
Tuning Optimization Algorithms under

Multiple Objective Function Evaluation

Budgets

Antoine Dymond

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Tuning Optimization Algorithms under Multiple
Objective Function Evaluation Budgets

by

Antoine Dymond

A thesis submitted in partial fulfillment

of the requirements for the degree

PhD of Mechanical Engineering

in the

Department of Mechanical and Aeronautical Engineering

Faculty of Engineering, the Built Environment and Information Technology

University of Pretoria

South Africa

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Abstract

The performance of optimization algorithms is sensitive to both the optimization problem’s

numerical characteristics and the termination criteria of the algorithm. Given these consider-

ations two tuning algorithms named tMOPSO and MOTA are proposed to assist optimization

practitioners to find algorithm settings which are approximate for the problem at hand. For

a specified problem tMOPSO aims to determine multiple groups of control parameter values,

each of which results in optimal performance at a different objective function evaluation bud-

get. To achieve this, the control parameter tuning problem is formulated as a multi-objective

optimization problem. Furthermore, tMOPSO uses a noise-handling strategy and control pa-

rameter value assessment procedure, which are specialized for tuning stochastic optimization

algorithms. The principles upon which tMOPSO were designed are expanded into the context

of many objective optimization, to create the MOTA tuning algorithm. MOTA tunes an opti-

mization algorithm to multiple problems over a range of objective function evaluation budgets.

To optimize the resulting many objective tuning problem, MOTA makes use of bi-objective

decomposition. The last section of work entails an application of the tMOPSO and MOTA

algorithms to benchmark optimization algorithms according to their tunability. Benchmarking

via tunability is shown to be an effective approach for comparing optimization algorithms, where

the various control parameter choices available to an optimization practitioner are included into

the benchmarking process.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

When I began my masters, I was adamant that I was not going to do a PhD. However as

my masters progressed, questions arose beyond the scope of that masters. Questions, which I

could not leave alone. So I enrolled for my PhD, and began to investigate the intricacies of

engineering optimization which had so extensively captured my imagination. I would like to

acknowledge the following individuals, who assisted me along my journey to this PhD:

My Supervisors P. Stephan Heyns and Schalk Kok

My Friends In particular Wha Suck Lee, who deserves special recognition for the many hours

of encouragement he bestowed upon me during the course of my PhD studies

My Parents Ian and Elise Dymond for their love and support, not only during my PhD studies

but throughout my entire life.

Formal acknowledgements are as follows; The South African center for high performance

computing (CHPC) and the high performance computing centre (HPCC) of the Department

of Electrical, Electronic and Computer Engineering (EECE) at the University of Pretoria are

acknowledged for the computing resources they made available for this research. The financial

assistance of the National Research Foundation (NRF) of South Africa towards this research is

hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author

and are not necessarily to be attributed to the NRF.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Publications

Conference publications:

• Dymond, A.S.D., Engelbrecht, A.P., and Heyns, P.S. (2011). The sensitivity of single

objective optimization algorithm control parameter values under different computational

constraints. In IEEE Congress on Evolutionary Computation (CEC), pages 1412–1419.

IEEE.

• Dymond, A.S.D., Kok., S., and Heyns, P.S. (2013). The sensitivity of multi-objective

optimization algorithm performance to objective function evaluation budgets. In IEEE

Congress on Evolutionary Computation (CEC), pages 1868–1875. IEEE.

Journal publication:

• Dymond, A.S.D., Engelbrecht, A.P., Kok., S., and Heyns, P.S. (2014). Tuning optimiza-

tion algorithms under multiple objective function evaluation budgets. IEEE Transactions

on Evolutionary Computation, Accepted for publication on 11 April 2014.

Submissions in progress:

• Chapter 3 from this thesis has been submitted to the MIT Press Journal on Evolutionary

Computation under the title ‘Many Objective Tuning using Bi-objective Decomposition’,

and is under review.

• Chapter 4 from this thesis has been submitted to the MIT Press Journal on Evolutionary

Computation under the title ‘Benchmarking Optimization Algorithms According to Their

Tunability’, and is under review.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CONTENTS

1 Introduction 6

2 Tuning Optimization Algorithms under Multiple Objective Function Evalu-

ation Budgets 8

2.1 Related Work . 9

2.2 Proposed Tuning Algorithm . 12

2.2.1 Handling the Noise Resulting from Tuning Stochastic Algorithms 14

2.2.2 Specialization for Tuning Stochastic Algorithms under Multiple Objective

Function Evaluation Budgets . 17

2.2.3 Performing Resampling Interruption Checks and Pareto-optimal Front

Approximation Updates . 19

2.2.4 Tuning Optimization Algorithm . 20

2.3 Numerical Setup . 23

2.3.1 Application Layers . 24

2.3.2 Algorithms Tuned . 25

2.3.3 Tuning Algorithms Compared . 26

2.4 Numerical Results . 31

2.4.1 Comparison of Tuning Algorithms Focused on Multiple OFE Budgets . . 31

2.4.2 Comparison with Tuning Algorithms Focused on a Single OFE Budget . 35

2.4.3 Scrutinization of the Tuning Results . 41

3 Many Objective Tuning using Bi-objective Decomposition 46

3.1 Related Work . 47

3.2 MOTA Algorithm . 48

3.2.1 Tuning Problem Formulation . 48

3.2.2 Specialization for Algorithms whose Utility Indicator Values need to be

Numerically Approximated using Sample Runs 49

3.2.3 Bi-objective Decomposition . 50

3.2.4 Handling the Noise Resulting from Tuning a Stochastic Algorithm 52

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.2.5 Algorithm Overview . 53

3.3 Numerical Setup . 56

3.3.1 Tuning Problems Used . 57

3.3.2 Algorithms Tuned . 58

3.3.3 Tuning Algorithms Compared . 60

3.4 Numerical Results . 62

3.4.1 Selecting the CPVs for the Compared Tuning Algorithms 62

3.4.2 Specialist Tuning Results . 64

3.4.3 Generalist Tuning Results . 73

4 Benchmarking Optimization Algorithms According to Their Tunability 81

4.1 Preliminaries . 82

4.1.1 Definitions . 82

4.1.2 Benchmarking in the Context of the No Free Lunch Theorems 83

4.2 Related Work . 84

4.3 Benchmarking via Tunability . 85

4.4 Case Studies . 86

4.4.1 Comparing an Optimization Algorithm against Itself 87

4.4.2 Benchmarking over a Group of Problems 89

4.4.3 The Equivalence of Algorithms at Very Low OFE Budgets 95

4.4.4 Comparing of Optimization Algorithms Developed for Different OFE Bud-

get Ranges . 97

4.5 Discussion . 102

5 Conclusion 104

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF SYMBOLS

α confidence level for pre-emptively terminating resampling

β OFE budget

β+ assessment run OFE budget

βδ MOTA OFE budget perturbation factor

βmax maximum OFE budget to tune under

∆ns pre-emptively terminating resampling increments

ε solution error in terms of difference of objective function values

ε̂ normalized ε

γ number of objective function calls made by the algorithm being tuned

λ target OFE budget overshoot factor

µf parent selection fraction

ω inertia factor

σr ratio of maximum step size to the search initialization bounds

τ Hypervolume of a bi-objective preference articulation in the normalized objective

space

B OFE budgets to tune under

bL decision variable lower bounds

bU decision variable upper bounds

cβ tMOPSO OFE perturbation factor

cg global acceleration constant

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

cp personal acceleration constant

CPV control parameter value

Cr crossover probability

EGO efficient global optimization algorithm

F multi-objective function

F scaling factor

FBM flexible budget method

Fn multi-objective Nadir point

Fu multi-objective Ideal point

g inequality constraints vector

h equality constraints vector

I/F-race iterated Friedman race algorithm

If I/F-race sample size at which Friedman tests begin

Ii I/F-race number of new CPV tuples assessed at each iteration

Ir I/F-race search bound reduction ratio

IL lower initialization bound

IU upper initialization bound

MOTA many objective tuning algorithm

ms FBM mutation strength

N population or swarm size

nf number of objectives

ng number of inequality constraints

nh number of equality constraints

NO number of points used to fit EGO’s first model

ns number of resampling runs

nu number of utility indicators to tune under multiple OFE budgets

nx number of decision variables

OFE objective function evaluation

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REVAC relevance estimation and value calibration algorithm

Ri REVAC initial number of CPV tuples

Rp REVAC parent fraction

SPO sequential parameter optimization algorithm

Sk SPO number of data points used to fit the Kriging model

Sn SPO number of new CPV tuples assessed at each iteration

So SPO optimal computing budget allocation

tMOPSO tuning multiple objective particle optimization algorithm

u multi-objective utility metric

x decision variable vector

xc candidate decision variable vector

y CPV tuple

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1

INTRODUCTION

Numerical optimization forms a pivotal part of many design processes. The optimization process

can be broadly broken up into the three parts of modeling, searching for the optimum of the

generated model, and validation. Searching for the optimum of the generated model, or solving

the optimization problem, is the aspect of numerical optimization which is the focus of this

thesis.

To solve an optimization problem, a practitioner often applies an optimization algorithm

to search for the optimal design(s) or decision vector(s). Numerous factors need to be con-

sidered when selecting an optimization algorithm and that algorithm’s control parameter val-

ues (CPVs). These factors include the characteristics of the objective function of the opti-

mization problem (Wolpert and Macready, 1997), the constraints imposed, and the termination

criteria used (Dymond et al., 2011). The characteristics of the objective function, which re-

fer to properties such as dimensionality, degree of multi-modality, scaling, and noise presence,

need to be considered as search mechanisms which are useful for certain characteristics are

detrimental for others. Sensitivity to termination criteria, which typically is imposed in the

form of an objective function evaluation (OFE) budget, warrants consideration since depending

on the application, OFE budgets vary widely. Moreover, OFE budgets are influenced by the

computational cost of an OFE, and the computational resources available to the practitioner,

where computational resources consist of computing power multiplied by the computing time.

For success at solving an optimization problem, an optimization practitioner therefore needs

to select an optimization algorithm and CPVs which are well suited to the objective function,

constraints, and termination criteria of the problem at hand.

Selecting an appropriate optimization algorithm and CPVs is not a trivial task, however.

Optimization algorithms and their default CPVs are typically benchmarked on standardized

problems. These problems, although exhibiting challenging and varying numerical character-

istics, are not necessarily representative of the optimization problem a practitioner is engaged

with. If possible therefore, an optimization practitioner should rather aim to use an auto-

mated algorithm configuration (López-Ibáñez and Stützle, 2012) approach, as to determine

CPVs which work well on testing problems representative of the problem at hand. Specifically,

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

representative testing problems have similar numerical characteristics to the problem to be tack-

led (in terms of dimensionality, level of modality, etcetera), have similar constraints imposed,

and are numerically cheap. Central to automated algorithm configuration and other tools for

performing CPV studies, is the use of tuning algorithms. Motivated by the desire to aid opti-

mization practitioners in the task of selecting an optimization algorithm and CPVs which are

appropriate for the problem they are engaged with, two new tuning algorithms are proposed.

The outline of this thesis is as follows: Chapter 2 presents a new algorithm (tMOPSO)

for tuning the control parameter values of stochastic optimization algorithms under a range

of OFE budget constraints. Specifically, for a given problem, tMOPSO aims to determine

multiple groups of control parameter values, each of which results in optimal performance at a

different OFE budget. To achieve this, the control parameter tuning problem is formulated as

a multi-objective optimization problem. Additionally, tMOPSO uses a noise-handling strategy

and control parameter value assessment procedure, which are specialized for tuning stochastic

optimization algorithms.

In Chapter 3, another new tuning algorithm named MOTA is proposed. MOTA tunes an

optimization algorithm to multiple performance measures over a range of OFE budgets. The

tuning formulation used by MOTA consists of a decision vector comprised of CPVs together

with an auxiliary decision variable which controls the OFE budget used to assess those CPVs.

These decision variables are optimized for multiple objectives, consisting of one objective for

each performance measure used, together with a speed objective. To optimize the resulting

many objective tuning problem, MOTA makes use of bi-objective decomposition.

In Chapter 4, an investigation is conducted into benchmarking optimization algorithms ac-

cording to their tunability. Benchmarking is complicated by many factors such as the sensitivity

of optimization search processes to the objective function, constraint function, and termination

criteria used for the problem being tackled. Additionally, the effects of an optimization algo-

rithm’s CPVs must be considered, as to discern if the performance measured is an artifact of the

CPVs chosen, or actually representative of the optimization algorithm itself. Given these con-

siderations, an investigation is conducted into benchmarking optimization algorithms according

to their tunability to differing problem characteristics and termination criteria.

Chapter 5 then concludes this thesis, with chapter specific- and general conclusions, together

with recommendations for future work.

7

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2

TUNING OPTIMIZATION ALGORITHMS

UNDER MULTIPLE OBJECTIVE

FUNCTION EVALUATION BUDGETS

Optimization practitioners often refer to parameter tuning studies when selecting an algorithm’s

CPVs. These studies are usually restricted to a single OFE budget constraint. This is problem-

atic since the performance of optimization algorithms is dependent not only on the problem’s

fitness landscape (Wolpert and Macready, 1997; Malan and Engelbrecht, 2009), but also on the

OFE budget available to explore that landscape. The sensitivity of control parameter tuning to

the OFE budget under which the algorithm is tuned has been directly investigated in Dymond

et al. (2011). For the sensitivity investigation in Dymond et al. (2011) multiple single-objective

tuning problems were solved, each of which tuned selected optimization algorithms under a

different OFE budget. The solutions from these tuning problems showed that different CPV

tuples were found to be optimal depending on the OFE budget under which the algorithm was

tuned. Additionally, evidence was given that the greater the difference between the OFE budget

under which the algorithm was tuned and the OFE budget used to assess that algorithm’s per-

formance, the poorer the relative performance. The sensitivity investigation of Dymond et al.

(2011) does not prove that all single OFE budget CPV tuning is sensitive to the OFE budget

under which an algorithm is tuned. The sensitivity investigation does, however, indicate that

algorithms do exist for which control parameter tuning should be conducted under multiple

OFE budget constraints.

Tuning an optimization algorithm under multiple OFE budget constraints could be achieved

by setting up multiple tuning problems, each focused on a different OFE budget, as done in

Dymond et al. (2011). However, solving multiple tuning problems is computationally wasteful as

no information sharing occurs between these problems. More specifically, utilizing information

from solutions to tuning problems that are focused on an OFE budget close to the budget under

which an algorithm is being tuned should enhance tuning efficiency. This information is not

8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

utilized if multiple independent tuning problems are used to tune an optimization algorithm

under multiple OFE budgets.

In order to efficiently tune optimization algorithms under multiple OFE budgets, a new

tuning algorithm named tMOPSO is proposed. tMOPSO directly incorporates sensitivity to

OFE budgets into the tuning process through the use of multi-objective optimization. The first

objective of the tuning formulation is to minimize the solution error obtained by the algorithm

being tuned, or the cost function value if the problem optimum is unknown. The second

objective of the tuning formulation is to minimize the number of OFEs required to determine

that solution error. Furthermore, when tuning a stochastic algorithm, multiple sample runs are

required to determine which CPV tuple results in best mean solution error, given a specified

confidence level. For each of these sample runs, the solution error is calculated by running the

algorithm being tuned, from initialization to the OFE budget at which the solution error is to

be determined. As such, the solution error calculation actually provides information on solution

errors obtained for a range of OFE budgets. tMOPSO exploits this information in conjunction

with a noise-handling strategy which uses Mann-Whitney U tests, in order to efficiently tune

stochastic algorithms to multiple OFE budgets.

This chapter’s outline is as follows: related work is discussed in Section 2.1, after which

the proposed tuning algorithm is described in Section 2.2. Then the numerical setup used to

gauge the effectiveness of tMOPSO is given in Section 2.3, followed by the numerical results in

Section 2.4.

2.1 Related Work

Control parameter tuning entails finding which algorithm’s CPVs are optimal according to a

specified utility metric (Smit and Eiben, 2010b). The chosen utility metric measures a specified

aspect of the performance of the algorithm being tuned. To help distinguish between the differ-

ent parts of the control parameter tuning process, a three-layered hierarchy can be used (Smit

and Eiben, 2009), where:

• the application layer refers to the problem instance(s) used in CPV tuple utility calcula-

tion,

• the algorithm layer refers to the optimization algorithm being tuned, and

• the design layer refers to the tuning algorithm used.

Using this terminology the tuning process can be described as follows: the design layer optimizes

the algorithm layer to the application layer according to the specified utility measure. As such,

the CPVs produced by the tuning process depend on these three layers as well as the utility

metric used.

An extension of control parameter tuning is automated algorithm configuration (López-

Ibáñez and Stützle, 2012). Automated algorithm configuration aims to improve an algorithm’s

performance on an unseen problem, by tuning that algorithm to a set of training problems

believed to be representative of, or similar to, the unseen problem. The definition of a tuning

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

problem in automated algorithm configuration community is stricter than that of Smit and

Eiben (2010b). In particular, evaluation on unseen problems is included into the definition as

to guard against over tuning or over fitting. The definition used in this thesis is that of Smit

and Eiben (2010b), since it allows for tuning to describe a tool used in automated algorithm

configuration process and as a tool for performing CPV studies on well understood testing

problems.

A sometimes mistakenly assumed alternative to control parameter tuning is to make use

of adaptive optimization algorithms (Eiben et al., 1999). Adaptive algorithms adjust their

CPVs through the course of an optimization run as to tune themselves to the problem being

optimized. Superficially, such algorithms eliminate the need for control parameter tuning, since

CPVs are tuned online typically by using feedback from the optimization process itself. However

in reality, the practitioner’s task simply changes from selecting approximate CPVs to selecting

appropriate parameter control strategies for the problem at hand (Pedersen and Chipperfield,

2008). Moreover, since parameter control strategies can be expressed parametrically, the task of

selecting appropriate control strategies can be expressed as a control parameter tuning problem

itself.

One of the first examples of control parameter tuning in evolutionary computation was using

a genetic algorithm to improve another genetic algorithm’s performance on five testing prob-

lems (Grefenstette, 1986). Since then, many other control parameter tuning algorithms have

been proposed (Birattari et al., 2002; den Besten, 2004; Bartz-Beielstein et al., 2005; Nannen

and Eiben, 2007; Hutter et al., 2009a,b; Wagner and Wessing, 2012; Smit et al., 2010), and nu-

merous other tuning studies have been performed (Bartz-Beielstein et al., 2004; Smit and Eiben,

2010a; López-Ibáñez and Stützle, 2011; Yuan et al., 2011). The M-FETA algorithm (Smit et al.,

2010), just like the proposed tMOPSO, is a multi-objective tuning algorithm. tMOPSO and

M-FETA differ however, since M-FETA tunes an optimization algorithm to multiple problems

each at a specified OFE budget, whereas tMOPSO tunes an algorithm to a single problem under

multiple OFE budgets. Tuning to find anytime (Radulescu et al., 2013) CPVs which perform

well on average over a range of OFE budgets has also been done. The proposed tMOPSO does

not aim to find anytime CPV tuples but rather to find multiple CPV tuples each of which is

optimal for a different OFE budget.

Tuning is normally computationally expensive since each utility calculation requires per-

forming an optimization run of the algorithm being tuned using the CPV tuple being assessed.

Even for cases where the application layer consists of computationally cheap problem instances

a high computational cost can result, since typically each utility evaluation entails the optimiza-

tion algorithm being tuned, calling the objective function(s) in the application layer thousands

of times. Given the high computational cost of calculating the utility of CPV tuples, a strong

focus among tuning algorithms is efficiency. Examples are the Relevance Estimation and VAlue

Calibration (REVAC, Nannen and Eiben, 2007) and the Sequential Parameter Optimization

(SPO, Bartz-Beielstein et al., 2005) tuning algorithms, both of which use surrogate models of

the tuning problem’s fitness landscape to enhance convergence towards promising CPVs.

In the context of tuning stochastic optimization algorithms, the computational cost of tuning

can be further reduced through the use of an efficient noise-handling strategy. In the context

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

of tuning under a single OFE budget work has been done in the form of algorithms such as

SPO, M-FETA and F-race (Balaprakash et al., 2007). To emphasize the advantage of using

an efficient noise-handling strategy the mechanics of F-race are briefly discussed. F-race is an

iterative approach in which an initial group of candidates race against one another. During each

iteration, an additional sample run is generated for each candidate still in the race. After the

sample runs are generated, a Friedman statistical test (Conover, 1999) is applied to determine

which candidates should be eliminated from the race, given a specified confidence level. This

early elimination process by F-race saves considerable computational resources, compared with

first generating large samples for each candidate and then running statistical tests.

When tuning an optimization algorithm under multiple OFE budgets, tuning efficiency

can be further increased by using the history information from the CPV tuple assessment

optimization runs (Branke and Elomari, 2012). The Flexible Budget method (Branke and

Elomari, 2012) incorporates this history information by assessing a CPV tuple according to the

resulting OFEs made, versus solution accuracy achieved, curve. Assessing CPV tuples in this

manner boosts tuning efficiency since one run of the algorithm being tuned is used to gauge

performance at multiple OFE budgets. A limitation of the Flexible Budget method is that each

CPV tuple being assessed is run up to the maximum OFE budget to which the algorithm is

being tuned under, which is wasteful if the CPV tuple being assessed is effective at OFE budgets

lower than that maximum OFE budget. Multi-objective tuning can be used to overcome this

shortcoming.

Multi-objective tuning according to the conflicting criteria of speed versus accuracy (Dréo,

2008) was proposed in Dréo (2009). Dréo (2009) demonstrated the concept by setting up

tuning problems, whereby the algorithm being tuned would terminate if stagnation occurs

and no improvement was made over the last 100 OFEs. The mean runtime and the mean

accuracy achieved as a function of the CPV tuple chosen were then used as the tuning objectives,

which were optimized using the NSGA-II algorithm (Deb et al., 2002). The Dréo (2009) proof-

of-concept algorithm, although similar to, is not a multiple OFE budget tuning algorithm.

Specifically, the Dréo (2009) proof-of-concept algorithm can be used to tune an algorithm as to

determine CPV tuples each which results in optimal mean accuracy given an average OFE usage.

Given that termination due to a lack of improvement occurs at differing OFE usages, this mean

solution accuracy achieved cannot be compared to the mean solution accuracy achieved given

an OFE budget constraint. Dréo (2009) did however introduce the idea of tuning according to

speed versus accuracy, an idea which the tMOPSO algorithm uses to tune under multiple OFE

budgets.

The contribution of this chapter is to combine the aforementioned concepts in one algorithm.

tMOPSO uses multi-objective optimization as to directly incorporate sensitivity to OFE budgets

into the tuning problem formulation, by using the speed and accuracy objectives. However, un-

like Dréo (2009) no stagnation termination criterion is added to the CPV tuple assessment runs,

but rather an OFE budget which is controlled through a decision variable which is optimized

by tMOPSO. In addition, tMOPSO uses the history information from the utility calculations

to enhance tuning efficiency. These concepts are combined with a noise handling strategy, as to

further increase efficiency when tuning stochastic algorithms.

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Before tMOPSO is presented, the prerequisite multi-objective optimization concepts and

nomenclature are given. Solving a constrained multi-objective minimization problem (Engel-

brecht, 2007) entails determining the decision vectors x that minimize an objective function F,

subject to that problem’s inequality and equality constraints g and h respectively. Formally a

constrained multi-objective minimization problem is defined as:

minimize F(x) =


f1(x)

f2(x)

. . .

fnf (x)

 (2.1)

subject to gi(x) ≤ 0, i = 1, . . . , ng (2.2)

hj(x) = 0, j = 1, . . . , nh (2.3)

xk ∈ [bLk , b
U
k] k = 1, . . . , nx, (2.4)

where f1, f2, . . . , fnf are the conflicting sub-objectives, nx is the dimensionality of x, ng is the

number of inequality constraints, nh is the number of equality constraints and bL and bU define

the search bounds.

Multi-objective problems have multiple solutions, each of which is optimal for a different

trade-off among the conflicting sub-objectives. Multi-objective algorithms commonly use the

principle of Pareto dominance to identify these optimal solutions. According to Pareto domi-

nance, a decision vector x1 dominates another vector x2 (x1 ≺ x2), when x1 is better or equal in

all objectives while being better in at least one objective. For minimization problems, x1 ≺ x2

when:

fk(x1) ≤ fk(x2),∀ k ∈ 1, 2, . . . , nf , (2.5)

and

∃k ∈ 1, 2, . . . , nf : fk(x1) < fk(x2). (2.6)

The set of all Pareto non-dominated decision vectors for a multi-objective optimization

problem is referred to as the Pareto-optimal set (PS), while the set of objective function values

corresponding to the PS is referred to as the Pareto-optimal front (PF). Since the PS often

consists of infinite points, multi-objective evolutionary algorithms typically aim to determine

a finite set of non-dominated decision vectors that accurately approximate the PF. Two spe-

cial points in the objective space which are commonly used by multi-objective optimization

algorithms, are the Ideal point Fu and the Nadir point Fn, where for minimization problems

F ui = min{Fi ∀F ∈ PF} and Fni = max{Fi ∀F ∈ PF}.

2.2 Proposed Tuning Algorithm

In this section the key concepts behind the proposed algorithm tMOPSO are first presented,

followed by a complete outline of the algorithm. The first concept presented entails incorporating

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CPV sensitivity to OFE budgets into a tuning problem formulation, through the use of a multi-

objective utility metric.

When tuning stochastic algorithms such as evolutionary or swarm intelligence optimization

algorithms, utility metrics based on mean performance values are typically used. Two examples

of commonly used single-objective utility metrics are:

1. the mean solution error or mean cost function value obtained after a fixed number of

OFEs, and

2. the mean number of OFEs required to solve a problem within a specified solution error

tolerance.

These single objective utility metrics require that either the desired solution tolerance or the

desired OFE budget be known before tuning is conducted. Depending on the choice of solution

tolerances or OFE budget, different CPVs are optimal for the tuning problem, as illustrated in

Figure 2.1(a).

To quantify a CPV tuple’s utility in a general sense without presupposing a solution tolerance

or OFE budget, a multi-objective utility metric (Dréo, 2008) is used. The first criterion is the

mean solution error obtained, or the mean cost function value if the optimum of the application

layer’s problem is unknown. The second criterion is the number of OFEs required to obtain that

solution error. This multi-objective utility metric u, as a function of the CPVs being assessed,

y, and the OFE budget used for that assessment, β, is:

u(y, β) =

[
ε̄(y, β)

β

]
, (2.7)

where ε̄(y, β) is the mean solution error obtained by the algorithm being tuned on the application

layer as a function of y and β. The PF of a multi-objective tuning problem formulated with u

as its utility metric contains multiple CPV tuples, each of which is optimal for different solution

tolerances or OFE budgets, as illustrated in Figure 2.1(b). As such, u successfully captures the

conflicting needs of the practitioner who wants both a quick and an accurate solution to the

optimization problem at hand.

Using the u utility metric, the multi-objective problem formulation used by tMOPSO for

tuning control parameter values under multiple OFE budget constraints is formally defined as:

Determine y and β as to:

minimize u(y, β)

subject to 0 < β ≤ βmax (2.8)

gi(y) ≤ 0, i = 1, . . . , ng,

where βmax denotes the largest OFE budget of interest, and gi represents each of the CPV

inequality constraints. Contrary to the constrained multi-objective definition presented earlier,

the multi-objective tuning problem formulation is not necessarily bound constrained for every

decision variable. This constraint relaxation is motivated by the fact that some CPV bounds are

difficult to determine before tuning. Consider, for example, specifying bounds for the population

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(a) The mean solution error obtained ε̄ versus the OFE
budget available β.

(b) The non-dominated CPVs found when using a
multi-objective utility metric.

