Jy2- a13y3 + x7} 
(B.l6) 

Using the above defined states, equations (B.ll) through (B.l3) become 

b101 U1(z) + b2o1 U2(z) + b3o1 U3(z) + X1 

b102U1(z) + b2o2U2(z) + b3o2U3(z) + X4 

b103 U1(z) + b2o3 U2(z) + b3o3 U3(z) + Xs (B.17) 

Substituting the above three equations into the nine state equations 
g1ves 

zX1 bn1 U1 + b2IJ U2 + b311 U3 

+ Cn1 (bi02 UI(z) + b2o2U2(z) + b3o2 U3(z) + X4) 

+ c211(b103UI(z) + b2o3U2(z) + b3o3 U3(z) + Xs) 

all (biOI Ul(z) + b2o! U2(z) + b3o1 U3(z)) +XI)+ x2 

zX2 b121 U1 + b221 U2 + b321 U3 

+ c121(b102 UI(z) + b2o2U2(z) + b3o2U3(z) + X4) 

+ c221(b103 U1(z) + b2o3 U2(z) + b3o3 U3(z) + Xs) 

a21 (biOl Ul(z) + b2ol U2(z) + b3o1 U3(z) +XI)+ x3 

zX3 b131 U1 + b231 U2 + b331 U3 

+ c131(b102UI(z) + b2o2U2(z) + b3o2U3(z) + X4) 

+ c231(b103 U1(z) + b2o3 U2(z) + b3o3 U3(z) + Xs) 

- a31 (biOI ul (z) + b2ol U2( z) + b3o1 U3(z) +XI) 
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(B.l8) 

(B.19) 

(B.20) 
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zX4 bu2U1 + b212U2 + b312 U3 

+ Cu2(bi01 UI(z) + ~o1 U2(z) + b3o1 U3(z) +XI) 
+ c212(bi03U1(z) + b2o3U2(z) + b3o3U3(z) + Xs) 
- ah(b102U1(z) + b2o2U2(z) + b:3o2U3(z) + X4) + Xs 

(B.21) 
zX5 - b122u1 + b222u2 + b322u3 

+ c122(b101 U1(z) + b2o1 U2(z) + b3o1 U3(z) +XI) 
+ c222(b103UI(z) + b2o3U2(z) + b:3o3U3(z) + Xs) 

a22(b102U1(z) + b2o2U2(z) + b3o2U3(z) + X4) 
(B.22) 

zXs bu3 ul + b213 u2 + b313 u3 

+ c113(bi01 UI(z) + b2o1 U2(z) + b3o1 U3(z) +XI) 

+ c213(bi02UI(z) + b2o2U2(z) + b3o2U3(z) + X4) 
a13(b103UI(z) + b2o3U2(z) + b3o3U3(z) + Xs) + X1 

(B.23) 

zX1 b123 u1 + b223 U2 + b323 u3 

+ c123(b101 U1(z) + b2o1 U2(z) + b3o1 U3(z) +XI) 

+ c223(b1o2UI(z) + b2o2U2(z) + b3o2 U3(z) + X4) 
a23(b103U1(z) + b2o;U2(z) + b3o3U3(z) + Xs) + Xs 

(B.24) 

zX8 b133 U1 + b233 U2 + b333 u3 
a33 (b103U1(z) + b2o3U2(z) + b3o3U3(z) + Xs) + Xg 

(B.25) 

zX9 - b143 U1 + b243 u2 (B.26) 

Taking the inverse z-transform of the above nine equations, and writing 
the result into matrix form, gives the following state equation: 

x(k + 1) = cpx(k) + ru(k) (B.27) 

where the matices cp and r are given by: 
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-alt 1 cllt c21t 

-a21 1 c121 c221 

-a31 c131 c231 

c112 -a12 1 c212 

~= c122 -a22 c222 (B.28) 
cn3 c213 -ah 1 
c123 c223 -a2J 1 

0 0 -a33 1 
0 0 0 

and 

r = wn +A (B.29) 

where 

-a11 cnl c211 

-a21 c121 c221 

-a31 C131 C231 

Cn2 -ah C212 

'll= cl22 -a22 c222 (B.30) 
CuJ c21J -a13 

c123 c22J -a23 

0 0 -a3J 

0 0 0 

blh b2h b3h 

b121 b221 b321 

b131 b231 b331 

bu2 b212 b312 

A= b122 b222 b322 (B.31) 
bu3 b21J b3h 

b123 b22J b32J 

b133 b23J b333 

b143 b243 0 
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(B.32) 