Figure 2.1: Illustration of why single objective utility metrics require a priori knowledge regarding the OFE
budget or solution accuracy before tuning is applied, and how using a multi-objective utility metric
overcomes this limitation. The performances of four CPV tuples namely, ya, yb, yc and yd are
compared in this example. The Pareto-optimal front indicates that for low OFE budget applications
ya is a good choice, yb is effective for intermediate OFE budgets and yd is effective at high OFE
budgets. yc should not be used as the CPV tuple is dominated for all OFE budgets.

size parameter of an evolutionary algorithm. Although it is clear that this population size should

be a positive integer, it is less obvious what a sensible maximum size should be.

The proposed tuning formulation can be solved by any standard multi-objective optimiza-

tion algorithm, provided that the mean solution error obtained can be determined analytically.

However, this is normally not the case when tuning stochastic algorithms, as analytical expres-

sions for determining the solution error obtained as a function of the CPVs and OFE budget

are often unavailable. As such, using a sample of multiple independent runs as to approximate

the mean solution error is often the only viable choice. Approximating the mean solution error

in this manner is troublesome, however, as these approximations introduce noise into the fitness

landscape of the tuning problem.

2.2.1 Handling the Noise Resulting from Tuning Stochastic Algorithms

tMOPSO employs a noise-handling strategy tailored for tuning stochastic optimization algo-

rithms, for which the mean solution error objective needs to be approximated numerically. For

these cases, noise is induced on the first objective of u, which is to minimize the solution error

objective, while the second objective of u, which is to minimize the number of OFEs used,

remains noise free. Given that the first objective of u is solution error based, its distribution

has the following properties:

• The mean of the distribution decreases for Pareto-optimal decision vectors as the OFE

budget available increases.

• A probability density of zero for negative solution error values, since it is impossible to

get a solution error less than zero.

Based on these properties, it is reasonable to assume that for the majority of tuning applications,

the variance of the solution error obtained decreases for Pareto-optimal decision vectors as the

14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Solution Error

P
ro

ba
bi

li
ty

 D
en

si
ty

Medium OFE budget

High OFE budget

Low OFE budget

0

Figure 2.2: Illustration of the expected decrease in solution error mean and variance as the available OFE
budget increases, for CPVs close to the Pareto-optimal front.

OFE budget increases, as illustrated in Figure 2.2.

The noise characteristics of the tuning problem prevent the use of many already established

multi-objective optimization algorithms which are designed for noisy environments, as the sus-

pected noise characteristics violate the assumptions upon which these algorithms are based.

More specifically, many of these algorithms assume that noise variance and distribution are the

same throughout the objective space (Bui et al., 2009). Also, although there are established

multi-objective algorithms such as methods based on local models (Bui et al., 2009), which are

designed to handle varying noise distributions, it is not clear how these algorithms can be mod-

ified to incorporate the enhancements which are described in the next subsection. As such, it

was decided to rather use noise-handling techniques used by single objective tuning algorithms

and extend them into the context of the multi-objective tuning formulation proposed.

tMOPSO’s noise-handling strategy is based upon the resampling strategy (Beyer, 2000)

which is commonly used by single objective tuning algorithms. The resampling strategy entails

using a standard optimization algorithm, designed for static environments without noise, to

search a noise-reduced version of the original problem. The noise strength is reduced by evalu-

ating each decision vector ns times and returning its approximated mean function value. Since

the noise magnitude is reduced, the resampling strategy improves the performance of non-noisy

optimization algorithms on noisy optimization problems. However, since the strategy decreases

the noise strength by a factor of
√
ns (Bui et al., 2009), the strategy cannot completely elimi-

nate noise. Another significant disadvantage of the resampling strategy is that it is expensive,

with the cost of each decision vector evaluation multiplied by a factor of ns. Although little

can be done regarding the resampling strategy’s inability to completely eliminate noise, the

computational cost associated with the method can be decreased significantly.

A more efficient alternative to the standard resampling is to make use of a pre-emptively

terminating resampling strategy. Pre-emptively terminating resampling strategies work on the

basis that evaluating each decision vector ns times is often unnecessary. Statistical tests can be

used during the sample gathering process to determine the likelihood of the decision vector being

assessed, being an improvement on the decision vectors already assessed. If the decision vector

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

being assessed is unlikely to yield any improvement, the sample gathering process is interrupted

to save computational resources. Tuning algorithms which use single objective utility measures

often employ racing (Maron and Moore, 1997) or racing equivalent (Pedersen, 2010) methods

in order to achieve pre-emptively terminating resampling.

tMOPSO employs a pre-emptively terminating resampling strategy which uses the Mann-

Whitney U test (MWUT, Conover, 1999). Specifically, at user-specified sampling intervals

(∆ns), a MWUT is conducted to determine if the difference between the mean of the CPV tuple

currently being assessed and the mean values of the CPV tuples already assessed is statistically

significant. If the MWUT shows, with a confidence level of α, that the CPV tuple being assessed

is worse than the CPV tuples already assessed, then the sample gathering process is interrupted

to save computational resources. tMOPSO users can select different values for α and ∆ns ,

depending on how aggressively or conservatively resampling interruption should take place. A

high α reduces the risk of good CPV tuples being discarded, but also increases computational

resources spent on bad CPV tuples. By contrast, a low α increases the likelihood of good CPV

tuples being mistakenly discarded, but the computational resources saved through using a low

α allow more CPV tuples to be assessed.

Pre-emptively terminating resampling in the context of a general multi-objective noisy en-

vironment can be achieved by checking the decision vector being assessed against the decision

vectors in the current approximation of the PF. The sampling gathering process is interrupted if

there is a decision vector in the current PF approximation, which for all objective space dimen-

sions has a sample mean value which is better than that of the decision vector currently being

assessed, given a specified confidence level. Formally for minimization problems, the sample

gathering process is interrupted for a candidate decision vector xc, if there is a decision vector

in the current approximation of the PF xp, such that:

F̃ (xp)k ≤α F̃ (xc)k ∀k ∈ 1, 2, . . . , nf , (2.9)

where F̃ (x)k are the k’th components of the objective values from the sample of independent

runs of x. The ≤α operator indicates if the sample mean of F̃ (x1)k is less than the sample mean

F̃ (x2)k with a confidence level greater than or equal to α according to the selected statistical

test. In the context of the bi-objective function which tMOPSO optimizes, sample gathering

of a CPV tuple y1 assessed at OFE budget of β1 is interrupted when another CPV tuple y2,

assessed at an OFE budget of β2 exists in the current approximation of the PF such that:

β2 ≤ β1 (2.10)

and

ε̃(y2, β2) ≤α ε̃(y1, β1), (2.11)

where ε̃(y, β) denotes the sample of solution errors obtained during the independent runs of the

algorithm being tuned when using y CPVs with an OFE budget of β.

16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.2.2 Specialization for Tuning Stochastic Algorithms under Multiple Ob-

jective Function Evaluation Budgets

Approximating solution errors through numerical experimentation provides additional informa-

tion which can be exploited when tuning an algorithm for multiple OFE budgets. In order to

calculate the solution error obtained by a stochastic algorithm for an OFE budget of β, the

algorithm being tuned is run from zero to β OFEs using the specified CPVs and random state.

This method of calculation therefore also provides the solution errors obtained for OFE bud-

gets of less than β. For example, when calculating the utility metric u(y, β) for an evolutionary

optimization algorithm with a population of size N , the solution error calculation also provides

information on:

u(y, N)→ u(y, 2N)→ · · · → u(y, β −N). (2.12)

This information is used by tMOPSO to enhance tuning efficiency. Another appealing aspect

of using this additional information is that it accommodates the scenario when the algorithm

being tuned terminates due to a stopping criterion other than reaching the OFE budget. This

accommodation happens naturally, since the utility values for an OFE budget less than the

number of OFE at termination are available. Furthermore, the manner in which solution errors

are calculated can be exploited to provide solution errors for OFE budgets higher than β, at

a reduced cost, since the calculations need not start from zero OFEs again, but rather simply

continue from β OFEs.

Exploiting the additional information from the solution error calculations has a drawback in

terms of increasing the computational overhead. Increased overhead becomes detrimental when

tuning an optimization algorithm with low computational overhead to a cheap optimization

problem, in which case the majority of computational resources are spent on internal overhead

for the tuning algorithm, instead of assessing new CPV tuples. For such a scenario, the best

option would be to utilize only some of the information from the solution error calculation. The

converse is also true when tuning an algorithm with high computational overhead, in which

case all the information from the solution error calculation can be parsed without significantly

detracting resources from assessing new CPV tuples. Due to computational overhead consider-

ations, a control parameter B is introduced to specify on which OFE budgets tMOPSO should

focus on. The tMOPSO method therefore calculates the following CPV utility metrics when

assessing a CPV tuple:

u(y, bi) ∀ bi ∈ B : bi ≤ β′ (2.13)

where the upper OFE budget β′ is specified by the tMOPSO CPV assessment procedure. If B

is not set, all OFE budgets up to βmax are focused on and all the solution error information as

presented in (2.12) is used.

The tMOPSO CPV assessment procedure increases tuning efficiency by exploiting the ad-

ditional information from the solution error calculations, in conjunction with the pre-emptively

terminating resampling strategy described in (2.10)-(2.11). Given a set of candidate groups of

CPVs Y , the utility values from (2.13) are first roughly approximated for each y ∈ Y . This

rough approximation entails using the small initial sample size specified by ∆ns , and a target

17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

OFE budget of:

β′ = min(λ · β, βmax) (2.14)

where λ is the target OFE budget overshoot factor, which is a user-specified control parameter

value for tMOPSO. The value of λ only affects the initial value of β′ for each y, after which the

tMOPSO noise-handling strategy is used to adjust β′.

After the initial samples are generated, tMOPSO’s CPV assessment procedure then con-

ducts resampling interruption checks as to determine which of the u values from (2.13) should

be refined further. These interruption checks are conducted against the utility measure approx-

imations in the current PF approximation. If it is the first iteration of tMOPSO and no PF

approximation exists, then the interruption checks are conducted using the other utility value

approximations currently being refined. According to the results from resampling interruption

checks, β′ is reduced to match the largest OFE budget at which each CPV tuple y (y ∈ Y) may

be effective. Reducing β′ results in a large saving of computational resources, especially where

the CPVs being assessed are effective at OFE budgets far lower than the original β′ value. This

refinement of β′ is repeated multiple times according to the step increments specified by ∆ns .

After the sampling loop is completed, the utility values which reached the required resampling

sample size are used to update the PF approximation of the tuning problem at hand. The

tMOPSO CPV tuple assessment procedure is summarized in Figure 2.3.

In order to efficiently perform the resampling interruption checks and update PF approxi-

mations, tMOPSO exploits the bi-objective nature of the proposed utility metric as detailed in

the next subsection.

no

yes

ns reached?

β′ = min(λ · β, βmax)

reduce β′ until
u(y, β′) is unlikely
to be dominated

u(y, bi) ∀ bi ∈ B : bi ≤ β′

update Pareto-optimal

front approximation

y, β

generate samples for

Figure 2.3: Flow chart of tMOPSO’s CPV tuple assessment procedure.

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.2.3 Performing Resampling Interruption Checks and Pareto-optimal Front

Approximation Updates

Most multi-objective optimization algorithms maintain a set of relatively non-dominated deci-

sion vectors. This set is updated during the optimization process, and is often used to store the

approximation of the PF, as is the case with tMOPSO. The object responsible for updating and

storing the non-dominated decision vector set is traditionally referred to as the Pareto archive

or repository. Conventional archives update or maintain the non-dominated decision vector set

through the use of the linear list approach (Mostaghim and Teich, 2005), as follows: a candidate

decision vector xc is added to the archive when it is not dominated by any decision vector in

that archive. Additionally, if xc is added, then the decision vectors in the archive need to be

checked against xc, with all decision vectors dominated by xc being discarded. Formally,

add xc to A if @x ≺ xc ∀x ∈ A, (2.15)

discard from A all x where xc ≺ x, (2.16)

where A is the set of relatively non-dominated decision vectors stored by the archive.

For the linear list approach updating a set of relatively non-dominated decision vectors is of

computational complexity O(|A|) for each decision vector inspection, where |A| is the number of

decision vectors stored in A. The resulting computational overhead of the linear list approach is

too high for tMOPSO’s CPV tuple assessment procedure, and would greatly reduce the number

of OFE budgets which tMOPSO can tune under, i.e. |A|. To allow tMOPSO to focus on a large

number of OFE budgets, a fast-checking archive capable of determining dominance statuses and

dominance likelihood statuses faster than O(|A|) is required.

The fast-checking archive used by tMOPSO is based on the work in Berry and Vamplew

(2006). For bi-objective minimization problems, a candidate decision vector xc is non-dominated

by any decision vector in A, when it is not dominated by its neighboring decision vector xn.

Here xn is the decision vector in A with the smallest improvement relative to xc, according to

the minimize OFE budget objective. Formally, for bi-objective minimization problems,

xc ⊀ A if (xc ⊀ xn), (2.17)

where xn has the property

f2(xn) = max
{
f2(xc)− f2(x)∀x ∈ A

: f2(xc)− f2(x) ≤ 0
}
. (2.18)

The approach of Berry and Vamplew (2006) therefore results in a significant reduction in com-

putational requirements compared to the linear list approach, since the number of Pareto dom-

inance checks required is reduced from |A| to only one.

Resampling interruption checks can also be sped up using the bi-objective property described

in (2.17)-(2.18) due to the noise characteristics of tMOPSO’s utility measure. In particular,

since the second objective of the utility measure used is the OFE budget allocated, which

does not change during the resampling process, xn is known without having to wait for the

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

resampling process to complete. Which decision vector the candidate decision vector is going

to be compared with to determine its dominance status against the entire bi-objective front is

therefore known. As such, only one dominance likelihood check as described in (2.10)-(2.11)

needs to be performed. This is significant, as it reduces the computational overhead drastically

by decreasing the number of dominance likelihood checks from the size of the Pareto archive to

only one.

Another aspect of Pareto archives that is relevant when tuning optimization algorithms for

multiple OFE budgets is size limiting. Normally size limiting is required to keep the compu-

tational overhead of maintaining the archive down. The loss of some non-dominated vectors

is often considered insubstantial, provided that the retained decision vectors are adequately

spaced as to be able to represent the PF of the multi-objective problem being solved. Direct

size limiting is not applied to the tMOPSOs archive, since the CPV assessment procedure will

limit the archive to a size of B, or to the size of βmax if B is unspecified.

With all its core elements described, the complete tMOPSO algorithm is presented in the

next subsection.

2.2.4 Tuning Optimization Algorithm

The tuning multi-objective particle swarm optimization (tMOPSO) algorithm is a particle

swarm based algorithm (Engelbrecht, 2007). A number of multi-objective PSO variants have

been presented (Coello et al., 2004; Sierra and Coello, 2005; Engelbrecht, 2007), indicating that

PSO operations should be sufficient for purposes of tuning under multiple OFE budgets.

PSO algorithms explore the search space by utilizing a swarm of particles, where each parti-

cle’s search is influenced by both a local and a global guide. Each particle’s local guide is selected

according to information which that particle has personally experienced, while the global guide

is selected according to information that the particle’s neighborhood has experienced. Many

different neighborhood topologies exist, each resulting in a different information flow through

the swarm. tMOPSO is a global best PSO where each particle’s neighborhood spans the entire

swarm.

When applied to single objective optimization problems, global best PSO algorithms need

only store the personal best decision vectors that particles have explored and the global best

decision vector the swarm has explored. The personal and global best values are updated

after each search iteration according to the function values of the particle’s new position in

the search space. However, for multi-objective optimization where decision vectors can be

relatively non-dominated, the personal best experienced by each particle and the global best

experienced by the swarm cannot be fully captured without using Pareto non-dominated sets

or Pareto archives. tMOPSO therefore also stores each particle’s local approximation of the

PF, in addition to having a Pareto archive to store the swarm’s approximation of the PF. This

approach is tractable from a computational overhead perspective since tMOPSO is designed

for the presented bi-objective tuning formulation only, and can therefore use the fast-checking

bi-objective archive described in the previous subsection to efficiently capture each particle’s

approximation of the PF. In the event that the pre-emptively terminating resampling approach

interrupts the approximation of the utility values, the mean values from the interrupted samples

20

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

are used to update the local approximations of the PF.

In order to search for the solutions to the control parameter tuning problem formulation

presented in (2.8), tMOPSO uses a decision vector of the following form:

x =



lnβ

y1

y2

...

yny


, (2.19)

where y1, y2, . . . , yny denote the CPVs being tuned, and β is the OFE budget allocated to those

CPVs. The natural logarithm of β is used by tMOPSO in the decision variable definition,

as this transformation helps to improve the scaling of the search space. Scaling of the search

space is improved, as previous sensitivity studies such as Dymond et al. (2011) indicate that

the optimal CPVs as a function OFE budget often follow logarithmic trends.

tMOPSO begins its search by assigning to each of the swarm’s N particles a position that is

generated randomly inside the search initialization bounds. Formally, the j′th particle’s initial

position decision vector xj0, is generated as follows:

xj0 = IL + r() ◦ (IU − IL), (2.20)

where IL and IU are the lower and upper initialization bounds respectively, ◦ is the Hadamard

product operator, and r() is a function which returns a vector of dimension |IU | whose com-

ponents are each randomly generated between 0 and 1 using a uniform probability density

distribution. After initialization, each particle’s position for the i’th iteration is updated as:

xji = xji−1 + vji , (2.21)

where vji is the j’th particle’s velocity at iteration i, with each particle having a zero initial

velocity. No position or velocity limiting is applied to tMOPSO particles. Instead, when

the result from a particle’s position update is invalid, the particle’s velocity and position are

recalculated until a valid solution is found. This approach, although normally undesirable for

general constraint handling where constraint evaluations can be expensive, is acceptable here

since tuning constraints are normally computationally cheap.

Traditionally in single objective PSO, the j’th particle’s velocity is updated as:

vji+1 = ωvji + cp r() ◦
(
xjp − xji

)
+ cg r() ◦

(
xg − xji

)
, (2.22)

where ω is the inertia factor, cp and cg are the personal and global acceleration constants, xp

is the personal best decision vector and xg is the global best decision vector of the swarm.

However, in the context of tMOPSO where the swarm’s global best and every particle’s local

best are PF approximations, additional heuristics are required to determine which decision

vectors from these PF approximations to use in velocity updates.

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

p
ro

b
a
b

il
it

y
d

en
si

ty

lnβ

cβ lnβmax

xji,1 + ω vji,1

∫
= 96%

Figure 2.4: Probability density of the OFE budget value used to select the guiding decision vectors in tMOPSO’s
velocity update rule.

tMOPSO selects guiding vectors from the local and global PF approximations which perform

well at OFE budgets close to a particle’s expected future assessment OFE budget. The guide

selection OFE budget βg is calculated based on the particle’s current position xji,1 and velocity

vji,1 in the assessment OFE budget dimension as follows:

lnβg = xji,1 + ω vji,1 + cβ rg() lnβmax (2.23)

where cβ is the target OFE perturbation factor, βmax is the maximum OFE budget of interest

and the rg() function returns a random scalar generated using a Gaussian distribution with a

zero mean and a standard deviation of 0.25. cβ is a user-specified parameter which influences

tMOPSO’s behavior in terms of exploration versus exploitation. A near zero cβ would result

in guides being selected which are effective at the expected future assessment OFE budget of a

particle, and therefore favors exploitation. In contrast, a cβ close to one would result in guides

being selected randomly from the entire local or global approximation of the PF, and hence

favor exploration. Figure 2.4 shows the probability density function which is used to generate

βg.

Each particle’s velocity is updated as follows:

vji+1 = ωvji + cp r() ◦
(
xjp()− xji

)
+ cg r() ◦

(
xg()− xji

)
+ βc, (2.24)

where the xjp() and xg() functions each return a non-dominated decision vector from the local

and global approximations of the PF respectively, with each decision vector selected using its

own βg value. The βc component of the tMOPSO velocity update rule is a velocity correction

factor, which keeps the mean of the expected future OFE budget dimension value equal to

xji,β + ω · vji,β. As such βc is a zero vector of equal dimension to x, with the exception of the

first element of βc, which is:

−0.5(cp + cg)ω v
j
i,1. (2.25)

The swarm continues to explore the search space using the position and velocity update

rules, until the application layer evaluation budget γmax is exhausted. A termination criterion

22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

procedure tMOPSO
Generate particles initial positions . (2.20)
assess generated CPV tuples . Subsection 2.2.1
update local PF approximations
i← 1
while γ < γmax do . main loop

for j ∈ {1, 2, . . . , N} do
repeat

vji . compute velocity (2.24)

xji . update position (2.21)

until xji valid
end for
assess generated CPV tuples . Subsection 2.2.1
update local PF approximations
i← i+ 1

end while
end procedure

Figure 2.5: tMOPSO pseudocode

based on γ which is the number of application layer evaluations made by the algorithm being

tuned, is well suited for controlling the computational resources used during tuning where pre-

emptively terminating resampling occurs. The pseudo-code for tMOPSO is given in Figure 2.5.

2.3 Numerical Setup

Numerical experiments are conducted to gauge tMOPSO’s effectiveness at tuning optimization

algorithms under multiple OFE budgets. In particular, tMOPSO is compared against other

algorithms for tuning under multiple OFE budgets, as well as tuning algorithms focused on a

single OFE budget. Comparison against the single OFE budget tuning algorithms aims to help

determine if tMOPSO is a viable alternative for tuning under multiple OFE budgets, compared

to setting up and solving multiple tuning problems, each focused on a different single OFE

budget.

The comparison between tMOPSO and the single OFE budget tuning algorithms is con-

ducted by comparing the best minimum solution error found for an OFE budget of βmax. For

this comparison, the single OFE budget tuning algorithms are set up to find CPV tuples which

result in the lowest solution error for an OFE budget of βmax, while tMOPSO is configured to

determine CPV tuples for multiple OFE budgets all the way up to βmax. Even though tMOPSO

focuses on multiple OFE budgets instead of only one budget, tMOPSO may still be competitive

against the single OFE budget tuning algorithms. tMOPSO may be competitive since it has

information on CPVs which work well at lower OFE budgets, which is made accessible cheaply

via the additional history information from the numerical solution error calculations. As such,

tMOPSO may still be comparable to methods focused on a single OFE budget, even though

tMOPSO is tuning an optimization algorithm under multiple OFE budgets. If tMOPSO is

comparable to the single OFE budget tuning methods in this manner, then by extension using

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tMOPSO to tune under multiple OFE budgets should be a more efficient alternative then set-

ting up multiple independent tuning runs each focused on a single OFE budget. Furthermore,

tMOPSO would then be an example of using multiobjectivization to enhance performance on

a single objective problem (Handl et al., 2008).

The outline of this section follows: The optimization problems used in the application layers

are described first. Then the algorithms tuned under multiple OFE budgets are presented,

followed by the description of the tuning algorithms that tMOPSO will be compared to.

2.3.1 Application Layers

Selected optimization algorithms are tuned to problems from the CEC 2005 special session on

real-parameter optimization (Suganthan et al., 2005). The CEC problems are unconstrained,

real-valued, and static noise-free single-objective minimization problems, except for problems 4

and 17 which have noise added to their objective function values. To solve the single objective

CEC’05 problems, an optimization algorithm needs to determine the decision vector x which

minimizes a scalar objective function f(x), where x ∈ S ⊆ Rn, and n is the dimension of the

search space. The CEC’05 competition problems were chosen because they are commonly used

in the literature (Wang et al., 2011). Each of the 25 problems of the competition has a unique

shifted global optimum and is of a generalizable search space dimension.

Five problems were selected, as to create five tuning problems per algorithm tuned under

multiple OFE budgets. These problems, which were used in 30 dimensions, are:

• problem 3, a shifted and rotated high conditioned elliptic problem

• problem 5, Schwefel’s problem 2.6 with the global optimum on the bounds

• problem 6, a shifted Rosenbrock problem

• problem 8, a shifted and rotated Ackley problem with the global optimum on the bounds

• problem 10, a shifted and rotated Rastrigin problem.

It is expected that for each of these selected problems, the optimization algorithms being tuned

will require different CPVs in order to achieve good performance, since each problem has dif-

ferent fitness landscape characteristics. Another reason for the selection of these problems is

that they are computationally cheap relative to many of the other CEC’05 problems, allowing

for more extensive numerical experiments to be conducted. Noisy problems were not consid-

ered as the algorithms to be tuned to the CEC’05 problems are all configured for noise-free

optimization.

Selected optimization algorithms are tuned according to the normalized solution error value

from each of these CEC problems. The normalization of the solution error values, although not

required by tMOPSO or any other tuning algorithm which is going to be assessed, simplifies

the interpretation and presentation of the results obtained by the numerical experiments. The

normalized solution errors, ε̂, are calculated using a weight scalar, ŵ, as follows

ε̂ = ŵ · ε (2.26)

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The value of ŵ was numerically approximated so that a mean value of 1.0 is obtained for ε̂ when

selecting a decision vector randomly, with a uniform probability density, from inside the search

space of the problem being used in the application layer. The ŵ values used for CEC problems

3, 5, 6, 8 and 10 are 1.506× 10−10, 1.175× 10−5, 3.461× 10−12, 4.590× 10−2 and 4.907× 10−4

respectively.

Each of the single-objective algorithms tuned, are tuned to each one of the selected CEC’05

problems separately. Given that three algorithms are tuned, a total of 15 tuning problems are

used to compare the chosen tuning algorithms. For all of the tuning problems a βmax of 30 000

OFEs is used. Although this value of βmax is lower than the 300 000 specified in the CEC’05

competition, the chosen βmax is considered to be sufficient to determine CPV tuples effective

for both high and low solution accuracy requirements, since optimization algorithms are to be

tuned directly to each problem instance.

2.3.2 Algorithms Tuned

Well known population-based optimization algorithms are tuned to the selected CEC’05 problem

instances. These algorithms are a differential evolution (DE) algorithm, a particle swarm opti-

mization (PSO) algorithm and a covariance matrix adaption evolutionary strategy (CMA-ES;

Hansen and Ostermeier, 2001) optimization algorithm. A brief description of each algorithm,

together with information on which control parameters are tuned, follow.

DE

Differential evolution was developed to optimize non-differentiable, non-linear cost functions

which are multi-modal (Storn and Price, 1997; Das and Suganthan, 2010). The rand/1/bin (Storn

and Price, 1997) variation of DE, using the bound constraint handling mechanism proposed in

Zhang and Sanderson (2009), is tuned under multiple OFE budgets by altering:

• the population size N ,

• the scaling factor F , and

• the crossover probability parameter Cr.

Based on Wang et al. (2011), the initialization bounds of the DE tuning problems are

N ∈ [5, 200], F ∈ [0, 2] and Cr ∈ [0, 1], and the DE tuning problem’s constraints are:

5 ≤ N (2.27)

0 ≤ Cr ≤ 1 (2.28)

0 ≤ F. (2.29)

PSO

The single objective PSO variant tuned uses a global neighborhood typology, zero initial ve-

locities, a fixed inertia factor, and the bound constraint handling mechanism of Zhang and

Sanderson (2009). The four PSO control parameter values tuned are:

25

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• the swarm size N ,

• the personal best acceleration constant cp,

• the global best acceleration constant cg, and

• the inertia factor ω.

The initialization bounds of the PSO tuning problems were chosen as N ∈ [5, 200], ω ∈ [0, 1],

cp ∈ [0, 3], cg ∈ [0, 3] based upon the studies presented in Shi and Eberhart (1998); Clerc and

Kennedy (2002). The PSO tuning is constrained as follows:

5 ≤ N (2.30)

0 ≤ cp (2.31)

0 ≤ cg (2.32)

0 ≤ ω. (2.33)

Additional constraints such as ω ≤ 1 and cp+cg ≤ 4 (Clerc and Kennedy, 2002) are omitted,

since these common recommendations may be detrimental for low OFE budgets were swarm

explosion may be beneficial.

CMA-ES

The covariance matrix adaptation evolutionary strategy (Hansen and Ostermeier, 2001) was

developed to handle badly scaled quadratic problems and is invariant against linear transfor-

mations of the search space (Auger and Hansen, 2005). Version 0.9.56 of the Python imple-

mentation of CMA-ES written by the algorithm’s original author was tuned by adjusting the

following CPVs:

• the population size N ,

• the parent selection fraction µf , and

• the maximum step size as a ratio of the search initialization bound size σr.

The tuning initialization bounds are N ∈ [5, 200], µf ∈ [0.1, 0.9] and σr ∈ [0.1, 0.9]. N , µf

and σr are constrained to

5 ≤N (2.34)

1 ≤bN · µfc (2.35)

µf ≤1 (2.36)

0.01 ≤σr. (2.37)

2.3.3 Tuning Algorithms Compared

The multiple OFE budget algorithms compared are tMOPSO, two tMOPSO variants and the

Flexible Budget method (FBM;Branke and Elomari, 2012). The tMOPSO variants each of

which have core elements of tMOPSO removed, are:

26

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

• tMOPSO− which uses standard resampling instead of the MWUT-based resampling strat-

egy for handling noise,

• tMOPSO= which uses standard resampling for handling noise, and also does not use the

additional history information from the solution error calculations.

If the theoretical basis upon which tMOPSO is constructed is correct, tMOPSO= should be

outperformed by tMOPSO− which in turn should be outperformed by tMOPSO. The Dréo

(2009) proof-of-concept algorithm is not compared against the tMOPSO and FBM algorithms,

since it is not a multiple OFE budget tuning algorithm, as was discussed in the related work

section.

The single OFE budget tuning algorithms used in the numerical experiments are REVAC,

SPO, iterated F-race (I/F-race, López-Ibáñez et al., 2011) and a single objective variant of

tMOPSO, named tPSO. tPSO is a stripped down version of tMOPSO which has the OFE

target auxiliary variable removed, to reduce the algorithm to a single objective tuning method

focused on one OFE budget only.

A resampling size of 25 for approximating mean utility values is used by all the compared

tuning algorithms. Given that the tuning problems’ application layers are noise free, a size

of 25 should be sufficient to approximate the mean utility values within reasonable statistical

confidence levels.

Similarly to the algorithms they are tuning, the performance of the compared tuning algo-

rithms is suspected to be sensitive to both their control parameter values and their computa-

tional budget. To account for sensitivity to computational budgets, the tuning algorithms are

compared over a range of application layer evaluation (γ) budgets. The maximum comparison

gamma used is 15 × 107, which corresponds to performing 5 000 CPV tuple assessment runs

up to a βmax of 30 000. For the standard resampling methods, which generate 25 samples for

each CPV tuple evaluated, this gamma budget translates to assessing 200 CPV tuples at βmax.

To account for sensitivity to control parameters, parameter sweeps are conducted for each tun-

ing algorithm, before they are compared against each other. The pre-comparison parameter

sweeps aim to ensure that each tuning algorithm uses parameters which are well suited to the

DE tuning problems used in these experiments. Performance on the PSO and CMA-ES tuning

problem is not used in the parameter sweeps, to both save computational resources, and to see

if any of the algorithms suffer from over-tuning.

The procedure for selecting parameters for each of the compared tuning algorithms, entails

the use of a Friedman test. The candidates for the Friedman test are generated using parameter

sweeps, with each candidate being gauged according to five criteria. For the multiple OFE bud-

get tuning algorithms, the five criteria are the hypervolume (HV; Zitzler et al., 2003) achieved

on each of the DE tuning problems, for a γ budget of 6 × 107. Since the CEC function values

are normalized, the HV reference point used for all problems is [βmax, 1]. For the single OFE

budget tuning algorithms, the five criteria are the minimum solution error achieved for the DE

tuning problems, also for a γ budget of 6× 107. A resampling size of 10 is used to approximate

these performance measures, for each of the CPV tuples investigated. The CPV tuple with the

highest Friedman rank is then used by the respective tuning algorithm for the remainder of the

experiments.

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

After the individual parameter sweeps for each of the compared tuning algorithms are com-

pleted, those algorithms are applied to the DE, PSO and CMA-ES tuning problems using the

winning CPV tuples. Since these tuning algorithms are stochastic, samples of 20 independent

runs for each algorithm on each tuning problem are generated to compare performances. De-

scriptions of each of the tuning algorithms compared, and the parameters varied for the CPV

sweeps, follow in the remainder of this section.

tMOPSO and its variants

The CPV tuple candidates for the CPV sweeps for tMOPSO and its variants were chosen

according to selected PSO literature (Coello et al., 2004; Shi and Eberhart, 1998; Clerc and

Kennedy, 2002; Pedersen, 2010). The parameters varied are the inertia factor and the swarm

size, with the 110 combinations resulting from ω ∈ {0.0, 0.1, . . . 1.0} and N ∈ {5, 10, . . . 50}
being assessed for favorable performance on the DE tuning problems. The fixed CPVs for

tMOPSO and its variants include the OFE perturbation factor cβ = 0.1, a global acceleration

constant of cg = 2.0 and a personal or local acceleration constant value of cp = 2.0. tMOPSO

and tMOPSO− use a target OFE overshoot factor of λ = 2.0 for calculating the solution errors.

For handling noise, tMOPSO and tPSO use an interruption confidence of 90% and sample size

increments of ∆ns = {2, 3, 5, 15} for the MWUT-based strategy. As for tMOPSO’s control

parameter, B, which specifies the OFE budgets for which the single objective algorithm are

to be tuned under, 100 OFE budgets logarithmically spaced between 30 and 30 000 are used.

The implementations of tMOPSO and its variants, are available in version 0.10 of the optTune

Python package1.

FBM

The Flexible Budget method is a population based tuning algorithm, which uses the number

of OFEs made versus solution error curves to tune under multiple OFE budgets (Branke and

Elomari, 2012). Each of the N individuals has a CPV tuple as its decision vector, which is

randomly generated inside the initialization bounds using a uniform distribution at the start

of the tuning optimization. FBM’s individuals are ranked according to their OFEs used versus

solution error curves, where a curve is calculated by running the algorithm being tuned up

to βmax, using the corresponding individual’s CPV tuple. The ranking procedure begins by

assigning the highest rank to each individual with a curve which is optimal for any OFE budget

under consideration. Thereafter, the rank counter is increased and the unranked individuals

are compared in isolation. At the next ranking iteration, all unranked curves which are optimal

compared to the other unranked curves for an OFE budget, are assigned a rank equal to that of

the rank counter. This iterative process is repeated until all individuals are ranked. If individuals

are compared and they have the same rank, three options are available for tie-breaking, namely

the number of OFE budgets for which the curve was optimal for at their rank, the area under

the curve, and the area lost if the curve is removed. Based on Branke and Elomari (2012),

the implemented FBM uses area under the curve for tie-breaking. At each generation, size 2

1http://code.google.com/p/opt-tune-python-package/.

28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tournaments are conducted, one fold crossover and Gaussian mutation are used to generate

offspring. The N offspring then compete against their parents for survival, so that only N out

the 2N individuals survive. FBM uses standard resampling to handle noise.

For computational overhead considerations, FBM is modified to only focus on specified OFE

budgets, instead of all the OFE budgets up to βmax. These target OFE budgets are the same as

those specified in tMOPSO’s B control parameter. Additionally, in accordance with the tuning

problem formulation in (2.8), FBM is not bound constrained and is free to explore outside

the CPV initialization bounds. FBM uses the same constraint handling approach as tMOPSO

and its variants, whereby candidate CPV tuple generation repeats until all the constraints are

satisfied, after which the CPV tuple is assessed. Our implementation of FBM is available in

version 0.10 of the optTune Python package.

For FBM, different combinations of N and the control parameter ms are assessed in the CPV

sweep. ms controls the standard deviation of FBM’s Gaussian mutation, with the standard

deviation being equal to ms multiplied by the range of the initialization bounds, IU − IL. The

110 combinations resulting from N ∈ {5, 10, . . . , 50} and ms ∈ {0.0, 0.05, . . . , 0.5} are assessed

for good overall performance on the DE tuning problems.

REVAC

The relevance estimation and value calibration method is a single objective tuning algorithm

which uses Shannon entropy models to guide the tuning process (Nannen and Eiben, 2007).

At the start of the tuning optimization, Ri CPV tuples are generated randomly throughout

the search space. Thereafter, Rp CPV tuples are used to fit the Shannon entropy models as to

generate a new candidate CPV tuple. This fitting and CPV tuple generating process is repeated

until the computational budget is exhausted. REVAC uses standard resampling to handle noise.

The REVAC implementation from the algorithm’s original paper (Nannen and Eiben, 2007) is

used.

The 99 combinations of Ri ∈ {10, 20, . . . 100} and Rp ∈ {0.1Ri, 0.2Ri . . . , 1.0Ri} (minus the

combination where Rp is one) are assessed for the pre-comparison tuning. REVAC enforces

search bound constraints. As such, the population size of the algorithm being tuned is bound

between N ∈ [5, 400], with the following algorithm-specific tuning search bounds for DE, F ∈
[0, 2], Cr ∈ [0, 1], for PSO ω ∈ [0, 1], c1 ∈ [0, 4], c2 ∈ [0, 4] and for CMA-ES: µf ∈ [0.01, 1],

σr ∈ [0.01, 1]. REVAC also uses these bounds as the initialization bounds.

SPO

The sequential parameter optimization framework uses surrogate modeling to tune an opti-

mization algorithm (Bartz-Beielstein et al., 2005). Numerous surrogate modeling options and

initialization strategies are available. In these numerical experiments, SPO is set up to use Krig-

ing Gaussian models (Zhang et al., 2010) and Latin Hypercube sampling to generate the initial

candidate CPV tuples. After generating an initial group of CPV tuples, SPO splits computa-

tional resources between gathering additional sample points for CPV tuples already evaluated

and assessing new CPV tuples. Specifically, the optimal computing budget allocation (OCBA)

approach is used to decide which CPV tuples are promising and how many additional samples

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

should be generated for those promising candidates. A modified version of the SPO algorithm

in SPOT version 1.0.26672 is used in these experiments. SPO was modified as to adhere to

an upper limit for resampling. This modification was required as otherwise SPO would spend

computational resources refining CPV tuple samples above the desired maximum of 25.

The SPO parameters investigated for good overall performance on the DE tuning problems,

are the number of points used to fit the Kriging model Sk, the number of new CPVs assessed

for each iteration Sn, and the OCBA budget So. In particular, the 120 combinations resulting

from Sk ∈ {6, 12, . . . , 30}, Sn ∈ {1, 2, . . . , 8} and So ∈ {9, 15, 21} are assessed. Based on a recent

SPO paper (Wagner and Wessing, 2012), the initial number of CPV tuples assessed is fixed at

30, and four initial samples are generated for each CPV tuple being assessed. SPO is also a

bound constrained method, and is setup to use the same bounds as REVAC.

I/F-race

The iterated F-race method tunes an algorithm by performing successive F-races. The results

from each F-race are used to reduce the search space used for generating candidate CPV tuples

for the next F-race, as to home in on promising CPV tuples. The I/F-race implementation

used in these experiments is from version 1.04 of the irace package3, which was modified as to

enforce a resampling size limit, and to allow for an user-specified rate of search space reduction.

Initially, I/F-race generates In candidate CPV tuples inside the search bounds, and conducts

an F-race amongst these CPV tuples. For each F-race thereafter, In new candidate CPV

tuples are generated, and raced against the winner or winners from the previous race. These

new candidates are randomly generated around the winners from the previous F-race, using a

Gaussian distribution with a standard deviation of Iσ, subject to those new candidates being

in the search bounds. The rate of reduction of Iσ is controlled through the parameter Ir, which

specifies the desired ratio of the final Iσ to that of the initial Iσ. As a function of the fraction

of tuning budget used ζ,

Iσ = 0.5 (bU − bL) eζ ln Ir , (2.38)

where bU and bL are the search bounds. As for the F-races themselves, Friedman tests for

eliminating CPV tuple candidates unlikely to be competitive begin after If samples.

The danger of search bounds reduction approaches such as I/F-race is that bounds are

reduced incorrectly, with the search homing in on wrong regions of the search space. For this

reason the I/F-race parameters varied for the pre-comparison tuning, influence the search space

reduction of I/F-race. The Ir values assessed are based upon I/F-race’s search bounds, which

are the same as REVACs. Specifically, the Ir values assessed are in {4−2, 8−2, . . . , 24−2}, where

1/202 is approximately equal to 1/395, where 395 is the difference in range of populations of

I/F-race’s search bounds for the DE, PSO and CMA-ES tuning problems. The If values of

{2, 5, 10} are assessed, where an If of 2 is computationally the cheapest but has the highest risk

of leading I/F-race astray, and an If of 10 being the opposite. Additionally, the number of new

candidates generated is varied, In ∈ {5, 10, . . . , 30}, giving a total of 108 CPV tuples assessed.

The confidence level of the I/F-race Friedman test is fixed to 90%.

2http://cran.r-project.org/web/packages/SPOT/index.html
3http://cran.r-project.org/web/packages/irace/index.html

30

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.4 Numerical Results

The results from numerical experiments constructed to gauge the effectiveness of tMOPSO are

presented and discussed in this section. The comparison of the multiple OFE budget tuning

algorithms is presented first. Thereafter follows the comparison of tMOPSO with the single

OFE budget tuning algorithms, as gauge to the use of tMOPSO as an alternative to setting up

multiple uncoupled single OFE budget tuning problems. Lastly, tMOPSO’s results for tuning

DE and PSO are scrutinized against previous studies.

2.4.1 Comparison of Tuning Algorithms Focused on Multiple OFE Budgets

The parameter tuples for tMOPSO, tMOPSO−, tMOPSO= and FBM which were found to result

in the best overall performance on the DE tuning problems are presented in Table 2.1. For all

the parameter sweeps, the Friedman test conducted showed that the performance difference

between the candidate CPV tuples was statistically significant given a confidence level of 90%.

The candidate CPV tuples with best Friedman rank, using the HV achieved on the DE tuning

problems as the five criteria, were then applied to the DE, PSO and CMA-ES tuning problems.

On 14 out of the 15 CEC’05 tuning problems tMOPSO achieved the greatest mean HV

over all γ considered, the exception being the tuning of CMA-ES to CEC’05 problem 8, as

summarized in Table 2.2 and plotted in Figure 2.6 to Figure 2.8. For the DE and CMA-

ES CEC’05 problem 8 tuning problems, Mann-Whitney U tests showed that on the difference

between the mean HV achieved by tMOPSO and the means of the other tuning algorithms

compared are not statistically significant with a confidence level of 95%. In particular the mean

difference between tMOPSO and tMOPSO− was not statistically significant for the tuning of DE

to CEC’05 problem 8, and the difference of tMOPSO, tMOPSO− and FBM was not significant

when tuning CMA-ES to CEC’05 problem 8.

The poorer performance of tMOPSO− and tMOPSO= compared to tMOPSO is expected,

since these algorithms are stripped versions of tMOPSO with core elements removed. In par-

ticular, tMOPSO=’s worse performance compared with tMOPSO and tMOPSO− is expected,

since tMOPSO= does not use the additional history information from the solution error calcu-

lations as tMOPSO− and tMOPSO do. The out-performance of tMOPSO− by tMOPSO is also

expected, because tMOPSO− uses standard resampling instead of resampling which makes use

of MWUTs to interrupt the sample gathering process as tMOPSO does. These results although

expected are important as they provide supporting evidence for the theoretical basis upon which

tMOPSO was developed.

Table 2.1: The parameters which were found to result in the best overall performance on the DE tuning prob-
lems, for the multiple OFE budget tuning algorithms.

algorithm best CPVs found

tMOPSO N = 10 ω = 0.2
tMOPSO− N = 35 ω = 0.0
tMOPSO= N = 5 ω = 0.3
FBM N = 10 ms = 3−2

31

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 2.2: The mean hypervolume found by the multi-objective tuning methods on the chosen tuning problems,
for various application layer evaluation (γ) budgets.

mean HV found (×103) for γ = 3× 107 by

algorithm CEC problem tMOPSO tMOPSO− tMOPSO= FBM

DE 3 29.870 29.783 29.714 29.666
5 28.530 28.337 28.076 28.084
6 29.947 29.855 29.936 29.910
8 0.991 0.990 0.974 0.987
10 27.937 27.557 26.927 27.073

PSO 3 29.871 29.844 29.806 29.816
5 27.599 27.413 27.122 27.165
6 29.953 29.947 29.944 29.930
8 1.867 1.686 1.479 1.487
10 27.789 27.616 27.281 27.476

CMA-ES 3 29.906 29.894 29.885 29.859
5 29.563 29.535 29.471 29.497
6 29.945 29.939 29.942 29.905
8 0 .990 † 0.997 0.975 0 .988
10 29.262 29.223 29.045 29.144

mean HV found (×103) for γ = 15× 107 by

algorithm CEC problem tMOPSO tMOPSO− tMOPSO= FBM

DE 3 29.885 29.878 29.834 29.856
5 28.639 28.576 28.449 28.527
6 29.949 29.877 29.944 29.942
8 1.001 1 .000 0.988 0.998
10 28.204 28.124 27.551 27.997

PSO 3 29.891 29.885 29.851 29.874
5 27.795 27.712 27.441 27.605
6 29.955 29.954 29.950 29.950
8 1.968 1.953 1.736 1.863
10 27.974 27.892 27.626 27.847

CMA-ES 3 29.914 29.911 29.904 29.902
5 29.602 29.589 29.550 29.592
6 29.948 29.947 29.944 29.942
8 1 .008 1.011 0.989 1.000
10 29.332 29.321 29.232 29.300

† Italic entries indicate samples whose difference in mean relative to the sample with the best mean is
not statistically significant according to Mann-Whitney U-test with a 95% confidence level.

32

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

29.2

29.4

29.6

29.8

30.0
H
V

×103

(a) CEC’05 problem 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

26.5

27.0

27.5

28.0

28.5

H
V

×103

(b) CEC’05 problem 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

29.8

29.929.929.9

H
V

×103

(c) CEC’05 problem 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

0.92

0.94

0.96

0.98

1.00

H
V

×103

(d) CEC’05 problem 8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

26.5

27.0

27.5

28.0
H
V

×103

(e) CEC’05 problem 10

tMOPSO

tMOPSO−
tMOPSO=

FBM

Figure 2.6: Mean hypervolume obtained (HV) versus the number of application layer evaluations made (γ) of
the multi-objective tuning algorithms, applied to the DE tuning problems. Shaded regions indicate
γ where a Mann-Whitney U-test failed to show with a confidence level of 95% that the leading
sample mean is better than the other sample means.

The out-performance of FBM by tMOPSO on the tuning problem used in these experiments

could be for various reasons. Firstly, the evolutionary operators used by FBM could be poorly

suited to the selected tuning problems compared to particle swarm operators used by tMOPSO

and its variants. However, if these mechanics were the only differentiating factor, tMOPSO=

would perform better then FBM, which it does not. tMOPSO= being outperformed by FBM

is most likely due to FBM using the history information from the OFE budget solution error

calculations, which tMOPSO= does not do. Another important difference between FBM and

tMOPSO, is that tMOPSO does not evaluate every CPV tuple assessed up to the maximum OFE

budget of interest. tMOPSO multi-objective formulation allows for tMOPSO to predict which

OFE budgets a CPV tuple will be competitive at, thereby saving computational resources. If the

number of CPV tuples assessed in the DE, PSO and CMA-ES tuning problems are compared,

tMOPSO− evalutes between 4 and 10 times more CPV tuples than FBM. tMOPSO’s noise

handling strategy based on MWUTs further increases this ratio, with tMOPSO evaluating

between 10 and 30 times more CPV tuples than FBM, as shown in Table 2.3. Even though

tMOPSO may have miscalculated a large portion of OFE budgets at which some of these CPV

tuples assessment are likely to be effective at, this order increase in the number of CPV tuples

assessed, is suspected to have strongly contributed to FBM being outperformed by tMOPSO.

These numerical results are also used to investigate tMOPSO’s computational overhead in

practice. Gauging computational overhead is of particular interest since a large portion of

tMOPSO’s design is focused on reducing computational overhead. To gauge computational

overhead, the overhead ratios of tMOPSO runs were calculated, where the overhead ratio is

calculated by dividing the computing time used by the tuning algorithm, by the computing

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

29.70

29.75

29.80

29.85

29.90

H
V

×103

(a) CEC’05 problem 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

26.6

27.0

27.4

27.8

H
V

×103

(b) CEC’05 problem 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

0.01

0.02

0.03

0.04

0.05

H
V

×103 + 2.99×104

(c) CEC’05 problem 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

1.1

1.3

1.5

1.7

1.9

2.1

H
V

×103

(d) CEC’05 problem 8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

26.6

27.0

27.4

27.8

28.2
H
V

×103

(e) CEC’05 problem 10

tMOPSO

tMOPSO−
tMOPSO=

FBM

Figure 2.7: Mean hypervolume obtained (HV) versus the number of application layer evaluations made (γ)
of the multi-objective tuning algorithms, applied to the PSO tuning problems. Shaded regions
indicate γ where a Mann-Whitney U-test failed to show with a confidence level of 95% that the
leading sample mean is better than the other sample means.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

29.82

29.84

29.86

29.88

29.90

H
V

×103

(a) CEC’05 problem 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

29.2

29.3

29.4

29.5

29.6

H
V

×103

(b) CEC’05 problem 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

29.8

29.929.929.9

H
V

×103

(c) CEC’05 problem 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

0.90

0.92

0.94

0.96

0.98

1.00

1.02

H
V

×103

(d) CEC’05 problem 8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

28.5

28.7

28.9

29.1

29.3

H
V

×103

(e) CEC’05 problem 10

tMOPSO

tMOPSO−
tMOPSO=

FBM

Figure 2.8: Mean hypervolume obtained (HV) versus the number of application layer evaluations made (γ) of
the multi-objective tuning algorithms, applied to the CMA-ES tuning problems. Shaded regions
indicate γ where a Mann-Whitney U-test failed to show with a confidence level of 95% that the
leading sample mean is better than the other sample means.

34

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 2.3: Mean number of CPV tuples assessed by the multiple OFE budget tuning algorithms for the DE,
PSO and CMA-ES problems

algorithm CEC problem tMOPSO tMOPSO− tMOPSO= FBM

DE 3 5582.5 1737.8 4468.0 205.5
5 4747.5 1197.0 4513.8 205.4
6 4088.0 1125.2 4263.2 206.8
8 2123.5 1228.5 3907.5 204.9
10 5923.0 1314.2 6421.0 205.5

PSO 3 5195.5 1389.5 4686.5 205.4
5 3859.5 1279.2 4496.5 204.8
6 4026.5 1330.0 3325.8 205.9
8 3564.0 918.8 3186.2 205.7
10 4833.5 1109.5 4009.3 205.1

CMA-ES 3 3142.0 985.2 7258.2 205.5
5 3765.0 868.0 9606.0 205.5
6 4592.0 1062.2 11801.5 204.8
8 2113.0 1253.0 3925.8 205.5
10 4321.5 964.2 14731.5 206.2

time used by the algorithm being tuned. The extreme cases arise for the DE and PSO tuning

problems, for which computationally cheap, highly optimized Fortran code is tuned. For the

DE tuning to CEC’05 problems 3, 5, 6, 8 and 10 overhead ratios of 28%, 58%, 80%, 2% and 14%

were recorded with similar overheads for the PSO tuning problems. These ratios are considered

low given the highly optimized code which is tuned. For scenarios considered more typical,

where a non-optimized code is tuned, such as the tuning of CMA-ES algorithm, which is a

Python code, overhead ratios of 0.4%, 0.3%, 0.3%, 0.2%, and 0.4% were recorded for CEC’05

problems 3, 5, 6, 8 and 10, respectively. tMOPSO’s computational overhead is higher than that

of the other compared tuning algorithms which either use standard resampling or only focus

on one OFE budget. That mentioned, tMOPSO’s overhead is still low enough to be considered

acceptable for standard use case scenarios. Moreover, if computational overhead is an issue,

users can adjust tMOPSO’s parameters controlling the pre-emptively terminating resampling

as to reduce the number of MWUTs performed by tMOPSO by changing ∆ns , as well as reduce

the number of OFE budgets tMOPSO tunes under by changing the B control parameter.

2.4.2 Comparison with Tuning Algorithms Focused on a Single OFE Budget

The selected single OFE budget tuning algorithms are compared against tMOPSO, each using

parameters found to be well-suited to the DE tuning problems. As with the multiple OFE

budget algorithms, Friedman tests showed that the parameters varied did have a statistically

significant effect on each of the single OFE budget algorithms performances. The parameters

found by CPV sweeps for each of the compared single OFE budget tuning algorithms are shown

in Table 2.4.

The comparison of tMOPSO against these single OFE budget tuning algorithms shows

that no tuning algorithm outperforms the rest, as depending on the tuning problem and γ,

different tuning algorithms performed better as summarized in Table 2.5. Furthermore, for

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 2.4: The parameters which were found to result in the best overall performance on the DE tuning prob-
lems, for the single OFE budget tuning algorithms.

algorithm best CPVs found

tPSO N = 10 ω = 0.5
REVAC Rp = 30 Ri = 9
I/F-race In = 10 Ir = 8−2 If = 2
SPO Sk = 30 Sn = 8 So = 21

many of the tuning problems over a large range of γ, the difference between the best sample

mean and the other sample means of the compared algorithms is not statistically significant

with a confidence level of 95%, as shown in Figure 2.9 to Figure 2.11. To quantify the relative

performances of the compared tuning algorithms, a rank based analysis similar to that used in

the CEC’05 competition was done. For each tuning problem, the competing algorithms were

ranked according to the mean of the minimum solution error found at an OFE budget of βmax,

determined after a γ of 3× 107 and 15× 107, respectively. After the ranks were calculated, the

rank sum over all the tuning problems was used to gauge each algorithm’s performance. The

ranks which are summarized in Table 2.5 show that for a γ of 3 × 107, tPSO performed the

best with a rank sum of 28, followed by I/F-race with 33, SPO with 43, tMOPSO with 53 and

REVAC with 68. For a γ of 15 × 107, tPSO again performed the best with a rank sum of 27,

follow by I/F-race with 34, tMOPSO with 51, REVAC with 55 and SPO with 58. If these rank

sums are taken into consideration with the fact that tPSO achieves the best mean solution error

on 5 out of the 15 tuning problems for a γ of 3 × 107, and 10 out of 15 tuning problems for a

γ of 15 × 107, it is concluded that tPSO results in the best overall performance on the tuning

problems.

Analysis of the tuning algorithm performances allows the research question, regarding if it

would be more efficient to use tMOPSO to tune an algorithm under multiple OFE budgets,

compared to setting up multiple tuning problems each focused on a single OFE budget, to be

answered. Specifically, the extra computational effort required to run a single OFE budget

tuning algorithm on the 100 logarithmically spaced OFE budgets which tMOPSO tunes under

in these experiments, is compared to the extra computational effort required by tMOPSO to

tune under those 100 OFE budgets and compete against the single OFE budget algorithm in

terms of best solution error at βmax. As shown in Table 2.6, the additional computational

effort for tMOPSO measured in terms of γ varies depending upon both the tuning problem and

the γ budget allocated to the single OFE budget tuning algorithms. On one third of the data

points generated tMOPSO can compete with less then 100% extra γ. If tMOPSO’s extra γ

is increased to 250% then tMOPSO produces a better or comparable mean for two thirds of

the data points. Increasing the extra γ to 500%, allows tMOPSO to compete on 80 out of the

90 data points investigated in Table 2.6. For the remaining 10 data points, which correspond

to tuning DE to CEC’05 problem 8 and when tuning CMA-ES to CEC’05 problem 8, some of

the tMOPSO runs got stuck in what could be viewed as a tuning local minimum, and cannot

compete no matter how much extra γ is allocated. Increasing tMOPSO’s population size is

expected to reduce the risk of this occurring for these two Ackley based tuning problems. For

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 2.5: Comparison between tuning algorithms based on mean of the mean minimum solution error at
βmax (ε̄), for various application layer evaluation budgets (γ). Rankings are given in parenthesis
next to the values.