The output equation is obtained by taking the inverse z-transform of 
(B.17) and writing the result into matrix form, which gives: 

Xt(k) 
x2(k) 
X3(k) 

[y1{k)l [I 0 0 0 0 0 0 0 

~ l 
x4(k) [ bto, b2o1 b30, l [ u,(k) l 

Y2(k) = 0 0 0 1 0 0 0 0 xs(k) + b102 b2o2 b3o2 u2( k) 
YJ(k) 0 0 0 0 0 1 0 0 x6(k) bwa b2oa b303 u3(k) 

x1(k) 
xs(k) 
Xg(k) 

or 

y(k) = Cx(k) + Du(k) (B.34) 

The above formulation is in the well known observable canonical form. 

x(k + 1) - Cl)x(k) + ru(k) 

y(k) - Cx(k) + Du(k) 
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Appendix C 

Conversion of MFD to State 
Space Models 

In appendix B the conversion from the ARX difference equation models 
to the observable canonical state space form compelled at least a single 
delay on the outputs, which means that the parameters c10u c2ou ... C(p-t)o1 

must be zero. In some instances, this restriction may not be desirable, or 
even possible, and a conversion is hence sought whereby these parameters 
need not equal zero. A conversion to the state space formulation is then 
still possible, albeit not in the observable canonical form. The conversion 
makes use of the matrix fraction description MFD, as discussed in section · 
4.3.1, hence the title of this appendix. The presentation in this appendix 
is based on a similar presentation in Strejc [1981] and is given for the sake 
of completeness. 

Consider again a system with three inputs and three outputs. vVe start 
by defining a second order ARX model for output channel Y1 

Y1 (k) + a11 y1(k- 1) + a21 y1(k- 2) = 

b101U1(k) + bu1u1(k -1) + b121u1(k- 2) 

+b2o1 u2( k) + b211 u2(k -1) + bn1 u2(k- 2) 

+b3o1 u3( k) + b311u3(k -1) + b321U3(k- 2) 

+c101 Y2( k) + Cn1Y2(k- 1) + c121Y2(k- 2) 

+c2o1 Y3(k) + c211Y3(k- 1) + Cn1Y3(k- 2) (C.1) 
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for output channel y2 we also have a second order ARX model 

Y2(k) + Gt2Y2(k- 1) + a22Y2(k- 2) = 
b102 Ut(k) + bu2Ut(k -1) + b122 Ut(k- 2) + 

+b2o2 U2(k) + b212u2(k -1) + b222u2(k- 2) + 

+b3o2 U3(k) + ~12u3(k- 1) + ~22 U3(k- 2) + 

+ct~Y1 (k) + c112y1(k- 1) + c122y1(k- 2) + 

+c2~Y3(k) + c212 Y3(k- 1) + c222 Y3(k- 2)+ (C.2) 

and the same for output channel y3 

Y3(k) + Gt3 Y3(k- 1) + a23Y3(k- 2) = 
b103 Ut(k) + bu3Ut(k -1) + bt23Ut(k- 2) 

+b2o3 u2(k) + b213 u2(k- 1) + b223 u2(k- 2) 

+b3o3 u3(k) + b313 u3(k- 1) + b323U3(k- 2) 

+ctOJYt(k) + Cn3Yt(k- 1) + Ct23Yt(k- 2) 

+c20JY2(k) + c213Y2( k- 1) + c223Y2( k - 2) (C.3) 

Using the delay operator q-t, the above three equations may be written 
in matrix fraction description as follows: 
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Using the z-transform, this may be written as 

from which 

and 

[A0 z2 + A1 z + A2]Y(z) = [B0 z2 + B1z1 + B2]U(z) (C.7) 

We may now define state variables as follows: 

AoY(z)- B0V(z) 

A0 zY(z) + A1 Y(z)- B 0zV(z)- B1 U(z) 

(C.8) 

(C.9) 

where the state vectors Xi(z) each consist of a vector with as many 
elements as there are inputs. 