− log10 (ε̄) for γ = 3× 107

algorithm prob. tMOPSO tPSO I/F-race SPO REVAC

DE 3 3.350(2) 3.440(1) 3 .079 †(3) 2.726(4) 2.648(5)
5 1.585(3) 1 .644 (2) 1.653(1) 1.550(4) 1.498(5)
6 9.724(3) 9.901(1) 9 .892 (2) 8.661(5) 8.835(4)
8 0 .016 (5) 0 .016 (4) 0 .016 (2) 0.016(1) 0 .016 (3)
10 1.366(4) 1 .468 (2) 1.479(1) 1.426(3) 1.149(5)

PSO 3 3.049(2) 3.174(1) 3.049(3) 3.010(4) 2.859(5)
5 1.210(4) 1 .250 (2) 1.252(1) 1 .243 (3) 1.184(5)
6 9 .172 (2) 9.372(1) 7 .428 (3) 6.651(5) 7.284(4)
8 0 .031 (2) 0 .031 (3) 0 .029 (4) 0.032(1) 0.027(5)
10 1.238(4) 1 .286 (2) 1.288(1) 1.244(3) 1.191(5)

CMA-ES 3 7.312(4) 7.570(1) 7.454(3) 7.459(2) 7.125(5)
5 5.263(4) 5 .620 (2) 5.523(3) 5.631(1) 5.008(5)
6 10.16(4) 10 .26 (2) 10.27(1) 10 .23 (3) 10.02(5)
8 0.015(5) 0 .016 (2) 0.016(4) 0.017(1) 0 .016 (3)
10 2.243(5) 2 .330 (2) 2.349(1) 2.274(3) 2.259(4)∑

Ranks 53 28 33 43 68

− log10 (ε̄) for γ = 15× 107

algorithm prob. tMOPSO tPSO I/F-race SPO REVAC

DE 3 3.604(3) 3.636(1) 3.612(2) 2.973(4) 2.927(5)
5 1.678(3) 1.696(1) 1.696(2) 1.641(4) 1.544(5)
6 9.902(3) 9.997(1) 9.969(2) 9.641(5) 9.788(4)
8 0.016(5) 0.016(4) 0.016(3) 0.017(2) 0.020(1)
10 1.491(3) 1.524(1) 1.513(2) 1.488(4) 1.391(5)

PSO 3 3.322(2) 3.351(1) 3.302(3) 3.194(4) 3.144(5)
5 1.269(5) 1 .291 (4) 1.297(1) 1 .296 (2) 1 .292 (3)
6 9.649(2) 9 .614 (3) 9.682(1) 8.632(5) 8.752(4)
8 0.033(2) 0.033(1) 0.033(3) 0.032(5) 0.032(4)
10 1.292(3) 1.324(1) 1.311(2) 1.285(4) 1.265(5)

CMA-ES 3 7.672(3) 7.792(1) 7.712(2) 7.634(5) 7.654(4)
5 5.655(5) 5.787(1) 5 .770 (2) 5.747(3) 5.659(4)
6 10.33(5) 10 .43 (3) 10 .46 (2) 10.41(4) 10.47(1)
8 0.016(4) 0.019(3) 0.016(5) 0.020(2) 0.026(1)
10 2.367(3) 2.403(1) 2 .401 (2) 2.337(5) 2.342(4)∑

Ranks 51 27 34 58 55

† Italic entries indicate samples whose difference in mean relative to the sample with the best mean is
not statistically significant according to Mann-Whitney U-test with a 95% confidence level.

I/F-race searches differently depending on the specified γ, therefore the results for γ = 3× 107 and
γ = 15× 107 were generated using different runs.

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−3.6

−3.4

−3.2

−3.0

−2.8

lo
g
1
0

(
ε̄
)

(a) CEC’05 problem 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−1.70

−1.65

−1.60

−1.55

lo
g
1
0

(
ε̄
)

(b) CEC’05 problem 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−10.1

−9.9

−9.7

−9.5

lo
g
1
0

(
ε̄
)

(c) CEC’05 problem 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−0.020

−0.019

−0.018

−0.017

−0.016

lo
g
1
0

(
ε̄
)

(d) CEC’05 problem 8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−1.50

−1.45

−1.40

−1.35

−1.30

lo
g
1
0

(
ε̄
)

(e) CEC’05 problem 10

tMOPSO
tPSO
SPO
REVAC

(f) Legend

Figure 2.9: Best mean minimum solution error (ε) versus the number of application layer evaluations made
(γ) of the multi-objective tuning algorithms, applied to the DE tuning problems. Shaded regions
indicate γ where a Mann-Whitney U-test failed to show with a confidence level of 95% that the
leading sample mean is better than the other sample means. I/F-race’s performance for various
γ is not shown since I/F-race searches differently depending on the specified γ, and therefore the
I/F-race plots are very computationally expensive to calculate.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−3.3

−3.2

−3.1

−3.0

lo
g
1
0

(
ε̄
)

(a) CEC’05 problem 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−1.30

−1.28

−1.26

−1.24

−1.22

lo
g
1
0

(
ε̄
)

(b) CEC’05 problem 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−10

−9

−8

−7

lo
g
1
0

(
ε̄
)

(c) CEC’05 problem 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−0.0335

−0.0325

−0.0315

−0.0305

−0.0295

lo
g
1
0

(
ε̄
)

(d) CEC’05 problem 8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−1.32

−1.30

−1.28

−1.26

−1.24

lo
g
1
0

(
ε̄
)

(e) CEC’05 problem 10

tMOPSO
tPSO
SPO
REVAC

(f) Legend

Figure 2.10: Best mean minimum solution error (ε) versus the number of application layer evaluations made
(γ) of the multi-objective tuning algorithms, applied to the PSO tuning problems. Shaded regions
indicate γ where a Mann-Whitney U-test failed to show with a confidence level of 95% that the
leading sample mean is better than the other sample means. I/F-race’s performance for various
γ is not shown since I/F-race searches differently depending on the specified γ, and therefore the
I/F-race plots are very computationally expensive to calculate.

38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−7.8

−7.7

−7.6

−7.5

−7.4
lo

g
1
0

(
ε̄
)

(a) CEC’05 problem 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−5.9

−5.7

−5.5

−5.3

lo
g
1
0

(
ε̄
)

(b) CEC’05 problem 5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−10.5

−10.4

−10.3

−10.2

lo
g
1
0

(
ε̄
)

(c) CEC’05 problem 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−0.028

−0.024

−0.020

−0.016

lo
g
1
0

(
ε̄
)

(d) CEC’05 problem 8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

γ ×108

−2.42

−2.38

−2.34

−2.30

lo
g
1
0

(
ε̄
)

(e) CEC’05 problem 10

tMOPSO
tPSO
SPO
REVAC

(f) Legend

Figure 2.11: Best mean minimum solution error (ε) versus the number of application layer evaluations made
(γ) of the multi-objective tuning algorithms, applied to the CMA-ES tuning problems. Shaded
regions indicate γ where a Mann-Whitney U-test failed to show with a confidence level of 95%
that the leading sample mean is better than the other sample means. I/F-race’s performance
for various γ is not shown since I/F-race searches differently depending on the specified γ, and
therefore the I/F-race plots are very computationally expensive to calculate.

13 out of 15 problems where tMOPSO does not get stuck, tMOPSO’s extra γ requirements

need to be compared to the 1 380% extra γ required to run a single OFE budget algorithm on

all of the 100 logarithmically spaced OFE budgets tMOPSO tunes under. Therefore for 13 out

of 15 problems of these numerical experiments, it is more efficient to tune an algorithm under

multiple OFE budget using tMOPSO, compared to setting up multiple tuning problems each

focused on a different OFE budget.

tMOPSO’s effectiveness at tuning under multiple OFE budgets, compared to a single OFE

budget algorithm solving multiple uncoupled tuning problem is attributed to two primary fac-

tors. Firstly, tMOPSO has an advantage in that it has information of which CPV tuples perform

well at different OFE budgets, which is exploited using multi-objective optimization in order to

boost tuning efficiency. Secondly, as tMOPSO uses the history information from the OFE bud-

get solution error calculations, one CPV tuple’s assessment run is used to gauge performance at

multiple OFE budgets. Given these reasons, tuning an optimization algorithm under a range

of OFE budgets using tMOPSO should be more efficient compared with setting up multiple

tuning problems, each focused on a different OFE budget, and then solving each of those prob-

lems using a single OFE budget tuning algorithm. This general conclusion holds provided that

tMOPSO does not get stuck in a local minimum, which occurred for some of the tMOPSO runs

on the DE and CMA-ES Ackley based tuning problems.

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 2.6: Table showing what fraction extra γ tMOPSO requires to achieve a mean best solution error at
βmax equal to that of the best single OFE budget tuning algorithms. The best single OFE budget
algorithm which tMOPSO was compared to varies depending upon the tuning problem and the γ.

Single OFE tuning algorithm γ budget

algorithm prob. 1× 107 2× 107 3× 107 4× 107 5× 107 6× 107

DE 3 0.71 0.45 0.31 0.54 0.84 1.10
5 0.76 1.24 1.54 1.90 3.21 3.64
6 1.10 3.98 3.05 3.95 4.24 3.64
8 1.22 0.97 > 9.00† > 6.50 > 5.00 > 4.00
10 0.65 1.71 3.70 3.35 4.04 > 4.00

PSO 3 0.65 0.70 0.91 0.88 0.83 0.69
5 0.76 2.01 2.21 2.63 2.34 2.22
6 0.48 0.48 0.50 0.18 0.00 0.00
8 0.25 0.34 0.15 0.41 0.51 0.49
10 1.95 1.74 1.89 1.25 2.81 2.82

CMA-ES 3 0.88 1.16 1.29 2.16 1.92 2.11
5 1.05 1.68 2.50 2.58 2.88 2.76
6 0.25 0.83 1.15 1.91 2.03 1.57
8 3.37 5.04 > 9.00 > 6.50 > 5.00 > 4.00
10 2.80 2.31 3.65 2.38 1.98 3.31

† For the generation of this table, the maximum γ tMOPSO was allowed to run to was
30× 107. The ‘> entries’ indicate where this limit was reached.

40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2.4.3 Scrutinization of the Tuning Results

Attention is focused next on scrutinizing the tuning results obtained by tMOPSO. Since the

DE and PSO algorithm implementations tuned are sensitive to OFE budgets, tMOPSO should

recommend different CPV tuples for different OFE budgets. Specifically, an increase in the

optimal population size should be observed as the OFE budget increases (Dymond et al., 2011).

For the majority of tMOPSO’s independent runs on the DE tuning problems an increasing

population size was found optimal as the OFE budget increases, as shown in Figure 2.12 and

Figure 2.13. The DE tuning results do vary from each other, but this variance is expected since

DE is stochastic and the utility values were approximated numerically. The only exception

where the expected trend of increasing population size was not observed, was CEC’05 problem

instance 8. The DE tuning results for CEC’05 problem instance 8 vary largely from tMOPSO run

to tMOPSO run, and no clear CPV trends were observed. Satisfactorily, the tMOPSO tuning

results for the PSO tuning problems shown in Figure 2.14 and Figure 2.15, also recommend an

increasing optimal swarm size as the OFE budget increases. Furthermore, in agreement with a

literature recommendation (Clerc and Kennedy, 2002), the sum of local and global acceleration

constants found by tMOPSO is less than or equal to four, except at low OFE budgets. The

tMOPSO tuning results indicate that the CMA-ES optimization algorithm may also be sensitive

to OFE budget constraints, as shown in Figure 2.16 and Figure 2.17. However to be certain, an

extensive sensitivity study such as in (Dymond et al., 2013) should be conducted to verify the

sensitivity of CMA-ES to OFE budgets. In addition to sensitivity to OFE budgets, the tuning

results also indicate that optimal CPVs are sensitive to the fitness landscape of the optimization

problem being tackled, an observation which was expected.

Given the sensitivity of the tuned optimization algorithms to the termination criteria and

fitness landscapes of the problem being tackled, the usefulness of the tuning results themselves

is limited. Moreover, practitioners are only guaranteed of achieving favorable performance using

the CPVs recommended by the tuning results, should they tackle problems similar to one of

the CEC’05 problems used in these experiments, and make use of the same implementations

of the DE, PSO or CMA-ES algorithms which were tuned. Therefore instead of using CPVs

found to be optimal in these numerical experiments, practitioners should rather apply tuning

algorithms as to determine CPVs which are well-suited to testing problems representative of the

optimization problem which they are tackling. Algorithm developers can assist in this regard by

equipping algorithms with control parameters as to allow the algorithm to be effectively tuned

to a large variety of fitness landscapes and OFE budget constraints.

In regard to developing algorithms which are tunable to a vast range or problems, cross-

examination of the tuning results indicates possible areas of improvement among the tuned

algorithms. For instance, the tuned performances of the DE and CMA-ES algorithms are worse

than that of PSO for the Ackley based CEC’05 problem instance 8, as shown in Table 2.2

and Table 2.5. This worse tuned performance combined with the inconsistent tMOPSO CPV

recommendations, indicate that the search mechanics required for favorable performance on

Ackley type problems can either not be manifested, or are very difficult to determine. This

deficiency in the DE and CMA-ES tuning formulations, is either because inappropriate CPVs

were tuned, or because the versions of DE and CMA-ES tuned are not capable of producing

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

102 103 104

0.2

0.4

0.6

0.8

1.0

C
r
,
F

5

10

15

20

25

30

N

β

(a) CEC’05 problem 3

102 103 104

0.2

0.4

0.6

0.8

1.0

C
r
,
F

5

10

15

20

25

N

β

(b) CEC’05 problem 5

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

C
r
,
F

5

10

15

20

25

30

N

β

(c) CEC’05 problem 6

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

C
r
,
F

100

200

300

400

500

600

N

β

(d) CEC’05 problem 8

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0
C
r
,
F

20

60

100

140

N

β

(e) CEC’05 problem 10

Cr

F

N

(f) Legend

Figure 2.12: tMOPSO’s results for tuning DE under multiple OFE budgets, where the results shown are for
the tMOPSO runs with the greatest hypervolume.

102 103 104
5

10

15

20

25

30

35

N

β

(a) CEC’05 problem 3

102 103 104
5

15

25

35

45

N

β

(b) CEC’05 problem 5

102 103 104
5

15

25

35

45

N

β

(c) CEC’05 problem 6

102 103 104
0

100

200

300

400

500

N

β

(d) CEC’05 problem 8

102 103 104
0

40

80

120

N

β

(e) CEC’05 problem 10

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

C
r

β

(f) CEC’05 problem 3

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

C
r

β

(g) CEC’05 problem 5

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

C
r

β

(h) CEC’05 problem 6

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

C
r

β

(i) CEC’05 problem 8

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

C
r

β

(j) CEC’05 problem 10

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

F

β

(k) CEC’05 problem 3

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

F

β

(l) CEC’05 problem 5

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

F

β

(m) CEC’05 problem 6

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

F

β

(n) CEC’05 problem 8

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

F

β

(o) CEC’05 problem 10

Figure 2.13: Scatter plots of the combined results from all of tMOPSO’s independent tuning runs, showing the
optimal population size versus the OFE budget available. Each subfigure shows the results for
DE tuned to a different CEC’05 optimization problem.

42

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

102 103 104

0

1

2

3

ω
,
c
p
,
c
g

5

10

15

20

25

30

35

N

β

(a) CEC’05 problem 3

102 103 104

0

1

2

3

ω
,
c
p
,
c
g

10

30

50

70

90

N

β

(b) CEC’05 problem 5

102 103 104

0

1

2

3

ω
,
c
p
,
c
g

10

20

30

40

50

N

β

(c) CEC’05 problem 6

102 103 104

0

1

2

3

ω
,
c
p
,
c
g

10

20

30

40

50

60

70

N

β

(d) CEC’05 problem 8

102 103 104

0

1

2

3

ω
,
c
p
,
c
g

10

20

30

40

50

60

70

N

β

(e) CEC’05 problem 10

ω
cp
cg

N

(f) Legend

Figure 2.14: tMOPSO’s results for tuning PSO under multiple OFE budgets, where the results shown are for
the tMOPSO runs with the greatest hypervolume.

102 103 104
5

15

25

35

45

N

β

(a) CEC’05 problem 3

102 103 104
0

100

200

300

400

500

600

N

β

(b) CEC’05 problem 5

102 103 104
5

15

25

35

45

N

β

(c) CEC’05 problem 6

102 103 104
0

20

40

60

80

N

β

(d) CEC’05 problem 8

102 103 104
0

50

100

150

200

250

300

N

β

(e) CEC’05 problem 10

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

ω

β

(f) CEC’05 problem 3

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

ω

β

(g) CEC’05 problem 5

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

ω

β

(h) CEC’05 problem 6

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

ω

β

(i) CEC’05 problem 8

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

ω

β

(j) CEC’05 problem 10

102 103 104
0

1

2

3

4

5

c
p

+
c
g

β

(k) CEC’05 problem 3

102 103 104
0

1

2

3

4

5

c
p

+
c
g

β

(l) CEC’05 problem 5

102 103 104
0

1

2

3

4

5

c
p

+
c
g

β

(m) CEC’05 problem 6

102 103 104
0

1

2

3

4

5

c
p

+
c
g

β

(n) CEC’05 problem 8

102 103 104
0

1

2

3

4

5

c
p

+
c
g

β

(o) CEC’05 problem 10

Figure 2.15: Scatter plots of the combined results from all of tMOPSO’s independent tuning runs, showing
the optimal swarm size and acceleration constant sum versus the OFE budget available. Each
subfigure shows the results for PSO tuned to a different CEC’05 optimization problem.

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

µ
f
,
σ
r

2

6

10

14

N

β

(a) CEC’05 problem 3

102 103 104

0.2

0.4

0.6

0.8

1.0

µ
f
,
σ
r

0

20

40

60

N

β

(b) CEC’05 problem 5

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

µ
f
,
σ
r

2

6

10

14

N

β

(c) CEC’05 problem 6

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

µ
f
,
σ
r

0

100

200

300

400

N

β

(d) CEC’05 problem 8

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

µ
f
,
σ
r

0

20

40

60

80

100

N

β

(e) CEC’05 problem 10

µf
σr

N

(f) Legend

Figure 2.16: tMOPSO’s results for tuning CMA-ES under multiple OFE budgets, where the results shown are
for the tMOPSO runs with the greatest hypervolume.

102 103 104
4

6

8

10

12

14

16

N

β

(a) CEC’05 problem 3

102 103 104
0

10

20

30

40

50

60

N

β

(b) CEC’05 problem 5

102 103 104
4

6

8

10

12

14

16

N

β

(c) CEC’05 problem 6

102 103 104
0

200

400

600

N

β

(d) CEC’05 problem 8

102 103 104
0

20

40

60

80

100

120

N

β

(e) CEC’05 problem 10

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

µ
f

β

(f) CEC’05 problem 3

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

µ
f

β

(g) CEC’05 problem 5

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

µ
f

β

(h) CEC’05 problem 6

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

µ
f

β

(i) CEC’05 problem 8

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

µ
f

β

(j) CEC’05 problem 10

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

σ
r

β

(k) CEC’05 problem 3

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

σ
r

β

(l) CEC’05 problem 5

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

σ
r

β

(m) CEC’05 problem 6

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

σ
r

β

(n) CEC’05 problem 8

102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

σ
r

β

(o) CEC’05 problem 10

Figure 2.17: Scatter plots of the combined results from all of tMOPSO’s independent tuning runs, showing the
optimal population size versus the OFE budget available. Each subfigure shows the results for
CMA-ES tuned to a different CEC’05 optimization problem.

44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

a search which is as effective on Ackley type problems as the tuned PSO algorithm is. Should

the latter case be true, additional search mechanics could be added to DE and CMA-ES as to

improve their tunability to Ackley type problems.

tMOPSO is a bi-objective tuning algorithm, and is therefore limited to only tuning an

optimization algorithm to one problem at a time under multiple OFE budgets. In order to

tune an optimization algorithm to multiple problems under multiple OFE budgets holistically,

an algorithm designed for four or more tuning objectives is required. In the next chapter, the

principles upon which tMOPSO is built are extended as to develop a many objective tuning

algorithm.

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3

MANY OBJECTIVE TUNING USING

BI-OBJECTIVE DECOMPOSITION

To aid control parameter studies, a new evolutionary algorithm named MOTA (many objective

tuning algorithm) is proposed. MOTA aims to efficiently tune an optimization algorithm ac-

cording to multiple performance measures over a range of OFE budgets. Even though no such

algorithm has been proposed before, tuning an optimization algorithm to multiple performance

measures for multiple OFE budgets could be achieved by using existing tuning algorithms.

Specifically, existing tuning algorithms can be used to solve multiple subproblems, where each

subproblem is focused on a different performance measure preference articulation. However,

segregating a multi-objective problem in this manner is wasteful since no information is shared

between the created subproblems. Consider two subproblems each focused on tuning an algo-

rithm to the same problem, only at different OFE budgets. Or consider the case where common

CPV trends exist between these subproblems, such as a larger optimal population size as the

OFE budget increases. For these scenarios, information flow between subproblems should be

beneficial to the tuning process. MOTA overcomes these segregation limitations through the

use of multi-objective optimization.

The design of MOTA is motivated by the in-depth control parameter studies a many ob-

jective tuning algorithm would allow. Consider studies investigating robust or generalist CPV

tuples which perform well over numerous problems (Smit and Eiben, 2010b). Multi-objective

tuning can efficiently search for these robust CPV tuples, by solving a tuning problem with an

objective corresponding to each problem that the robust CPVs are required to perform well

on. After tuning is completed, the generalist CPV tuples can be found by examining the CPVs

tuples found during the multi-objective optimization, each of which is optimal for a different

trade-off compromise amongst the tuning objectives. Furthermore, common practice when as-

sessing a multi-objective algorithm’s performance is to make use of a series of unary performance

indicators (Zitzler et al., 2003), each of which measures a different aspect of the solution quality.

As such, tuning according to multiple performance indicators would allow multi-objective al-

46

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

gorithms to be tuned more holistically compared to tuning them according to one performance

metric only. Moreover, even if an optimization algorithm is to be tuned to multiple problems

separately as to determine CPVs well-suited to individual problems only, tuning an algorithm

to all problems congruently may result in a higher efficiency compared to handling each problem

in isolation, since common CPV trends may be present.

The outline of this chapter is as follows: related work and MOTA’s contribution is first

discussed in Section 3.1. The MOTA algorithm is then described in Section 3.2. Thereafter,

Section 3.3 presents the numerical setup used to assess MOTA’s performance, with the results

from those numerical experiments following in Section 3.4.

3.1 Related Work

The proposed tuning algorithm is related to the fields of control parameter tuning and many ob-

jective optimization. Currently multi-objective tuning algorithms can be split into two groups,

namely tuning to multiple problems each for a single termination criterion, and tuning algo-

rithms designed to tune to a single problem under multiple termination criteria. Smit et al.

(2010) proposed the M-FETA algorithm which is designed for tuning an optimization algorithm

to multiple problems, each using one termination criterion. With regard to tuning under multi-

ple OFE budgets the Flexible Budget Method Branke and Elomari (2012) and tMOPSO have

been proposed. Here, the MOTA algorithm is proposed for tuning an algorithm to multiple

performance measures under multiple OFE budgets. Such a tuning problem has an utility mea-

sure consisting of at least three objectives. When the utility measure consists of four or more

objectives, then MOTA needs to solve a many objective optimization problem.

For optimization problems which consist of two or three objectives, multi-objective evo-

lutionary algorithms typically aim to determine a finite evenly spaced set of non-dominated

decision vectors as to accurately approximate the entire PF. However, approximating the entire

PF for many objective optimization is intractable for two reasons. Firstly, the computational

overhead of maintaining the PF approximations (Mostaghim and Teich, 2005) grows linearly

as the size of the approximation increases. Consequently, the computational overhead require-

ments are too high to approximate the entire PF of many objective optimization, since the size

of the set required to represent the entire PF grows exponentially with the number of objec-

tives. Secondly, even if a huge Pareto-optimal front approximation (PFA) could be maintained

efficiently, the limiting factor would be the OFE budget of the multi-objective optimization al-

gorithm. Suppose that an ultimate multi-objective optimization algorithm existed, which with

every new decision vector evaluation is able to find a new non-dominated decision vector. Even

this ultimate algorithm’s PFA would be limited to the size of the OFE budget assigned to it.

Many objective optimization algorithms therefore do not try to approximate the entire PF,

but rather make use of other criteria in addition to Pareto dominance to guide the optimization

process. A commonly used approach to differentiate between Pareto non-dominated decision

vectors during the course of an optimization run, is to make use of performance indicators (Zit-

zler and Künzli, 2004). Consider the SMS-EMOA algorithm proposed by Beume et al. (2007),

which uses the hypervolume (HV) performance indicator in conjunction with Pareto dominance

47

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

in order to optimize a multi-objective problem. Alternatively, Di Pierro et al. (2007) proposed

a preference ordering strategy, which considers a decision vector’s dominance status according

to various subsets of objectives, thereby allowing for further differentiation. Then there are

decomposition based approaches (Zhang and Li, 2007), for which the multi-objective problem

is divided into subproblems, which are all solved simultaneously. All these many objective ap-

proaches ultimately require some a priori input from the practitioner, as to which sections of the

PF, or preference articulations are more important than others. The indicator based approaches

favor decision vectors aligned with indicators chosen, while preference ordering strategies favor

decisions close to the center or the edges of the PF depending on the parameters specified,

and decomposition based approaches focus on areas of the PF specified in the subproblem con-

struction. This a priori input is undesirable as it breaks from the clean a priori free approach

followed when three or less objectives are optimized. However due to the intractability of ap-

proximating the entire PF for many objective optimization problems, some a priori input is

required.

Objective reduction approaches can in certain scenarios assist with many objective opti-

mization. For certain applications it may occur that not all of the objectives are in conflict,

in which case some objectives can be disregarded without changing the PS. For such scenarios,

objective reduction approaches are able to identify and remove redundant objectives as to make

the optimization problem easier to solve. Brockhoff and Zitzler (2009) cover both the theoreti-

cal aspects of objective reduction, as well as presenting ε-based objective reduction approaches.

More recently, Saxena et al. (2013) presented a framework based on principal component anal-

ysis and maximum variance unfolding for objective reduction. An aspect of objective reduction

approaches which can prove useful even when applied to non-redundant problems, is the ability

of these approaches to identify objectives which are only slightly in conflict. These slightly con-

flicting objectives can be disregarded without major changes to the PS. Objective reduction is

not incorporated into the proposed MOTA algorithm, as MOTA is designed for tuning problems

where all the objectives are in conflict.

3.2 MOTA Algorithm

A decomposition based approach is used by MOTA to perform many objective tuning. What

distinguishes the decomposition approach used by MOTA from previous approaches, is that

instead of decomposing the multi-objective problem into single objective subproblems, the multi-

objective problem is decomposed into bi-objective subproblems. A bi-objective decomposition

is particularly well-suited when tuning stochastic algorithms under multiple OFE budgets, as

will become clear as the core elements of the MOTA algorithm are presented, beginning with

the tuning problem formulation used.

3.2.1 Tuning Problem Formulation

The tuning problem formulation solved by MOTA makes use of a decision vector consisting of

control parameter values v1, v2, . . . , vn together with an auxiliary variable βa, where βa specifies

at which OFE budget the v1, v2, . . . , vn CPV tuple is to be assessed. MOTA’s tuning problem

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

formulation uses a multi-objective utility measure as to tune an optimization algorithm to

multiple utility indicators for multiple OFE budgets. The multi-objective utility measure u

which MOTA minimizes is defined as

u =


βa

u1

u2

. . .

unu

 , (3.1)

where u1, u2, . . . , unu are utility indicator values for which lower values indicate better perfor-

mance, and βa is the OFE budget used when determining those u1, u2, . . . , unu values. Since

lower utility indicator values indicate better performance, and a greater number of OFEs allows

for lower u1, u2, . . . , unu values, the βa objective is in conflict with the u1, u2, . . . , unu objectives.

As such, formulating the tuning problem in this manner allows MOTA to directly incorporate

sensitivity to OFE budgets into the multi-objective problem it solves.

The choice of utility indicators for u depends on the control parameter study being per-

formed. When tuning a single objective algorithm to multiple problems, a sensible choice for

the utility indicators would be the lowest solution error achieved for each of those problems.

Alternatively when tuning a multi-objective optimization algorithm, a utility indicator for each

unary performance indicator of interest could be used.

3.2.2 Specialization for Algorithms whose Utility Indicator Values need to

be Numerically Approximated using Sample Runs

Analytical expressions for the utility indicator values as a function of the specified CPV tuple

and OFE budget are rarely available. As such, common practice entails numerical calculation

of utility indicator values by running the algorithm being tuned from initialization to the assess-

ment OFE budget, using the CPV tuple being assessed. Calculating a utility indicator value

in this manner, therefore also allows for determining utility indicator values of the CPV tuple

being assessed for OFEs lower than the assessment OFE budget without performing additional

sample runs. Consider calculating an arbitrary utility indicator’s (ui’s) values using a sampling

run, for an evolutionary algorithm with population size of N . If the sample run is set up to

record the best solution found after each iteration, i.e. every N OFEs, utility values can then

be determined for each OFE usage all the way up to the assessed OFE budget, βa. Expressed

symbolically, one sampling run can be used to generate the following :

ui(N)→ ui(2N)→ · · · → ui(βa), (3.2)

where ui(j) is the utility indicator value after j OFEs. Another factor to consider when per-

forming a sampling run to assess a CPV tuple’s utility, is that utility values at OFE budgets

higher than βa, can be determined at a reduced cost compared to calculating them from scratch.

Due to computational overhead considerations and storage requirements, tuning practition-

ers are normally not interested in determining effective CPV tuples for every OFE budget less

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

then the maximum OFE budget of interest, βmax. Normally, a tuning practitioner is only in-

terested in a subset of OFE budgets ∈ {1, 2, . . . , βmax}, such as OFE budgets logarithmically

spaced between the minimum OFE budget of interest and βmax. Given this consideration,

MOTA calculates the following utility indicator values

ui(β) ∀β ∈ B : β ≤ β+ (3.3)

where B is the target OFE budgets selected by the tuning practitioner, and the overshoot

budget β+ specifies the maximum OFE budget for which the utility indicator values are to be

calculated from the sampling runs. For MOTA, β+ is calculated according to a user specified

function of βa, for example β+ = 1.6βa + 100. The optimal function for determining β+ is

expected to be problem specific, but is also not expected to drastically alter performance, due

to the noise handling strategy used by MOTA, a strategy whose description is postponed until

later in this Section.

By making use of the additional utility indicator values from the sample runs, MOTA breaks

from traditional multi-objective optimization where one decision vector evaluation results in one

objective vector. Instead, one decision vector evaluation by MOTA results in multiple objective

vectors. In particular, each CPV tuple assessment results in a multi-dimensional line of objective

function values, where the OFE budget objective can be considered as the independent variable.

Given this one-to-many relation, a 2-D decomposition strategy is used by MOTA.

3.2.3 Bi-objective Decomposition

Solving a problem via decomposition, entails expressing the original problem as a series of

subproblems, which when solved give the solution to the original problem. In the context of

multi-objective optimization, a variety of approaches exists for decomposing a multi-objective

problem into single-objective subproblems (Zhang and Li, 2007). Decomposition however need

not be limited to breaking a problem down into single-objective subproblems. Zhang and Li

(2007) argued that it is beneficial to decompose problems to single-objective subproblems, since

a significant amount of work has been done for evolutionary computation in single objective

optimization, and therefore decomposition into single-objective subproblems is favorable since

it allows for all this previous work to be utilized. Following this same argument, it is viable to

decompose a problem into bi- or tri-objective subproblems, because a substantial amount of work

and success has been achieved when optimizing problems with only two or three objectives (Deb

et al., 2002; Zitzler et al., 2001).

In the case of MOTA, bi-objective decomposition is used as it is well suited to processing the

additional utility indicator values generated from the sampling runs. The generalized objective

function for the bi-objective decompositions which are to minimized, is comprised of one ob-

jective consisting of a scalarization of the u1, u2, . . . , unu utility indicator values, and the other

objective is the OFE budget used to calculate those utility indicator values. Two commonly

used scalarization approaches are the aggregated or weighted sum approach and the Tchebycheff

approach (Zhang and Li, 2007). Both of these approaches make use of a weights vector w in

50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

u1

u2
PF

u1 + u2 = c3

u1 + u2 = c1

u1 + u2 = c2

(a) Weighted sum approach

max(u1, u2) = c1

max(u1, u2) = c2

max(u1, u2) = c3

u1

u2
PF

(b) Tchebycheff approach

Figure 3.1: Illustration of the weighted sum and the Tchebycheff scalarization approaches. In the illustration,
contour lines of equal value according to the scalarization approach are shown for the values c1, c2
and c3, where c1 < c2 < c3.

the scalarization process. Specifically, the weighted sum scalarized value ûw is determined as:

ûw =

nu∑
i=1

wiui, (3.4)

and the Tchebycheff scalarized value ûT for minimization problems is determined as:

ûT = max
{
wi(ui − zi) ∀ i ∈ 1, 2, . . . , nu

}
(3.5)

where the zi values correspond to a chosen reference point. In order to make the process of

selecting w easier for tuning practitioners, MOTA by default normalizes the objective values

passed to the scalarize functions. Specifically, the ui values are normalized between the Ideal and

Nadir points of MOTA’s current PFA. For the case when the objective values are normalized,

zero values are used for all the zi reference values.

The choice of scalarization approach for the utility indicator values should be made according

to the PF characteristics, and according to preference articulations of interest. The Tchebycheff

approach is able to handle both convex and concave PFs, while the weighted sum approach can

only handle concave PFs, as illustrated in Figure 3.1. However, the Tchebycheff approach is

more prone than the weighted sum approach to being controlled by a single objective only. If the

user selects the Tchebycheff approach for the j’th subproblem, the corresponding bi-objective

minimization function which needs to be minimized u2D
j is defined as:

u2D
j =

[
max

{
wi ũi ∀ i ∈ (1, 2, . . . , nu)

}
βa

]
, (3.6)

where ũi are the normalized utility indicator values.

Another key aspect to decomposition based approaches is neighborhoods. Neighborhoods

are vital since they are used to share information between subproblems, thereby differentiating

51

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

decomposition based approaches from approaches were subproblems are optimized in isolation

from each other. Here, neighborhoods are split into two categories,

• candidate generation neighborhoods: when generating a candidate decision vector for a

target subproblem, this neighborhood specifies the additional subproblems from which

information is used for operations such as crossover and mutation, and

• update neighborhoods: after evaluating a decision vector generated for a target subprob-

lem, the resulting objective function values are also used to update the solutions of the

subproblems in this neighborhood.

MOTA allows for the use of different neighborhoods for the purposes of generating candidate

decision vectors and updating subproblem solutions. Having different neighborhoods for these

two operations, allows for a flexibility particularly well suited for tuning optimization algorithms.

Consider tuning a single objective optimization algorithm to multiple problems over multiple

OFE budgets, with the focus on determining specialist CPVs well suited to each problem on

its own. A sensible neighborhood configuration for this tuning problem would be to have a

large neighborhood for candidate generation, together with zero-sized update neighborhoods.

The large candidate generation neighborhood should be beneficial, since it allows for the CPV

candidate generation process to exploit trends observed from other subproblems, while the zero-

sized update neighborhoods save computational resources since only one of nu objectives needs

to be evaluated.

The next feature of MOTA which is discussed is the noise handling strategy. In tuning, a

noise handling strategy deals with the uncertainty resulting when utility indicator values need

to be approximated, as is typically the case when tuning stochastic algorithms.

3.2.4 Handling the Noise Resulting from Tuning a Stochastic Algorithm

When tuning optimization algorithms with stochastic elements, standard utility indicator val-

ues become probabilistic distributions. In the context of parameter tuning under multiple OFE

budgets, the characteristics of the probability density functions (PDFs) of these utility indi-

cator distributions vary depending upon the location in the objective space, as illustrated in

Figure 2.2. The differing PDF characteristics throughout the objective space, rule out many spe-

cialized noise (Bui et al., 2009) or uncertainty (Xi et al., 2012) handling strategies, which assume

a uniform uncertainty distribution throughout the objective space. Based on tMOPSO (Dy-

mond et al., 2014), MOTA uses a preemptively terminating resampling strategy whereby the

sampling gathering processes is interrupted if Mann-Whitney U tests (MWUTs; Conover, 1999)

indicate that the decision vector being assessed is unlikely to result in an improvement on the

current approximation of the PF.

MOTA’s noise handling procedure starts with a group of decision vectors X, where each

x ∈ X has an associated CPV tuple, assessment OFE budget, and target subproblem. Initially

a small number of samples are generated for each x, for the OFE budgets xB. As outlined in

Subsection 3.2.2, xB is controlled by the user specified target OFE budgets B and the overshoot

function β+ as

xB = {β ∀β ∈ B : β ≤ β+}. (3.7)

52

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Re-sampling interruption checks are then conducted against x’s subproblem and x’s update

neighborhood. Specifically, if j is the subproblem index, and Tu is the set of indexes of the sub-

problems in x’s neighborhood together with j, then the approximation of the j’th subproblem’s

bi-objective decomposition u′2Dj is discarded if

Pk ≤α u′2Dj ∀ k ∈ Tu (3.8)

where ≤α denotes likely to be dominated given the confidence level of α, and Pk is the k’th

subproblem’s PFA.

Two different options are available for conducting Pareto non-dominance likelihood checks:

1. removing the largest OFE budget in xB until an OFE budget is reached for which x is

not likely to be dominated by all Pk for k ∈ Tu, and

2. checking all OFE budgets in xB, and eliminating the OFE budgets for which the u′2Dj
decompositions are likely to be dominated by Pk for all k ∈ Tu.

The choice of approach should be made according to the relative computational cost of calcu-

lating utility indicator values from a sample run and that of performing a sampling run. For the

case where a cheap utility indicator value is used, such as the objective solution error achieved

by a single objective algorithm, the option of reducing the maximum OFE is sensible. Alter-

natively, when an expensive utility indicator such as HV is used, then the second approach is

more appropriate. Re-sampling interruption checks continue until either xB is empty or the

desired re-sampling size ns is reached. If the desired re-sampling size ns is reached, the approx-

imated utility values are used to update the Tu subproblems’ PFAs. MOTA users control the

aggressiveness of the resampling interruption through two control parameters, namely the num-

ber of sample increments between resampling interruption checks, ∆ns , and the interruption

confidence level used, α.

The bi-objective nature of the subproblems is exploited as in Section 2.2.3, in order to

efficiently perform PFA dominance and dominance likelihood checks. A flow chart for the CPV

tuple assessment procedure for the check all noise handling approach is shown in Figure 3.2.

3.2.5 Algorithm Overview

MOTA tunes an optimization algorithm to multiple criteria over a range of OFE budgets, using

the aforementioned concepts. The decision space MOTA searches is set up according to the

tuning formulation presented in Subsection 3.2.1, where each decision vector is of the following

form:

x =



v1

v2

...

vn

lnβa


, (3.9)

where v1, v2, . . . , vn are the real CPVs optimized, and βa is the OFE budget at which the

v1, v2, . . . , vn CPV tuple is to be assessed. The natural logarithm of βa is optimized in place

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

no

yes

generate extra samples for

ns reached?

remove all b from xB where

u′2D
j ∀ b ∈ xB

x, Tu

xB ← {b ∀ b ∈ B : b ≤ β+}

update Pk ∀ k ∈ Tu

Pk ≤α u′2D
j ∀ k ∈ Tu

Figure 3.2: Flow chart of MOTA’s CPV tuple assessment procedure when computationally expensive utility
indicator values are calculated.

of βa directly, due to logarithmic CPV trends typically observed when tuning algorithms under

multiple OFE budgets (Dymond et al., 2014).

Tuning begins with MOTA randomly generating decision vectors throughout the CPV de-

cision space for each of the tuning subproblems. Each initial decision vector x0 is generated

as:

x0 = Il + r() ◦ (Iu − Il), (3.10)

where Il is the lower initialization bound, Iu is the upper initialization bound, ◦ is the Hadamard

product operator, and r() is a function returning a vector whose individual element values are

randomly generated independently of each other between 0 and 1 with a uniform probability

density. These initial decision vectors are evaluated as outlined in the Subsection 3.2.4 as to

generate the initial subproblem PFAs. A limitation of the initialization approach in (3.10) is the

high computational cost resulting when tackling overly contrained problems. Such overly con-

strainted problems are however not typical for tuning where cheap CPV inequality constraints

are the norm.

After initialization, MOTA uses operators based upon differential evolution (DE; Storn and

Price, 1997) to generate new candidate decision vectors. DE operators are used given the

algorithm’s past successes on a vast range of problems (Das and Suganthan, 2010). Before

the manner in which the DE operators are extended into the context of the MOTA tuning

formulation is explained, the traditional single objective DE operators are first described. DE

has numerous strategies available, such as rand/1/bin and best/1/bin. The DE rand/1/bin

candidate decision vector generation process for the i’th member of the population begins with

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

generating a mutant vector mi as follows

mi = xr1 + F (xr2 + xr3), (3.11)

where xk is the decision vector of the k’th member of the population, the indexes r1, r2 and

r3 are randomly selected, and F is the user-specified scaling factor. The population indexes

r1, r2 and r3 are randomly selected with each member from the population having an equal

likelihood of selection, subject to all the indexes being different and none being equal to i. After

mutation, crossover takes place to generate the candidate decision vector for the i’th member

of the population xci , as follows

xci,k =

mi,k if r() < Cr or k = kf

xi,k otherwise,
(3.12)

where k is the dimension index, r() is a function which returns a number randomly between

0 and 1 with a uniform probability density, Cr is the user-specified crossover rate, kf is the

dimension which is forced to crossover, and xi is the i’th population member’s current decision

vector. Further information about DE and its strategies can be found in Das and Suganthan

(2010).

MOTA’s candidate decision vector generation process for the i’th subproblem, begins by

randomly selecting three subproblems indexes s1, s2 and s3, for the purposes of mutation. The

pool from which s1, s2 and s3 are randomly selected with equal likelihood, consists of the indexes

of the subproblems in the i’th subproblem’s candidate generation neighborhood, together with

i’th subproblem’s index, i. Contrary to the rand/1/bin strategy, the constraints are omitted

that s1, s2 and s3 all be unique and not equal to i. These constraints are omitted since the

Pareto Set of a subproblem consists of multiple decision vectors which can be used for the

generation of a mutant vector. Three decision vectors, xs1 , xs2 and xs3 are then selected from

the PFAs of the s1, s2 and s3 subproblems respectively, according to a target improvement OFE

budget, βt. βt is selected randomly from the target OFE budgets B with each element in B

having equal likelihood of selection. xs1 is selected as the decision vector from the PFA of the

s1 subproblem which performs best for an OFE budget of βr, where βr is perturbed about βt

as follows

lnβr = lnβt + rg() · βδ · (lnBmax − lnBmin), (3.13)

where βδ is the user-specified perturbation factor with βδ ∈ [0, 1], rg is a function which returns

a value randomly generated using a Gaussian distribution with standard deviation of 0.25 and

a mean of 0.0, Bmin is the minimum OFE budget in B, and Bmax is the maximum OFE budget

in B. xs2 and xs3 are selected in the same manner, using the same βt but different βr values

as to exploit any CPV versus OFE budget trends which may be present. Based upon the DE

best/1/bin strategy, MOTA’s mutant vector is generated as

mi = xs1 + r() ◦ F (xs2 + xs3), (3.14)

where the r() term is added to promote search diversity (Salehinejad et al., 2014). DE Crossover

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

is then conducted between the resulting mutant vector, and the decision vector from the i’th

subproblem which is optimal for an OFE budget of βt, as in (3.12). Lastly, the assessment OFE

budget of the generated candidate decision vector’s is set to βt.

Constraint handling is achieved by regenerating candidate vectors until all constraints are

satisfied. Although this approach is not viable for applications consisting of computationally ex-

pensive constraints, it is acceptable for tuning applications since tuning constraints are normally

computationally cheap. MOTA does not enforce nor have a specialized strategy for handling

bound constraints, since for many tuning problems sensible CPV bounds are difficult to de-

termine a priori. Additionally, MOTA has an internal constraint where it is required that the

candidate decision vector be different from the xi vector it is trying to improve upon. This

internal constraint is necessary for the beginning stages of MOTA’s tuning optimization, for

which the subproblems PFAs consists of a low number of unique decision vectors. If for a given

subproblem, candidate generation using the DE operations in (3.14) and (3.12) fails to satisfy

the constraints 10 times in a row during a single iteration, then a randomly generated valid deci-

sion vector is used, as outlined in (3.10). Once the candidate decision vectors are generated for

all of the subproblems, these candidate decision vectors are assessed to update the subproblem

PFAs as outlined in Subsection 3.2.4.

Generation of the candidate decision vectors continues until all of the subproblems become

inactive. A subproblem becomes inactive when one of its termination criteria is satisfied, signal-

ing that no more candidate vectors should be generated for that subproblem. If a subproblem

is inactive but is in the update neighborhood of an active subproblem the inactive subproblem’s

PFA is still updated, when the active subproblem’s candidate vector is assessed. Per subprob-

lem termination or inactivity criteria are appealing since it allows for greater control compared

to making all subproblems inactive at the same time. For example, per subproblem inactiv-

ity allows for allocation of differing amounts of computational resources for each subproblem.

Another example is adding termination criteria whereby a subproblem becomes inactive if no

substantial improvement is made to the PFA over the last couple of iterations.

Our implementation of MOTA is available in the optTune Python package1, and the pseu-

docode is given in Figure 3.3.

3.3 Numerical Setup

Numerical experiments are conducted to gauge the effectiveness of MOTA. Experiments are

chosen based upon the potential benefits of many objective tuning, benefits which motivated

MOTA’s development. In the introduction to this chapter it was proposed that a many objective

tuning algorithm could

• be more efficient at tuning an optimization algorithm to each problem of a test suite

compared to tuning an algorithm to each problem instance in isolation,

• be better suited to determining generalist CPV tuples which perform well over an entire

problem test suite, and would

1http://code.google.com/p/opt-tune-python-package/.

56

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

procedure MOTA
for sp ∈ subproblems do

repeat
x0 . (3.10)

until x0 valid
end for
evaluate all the generated x0 . Subsection 3.2.4
i← 1
while a subproblem is active do . main loop

for sp ∈ active subproblems do
repeat

βr . (3.13)
m . (3.14)
xc . (3.12)

until xc valid
end for
evaluate all the generated xc . Subsection 3.2.4
i← i+ 1

end while
end procedure

Figure 3.3: MOTA pseudocode

• be able to tune MOEAs more holistically by tuning them according to multiple unary

performance metrics simultaneously.

MOTA is benchmarked with regards to the first two statements, namely determining specialist

CPVs which are well suited to a single problem, and with regard to determining generalist

CPVs which perform well over an entire test suite. For brevity, the tuning of multi-objective

algorithms to multiple unary performance metrics is left for future work.

3.3.1 Tuning Problems Used

The tuning problems used are built around the commonly used ZDT (Zitzler et al., 2000),

DTLZ (Deb et al., 2005), and WFG (Huband et al., 2006) multi-objective test problem suites.

Since the numerical experiments entail tuning algorithms to these problem suites, lower-than-

normal dimensional versions of WFG and DTLZ problems are used, to ensure that the com-

putational costs are manageable. For the bi-objective ZDT problems, algorithms are tuned to

ZDT problems 1, 2, 3, 4 and 6, where the standard setup of 30 decision variables are used for

problem 1,2 and 3, while 10 decision variables are used for problem 4 and 6. The 5th ZDT

problem is omitted as this is commonly done in practice. Regarding the WFG problems, 2

position decision variables, 10 distance decision variables, and 2 objectives are used for all the

problems. For the DTLZ problems the number of decision variables is kept at the commonly

used values of 7, 12, 12, 12, 12, 12 and 22 for problems 1 through 7 respectively, while the

number of objectives is reduced from the standard 3 to only 2.

Selected multi-objective optimization algorithms are tuned to these problem suites, accord-

ing to inverted generational distance (IGD; Zhang et al., 2008), which is able to measure both

convergence to and spread across the true PF. Initially tuning according to HV was considered,

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

but was later disregarded due to the problem specific effort of selecting HV reference points

sensitive to the performance at low OFE budgets. The tuning objectives are to minimize the

IGD for each problem in the test suite the algorithm is being tuned to, while minimizing the

OFEs used. Therefore, tuning an algorithm to the 9 WFG problems entails solving a tuning

problem with the 10 objectives:

F =


IGDWFG1

IGDWFG2

. . .

IGDWFG9

βa

 , (3.15)

where IGDWFG1 is the IGD achieved on the first WFG problem given the CPV tuples being

assessed and an OFE budget of βa, similarity for IGDWFG2 to IGDWFG9. Regarding the

OFE budgets which algorithms are to be tuned under, 51 OFE budgets logarithmically spaced

between 10 to 10 000 are used.

Separate problems are constructed for each algorithm tuned, as to have a tuning problem

which entails determining specialist CPVs only, and to have tuning problems which entail

determining generalist and specialist CPVs together. For the specialist tuning problems, the

bi-objective PF sections of interest correspond to each problem in the test suite in isolation

together with the OFE budget objective. Continuing to use the WFG test suite example, the

nine utility weight vectors of [1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1] would be used for the

specialist problem. For the generalist tuning problems, additional preference articulations are

added to determined CPV tuples which perform well for all utility objectives, i.e. [1, 1, . . . , 1],

and for all leave-one-out combinations, i.e. [0, 1, . . . , 1], [1, 0, 1, . . . , 1], . . . , [1, . . . , 1, 0]. All of

the generalist subproblems make use of weighted sum scalarization in the normalized objective

space for their bi-objective decomposition. The leave-one-out preference articulations are added

as to allow for scrutinization of the [1, 1, . . . , 1] articulation, as to determine if one objective has

a disproportionate effect in spite of scalarization occurring using a normalized objective space.

3.3.2 Algorithms Tuned

The algorithms tuned to the ZDT, DTLZ and the WFG problems are the commonly used

second version of non-dominated sorting genetic algorithm (NSGA-II; Deb et al., 2002) and

the multi-objective evolutionary algorithm based on decomposition (MOEA/D; Zhang and Li,

2007). The NSGA-II and MOEA/D implementations from version 4.3 of the jMetal software

package (Durillo and Nebro, 2011)2 are used in these experiments, with slight modifications.

The default NSGA-II and MOEA/D implementations in jMetal 4.3 handle the OFE budget

termination criteria in different manners. The NSGA-II implementation checks against the OFE

budget constraint after every pair of offspring are created, i.e. every 2 OFEs. In contrast the

MOEA/D implementation checks against the OFE budget constraint at the end of each iteration

after all the subproblem candidates have been evaluated. The NSGA-II implementation is

2http://jmetal.sourceforge.net/

58

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

modified so that the same behavior as MOEA/D is achieved, so that the tuning results can be

compared against previous studies (Dymond et al., 2013).

Selected real and integer CPVs are tuned for NSGA-II and MOEA/D, while options based

control parameters are left on their jMetal defaults. For NSGA-II the tuned control parameters

are the population size N , the crossover probability cp and the mutation probability mp. The

selection, mutation and cross-over operators are fixed to binary tournament selection, simulated

binary crossover (Deb and Agrawal, 1994) and polynomial mutation, respectively. The tuning

initialization bounds for NSGA-II are N ∈ [10, 200], cp ∈ [0, 1] and mp ∈ [0, 1]. The tuning

constraints for NSGA-II are

5 ≤ N ≤ 500 (3.16)

0 ≤ cp ≤ 1 (3.17)

0 ≤ mp ≤ 1. (3.18)

Concerning MOEA/D, the control parameters tuned are the number of subproblems Ns, the

neighborhood size fraction Tf , the DE crossover probability Cr and DE scaling factor F . The

neighborhood size fraction controls the size of MOEA/D subproblem neighborhoods, with the

neighborhood size being equal to Ns multiplied by Tf . MOEA/D’s initialization bounds are

Ns ∈ [10, 200], Tf ∈ [0, 1], Cr ∈ [0, 1] and F ∈ [0, 2]. The tuning constraints of MOEA/D’s are

5 ≤ Ns ≤ 500 (3.19)

0 ≤ Tf ≤ 1 (3.20)

2 ≤ Ns Tf (3.21)

0 ≤ Cr ≤ 1 (3.22)

0 ≤ F ≤ 2. (3.23)

For pragmatic reasons both NSGA-II’s N and MOEA/D’s Ns are restricted to a maximum of

500, since the computational overhead of NSGA-II and MOEA/D increase proportionately with

N and Ns, respectively.

The computational budget allocated to the tuning problems corresponds to the upper limit

of what is deemed to be the standard use-case scenario. This upper limit is chosen as the com-

putational work produced by a high-end desktop or laptop computer left to tune over-night.

Specifically, 12 hours fully utilizing a 4th Generation Intel® Core™ i7-4700MQ Processor. For

the tuning problems described, the WFG generalist tuning problems are the most computa-

tionally expensive. Given this limiting factor, a computational budget is assigned to each

bi-objective decomposition which is equivalent to assessing 1000 CPV tuples up to the max-

imum OFE budget of 10 000 without resampling, giving a γ of 107. Since evaluating a CPV

tuple on a generalist bi-objective decomposition entails assessing the CPV tuple on all problems

in the test suite being tuned to, the specified γ budgets effectively allows for nu times less CPV

tuple evaluations compared to the specialist decompositions.

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3.3 Tuning Algorithms Compared

The tuning algorithms compared in the numerical experiments are MOTA, tMOPSO, and a

base-line heuristic RANDM . tMOPSO is compared against MOTA since it has been shown to be

effective at tuning optimization algorithms under multiple OFE budgets (Dymond et al., 2014).

RANDM , which is a basic random search heuristic equipped with MOTA’s CPV assessment

procedure, is added to the numerical experiments to gauge the benefits of MOTA’s DE-based

process for generating candidate decision vectors. RANDM generates a candidate decision

vector for the i’th subproblem, xci using a uniform random distribution as follows

xci,k =

lnβt if k = 1

xbti,k +
(
r()− 0.5

)(
Iu,k − Il,k

)
∀ k ∈ 2, nx,

(3.24)

where βt is the target improvement OFE budget selected randomly from B with each OFE

budget having the same likelihood of being selected, xbt is the decision vector from the i’th

subproblem’s PFA which performs the best at βt, Iu and Il are the tuning problem’s initial-

ization bounds, and r() is random function returning a value between 0 and 1 using a uniform

distribution. M-FETA (Smit et al., 2010) is not compared against MOTA on account of the

M-FETA algorithm not being designed to tune under multiple OFE budgets.

In order to apply the bi-objective tMOPSO tuning algorithm to the many objective tuning

problems, each tuning problem is broken up into uncoupled bi-objective subproblems. The

tMOPSO runs to determine the generalist CPV tuples happen last, since those runs require

information on the Nadir and Ideal point which are taken from the tMOPSO runs targeted

on specialist CPVs. Regarding the generalist tuning problems, MOTA and RANDM have

an advantage over tMOPSO, in that these algorithms share information between the solution

approximations of the different subproblems. tMOPSO as a bi-objective tuning algorithm has

no mechanics for sharing this many objective information. MOTA and RANDM use the same

neighborhood topology for the tuning problems. In particular, the specialist articulations, and

the overall generalist articulations have a zero-sized update neighborhood, while each of the

leave-one-out generalist articulations have an update neighborhood of size 3, consisting of two

other leave-one-out generalist articulations as well as the overall generalist articulation. For all

cases, MOTA and RANDM use a candidate generation neighborhood consisting of all of the

subproblems.