From the above two equations we may now write 

. 
zX1(z) - zA0Y(z)- zB0V(z) (C.lO) 

zX2(z) - A0 z2Y(z) + A1zY(z)- B0 z2V(z)- B 1zV(z) (C.ll) 

we also see that 

- zX1+A1Y(z)-BlU(z) 

zX2 + A2Y(z)- B2V(z) 

and from (C.8) we solve for Y(z) 

(C.12) 

(C.13) 

(C.l4) 

which we may substitute into the two state variable equations giving 
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or 

X2(z) - zX1 + AtA01X1(z) + A1A01 B0U(z)- B1U(z) (C.15) 

0 zX2 + A2A01X1(z) + A2A01 BoU(z)- B2U(z) (C.16) 

X2(z) - zXt+AtA01Xt(z)+AtA01B0U(z)-B1U(z) (C.17) 
0 - zX2 + A2A01X1(z) + A2A01 BoU(z)- B2U(z) (C.18) 

Taking the inverse z-transform and writing in matrix form, the state 
equation becomes 

[ x1(k + 1) ]- [ -A1A01 I l [ x1(k) l + [ B1- AtAo-1Bo l u(k) 
x2(k + 1) - -A2A01 0 x2(k) B2- A2Ao-1Bo 

(C.19) 

with output equation 

y(k)= [ .4Q1• 0 0 0] [ ::m l + [ AQ1B0 ] u(k) 

(C.20) 

The above formulation is of course only possible if the inverse of A0 

exists. In general however this formulation would be preferred over the one 
given in the previous chapter since one would expect no delays between 
the various outputs, and would want to be able to incorporate the no-delay 
terms Cto1 , c2o1 , • •• C(p- l)o1 in the model formulation. 
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Appendix D 

Linear Quadratic Optimal 
Servo-controller 

In some instances it is not possible to invert the system either to a forward 
or to a reversed inverse, due to the system exhibiting an unstable inverse 
in both cases. The only possible solution is then a synthesis of the model 
using a linear quadratic optimal servo-controller. In multivariable systems 
this is one of the only successful methods of obtaining the system inputs 
from the desired responses. This presentation is based on a similar LQ 
controller in Ogata [1987]. Certain deviations from Ogata's presentation 
have been made: firstly provision has been made for the direct transmission 
matrix, and secondly the application of the LQ controller in this specific 
manner, especially as regards the system delays, is considered novel. 

We shall henceforth in this section refer to the model of the dynamic 
system as the plant, which we assume to be described by 

x(k + 1) = «Px(k) + ru(k) 
y(k) = Cx(k) + Du(k) 

(D .1) 

(D.2) 

Note that we are dealing with a system with m inputs and m outputs, 
and all symbols therefore represent vectors or matrices. We add an inte­
grator to the plant, and also use full state feedback. 

The integrator model is given by the following two equivalent equations: 

v( k) = v( k - 1) + r( k) - y( k) (D.3) 

245 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.
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v(k+1) = v(k)+r(k+1)-y(k+1) (D.4) 

The control vector for the plant is given by: 

u(k) = Ktv(k)- K2x(k) (D.5) 

The purpose is to find the gain matrices K 1 and K 2 by minimizing a 
cost function or performance index which we shall denote by J . 

or 

From (D.4), we find by substituting (D.1) and (D.2): 

v(k + 1) - v(k) + r(k + 1)- C[«<»x(k) + ru(k)]- Du(k + 1) 

- -C«<»x(k) + v(k)- Cru(k)- Du(k + 1) + r(k + 1) 

(D.6) 

and from (D.5) 

u(k+1) - -K2x(k+1)+K1v(k+1) 
- -K2[«<»x(k) + ru(k)] + KI[-C«<»x(k) + v(k)- cru(k) 

-Du(k + 1) + r(k + 1)] 

[Im + K1D]u(k + 1) - [-K2«<»- K 1C«<»]x(k) + [-K2r- K1Cr]u(k) 
+K1v(k) + K1r(k + 1) (D.7) 

from (D.5) we get 

K 1v(k) = u(k) + K 2x(k) 

Substitute (D.8) into (D.7) 

u(k + 1) - [Im + K1DJ-1[K2- K2«l»- K1 C«<»]x(k) 

+ [Im + KIDt1[Im- K2r- K1Cr]u(k) 

(D.8) 

+ [Im + K1Dt1K1r(k + 1) (D.9) 

where lm is a unit matrix of dimension m. We may now define a new 
state vector 

247 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Digitised by the Library Services, University of Pretoria, 2015.