The same re-sampling interruption procedure is used by the compared tuning algorithms.

This commonality should ensure that any performance difference observed is not influenced by

the use of difference noise handling procedures. For MOTA, tMOPSO, and RANDM a total

sampling size of 25 is used, with resampling interruption checks occurring after sampling in-

crements of 1, 2, 3, 4, 5 and 10 using MWUTs given an interruption confidence of 60%. Since

the IGD calculations are of moderate computational cost, resampling interruption checks are

conducted for each OFE budget constraint under which a CPV tuple is being assessed. A com-

mon constraint handling approach is also used by the compared tuning algorithms. Candidate

process generation repeats until a valid decision vector is found, subject to a threshold of 10

attempts. After 10 attempts, random values are generated inside the initialization bounds until

60

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

a valid candidate is generated. Finally all algorithms use an OFE budget overshoot function of

β+ = 1.6βa + 100.

The comparison of MOTA and tMOPSO is complicated by the fact that the performance

of these algorithms is sensitive to their CPVs. These algorithms are therefore first tuned before

being compared, as to ensure MOTA, and tMOPSO use CPVs suitable for the problems on

which they are going to be compared. In contrast, the base-line RANDM does not require

pre-comparison tuning on account of not having any control parameters. The pre-comparison

tuning of MOTA and tMOPSO is done using the tuning particle swarm optimization (tPSO)

algorithm (Dymond et al., 2014)). tPSO is set up to search for CPVs well suited for the NSGA-

II ZDT specialist problem, and for the NSGA-II DTLZ specialist problem. The results from

these tPSO runs are to be compared against each other as to check consistency. MOTA and

tMOPSO are not tuned to the NSGA-II WFG specialist tuning problem since the WFG tuning

problems are computationally expensive in this numerical setup, being more then 10 times

more expensive than their ZDT and DTLZ counterparts. tPSO tunes each respective algorithm

according to the utility measure utPSO. utPSO is a weighted sum performance aggregation over

all of the respective subproblems for the tuning problem. For the NSGA-II DTLZ specialist

problem which has 7 subproblems or preference articulations, tPSO minimizes

utPSO = −
7∑
i=1

τi, (3.25)

where τi is the bi-objective HV of the i’th IGD objective and the βa or speed objective, calculated

on the PF normalized between a commonly used Nadir and Ideal point. The same setup is used

for tuning to the NSGA-II ZDT specialist problem. To account for stochastic effects, resampling

over 20 independent runs is conducted. Based on Dymond et al. (2014), the tPSO settings are

a swarm size of 10 and an inertia factor of 0.5. The tPSO tuning budget is 400 CPV tuple

evaluations, which is equivalent to assessing 20 CPV tuples using a resampling size of 20. tPSO

performs pre-emptive resampling termination checks after every resampling iteration, using

MWUTs and an interruption confidence of 66%. Regarding handling tuning constraints, if an

invalid CPV tuple is generated, tPSO continues to regenerate that tuple until all constraints

are satisfied.

The MOTA CPVs which are tuned by tPSO are the DE scaling factor F , the DE crossover

rate Cr, and the OFE perturbation factor βδ. tPSO initialization bounds are F ∈ [0, 4], Cr ∈
[0, 1] and βδ ∈ [0.1, 0.5] The tPSO tuning constraints for MOTA are F > 0, Cr ∈ [0, 1] and

βδ ∈ [0, 1]. For tMOPSO, the swarm size N , the inertia factor ω, the personal acceleration

constant cp, the global acceleration constant cg and tMOPSO’s OFE perturbation factor cβ

are tuned by tPSO. The initialization bounds for tMOPSO CPVs are N ∈ [2, 10], ω ∈ [0, 1],

cp ∈ [0, 3], cg ∈ [0, 3] and cβ ∈ [0.1, 0.5]. After initialization tPSO search constraints are N ≥ 2,

ω ∈ [0, 1] , cp ≥ 0, cg ≥ 0 and cβ ∈ [0, 1].

After the tPSO tuning is completed and effective CPVs for MOTA and tMOPSO are de-

termined, MOTA, tMOPSO and RANDM are applied to the 12 ZDT, DTLZ and WFG tuning

problems. To account for stochastic effects, comparison is conducted using a sample of 20

independent runs per tuning problem.

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.4 Numerical Results

The results from the numerical experiments are presented in three parts. First the results

are given from the tPSO tuning as to determine effective CPVs for MOTA and tMOPSO.

Thereafter, the numerical results from the specialist tuning problems are presented, followed by

those of the generalist tuning problems.

When analyzing the results from the tuning problems, the objective function values of

respective PFAs are normalized using a common objective normalization function. Use of a

common objective normalization function is required, since there is expected to some variance

in the Ideal and Nadir points approximations made by MOTA, tMOPSO, and RANDM during

the course of the tuning optimization. Therefore the objective value results are renormalized

between a common Nadir and Ideal point, for purposes of fair comparison. The comparison

Ideal and Nadir points were calculated after MOTA, tMOPSO, and RANDM were applied

to the specialist tuning problems, by combining the tuning results. Specifically, a PFA was

constructed for each tuning problem by combining all of the results for that problem. After

which, the Ideal and Nadir points used to compare the tuning algorithms, were taken from

these constructed PFAs. This approach could not however be followed for the tPSO tuning

of MOTA and tMOPSO since tPSO needs to compare performances during the course of the

tuning run, and as such cannot postpone the calculation of the normalization Ideal and Nadir

points. Therefore, tMOPSO was applied to the relevant specialist tuning problem to determine

normalization Ideal and Nadir points for use in the tPSO tuning runs. In particular, the results

from ten independent runs of tMOPSO using the CPV settings from Dymond et al. (2014),

were combined into one PFA as to determine the tPSO normalization Ideal and Nadir points,

the results of which are shown in Table 3.1.

3.4.1 Selecting the CPVs for the Compared Tuning Algorithms

Three independent runs were conducted for each tPSO tuning of MOTA and tMOPSO respec-

tively, as to check consistency among the tPSO results. Furthermore, the CPV recommendations

from the three runs from tuning to the NSGA-II ZDT specialist problem, are compared to those

of the three runs from tuning to the NSGA-II DTLZ specialist problem. The aim of these con-

sistency checks is to ensure that tPSO does not return an outlier CPV tuple, which is unlikely

to be reproduced by an independent third party conducting the same experiments.

Table 3.2 shows the CPV tuples which tPSO found to be effective for MOTA on the NSGA-

II ZDT and DTLZ specialist problems. An acceptable level of consistency is observed among

the tPSO CPV recommendations for MOTA, with similar values for F , Cr, βδ being returned.

Regarding tMOPSO, Table 3.3 shows tPSO’s CPV recommendations. An acceptable level of

consistency in terms of exploitation versus exploration is observed again, if the combined effects

of ω, cp + cg (Clerc and Kennedy, 2002), and the tMOPSO OFE perturbations cβ factor are

considered. For example, the tPSO recommendation which has a far higher ω than the other

tPSO ω recommendations, is accompanied by a lower cp + cg value relative to the other tPSO

runs. As expected, different CPV recommendations were made for the NSGA-II ZDT specialist

problem compared to that of the NSGA-II DTLZ specialist problem.

62

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 3.1: The Nadir and Ideal points of the respective NSGA-II tuning problems, which were used by tPSO to
compare performances. For these problems NSGA-II is tuned to enhance performance according to
the IGD performance metric under multiple OFE budgets. The IGD values tabulated are multiplied
by 103 for readability.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

max. 78.830 121.652 85.624 3197.750 279.499
min. 0.387 0.422 0.473 1.387 0.661

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

max. 18222.560 47.663 52108.309 13.593 46.092 677.292 182.925
min. 17.100 0.243 460.708 0.108 0.234 7.668 0.336

Table 3.2: CPVs recommended by the tPSO pre-tuning of MOTA

specialist problem run F Cr βδ

NSGA-II ZDT best 2.40 0.55 0.37
second best 2.55 0.83 0.44
worst 3.02 0.80 0.40

NSGA-II DTLZ best 1.94 0.73 0.17
second best 1.99 0.85 0.24
worst 1.54 0.79 0.18

Table 3.3: CPVs recommended by the tPSO pre-tuning of tMOPSO

specialist problem run N ω cp cg cβ

NSGA-II ZDT best 4 0.44 0.73 2.76 0.02
second best 7 0.31 1.62 2.10 0.23
worst 6 0.30 1.82 1.83 0.29

NSGA-II DTLZ best 5 0.28 1.35 2.34 0.02
second best 7 0.73 0.89 1.59 0.15
worst 6 0.26 3.10 1.31 0.30

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Given that no outliers were observed, the CPVs used in the remainder of the experiments

for MOTA and tMOPSO, are taken from the best tPSO run for tuning to the NSGA-II DTLZ

specialist problem. The tPSO results from the NSGA-II DTLZ specialist problem are chosen in

place of the results from NSGA-II ZDT specialist problem, since the DTLZ specialist problem is

considered more representative in terms of number of tuning objectives. Specifically, the DTLZ

problem has 8 tuning objectives if the speed objective is included, while the ZDT problem has

6 tuning objectives and the WFG problem has 10 tuning objectives.

3.4.2 Specialist Tuning Results

MOTA, tMOPSO and RANDM were applied to the specialist and generalist tuning problems

as to generate 20 independent runs for each problem. Analysis of the results from these tuning

problems is conducted according to the τ performance metric, where τ measures the HV achieved

for a given bi-objective decomposition in the normalized objective space as outlined in (3.25).

The normalization Ideal and Nadir points used in the analysis of the results for the NSGA-II

tuning problems are shown in Table 3.4, and in Table 3.5 for the MOEA/D tuning problems.

Comparison according to performance on the NSGA-II specialist tuning problems is con-

ducted quantitatively according to MWUTs as summarized in Table 3.6, and qualitatively

according to box plots as shown in Figure 3.4. Two sample means are considered statistically

similar if a MWUT indicates that the difference in these two sample means is not statistically

significant given a confidence level of 90%. On the NSGA-II ZDT specialist problem, tMOPSO

outperforms MOTA on 2/5 subproblems, is outperformed by MOTA on 2/5 subproblems, and

performs statistically similar on the remaining subproblem. For the NSGA-II DTLZ special-

ist problem, tMOPSO beats MOTA on 2/7 subproblems, is outperformed by MOTA on one

subproblem, and is statistically similar on the other 4/7 subproblems. Regarding the NSGA-II

WFG specialist problem, tMOPSO outperformed MOTA on 2/9 subproblems, it outperformed

by MOTA on 2/9 subproblems, while being statistically similar to MOTA on the remaining 5/9

subproblems. RANDM is outperformed by tMOPSO and MOTA on all the subproblems for

the NSGA-II specialist tuning problems, with exception to the DTLZ4 subproblem where the

difference in sample means is not statistically significant. The sample mean comparisons are in

agreement with a box plot comparisons of the algorithms performance, shown in Figure 3.4.

For the MOEA/D specialist tuning problems, comparison is conducted in the same man-

ner, with Table 3.7 summarizing the MWUT comparisons and Figure 3.5 showing box plots

of the sample distributions. On the MOEA/D ZDT specialist problem, MOTA and tMOPSO

produce similar performances on 4/5 subproblems, and MOTA outperformed tMOPSO on the

other ZDT subproblem. For the MOEA/D DTLZ specialist problem, tMOPSO outperformed

MOTA on 5/7 subproblems, while MOTA performed better on the remaining 2/7 subproblems.

Regarding the MOEA/D WFG specialist problem, tMOPSO outperformed MOTA on 3/9 sub-

problems, while for the other 6/9 subproblems MOTA and tMOPSO offer statistically similar

performances. RANDM is outperformed by MOTA and tMOPSO on all of the subproblems for

all of the specialist tuning problems, with exception of the subproblem focused on determing

CPVs for WFG9, for which statistically similar performance was recorded.

Taking the specialist results into account as a whole, it is concluded that MOTA and

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 3.4: The Nadir and Ideal points used to compare the NSGA-II based tuning problems. For these problems
NSGA-II is tuned to enhance performance according to the IGD performance metric under multiple
OFE budgets. The IGD values tabulated are multiplied by 103 for readability.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

max. 78.746 121.304 85.624 3140.462 275.842
min. 0.364 0.402 0.471 1.204 0.620

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

max. 17557.518 45.638 51911.085 13.593 45.951 673.232 174.187
min. 12.777 0.232 363.496 0.086 0.231 6.189 0.335

WFG1 WFG2 WFG3 WFG4 WFG5 WFG6 WFG7 WFG8 WFG9

max. 12.397 4.845 1.655 3.474 5.766 6.889 4.640 3.620 6.516
min. 3.483 0.171 0.714 0.092 0.605 0.679 0.081 0.745 0.180

Table 3.5: The Nadir and Ideal points used to compare the MOEA/D based tuning problems. For these
problems MOEA/D is tuned to enhance performance according to the IGD performance metric
under multiple OFE budgets. The IGD values tabulated are multiplied by 103 for readability.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

max. 81.068 123.746 88.729 3236.527 280.509
min. 0.129 0.112 0.402 0.797 0.056

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

max. 18895.532 47.975 54699.749 13.922 47.198 680.422 182.987
min. 2.101 0.174 228.864 0.063 0.177 0.120 0.194

WFG1 WFG2 WFG3 WFG4 WFG5 WFG6 WFG7 WFG8 WFG9

max. 12.434 5.066 1.699 3.740 6.059 7.189 4.864 3.743 6.863
min. 1.820 0.285 0.707 0.172 0.557 0.251 0.118 0.714 0.209

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 3.6: Performances on the NSGA-II specialist tuning problems.

τ(×103)

suite problem tMOPSO MOTA RANDM

ZDT 1 946.743 946.265 944.384
2 934.845 935.562 931.651
3 932.770 931.857 929.537
4 960 .120 960.496 955.470
6 938.548 939.447 935.492

DTLZ 1 966.481 966 .385 963.242
2 969.295 969.101 967.557
3 950.034 950.824 946.185
4 936.064 934 .882 935 .222
5 969 .339 969.345 967.734
6 808 .841 810.097 801.350
7 957.173 956.581 953.861

WFG 1 795.679 805.681 793.968
2 912 .616 913.655 908.411
3 969.683 969.162 967.491
4 932.710 931.937 928.284
5 951.742 951 .456 950.191
6 928 .772 930.064 921.503
7 934.793 934 .787 932.267
8 927.275 927 .262 924.992
9 939.018 941.294 938.045

† Italic entries indicate samples whose difference in mean relative to the sample with the best mean is not
statistically significant according to Mann-Whitney U-test with a 90% confidence level.

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tMOPSO MOTA RANDM
0.941

0.943

0.945

0.947

0.949

(a) ZDT1

tMOPSO MOTA RANDM
0.926

0.930

0.934

0.938

(b) ZDT2

tMOPSO MOTA RANDM
0.924

0.928

0.932

0.936

(c) ZDT3

tMOPSO MOTA RANDM
0.950

0.954

0.958

0.962

0.966

(d) ZDT4

tMOPSO MOTA RANDM
0.928

0.932

0.936

0.940

0.944

(e) ZDT6

tMOPSO MOTA RANDM
0.958

0.962

0.966

0.970

(f) DTLZ1

tMOPSO MOTA RANDM
0.965

0.967

0.969

0.971

(g) DTLZ2

tMOPSO MOTA RANDM
0.935

0.940

0.945

0.950

0.955

0.960

(h) DTLZ3

tMOPSO MOTA RANDM
0.92

0.93

0.94

0.95

(i) DTLZ4

tMOPSO MOTA RANDM
0.966

0.968

0.970

0.972

(j) DTLZ5

tMOPSO MOTA RANDM
0.78

0.79

0.80

0.81

0.82

(k) DTLZ6

tMOPSO MOTA RANDM
0.948

0.952

0.956

0.960

(l) DTLZ7

tMOPSO MOTA RANDM
0.76

0.78

0.80

0.82

(m) WFG1

tMOPSO MOTA RANDM
0.900

0.905

0.910

0.915

0.920

0.925

(n) WFG2

tMOPSO MOTA RANDM
0.965

0.967

0.969

0.971

(o) WFG3

tMOPSO MOTA RANDM
0.924

0.928

0.932

0.936

(p) WFG4

tMOPSO MOTA RANDM
0.948

0.950

0.952

0.954

(q) WFG5

tMOPSO MOTA RANDM
0.905

0.915

0.925

0.935

0.945

(r) WFG6

tMOPSO MOTA RANDM
0.928

0.930

0.932

0.934

0.936

0.938

(s) WFG7

tMOPSO MOTA RANDM
0.922

0.924

0.926

0.928

0.930

(t) WFG8

tMOPSO MOTA RANDM
0.930

0.934

0.938

0.942

0.946

(u) WFG9

Figure 3.4: τ distributions for the NSGA-II specialist problems

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 3.7: Performances on the MOEA/D specialist tuning problems.

τ(×103)

suite problem tMOPSO MOTA RANDM

ZDT 1 978.496 978 .324 975.777
2 975 .150 975.154 972.183
3 963.370 963.768 960.094
4 969 .652 969.875 965.638
6 987.639 987 .392 985.198

DTLZ 1 967.943 969.541 965.065
2 978.276 977.818 976.321
3 947.300 955.056 944.539
4 975.730 974.372 971.954
5 977.851 977.553 976.276
6 994.090 993.891 993.032
7 982.132 981.473 979.793

WFG 1 795 .654 796.439 773.524
2 897.245 897 .224 892.643
3 976.787 975.889 974.403
4 912.752 910.685 909.565
5 988.313 987.905 987.498
6 900 .856 902.272 898.140
7 932.921 932 .576 930.612
8 920.745 920 .254 917.489
9 930.300 928 .280 927 .276

† Italic entries indicate samples whose difference in mean relative to the sample with the best mean is not
statistically significant according to Mann-Whitney U-test with a 90% confidence level.

68

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tMOPSO MOTA RANDM
0.973

0.975

0.977

0.979

0.981

(a) ZDT1

tMOPSO MOTA RANDM
0.969

0.971

0.973

0.975

0.977

(b) ZDT2

tMOPSO MOTA RANDM
0.956

0.960

0.964

0.968

(c) ZDT3

tMOPSO MOTA RANDM
0.960

0.964

0.968

0.972

0.976

(d) ZDT4

tMOPSO MOTA RANDM
0.982

0.984

0.986

0.988

0.990

(e) ZDT6

tMOPSO MOTA RANDM
0.955

0.960

0.965

0.970

0.975

0.980

(f) DTLZ1

tMOPSO MOTA RANDM
0.974

0.976

0.978

0.980

(g) DTLZ2

tMOPSO MOTA RANDM
0.91

0.93

0.95

0.97

0.99

(h) DTLZ3

tMOPSO MOTA RANDM
0.966

0.970

0.974

0.978

(i) DTLZ4

tMOPSO MOTA RANDM
0.975

0.976

0.977

0.978

0.979

(j) DTLZ5

tMOPSO MOTA RANDM

0.992

0.993

0.994

0.995

(k) DTLZ6

tMOPSO MOTA RANDM
0.977

0.979

0.981

0.983

(l) DTLZ7

tMOPSO MOTA RANDM
0.72

0.76

0.80

0.84

(m) WFG1

tMOPSO MOTA RANDM
0.880

0.885

0.890

0.895

0.900

0.905

(n) WFG2

tMOPSO MOTA RANDM
0.972

0.974

0.976

0.978

0.980

(o) WFG3

tMOPSO MOTA RANDM
0.902

0.906

0.910

0.914

0.918

(p) WFG4

tMOPSO MOTA RANDM
0.987

0.988

0.989

(q) WFG5

tMOPSO MOTA RANDM
0.885

0.895

0.905

0.915

(r) WFG6

tMOPSO MOTA RANDM
0.928

0.930

0.932

0.934

(s) WFG7

tMOPSO MOTA RANDM
0.914

0.916

0.918

0.920

0.922

0.924

(t) WFG8

tMOPSO MOTA RANDM
0.91

0.92

0.93

0.94

(u) WFG9

Figure 3.5: τ distributions for the MOEA/D specialist problems

69

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tMOPSO offer similar performance, while both algorithms outperform the base-line RANDM .

It was postulated in the introduction that MOTA’s ability to share information among sub-

problems may be of benefit even for the case when an algorithm is to be tuned under multiple

OFE budgets to each instance of a problem suite on an individual basis only. In particular,

information sharing could aid tuning by exploiting common trends among the tuning solutions

to these problem instances. For these experiments, MOTA’s information sharing strategy via

candidate generation neighborhoods and DE operators, is not able to outperform tMOPSO,

even though CPV trends are as shown in Figure 3.6 and in Figure 3.7. If these results are

limited to MOTA mechanics, or are reflective of the validity of the idea of sharing information

as to aid to determining specialist CPVs over multiple OFE budgets as a whole, is left as a

question for future research.

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103 104
0

20

40

60
N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(a) ZDT1

101 102 103 104
5

15

25

35

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(b) ZDT2

101 102 103 104
0

20

40

60

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(c) ZDT3

101 102 103 104
5

10

15

20

25

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(d) ZDT4

101 102 103 104
5

10

15

20

25

30

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(e) ZDT6

101 102 103 104
0

20

40

60
N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(f) DTLZ1

101 102 103 104
0

50

100

150

200

250

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(g) DTLZ2

101 102 103 104
5

15

25

35

45

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(h) DTLZ3

101 102 103 104
0

40

80

120

160

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(i) DTLZ4

101 102 103 104
0

40

80

120

160

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(j) DTLZ5

101 102 103 104
5

15

25

35

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(k) DTLZ6

101 102 103 104
0

20

40

60

80

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(l) DTLZ7

101 102 103 104
4

8

12

16

20

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(m) WFG1

101 102 103 104
0

40

80

120

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(n) WFG2

101 102 103 104
0

40

80

120

160

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(o) WFG3

101 102 103 104
0

40

80

120

160

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(p) WFG4

101 102 103 104
0

40

80

120

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(q) WFG5

101 102 103 104
0

20

40

60

80

100

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(r) WFG6

101 102 103 104
0

50

100

150

200

250

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(s) WFG7

101 102 103 104
0

40

80

120

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(t) WFG8

101 102 103 104
0

40

80

120

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(u) WFG9

N
cp
mp

(v) Legend

Figure 3.6: The best tMOPSO results for the NSGA-II specialist tuning problems. The recommended CPVs
are shown for differing OFE budgets, β.

71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(a) ZDT1

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(b) ZDT2

101 102 103 104
0

40

80

120

160

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(c) ZDT3

101 102 103 104
4

8

12

16

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(d) ZDT4

101 102 103 104
0

50

100

150

200

250

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(e) ZDT6

101 102 103 104
5

15

25

35

45

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(f) DTLZ1

101 102 103 104
0

50

100

150

200

250

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(g) DTLZ2

101 102 103 104
5

10

15

20

25

30

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(h) DTLZ3

101 102 103 104
0

40

80

120

160

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(i) DTLZ4

101 102 103 104
0

100

200

300

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(j) DTLZ5

101 102 103 104
0

100

200

300

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(k) DTLZ6

101 102 103 104
0

40

80

120

160

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(l) DTLZ7

101 102 103 104
5

7

9

11

13

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(m) WFG1

101 102 103 104
0

20

40

60

80

100

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(n) WFG2

101 102 103 104
0

40

80

120

160

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(o) WFG3

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(p) WFG4

101 102 103 104
0

100

200

300

400

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(q) WFG5

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(r) WFG6

101 102 103 104
0

40

80

120

160

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(s) WFG7

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(t) WFG8

101 102 103 104
0

50

100

150

200

250

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(u) WFG9

N

T/N

Cr

F

(v) Legend

Figure 3.7: The best tMOPSO results for the MOEA/D specialist tuning problems. The recommended CPVs
are shown for differing OFE budgets, β.

72

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.4.3 Generalist Tuning Results

On the generalist tuning problems, MOTA’s CPV tuple assessment procedure which utilizes

update neighborhoods had a significant effect. On the NSGA-II generalist problems MOTA

outperformed tMOPSO on all of the ZDT, DTLZ and WFG subproblems as shown in Table 3.8

and Figure 3.10. RANDM is more competitive against MOTA on the NSGA-II generalist prob-

lems compared to the specialist problems. Specifically, on 6/24 subproblems the difference

in sample τ means between RANDM and MOTA is not statistically significant according to

MWUTs given a 90% confidence level. MOTA outperformed RANDM on the remaining 18/24

NSGA-II generalist subproblems. Regarding the MOEA/D generalist problems MOTA outper-

formed tMOPSO on all but 1/24 subproblems, as Table 3.9 and Figure 3.11 show. RANDM

outperformed MOTA on 1/24 subproblems, while performing worse than MOTA on the remain-

ing 23/24 subproblems.

The superior performance of MOTA on the generalist tuning problem is expected given

MOTA’s design. Unlike tMOPSO, MOTA is designed to be a many objective tuning algorithm.

Therefore MOTA is designed to share information between subproblems, whereas tMOPSO is

a bi-objective optimization algorithm and therefore has no mechanics to propagate information

among the different subproblems it solves. The outperformance of tMOPSO by RANDM on

the generalist tuning problems, compared to tMOPSO completely outperforming RANDM on

the specialist tuning problems, further emphasizes the importance of information sharing.

MOTA’s results were scrutinized in regard to producing sensible CPV recommendations.

Subproblems were added in the generalist tuning problem formulations for all the leave-one-

out generalist combinations. Comparing the results from these subproblems against the w =

[1, 1, . . . , 1] subproblem, gives an indication of the validity of MOTA’s results. Graphical com-

parison of the results of these leave-one-objective-out generalist and the full generalist is shown

for the NSGA-II generalist problems in Figure 3.10, and for the MOEA/D generalist problems

in Figure 3.11. For the NSGA-II problems, a high level of consistency among the generalist

subproblems in terms of crossover and mutation probabilities for similar OFE budgets is ob-

served, while the majority of population size CPV recommendations followed a similar trend.

In particular, for very low OFE budgets the optimal population size is equal to the OFE bud-

get. After which there is a drop in the optimal population size, at the OFE budget where

the NSGA-II operators become more effective than random search. Thereafter, the optimal

population size continues to increase as the available OFE budget increases. For the MOEA/D

problems, an acceptable level of consistency is also observed, with similar DE scaling factors,

crossover probability and neighborhood factions being recommended among similar OFE bud-

gets, while similar population size trends as for the NSGA-II generalist problem were observed.

Given the consistency with previous work in Dymond et al. (2013) MOTA’s results are deemed

acceptable.

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 3.8: Performances on the NSGA-II generalist tuning problems. The 1i6=j notation indicates a vector
whose elements are all equal to 1, with exception to the j’th element which is equal to 0.

τ × 103

suite w tMOPSO MOTA RANDM

ZDT 1 882.125 932.601 929.575
1i6=1 902.718 929.089 923.368
1i6=2 913.863 932.617 928.565
1i6=3 920.730 935.314 929.664
1i6=4 907.071 928.597 925.018
1i6=5 908.475 931.625 927.993

DTLZ 1 834.185 884.049 880.356
1i6=1 826.849 864.007 857.315
1i6=2 823.796 865.996 857.257
1i6=3 844.050 869.802 869 .114
1i6=4 858.144 904.283 891.732
1i6=5 832.369 864.767 857.945
1i6=6 894.699 921.736 920 .040
1i6=7 847.747 868.590 859.925

WFG 1 851.983 879.122 876.701
1i6=1 890.162 916.305 915 .295
1i6=2 852.251 870.980 870 .457
1i6=3 840.971 861.910 860 .170
1i6=4 856.030 874.207 872.268
1i6=5 839.367 866.008 862.065
1i6=6 848.161 871.661 868.776
1i6=7 850.533 869.538 867.419
1i6=8 848.610 869.767 865.051
1i6=9 847.614 869.408 866 .949

† Italic entries indicate samples whose difference in mean relative to the sample with the best mean is not
statistically significant according to Mann-Whitney U-test with a 90% confidence level.