[ x(k) l 
u(k) 

Using the following three definitions: 

L (Im + K1Dt1(K2- K2~- KtC~) 

M (Im + KtDt1(Im- K2r- K1Cr) 

N (Im + K1Dt1K1 
(D.lO) 

we define a new state equation describing the complete closed loop sys­
tem from (D.l) and (D.9) 

(D.ll) 

and output equation 

· [ x( k) l [ y( k) ] = [ C D ] u( k) (D.12) 

Assume a constant step input vector r(k) = r . Then (D.ll) becomes 

[ :i: ! g l = [ i ~ l [ :m l + [ ~ r l (D.l3) 

From (D.3) follows v(k) = v(k- 1) + r(k)- y(k). 
Now as k -? oo, v( oo) ~ 0, it follows that r( oo) -> r constant. 

v( oo) = v( oo) + r - y( oo) ==? y( oo) -? r 

We therefore get no steady state error. Equation (D.13) subsequently 
becomes 
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[ :~: ~ l = [ i ~ l [ :~: ~ l + [ ~ r l (D .l4) 

Define error vectors as 

Xe(k) = x(k)- x(oo) 
ue(k) = u(k)- u(oo) 

Subtracting (D.l4) from (D.13) gives 

which we modify to read 

(D.15) 

(D.l6) 

(D.l7) 

[ Xe(k+l) l = [ «P r l [xe(k) l + [ 0 ]w(k) (D.lS) 
Ue(k + 1) 0 0 Ue(k) 1m 

where 

If we define 

~ ( k) = [ Xe ( k) ] 
ue(k) 
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and 

Then we may write a new state equation 

~(k + 1) = ~~(k) + fw(k) 

with control vector from (D.19) given by 

w(k) = -K~(k) 

(D.23) 

(D.24) 

(D.25) 

We now want to determine the optimal state feedback gain of our new 
system 

~(k + 1) ~~(k) + fw(k) 

- [~- f:KJ~(k) (D.26) 

with control vector 

w(k) = -K~(k) (D.27) 

The state feedback gain matrix is given by K 
We therefore wish to minimize the performance index 

(D.28) 

by the proper choice of K . By substituting (D.27) into (D.28) we get 

J ~ I)~T(k)Q~(k) + ~T(k)KTRK~(k)] 
2 k=O 

~ f=[~T(k) (Q + I(TRK)~(k)J 
2 k=O 

(D.29) 

Following the Lyapunov approach, we set 
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Lyapunov's second method says that for a stable[~- fK] matrix there 
exists a positive definite matrix P which satisfies equation (D.30). Using 
(D.26), (D.30) may be rewritten as follows: 

~(k + 1) = [~- f:K]~(k) 

Using (ABf = BT AT, 

~T(k + 1) = ~T(k)[~- fKjT 

Now (D.30) becomes 

or 

Comparing both sides of (D.31 ), which must hold true for all ~( k ), we 
require that 

Q + KTRK = -( ~- f:KlP( ~- fK) + p (D.32) 

This may also be written as 

Q + ~Tp~- p +KT (R+ rTPf)K- (KTt:t!+~K) = Q 

A 13 6 iJ 
(D.33) 
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Defining A, B, 6, b as indicated above, the left hand side of the above 
equation must be minimized with respect to K. Equation (D.33) may be 
written as 

A + I(T BK - (KT 6 + DK) = Q (D.34) 

which may also be written as 

(D.35) 

Since the braced terms are always non-negative, the minimum occurs 
when they are zero, or 

or 

K: = iJ-16 

Substituting (D.36) into (D.34) gives 

A+ (iJ-16f iJ(iJ-16)- (iJ-16f 6- b(iJ-16) = g_ 
A+ (iJ-16f6- (iJ-16f6- b(iJ-16) = Q 

(D.36) 

===> A- biJ-16 = Q (D.37) 

Back substituting the definitions of A, iJ, 6, b, (D.36) becomes 

(D.38) 

and (D.37) becomes 

(D.39) 

The above equation is known as the discrete matrix Ricatti equation. 
Solution of the Ricatti equation gives P, which may be used in (D.38) to 
obtain the optimal state feedback gain matrix K . 