74

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tMOPSO MOTA RANDM
0.7

0.8

0.9

1.0

(a) ZDT, w = 1

tMOPSO MOTA RANDM
0.7

0.8

0.9

1.0

(b) ZDT, w = 1i6=1

tMOPSO MOTA RANDM
0.84

0.88

0.92

0.96

(c) ZDT, w = 1i6=2

tMOPSO MOTA RANDM
0.80

0.84

0.88

0.92

0.96

(d) ZDT, w = 1i6=3

tMOPSO MOTA RANDM
0.82

0.86

0.90

0.94

(e) ZDT, w = 1i6=4

tMOPSO MOTA RANDM
0.85

0.87

0.89

0.91

0.93

0.95

(f) ZDT, w = 1i6=5

tMOPSO MOTA RANDM
0.70

0.75

0.80

0.85

0.90

0.95

(g) DTLZ, w = 1

tMOPSO MOTA RANDM
0.74

0.78

0.82

0.86

0.90

(h) DTLZ, w = 1i6=1

tMOPSO MOTA RANDM
0.74

0.78

0.82

0.86

0.90

(i) DTLZ, w = 1i6=2

tMOPSO MOTA RANDM
0.76

0.80

0.84

0.88

0.92

(j) DTLZ, w = 1i6=3

tMOPSO MOTA RANDM
0.65

0.75

0.85

0.95

(k) DTLZ, w = 1i6=4

tMOPSO MOTA RANDM
0.70

0.75

0.80

0.85

0.90

0.95

(l) DTLZ, w = 1i6=5

tMOPSO MOTA RANDM
0.82

0.86

0.90

0.94

(m) DTLZ, w = 1i6=6

tMOPSO MOTA RANDM
0.76

0.80

0.84

0.88

(n) DTLZ, w = 1i6=7

tMOPSO MOTA RANDM
0.78

0.82

0.86

0.90

(o) WFG, w = 1

tMOPSO MOTA RANDM
0.78

0.82

0.86

0.90

0.94

(p) WFG, w = 1i6=1

tMOPSO MOTA RANDM
0.80

0.82

0.84

0.86

0.88

(q) WFG, w = 1i6=2

tMOPSO MOTA RANDM
0.78

0.82

0.86

0.90

(r) WFG, w = 1i6=3

tMOPSO MOTA RANDM
0.82

0.84

0.86

0.88

(s) WFG, w = 1i6=4

tMOPSO MOTA RANDM
0.76

0.80

0.84

0.88

(t) WFG, w = 1i6=5

tMOPSO MOTA RANDM
0.76

0.80

0.84

0.88

(u) WFG, w = 1i6=6

tMOPSO MOTA RANDM
0.80

0.82

0.84

0.86

0.88

(v) WFG, w = 1i6=7

tMOPSO MOTA RANDM
0.80

0.82

0.84

0.86

0.88

(w) WFG, w = 1i6=8

tMOPSO MOTA RANDM
0.80

0.82

0.84

0.86

0.88

(x) WFG, w = 1i6=9

Figure 3.8: τ distributions for the NSGA-II generalist problems.

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 3.9: Performances on the MOEA/D generalist tuning problems. The 1i6=j notation indicates a vector
whose elements are all equal to 1, with exception to the j’th element which is equal to 0.

τ × 103

suite w tMOPSO MOTA RANDM

ZDT 1 954.444 964.325 963.128
1i6=1 955.393 961.119 958.943
1i6=2 957.256 963.529 961.398
1i6=3 962.893 965.680 963.138
1i6=4 968 .530 969.579 969.613
1i6=5 951.967 957.607 955.255

DTLZ 1 930.843 958.360 953.098
1i6=1 934.621 955.802 948.353
1i6=2 929.119 952.000 944.280
1i6=3 939.228 962.001 956.258
1i6=4 930.771 953.190 944.010
1i6=5 927.883 954.376 944.924
1i6=6 923.124 950.179 941.941
1i6=7 929.391 954.263 944.859

WFG 1 847.868 882.793 880.510
1i6=1 881.356 904.044 898.567
1i6=2 850.824 880.573 877.219
1i6=3 831.903 866.881 864.155
1i6=4 836.309 878.954 876.121
1i6=5 836.376 866.981 863.358
1i6=6 854.657 879.328 876.132
1i6=7 845.944 872.224 868.259
1i6=8 850.214 874.633 870.659
1i6=9 849.236 881.582 878.529

† Italic entries indicate samples whose difference in mean relative to the sample with the best mean is not
statistically significant according to Mann-Whitney U-test with a 90% confidence level.

76

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

tMOPSO MOTA RANDM
0.92

0.94

0.96

0.98

(a) ZDT, w = 1

tMOPSO MOTA RANDM
0.92

0.94

0.96

0.98

(b) ZDT, w = 1i6=1

tMOPSO MOTA RANDM
0.93

0.94

0.95

0.96

0.97

(c) ZDT, w = 1i6=2

tMOPSO MOTA RANDM
0.935

0.945

0.955

0.965

0.975

(d) ZDT, w = 1i6=3

tMOPSO MOTA RANDM
0.91

0.93

0.95

0.97

0.99

(e) ZDT, w = 1i6=4

tMOPSO MOTA RANDM
0.89

0.91

0.93

0.95

0.97

(f) ZDT, w = 1i6=5

tMOPSO MOTA RANDM
0.88

0.90

0.92

0.94

0.96

0.98

(g) DTLZ, w = 1

tMOPSO MOTA RANDM
0.86

0.90

0.94

0.98

(h) DTLZ, w = 1i6=1

tMOPSO MOTA RANDM
0.86

0.90

0.94

0.98

(i) DTLZ, w = 1i6=2

tMOPSO MOTA RANDM
0.86

0.90

0.94

0.98

(j) DTLZ, w = 1i6=3

tMOPSO MOTA RANDM
0.88

0.90

0.92

0.94

0.96

0.98

(k) DTLZ, w = 1i6=4

tMOPSO MOTA RANDM
0.89

0.91

0.93

0.95

0.97

(l) DTLZ, w = 1i6=5

tMOPSO MOTA RANDM
0.86

0.90

0.94

0.98

(m) DTLZ, w = 1i6=6

tMOPSO MOTA RANDM
0.89

0.91

0.93

0.95

0.97

(n) DTLZ, w = 1i6=7

tMOPSO MOTA RANDM
0.78

0.82

0.86

0.90

(o) WFG, w = 1

tMOPSO MOTA RANDM
0.82

0.86

0.90

0.94

(p) WFG, w = 1i6=1

tMOPSO MOTA RANDM
0.78

0.82

0.86

0.90

(q) WFG, w = 1i6=2

tMOPSO MOTA RANDM
0.76

0.80

0.84

0.88

(r) WFG, w = 1i6=3

tMOPSO MOTA RANDM
0.70

0.75

0.80

0.85

0.90

0.95

(s) WFG, w = 1i6=4

tMOPSO MOTA RANDM
0.70

0.75

0.80

0.85

0.90

(t) WFG, w = 1i6=5

tMOPSO MOTA RANDM
0.78

0.82

0.86

0.90

(u) WFG, w = 1i6=6

tMOPSO MOTA RANDM
0.76

0.80

0.84

0.88

(v) WFG, w = 1i6=7

tMOPSO MOTA RANDM
0.78

0.82

0.86

0.90

(w) WFG, w = 1i6=8

tMOPSO MOTA RANDM
0.76

0.80

0.84

0.88

0.92

(x) WFG, w = 1i6=9

Figure 3.9: τ distributions for the MOEAD generalist problems.

77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103 104
5

15

25

35

45
N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(a) ZDT, w = 1

101 102 103 104
5

10

15

20

25

30

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(b) ZDT, w = 1i6=1

101 102 103 104
5

10

15

20

25

30

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(c) ZDT, w = 1i6=2

101 102 103 104
5

10

15

20

25

30

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(d) ZDT, w = 1i6=3

101 102 103 104
5

10

15

20

25

30

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(e) ZDT, w = 1i6=4

101 102 103 104
5

15

25

35

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(f) ZDT, w = 1i6=5

101 102 103 104
0

20

40

60

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(g) DTLZ, w = 1

101 102 103 104
0

20

40

60

80

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(h) DTLZ, w = 1i6=1

101 102 103 104
0

40

80

120

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(i) DTLZ, w = 1i6=2

101 102 103 104
0

20

40

60

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(j) DTLZ, w = 1i6=3

101 102 103 104
5

15

25

35

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(k) DTLZ, w = 1i6=4

101 102 103 104
0

20

40

60

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(l) DTLZ, w = 1i6=5

101 102 103 104
0

40

80

120

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(m) DTLZ, w = 1i6=6

101 102 103 104
0

20

40

60

80

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(n) DTLZ, w = 1i6=7

101 102 103 104
10

20

30

40

50

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(o) WFG, w = 1

101 102 103 104
0

20

40

60

80

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(p) WFG, w = 1i6=1

101 102 103 104
0

20

40

60

80

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(q) WFG, w = 1i6=2

101 102 103 104
10

20

30

40

50

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(r) WFG, w = 1i6=3

101 102 103 104
0

20

40

60

80

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(s) WFG, w = 1i6=4

101 102 103 104
10

30

50

70

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(t) WFG, w = 1i6=5

101 102 103 104
10

30

50

70

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(u) WFG, w = 1i6=6

101 102 103 104
10

30

50

70

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(v) WFG, w = 1i6=7

101 102 103 104
10

30

50

70

90

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(w) WFG, w = 1i6=8

101 102 103 104
0

20

40

60

80

N

0.0

0.2

0.4

0.6

0.8

1.0

c
p
,
m
p

β

(x) WFG, w = 1i6=9

Figure 3.10: The best MOTA results for the NSGA-II generalist tuning problems. The recommended CPVs
are shown for differing OFE budgets, β. The legend for the above subfigures is the same as in
Figure 3.6.

78

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103 104
0

20

40

60

80
N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(a) ZDT, w = 1

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(b) ZDT, w = 1i6=1

101 102 103 104
0

20

40

60

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(c) ZDT, w = 1i6=2

101 102 103 104
0

20

40

60

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(d) ZDT, w = 1i6=3

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(e) ZDT, w = 1i6=4

101 102 103 104
0

20

40

60

80

100
N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(f) ZDT, w = 1i6=5

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(g) DTLZ, w = 1

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(h) DTLZ, w = 1i6=1

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(i) DTLZ, w = 1i6=2

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(j) DTLZ, w = 1i6=3

101 102 103 104
0

20

40

60

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(k) DTLZ, w = 1i6=4

101 102 103 104
5

15

25

35

45

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(l) DTLZ, w = 1i6=5

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(m) DTLZ, w = 1i6=6

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(n) DTLZ, w = 1i6=7

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(o) WFG, w = 1

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(p) WFG, w = 1i6=1

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(q) WFG, w = 1i6=2

101 102 103 104
0

40

80

120

160

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(r) WFG, w = 1i6=3

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(s) WFG, w = 1i6=4

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(t) WFG, w = 1i6=5

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(u) WFG, w = 1i6=6

101 102 103 104
0

50

100

150

200

250

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(v) WFG, w = 1i6=7

101 102 103 104
0

20

40

60

80

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(w) WFG, w = 1i6=8

101 102 103 104
0

40

80

120

N

0.0

0.4

0.8

1.2

1.6

2.0

T
/
N
,
C
r
,
F

β

(x) WFG, w = 1i6=9

Figure 3.11: The best MOTA results for the MOEA/D generalist tuning problems. The recommended CPVs
are shown for differing OFE budgets, β. The legend for the above subfigures is the same as in
Figure 3.7.

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Before concluding this chapter, a disclaimer is given pertaining to the CPV tuples found to

be optimal in these numerical experiments. NSGA-II and MOEA/D practitioners are reminded

that these CPV tuples are only guaranteed of producing favorable results for optimization

problems similar to those used in these experiments, i.e. the ZDT, DTLZ and WFG problems.

Therefore if an optimization problem is tackled which is different from these problems, prac-

titioners are advised to use MOTA or another tuning algorithm, as to determine CPV tuples

which are effective on testing problems more representative of the problem being tackled.

With tMOPSO and MOTA presented, the next chapter demonstrates how these CPV study

tools can be used in optimization algorithm benchmarking.

80

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4

BENCHMARKING OPTIMIZATION

ALGORITHMS ACCORDING TO THEIR

TUNABILITY

Benchmarking optimization algorithms is significant to both researchers and practitioners. Re-

searchers use benchmarking in order to assess new optimization algorithms and algorithm modi-

fications. For practitioners, benchmarking results provide useful information on which optimiza-

tion algorithm to use for the optimization problem they are engaged with. The benchmarking

of optimization algorithms is however complicated by many factors. The performance of opti-

mization algorithms is sensitive to characteristics of the problem to be tackled (Wolpert and

Macready, 1997), and the termination criteria imposed. Therefore, if a practitioner uses an

algorithm well suited to a certain objective functions and constraints, there is no guarantee of

favorable performance on another problem with different characteristics.

Another important benchmarking consideration is that of the effect of CPVs. Here the

philosophy is followed that an optimization algorithm is an idea or an approach to optimiza-

tion, and the CPVs specify how exactly that idea is executed. Consider a genetic algorithm

(GA) which uses the nature-inspired processes of selection, mutation and crossover to solve

an optimization problem. A GA’s CPVs specify the finer details of the search, by controlling

factors such as the population size, the mutation rate, and the manner in which crossover is

conducted. Benchmarking an optimization algorithm according to one CPV tuple can therefore

be misleading, since that algorithm’s idea is not being benchmarked but rather only one in-

stance of that idea. Moreover, is that performance measured representative of an optimization

algorithm’s suitability to a given optimization problem and termination criteria as a whole, or

is the performance measured representative of those CPVs only. Similarly, out of all the CPVs

and options available, how challenging is it to get favorable performance out of the algorithm

being benchmarked for specific problem characteristics and termination criteria? Questions of

this nature are particularly significant to optimization practioners who employ automated al-

81

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

gorithm configuration (López-Ibáñez and Stützle, 2012) techniques. In particular information

regarding the tunability of an optimization algorithm to certain problem types, should aid auto-

mated algorithm configuration practitioners in selecting which algorithm to tune to the selected

training problems.

This chapter’s contribution is to investigate algorithm benchmarking through tuning, with

the suitability of an algorithm to an optimization problem being gauged, according to that

algorithm’s tunability to that problem’s search space characteristics and termination criteria.

Benchmarking via tunability is motivated by the notion that if an optimization algorithm is well

suited to a given problem, then not only will there be CPVs which result in good performance,

but those CPVs will be easy to find. Benchmarking via tunability is therefore different to

comparing tuned algorithms, since the proposed approach does not only entail the comparison

of algorithms under even tuning, but also incorporates the difficulty of computational effort to

obtain those tuned performances. Incorporation of tuning effort is a fundamental difference, as

is elaborated on further in Section 4.3.

The outline of this chapter is as follows; Preliminary definitions and benchmarking consid-

eration are discussed in Section 4.1. Current benchmarking practices and related work are then

presented in Section 4.2. Benchmarking via tunability is then discussed in Section 4.3. Numer-

ical experiments to investigate the effectiveness of benchmarking via tunability then follow in

Section 4.4.

4.1 Preliminaries

Before related benchmarking practice is discussed, the prerequisite definitions and concepts are

presented. Among these definitions is what constitutes an optimization algorithm with regard

to both stochastic and deterministic algorithms. After this, benchmarking is discussed in the

context of these definitions.

4.1.1 Definitions

The focus of this chapter is on benchmarking optimization algorithms for solving real-valued

single objective optimization problems. For these problems an optimization algorithm needs to

minimize or maximize an objective function f , where f : <nx 7→ < and nx is the dimensionality

of the search space. A problem can either be unconstrained or constrained. For the constrained

case an optimization algorithm needs to search a subset of <nx .

Central to our definition of an optimization algorithm is the concept of a deterministic

search process. A deterministic search process is a procedure which, when applied to an opti-

mization problem with given starting conditions and termination criteria, produces the same

result every time it is run. Readers familiar with the no free lunch (NLF) theorems for optimiza-

tion (Wolpert and Macready, 1997), can think of this deterministic search process as equivalent

to the parameterless deterministic algorithm described in the NFL theorems. The performance

of a deterministic search process depends upon both the optimization problem at hand, and

the specified termination criteria (Wolpert and Macready, 1997), since a search process consists

of search mechanics which, although beneficial for certain problems, are detrimental on others.

82

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Consider a hill climbing and a hill descending search process applied to a minimization problem.

For the general case it is safe to assume that if the minimization problem is unimodal, then the

hill climbing algorithm will be out-performed by the hill descending algorithm, while the oppo-

site will hold true if the algorithms are applied to a multi-modal problem. Further complicating

the comparison of deterministic search processes, is sensitivity to termination criteria such as

OFE budgets.

Here, an optimization algorithm is viewed as a set of deterministic search processes uni-

fied according to a central philosophy or idea. When a deterministic optimization algorithm is

applied to an optimization problem, the algorithm’s control parameter values (CPVs) specify

which of the deterministic search processes comprising the optimization algorithm is executed.

Given the sensitivities to both optimization problem characteristics and termination criteria,

CPVs are desirable since they allow practitioners to easily access different deterministic search

processes. Each of these deterministic search processes is better suited for different problems,

therefore allowing the practitioner to tackle a large variety of optimization problems using one

optimization algorithm. CPVs are therefore convenient, as the practitioner does not need to

download or implement a new deterministic search process for each new problem and termina-

tion criteria tackled.

Stochastic algorithms can also be represented through a set of deterministic search processes.

In particular, the stochastic search process used is specified by the algorithm CPVs. This

stochastic search process can be represented by a set of deterministic search processes, where

each deterministic search process has a certain likelihood of being selected. Consequently, a

stochastic optimization algorithm also describes a set of deterministic search processes, where

the CPVs and the random state specify which deterministic search process is applied to an

optimization problem. Therefore, a deterministic and a stochastic optimization algorithm can

both be represented through a set of deterministic search processes, sets which are often infinite

in size.

The infinite set of deterministic search processes representing an optimization algorithm,

is not the same as the set of all deterministic search processes, which is also infinite in size.

To demonstrate this principle, consider the set of real numbers between 2 and 3. This set

between 2 and 3, although of infinite size, does not contain all real numbers. In the same

way, an optimization algorithm which is an infinite set of deterministic search processes unified

according to a central idea, is not the same as the set of all deterministic search processes.

4.1.2 Benchmarking in the Context of the No Free Lunch Theorems

The NFL theorems show that comparing search processes over the set of all problems is unneces-

sary, since all search processes are equivalent with one out-performing the other on exactly half

of the set of all problems. This is provided that the search processes in question do not revisit

the same points in the decision space. Similarly, the NFL theorems prove that two stochastic

search processes are equivalent to each other when compared over all problems. Differentiation

between search processes is possible however if a subset of all possible problems or a class of

problems is considered.

The NFL theorems therefore indicate that if a practitioner does not incorporate any problem

83

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

specific knowledge when selecting a search process, the success achieved or lack there-off, is

purely up to chance. Practitioners should therefore, when possible, incorporate knowledge of

the problem at hand when selecting an optimization search process. For example, if the objective

function is based on an engineering simulation, then knowledge of physics behind this simulation

could be used. Alternatively, if the practitioner has in the past tackled optimization problems

with similar characteristics and termination criteria, knowledge of which search processes worked

well previously may also prove useful. This intuition may allow a practitioner to discern which

problem class the problem being tackled belongs to. However, since these factors rely on the

intuition and experience of the practitioner, selecting an appropriate search process for the

problem at hand is still a science and an art.

For the purpose of this chapter, it is assumed that a practitioner is able to incorporate

problem specific knowledge as to identify which class of problems the problem being tackled

belongs to. Once a problem class is identified, an algorithm with search processes which work

well on that class of problems can be used. Accordingly, the task falls to algorithm developers

to determine optimization algorithms well suited for a specified class of problems, not only with

regard to problem characteristics but also in terms of termination criteria.

4.2 Related Work

The suitability of an optimization algorithm is normally gauged by running numerical exper-

iments on a set of testing problems representative of the problem class of interest. The nu-

merical results from these experiments are scrutinized to determine if certain algorithms are

better suited than others to the problem class in question. Standard benchmarking practice is

to gauge performance using fixed CPVs, where each algorithm being compared is run on all

of the benchmarking problems using the same CPVs. The COmparing Continuous Optimizers

(COCO; Hansen et al., 2010; Poš́ık et al., 2012) platform, which was used at the GECCO 2009

to 2013 conferences, is an example of a problem suite designed for benchmarking algorithms

according to fixed CPVs.

The COCO platform assesses the performance of an optimization algorithm over a vast range

of objective function characteristics and termination criteria. Specifically, the COCO problems

are classified into five groups according to the characteristics of their objective functions. These

groups of objective functions being separable, low or moderate conditioning, high conditioning

and unimodal, multi-modal with adequate global structure, and multi-modal with weak global

structure. Each problem group consists of four to five base objective functions, all of which

are of generalizable search space dimension. An optimization algorithm is benchmarked by

running that algorithm over multiple variants or instances of each of the base problems. These

problem instances are transformed versions of the base problem with modifications made such as

shifting the location of the optimum and rotating the search space. For each problem instance,

the COCO framework records the number of OFEs required to reach different solution accuracy

levels which are logarithmically spaced. Performance measures similar to data profiles (Moré

and Wild, 2009) and performance profiles (Dolan and Moré, 2002) are then used to compare

the algorithms.

84

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Data profiles measure the ratio of additional OFEs required by an algorithm to obtain a

specified accuracy level, compared to that of the best algorithm for that problem and accuracy

level, for various accuracy levels. Data profiles are different from performance profiles which

focus on one solution accuracy level only. Performance profiles are generated by determining

the fraction of benchmarking problems an algorithm is able to solve given τ times the OFE used

by the best algorithm for that problem, for various τ . These performance measures all require

that the algorithms compared make use of the same CPVs throughout the experiments. In

order to gauge performance for the various CPV choices available for optimization algorithms,

we investigate an approach which makes use of control parameter tuning.

4.3 Benchmarking via Tunability

The philosophy behind benchmarking via tunability is that if an algorithm is well-suited to

a problem, then it should be easy to determine CPVs which result in favorable performance.

Therefore according to benchmarking via tunability, the suitability of an optimization algorithm

to an optimization problem class and termination criteria, is equivalent to that algorithm’s

tunability to that optimization problem class. Formally, benchmarking via tunability entails

the comparison of algorithms according to their tuned performances for various tuning budgets.

Subsequently, the outcome of benchmarking via tunability depends upon the following factors:

• the tuning formulations (the CPVs to tune, the tuning bounds, ...) of each of the bench-

marked algorithms,

• the tuning algorithm selected,

• the performance measure to tune to, and

• the tuning budgets selected.

The concept of a normal automated algorithm configuration practitioner could be used

as a guideline for selecting these four factors. A normal automated algorithm configuration

practitioner makes use of the standard implementations of an optimization algorithm and tunes

the control parameters associated with that implementation, while having limited amount of

computing resources at his/her disposal for tuning to the representative training problems. As

such, using tuning budgets for benchmarking via tunability which range up to the computational

effort equivalent of leaving a modern PC running overnight, would make sense according to the

concept of a normal automated algorithm configuration practitioner. This choice is admittedly

rather arbitrary, but reasonable, and other benchmarking practitioners may elect to choose a

different upper limit for the tuning budget.

Incorporation of the tuning effort is a crucial part of benchmarking via tunability. Consider

a completely generic optimization algorithm with control parameters which allow it to manifest

all possible search processes. For example, a Turing complete programming language whose

control parameters are the code characters. Given enough tuning this generic algorithm would

be able to produce the optimal search process for the problem class being considered. Therefore,

the solution to the best optimization algorithm according to optimal CPVs is any completely

85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

generic algorithm. This solution is of little use to practitioners and algorithm developers, be-

cause of the intractable amount of computational resources required for the tuning of such a

generic algorithm. On the other end of the scale, if zero tuning effort is allocated, benchmark-

ing according to default CPVs results. Given these considerations, tuning effort needs to be

incorporated.

The concepts of generalist CPVs (Smit and Eiben, 2010b) can be used to gauge an opti-

mization algorithm’s tunability to a problem class, and reduce the risk of over-tuning. Contrary

to specialist CPVs which are tuned to a single problem, generalist CPVs are tuned to multiple

problems as to get favorable overall performance. Tuning according to generalist CPVs there-

fore helps to reduce the risk of over-tuning, where CPVs are found which are over-specialized

for specific problem characteristics. The drawback of determining generalist CPVs is that an

extra layer of abstraction is added between the tuning results and the problem the algorithm is

being tuned to. If a testing problem is of special interest and/or particularly well understood

by the optimization practitioner, then information regarding the tunability of specialist CPVs

is more insightful, than the tunability of generalist CPVs.

The generalist versus specialist discussion can also be addressed from a multi-objective

perspective. If a search process is applied to n problems using k performance metrics, then

n × k performance objectives result. The performance resulting from CPV tuples can then be

compared according to Pareto dominance, with one CPV tuple dominating another, if it results

in better performance for all of the n × k performance objectives. Since these objectives are

typically conflicting, CPVs will often not dominate each other, with them being relatively non-

dominated. If the NFL theorems hold, then the larger the number of problems tackled and the

number of performance metrics, the more likely that CPV tuples are relatively non-dominated.

Generalist CPVs can be viewed as a comparison method whereby CPV tuples are compared

by aggregating the performance objectives into a scalar value and then comparing them. As

such generalist CPVs allow overall comparison, but results in information being discarded. It

is therefore important that both specialist and generalist CPV performance be considered.

Case studies to demonstrate benchmarking via tunability follow. These case studies are

designed to demonstrate different advantages and disadvantages of benchmarking via tunability,

compared to benchmarking using fixed CPVs.

4.4 Case Studies

All of the case studies conducted make use of problems from the COCO platform, and entail

comparison over multiple OFE budgets. Specifically, the first instance of selected COCO prob-

lems are used. Furthermore, as to keep the numerical experiments computationally light and

therefore easily reproducible, the 6 dimensional versions of these COCO problems are used.

Using a low dimensionality reduces the computational cost of evaluating the objective func-

tions, and also reduces the range of OFE budgets which need to be considered. A lower OFE

budget range can be considered because it should take less OFEs to accurately approximate the

solution to the lower dimensional version of the problem compared to the higher dimensional

version.

86

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.4.1 Comparing an Optimization Algorithm against Itself

The first case study entails the benchmarking of an optimization algorithm against itself. Con-

ventional fixed CPV benchmarking and benchmarking via tunability should indicate that this

algorithm is equal to itself. The problems used are the low or moderate conditioning COCO

problems, namely: the attraction sector COCO problem (P6), the step ellipsoidal problem (P7),

the Rosenbrock problem (P8), and the rotated Rosenbrock problem (P9). The algorithm bench-

marked against itself is Differential Evolution (DE; Storn and Price, 1997). DE is a population

based algorithm designed to optimize problems with non-differentiable, non-linear objective

functions, and has numerous control parameters which influence search behavior. Among these

control parameters are the population size N , the scaling factor F , and the crossover rate Cr.

The implemented version of DE uses the rand/1/bin (Storn and Price, 1997) scheme. Regarding

the search bound constraints for the COCO problems of [−5, 5]6, the implemented DE algo-

rithm uses a strategy whereby the candidate decision vector generation process repeats until

a valid design is determined. If the candidate decision vector process fails 10 times, then that

individual is re-initialized.