However from equation (D.21) we see that ~is singular, and the above 
form of the Ricatti equation cannot be solved directly. \Ve therefore require 
a different formulation for the Ricatti equation. 
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For ci» singular, we proceed as follows: Define P as 

(D.40) 

Note that P 21 = Pf2. Now 

(D.41) 

and from (D.21) and (D.22) we have 

(D.42) 

(D.43) 

Second Term 

The second term of the Ricatti equation (D.39) becomes 

(D.44) 

Fourth Term 

The fourth term of equation (D.39) becomes 
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= [ ~; ~ l [ ~j-1 P12] [ 0 l ( R + ( o Im ] [ Pj-1 P12] [ 0 l ) -1 * 
12 P22 1m P 12 P22 1m 

Defining ~ as 

~ = P12(R + P22)-1P[2 

the fourth term of (D.39) simplifies to 

Ricatti Equation 

(D.45) 

(D.46) 

(D.47) 

Having found alternative expressions for the four terms of equation (D.39), 
we may substitude these expressions- (D.41), (D.44), (D.40), (D.47), into 
the Ricatti equation (D.39) 

Comparing matrix elements gives the following three equations: 
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Defining 

Q + q,Tpn «P- Pn - q,T,q, - 0 

q,Tpnr- Pn- q,r,r - o 
rrPnr- P22- rr,r o 

P - Pn-, 

Pn- P12(R + P22)-1P[2, 

the above three equations become 

(D.48) 

(D.49) 

(D.50) 

(D.51) 

Substituting these matrix elements into the definition of P from (D.48), 
gives 

or 

Q + q,Tpq, - q,Tpr(R + rTPrtlrTpq, = p 

which is the final Ricatti equation to solve for P . 

Optimal Gain Matrices K 1 and K 2 

(D.52) 

Having obtained the optimal state feedback gain matrix K through solution 
of the Ricatti equation from (D.38), we can use K to determine K 1 and K 2 

as follows: 
Recall the following definitions from (D.lO) 

L (Im + K1Dt1(K2- K 2«P- KtC«P) 

M - (Im + KtDt 1(Im - K2r- KtCr) 
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Substituting the above two equations into the optimal state feedback 
gain matrix (D.23) 

we may write 

[ (K2~- K2 + K1C~) (K2r + K1Cr- Im)] 

[ K 2 K 1 ) [ ~ C-~In Jr l + [ 0 -Im ) 

( Note that Im is a unit matrix of dimension m, which is the number of 
inputs or outputs, whereas In is a unit matrix of dimension n, which is the 
number of states. ) 

or 

Steps in Applying the Optimal Servo-system 

Having derived the necessary equations for the optimal servo-controller, we 
shall briefly describe how it is put to use in obtaining the system inputs 
from the desired system responses. 

• Step 1: Solve for P from the Ricatti equation (D.52) for the plant 
only 
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• Step 2: Calculate the elements P 11 , P 12 , P 22, from (D.49) through 
(D.51) 

• Step 3: Set up matrix P as in (D.40) 

• Step 4: Set up matrices~ and f as in (D.21) and (D.22) 

• Step 5: Determine the optimal state feedback gain matrix K for the 
system ~(k + 1) = ~~(k) + fw(k) ; w(k) = -K~(k) from(D.38) 

• Step 6: Calculate K 1 and K 2 from K as in (D.53) 

• Step 7: Calculate the system inputs u( k) by simulation of the system 
(D.ll) using r(k) as input 
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Appendix E 

Test rig photographs 
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Figure E.l: High speed spring loading simulator global view (Case study · 
No.1) 
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Figure E.2: Detail view on high speed spring loading simulator (Case study 
No.1) 
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Figure E.3: Three actuator vehicle suspension rig (Case study No.2) 

Figure E.4: Detail view on crossmember (Case study No.2) 
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Figure E.5: Four actuator passenger vehicle rig (Case study No.3) 

Figure E.6: Side view on passenger vehicle rig (Case study No.3) 
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Figure E.7: Pick-up truck chassis rig- front view (Case study No.4) 
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Figure E.8: View from right rear side on chassis rig (Case study No.4) 
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Figure E.9: Global view on chassis rig (Case study No.4) 

Figure E.lO: Detail view on torsion bar and chassis beam strain gauges 
(Case study No.4) 
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