DE is compared against itself DEclone, for OFE budgets ranging between 5 and 5000. For

statistical considerations a resampling size of 20 is used for comparing DE to DEclone according

to mean solution accuracy in terms of objective function values. A sample size of 20 is deemed

acceptable given that MWUTs are to be conducted to check the statistical significance of the

results. The DE parameters used for fixed CPV benchmarking are a N of 30, a Cr of 0.9

and an F of 0.5. The tMOPSO tuning algorithm is used for the benchmarking via tunability

study. Based upon the work in Chapter 2, tMOPSO parameters are a population size of 10,

an inertia factor 0.2, personal and global acceleration constants of 2.0, an OFE assessment

overshoot factor of 2.0 and an OFE perturbation factor of 0.1. For noise handling a resampling

interruption confidence of 0.9 is used. The choice of tMOPSO CPVs although important, is not

critical, since both DE and DEclone are to be tuned using the same settings. The application

layer evaluation (γ) budget, which is the budget for the number of calls made by the algorithm

being tuned on the objective function it is being tuned to, is set to 2 × 106 and 4 × 106. A γ

of 2× 106 is equivalent to assessing 20 CPV tuples up to 5000 OFEs using a resampling size of

20. Two different γ budgets are used to investigate if there is any significant difference in the

results depending upon the tuning budget used. For the tuning of DE and DEclone, the tuning

initialization bounds are N ∈ [5, 50], Cr ∈ [0, 1] and F ∈ [0, 1]. After initialization the tMOPSO

algorithm is allowed to explore outside these bounds, subject to N ≥ 5, Cr ∈ [0, 1] and F > 0.

Figure 4.1 shows that both benchmarking using fixed CPVs and via tunability indicate that

DE and DEclone are equal. For comparison according to fixed CPVs, MWUTs show that DE

and DEclone are statistically indistinguishable in terms of mean values given a confidence level

of 95% for the null-hypothesis, for all the OFE budgets considered. Regarding comparison

according to tunability, the results are more noisy with false differences being observed at some

OFE budgets. These false differences are small and scarce enough that it can still be discerned

from the tunability results that DE and DEclone offer very similar optimization performance.

For the comparison of DE versus DEclone, benchmarking using fixed CPVs produced a less noisy

result at a lower computational cost. Specifically, benchmarking using fixed CPVs used one 20th

87

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103

β

−6

−2

2

6

P
6

lo
g
1
0
(
ε̄
)

(a) fixed CPVs

101 102 103

β

−10

−6

−2

2

6

P
6

lo
g
1
0
(
ε̄
)

(b) tunability (γ = 2× 106)

101 102 103

β

−10

−6

−2

2

6

P
6

lo
g
1
0
(
ε̄
)

DE
DEclone

(c) tunability (γ = 4× 106)

101 102 103

β

−1

0

1

P
7

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102 103

β

−12

−8

−4

0

4

P
7

lo
g
1
0
(
ε̄
)

(e) tunability (γ = 2× 106)

101 102 103

β

−14

−10

−6

−2

2

P
7

lo
g
1
0
(
ε̄
)

(f) tunability (γ = 4× 106)

101 102 103

β

0

1

2

3

4

P
8

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102 103

β

−2

0

2

4

P
8

lo
g
1
0
(
ε̄
)

(h) tunability (γ = 2× 106)

101 102 103

β

−6

−2

2

6

P
8

lo
g
1
0
(
ε̄
)

(i) tunability (γ = 4× 106)

101 102 103

β

0

1

2

3

P
9

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102 103

β

−3

−1

1

3

5

P
9

lo
g
1
0
(
ε̄
)

(k) tunability (γ = 2× 106)

101 102 103

β

−3

−1

1

3

5

P
9

lo
g
1
0
(
ε̄
)

(l) tunability (γ = 4× 106)

Figure 4.1: Comparison of DE against DEclone according to mean solution error (ε̄) achieved at various OFE
budgets (β). Shaded regions indicate β where Mann-Whitney U-tests failed to show that the
difference in means is statistically significant given a confidence level of 95% .

88

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

of the γ of that used by the benchmarking via tunability at a γ budget of 2×106. If tMOPSO’s

γ budget is increased to 4 × 106 then the noise level on the tunability results is reduced, as is

also shown in Figure 4.1.

Next, the scenario is considered where DE is compared against itself with different CPVs

and different tuning bounds. This scenario is added to illustrate the sensitivity of benchmarking

via fixed CPVs to the CPVs chosen for the algorithm being benchmarked, and benchmarking

via tunability’s sensitivity to the tuning bounds of the algorithms being compared. DE is

benchmarked against a variant of DE, DE2F , where DE2F is identical to DE except in one

regard. For DE2F the scaling factor’s effect is halved to promote exploitation while reducing

exploration. The parameters passed to DE2F and the tuning problem formulation are the same

as that for DE. Figure 4.2 shows the comparison of DE versus DE2F , according to performance

using fixed CPVs, and according to tunability.

Comparison based on fixed CPVs, shows that DE2F does perform better at lower OFE

budgets and worse at higher OFE budgets on all four of the problems considered. However,

since we know that DE and DE2F are the same algorithm, we know that this result is an

artifact of the CPVs chosen for the fixed CPV comparison, and not a result of any conceptual

difference between DE and DE2F . Comparison based on tunability was less susceptible to

the error in tuning initialization bounds. Since DE and DE2F only differ with regard to F ,

the CPVs determined by tMOPSO for DE and DE2F should primarily only differ in terms of

F , with N and Cr being comparable. However, as shown in Figure 4.3, different N and Cr

values were determined, in addition to different F values. Part of this difference is attributed

to noise from the resampling process used to approximate the mean solution error, and the

stochastic elements of tMOPSO. The rest of the difference is attributed to DE2F ’s initialization

bounds which were F ∈ [0, 1], instead of F ∈ [0, 2]. Even with this constructed error in the

tuning bounds, benchmarking via tunability was still able to correctly gauge DE and DE2F as

equivalent.

The tunability results from this case study are useful to a practitioner tackling a problem

similar to P6, P7, P8, or P9, in an individual sense. If performance in an overall sense is of

interest, an alternative tunability benchmarking approach is required.

4.4.2 Benchmarking over a Group of Problems

In order to gauge algorithm performance on a group of problems according to tunability, the

concept of Generalist CPVs is used. Generalist CPVs were introduced in the context of tuning to

multiple problems each at a single OFE budget. The concept of anytime parameters (Radulescu

et al., 2013), which perform well over a range of OFE budgets, could be used in conjunction with

generalist CPVs, to tune for anytime-generalist CPVs. However, acting under the assumption

that the practitioner knows which OFE budget is going to be used, the tuning in this case study

aims to determine multiple generalist CPV tuples each of which is well suited to a different OFE

budget. Tuning according to multiple problems over multiple OFE budgets can be efficiently

achieved using many objective tuning. In particular, the tuning problem can be formulated

with an objective for each problem being tuned to, together with a speed objective. As such,

tuning an algorithm to COCO problems P6 to P9 over multiple OFE budgets, can be achieved

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103

β

−6

−2

2

6

P
6

lo
g
1
0
(
ε̄
)

(a) fixed CPVs

101 102 103

β

−10

−5

0

5

10

P
6

lo
g
1
0
(
ε̄
)

(b) tunability (γ = 2× 106)

101 102 103

β

−10

−6

−2

2

6

P
6

lo
g
1
0
(
ε̄
)

DE
DE2F

(c) tunability (γ = 4× 106)

101 102 103

β

−1

0

1

P
7

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102 103

β

−12

−8

−4

0

4

P
7

lo
g
1
0
(
ε̄
)

(e) tunability (γ = 2× 106)

101 102 103

β

−12

−8

−4

0

4

P
7

lo
g
1
0
(
ε̄
)

(f) tunability (γ = 4× 106)

101 102 103

β

0

1

2

3

4

P
8

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102 103

β

−1

1

3

5

P
8

lo
g
1
0
(
ε̄
)

(h) tunability (γ = 2× 106)

101 102 103

β

−6

−2

2

6

P
8

lo
g
1
0
(
ε̄
)

(i) tunability (γ = 4× 106)

101 102 103

β

0

1

2

3

P
9

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102 103

β

0

1

2

3

4

P
9

lo
g
1
0
(
ε̄
)

(k) tunability (γ = 2× 106)

101 102 103

β

−3

−1

1

3

5

P
9

lo
g
1
0
(
ε̄
)

(l) tunability (γ = 4× 106)

Figure 4.2: Comparison of DE and DE2F according to mean solution error (ε̄) achieved at different OFE
budgets (β). Shaded regions indicate β where Mann-Whitney U-tests failed to show that the
difference in means is statistically significant given a confidence level of 95%

101 102 103
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
r
,
F

5

10

15

20

25

30

N

β

Cr

F

N

(a) DE

101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

C
r
,
F

4

6

8

10

12

14

16

18

N

β

Cr

F

N

(b) DE2F

Figure 4.3: Control Parameters found by tMOPSO for a γ of 4× 106 on P6 for DE and DE2F

90

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

by solving a 5 objective many objective problem. The MOTA algorithm which was specifically

developed for these scenarios is used in this case study.

To demonstrate benchmarking via tunability according to generalist CPVs, the DE algo-

rithm from the previous case study is compared to a particle swarm optimization (PSO; Eber-

hart and Kennedy, 1995) algorithm, over different COCO problem groups. The three groups of

COCO problems that are used in this case study, are the low or moderate conditioning group

(P6-P9), the unimodal high conditioning group (P10-P14) and the multi-modal with adequate

global structure group (P15-P19). The PSO algorithm benchmarked uses global neighborhood

topology, zero initial velocities, a fixed inertia factor, and the same constraint handling strategy

as DE. The PSO CPVs varied are the swarm size N , the inertia factor ω, and the personal

and global acceleration factors, cp and cg respectively. The initialization bounds used for these

CPVs are N ∈ [5, 50], ω ∈ [0, 1], cp ∈ [0, 3] and cg ∈ [0, 3]. PSO tuning constraints are N ≥ 5,

ω ∈ [0, 1], cp ≥ 0, and cg ≥ 0. Both the initialization bounds and tuning constraints are

chosen based upon the studies presented in Shi and Eberhart (1998) and Clerc and Kennedy

(2002). The CPVs used to benchmark PSO according to fixed CPVs are chosen based on Clerc

and Kennedy (2002), as N = 30, ω = 0.7, cp = 2 and cg = 2. The fixed CPVs and tuning

formulation for DE are the same as in the previous case study.

MOTA is set up to determine generalist CPVs which perform well according to a weighted

sum scalarization of objective solution errors in the normalized objective space. MOTA’s sub-

problem are set up as defined as, one bi-objective decomposition for determining the generalist

CPVs for various OFE budgets, while the other bi-objective decompositions focus on specialist

CPVs and all leave-one-out combinations. The MOTA parameter values used for the tunability

tests are a DE scaling factor of 2, a crossover rate of 0.7, an OFE perturbation factor of 0.2,

and an OFE overshoot factor of 2. For statistical considerations a resampling size of 20, and

resampling interruption confidence level of 0.9 are used. MOTA’s γ budget for each bi-objective

decomposition is 4×106 which corresponds to evaluating 40 CPV tuples up to 5 000 OFEs given

a resampling size of 20.

Benchmarking according to fixed CPVs and according to tunability produced different re-

sults, as shown in Figures 4.4 to 4.6. Comparison of DE and PSO according to the fixed CPVs

indicates that on certain problems PSO performs better at low OFE budgets, while DE per-

forms better in all other cases. Comparison according to specialist CPV performance indicates

that up until around 103 OFEs, both PSO and DE offer comparable performance when using

CPVs well-suited to the problem at hand, while for OFE budgets higher than this DE begins to

out-perform PSO, except on P15 and P19 where PSO outperforms DE at higher OFE budgets.

Similarly, comparison of the generalist CPVs indicate that DE and PSO are comparable up

to 103 OFE budgets. Analysis of the generalist CPVs determined by MOTA, which are also

shown in Figures 4.4 to 4.6, is done to scrutinize the tunability results. For OFE budgets higher

than 20 OFEs, CPV trends such as an increasing optimal population size are observed. This

observation is consistent with a previous study (Dymond et al., 2014).

Both DE and PSO have CPVs recommended for OFE budgets up to 10 and 20 respec-

tively, which result in the algorithms only performing one iteration. Since both algorithms have

the same initialization procedure, where the population or swarm is assigned decision vectors

91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103

β

−6

−2

2

6

P
6

lo
g
1
0
(
ε̄
)

(a) fixed CPVs

101 102 103

β

−10

−5

0

5

10

P
6

lo
g
1
0
(
ε̄
)

(b) specialists

101 102 103

β

−4

−2

0

2

4

6

P
6

lo
g
1
0
(
ε̄
)

PSO
DE

(c) generalists

101 102 103

β

−1

0

1

P
7

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102 103

β

−12

−8

−4

0

4
P

7
lo

g
1
0
(
ε̄
)

(e) specialists

101 102 103

β

−8

−4

0

4

P
7

lo
g
1
0
(
ε̄
)

(f) generalists

101 102 103

β

0

1

2

3

4

P
8

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102 103

β

−2

0

2

4

P
8

lo
g
1
0
(
ε̄
)

(h) specialists

101 102 103

β

−2

0

2

4

P
8

lo
g
1
0
(
ε̄
)

(i) generalists

101 102 103

β

0

1

2

3

P
9

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102 103

β

−2

0

2

4

P
9

lo
g
1
0
(
ε̄
)

(k) specialists

101 102 103

β

−2

0

2

4

P
9

lo
g
1
0
(
ε̄
)

(l) generalists

101 102 103
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w
,
c
p
,
c
g

5

10

15

20

25

30

35

40

45

50

N

β

ω
cp
cg

N

(m) PSO generalist CPVs

101 102 103
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
r
,
F

5

10

15

20

25

30

N

β

Cr

F

N

(n) DE generalist CPVs

Figure 4.4: Comparison of PSO and DE on COCO problems P6 to P9 according to mean solution error (ε̄)
achieved at various OFE budgets (β). Shaded regions indicate β where Mann-Whitney U-tests
failed to show that the difference in means is statistically significant given a confidence level of
95%.

92

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103

β

−8

−4

0

4
P

10
lo

g
1
0
(
ε̄
)

(a) fixed CPVs

101 102 103

β

−10

−6

−2

2

6

P
10

lo
g
1
0
(
ε̄
)

(b) specialists

101 102 103

β

0

2

4

6

P
10

lo
g
1
0
(
ε̄
)

PSO
DE

(c) generalists

101 102 103

β

−10

−6

−2

2

6

P
11

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102 103

β

−10

−5

0

5

10

P
11

lo
g
1
0
(
ε̄
)

(e) specialists

101 102 103

β

−1

1

3

5

P
11

lo
g
1
0
(
ε̄
)

(f) generalists

101 102 103

β

0

2

4

6

8

P
12

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102 103

β

−1

1

3

5

7

P
12

lo
g
1
0
(
ε̄
)

(h) specialists

101 102 103

β

0

2

4

6

8

P
12

lo
g
1
0
(
ε̄
)

(i) generalists

101 102 103

β

−5

−3

−1

1

3

P
13

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102 103

β

−5

−3

−1

1

3

P
13

lo
g
1
0
(
ε̄
)

(k) specialists

101 102 103

β

−3

−1

1

3

P
13

lo
g
1
0
(
ε̄
)

(l) generalists

101 102 103

β

−10

−6

−2

2

P
14

lo
g
1
0
(
ε̄
)

(m) fixed CPVs

101 102 103

β

−12

−8

−4

0

P
14

lo
g
1
0
(
ε̄
)

(n) specialists

101 102 103

β

−6

−4

−2

0

2

P
14

lo
g
1
0
(
ε̄
)

(o) generalists

101 102 103
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w
,
c
p
,
c
g

5

10

15

20

25

30

35

40

45

N

β

ω
cp
cg

N

(p) PSO generalist CPVs

101 102 103
0.0

0.5

1.0

1.5

2.0

C
r
,
F

4

6

8

10

12

14

16

18

20

N

β

Cr

F

N

(q) DE generalist CPVs

Figure 4.5: Comparison of PSO and DE according on COCO problems P10 to P14 to mean solution error
(ε̄) achieved at various OFE budgets (β). Shaded regions indicate β where Mann-Whitney U-tests
failed to show that the difference in means is statistically significant given a confidence level of 95%.

93

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103

β

1.0

1.4

1.8

2.2
P

15
lo

g
1
0
(
ε̄
)

(a) fixed CPVs

101 102 103

β

0.8

1.2

1.6

2.0

2.4

P
15

lo
g
1
0
(
ε̄
)

(b) specialists

101 102 103

β

0.8

1.2

1.6

2.0

2.4

P
15

lo
g
1
0
(
ε̄
)

PSO
DE

(c) generalists

101 102 103

β

0.4

0.8

1.2

1.6

P
16

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102 103

β

0

1

2

P
16

lo
g
1
0
(
ε̄
)

(e) specialists

101 102 103

β

0

1

2

P
16

lo
g
1
0
(
ε̄
)

(f) generalists

101 102 103

β

−3

−2

−1

0

1

P
17

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102 103

β

−4

−2

0

2

P
17

lo
g
1
0
(
ε̄
)

(h) specialists

101 102 103

β

−1

0

1

P
17

lo
g
1
0
(
ε̄
)

(i) generalists

101 102 103

β

−2

−1

0

1

2

P
18

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102 103

β

−1

0

1

P
18

lo
g
1
0
(
ε̄
)

(k) specialists

101 102 103

β

0

1

2

P
18

lo
g
1
0
(
ε̄
)

(l) generalists

101 102 103

β

0.0

0.4

0.8

1.2

P
19

lo
g
1
0
(
ε̄
)

(m) fixed CPVs

101 102 103

β

−0.4

0.0

0.4

0.8

1.2

P
19

lo
g
1
0
(
ε̄
)

(n) specialists

101 102 103

β

−0.2

0.2

0.6

1.0

1.4

P
19

lo
g
1
0
(
ε̄
)

(o) generalists

101 102 103
0

1

2

3

4

5

6

w
,
c
p
,
c
g

0

10

20

30

40

50

60

70

80

90

N

β

ω
cp
cg

N

(p) PSO generalist CPVs

101 102 103
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
r
,
F

0

10

20

30

40

50

60

N

β

Cr

F

N

(q) DE generalist CPVs

Figure 4.6: Comparison of PSO and DE according on COCO problems P15 to P19 to mean solution error
(ε̄) achieved at various OFE budgets (β). Shaded regions indicate β where Mann-Whitney U-tests
failed to show that the difference in means is statistically significant given a confidence level of 95%.

94

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

throughout the search space using a uniform random distribution, these tuning results indicate

that at a very low OFE budget, a random search may be equivalent to DE or PSO, given the

constraint that N > 5.

4.4.3 The Equivalence of Algorithms at Very Low OFE Budgets

To investigate the equal performance of DE and PSO at very low OFE budgets, DE is compared

against a random search algorithm. The hypothesis supporting this investigation is that during

the first generation of DE and the first iteration of PSO, both algorithms generate solutions

inside the search space bounds using a uniform random distribution, with no opportunity yet

for the use of either evolutionary- or swarm operators. By comparing DE against a random

search algorithm, this case study aims to determine at which OFE budgets for COCO problems

P6 to P9, DE begins to outperform a random search algorithm. The random search algorithm,

RAND, searches for the optimum using a uniform random distribution to generate new can-

didate decision vectors. The generation of candidate decision vectors continues until the OFE

budget is exhausted.

The OFE budgets investigated range between 10 and 103. For benchmarking via tunability,

MOTA is used with the same setting as in the DE versus PSO case study, with the exception

that the γ budget is reduced to 106. This γ budget is equivalent to assessing 50 CPVs up

to 103 OFEs using a resampling size of 20. Since RAND does not have any CPVs, MOTA

tuning essentially entails running RAND until the γ budget has been exhausted and recording

the best resampling values. Tuning of RAND is necessary as the performance of RAND and

DE is approximated using 20 sample runs, and is therefore noisy. RAND is therefore tuned

using the same number of γ, as to reduce the influence of the resampling noise on the tunability

comparison.

Comparison using fixed CPVs shows that RAND is equivalent to DE up to 90 OFEs for

problems P6 to P9. The question arising from this observation is if DE itself is equivalent

to random search up to 90 OFEs, or is this threshold of 90 OFEs an artifact of CPVs used

in the comparison. Benchmarking via tunability naturally addresses this question, showing

that the value of 90 OFEs is indeed an artifact of CPVs chosen and that DE can outperform

random search for OFE budgets lower this provided that appropriate CPVs are chosen. Both

the specialist and generalist tunability comparison are also shown in Figure 4.7.

The RAND versus DE and the DE versus PSO case studies have shown that the algorithms

investigated are equivalent up to certain OFE budgets, provided that each algorithm has ef-

fective CPVs specified. For DE versus PSO this threshold OFE budget was about 103 OFEs,

and for DE versus RAND the threshold was less then 102 OFEs. This equivalence originates

due to all algorithms compared starting their optimization in the same manner, by randomly

generating initialized points over the entire search space.

Continuing with the theme of comparing optimization over multiple OFE budgets, the next

case compares algorithms developed for different orders of OFE budgets.

95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102 103

β

−1

1

3

5

P
6

lo
g
1
0
(
ε̄
)

(a) fixed CPVs

101 102 103

β

−2

0

2

4

6

P
6

lo
g
1
0
(
ε̄
)

(b) specialists

101 102 103

β

−1

1

3

5

P
6

lo
g
1
0
(
ε̄
)

RAND
DE

(c) generalists

101 102 103

β

−1

0

1

2

P
7

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102 103

β

−1

0

1

2

P
7

lo
g
1
0
(
ε̄
)

(e) specialists

101 102 103

β

−1

0

1

2

P
7

lo
g
1
0
(
ε̄
)

(f) generalists

101 102 103

β

1

2

3

4

P
8

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102 103

β

0

1

2

3

4

P
8

lo
g
1
0
(
ε̄
)

(h) specialists

101 102 103

β

0

1

2

3

4

P
8

lo
g
1
0
(
ε̄
)

(i) generalists

101 102 103

β

1

2

3

4

P
9

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102 103

β

0

1

2

3

4

P
9

lo
g
1
0
(
ε̄
)

(k) specialists

101 102 103

β

1

2

3

4

P
9

lo
g
1
0
(
ε̄
)

(l) generalists

Figure 4.7: RAND versus DE according to mean solution error (ε̄) achieved at various OFE budgets (β).
Shaded regions indicate β where Mann-Whitney U-tests failed to show that the difference in means
is statistically significant given a confidence level of 95%.

96

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.4.4 Comparing of Optimization Algorithms Developed for Different OFE

Budget Ranges

DE is compared to the efficient global optimization (EGO, Jones et al., 1998) algorithm, where

EGO is an algorithm specifically designed for low OFE budget applications. Benchmarking via

tunability is particularly well-suited for this comparison since the standard CPV recommen-

dations for these algorithms are for different orders of magnitude of OFE budgets, with DE

developed for high OFE budget applications and EGO developed for low OFE budget applica-

tions. Comparison based upon DE and EGO’s standard CPVs is therefore unable to answer

questions in the line of:

• if EGO’s parameters are changed for better performance at higher OFE budgets can it

outperform DE at high OFE budgets, or alternatively

• if DE uses CPVs which are effective at low OFE budgets can it compete against EGO at

low OFE budgets?

EGO uses surrogate or meta-modeling together with the concept of maximum expected

improvement (EI) in order to search for a problem optimum. The rationale behind EGO is to

explore the search space according to where the fitted meta-model indicates the minimum is,

while also trying to improve the fit of the meta-model. EGO uses the EI from a fitted Kriging

model to achieve this goal. The EGO implementation from the DiceOptim R package (Roustant

et al., 2012)1 is used for this case study. DiceOptim has a variety of Kriging parameters available

for the user to specify, including type of covariance functions used and the trend basis functions.

For the EGO versus DE comparison ordinary Kriging is used, which consists of a constant trend

basis together with Gaussian co-variance kernels. Furthermore, EGO is set up to use Latin

hypercube sampling to generate the N0 decision vectors used for fitting the first Kriging model.

The next candidate decision vector is chosen to maximize the EI of the fitted model, after which

the model is refit. This candidate decision vector process repeats until the OFE budget has

been exhausted.

EGO and DE are compared for OFE budgets ranging from 10 to 300 OFEs, using both fixed

CPV and tunability benchmarking. An upper limit of 300 OFEs is chosen due to computational

considerations. For each OFE after the initial N0 points have been generated, EGO needs to

solve an optimization problem as to determine where the point of maximum EI is, and then

refit the Kriging model. For DiceOptim this EI optimization problem is solved through a GA

which uses gradients from the Kriging model as to speed convergence. Even so, the EGO

implementation benchmarked is too computationally expensive2 to compare at OFE budgets

higher then 300. To be fair it should be noted that although the computational overhead

of EGO is problematic from a benchmarking perspective, EGO’s computational overhead is

inconsequential compared to the computational cost of evaluating the expensive objective and

constraint functions for which EGO was designed.

1DiceOptimum version 1.4 is used in these experiments
2Running the DiceOptim EGO up to 1000 OFEs using a resampling size of 20 takes just less than two days

using a single processor on an Intel© Core™ i7-4700MQ processor

97

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

To nullify the effects of starting conditions, EGO is compared to DELHS where DELHS

is the same as the DE algorithm used in the case studies so far, with the exception of Latin

hypercube sampling being used to generate the initial population. Therefore neither EGO nor

DELHS has an initial advantage with both algorithms starting their search in the same manner.

For benchmarking according to fixed CPVs, DELHS uses the same CPVs as in the PSO versus

DE study. EGO uses a N0 of 50 points, a value which is used in the DiceOptim documentation

for solving a 6 dimensional example problem. For benchmarking via tunability, a generalist and

specialist comparison is conducted using MOTA as the tuning algorithm. Due to EGO’s high

computational overhead, MOTA’s γ budget is set to 105 which is approximately equivalent to

running 17 CPV tuple assessments up to 300 OFEs using a resampling size of 20. The number of

CPV tuples assessed will be greater than 17 since MOTA does not assess every CPV tuple up to

the maximum OFE budget, and because of MOTA’s use of preemptively terminating resampling.

The only CPV of EGO which is tuned is N0 which control the number of initial points generated

using Latin hyper cube sampling, with the initialization and search bound being N0 ∈ [7, 100],

where 7 is the minimum number of points required to fit an ordinary Kriging model to a 6

dimensional problem. DELHS is tuned using the same bounds and tuning variables as the

DE algorithm from the DE versus PSO case study. Additionally a DELHS variant, DELHSN , is

added which is the same as DELHS except that only the N control parameter is tuned. DELHSN
is added to see if DELHS ’s tuning formulation of 3 variables compared to the 1 of EGO affects

the obtained results. Similarly, to ensure a fair comparison, the DELHSN bounds for N are the

same as that of EGO’s N0.

In order to gauge which of the benchmarking approaches yields more accurate results, it is

assumed that the benchmarked EGO is better suited than the benchmarked DE to problems

which can be accurately modeled using ordinary Kriging. To determine which COCO problems

can be accurately modeled using ordinary Kriging, leave-one-out validation tests are performed.

A leave-one-out modeling validation check entails generating nc decision vectors throughout the

search space, typically using a process such as Latin hypercube sampling. Then for each of

the nc decision vectors, the model being validated is fitted to the other nc − 1 decision vectors,

after which the model objective function value predictions are compared to the actual objective

function value for the decision vector left out of the fitting. For the leave-one-out checks a nc

of 60 and Latin hypercube sampling with x ∈ [−5, 5]6, are used.

The results for benchmarking via fixed CPVs, benchmarking via tunability, and the leave-

one-out validation checks, are shown in Figure 4.8 to Figure 4.10. According to the fixed CPVs

comparison EGO is better than DELHS for OFE budgets less then 200 OFEs for 11/14 COCO

problems used, is equivalent to DELHS on 2/14 problems, and is worse than DELHS for one

problem. For the benchmarking according to tunability comparison, EGO performs better than

DELHS for OFE budgets less then 200 OFEs for 5/14 problems, worse than DELHS on 1/14

of the problems, and is statistically equivalent on the other 8/14 problems. The leave-one-out

modeling validity checks show that P9, P12, P14, and P16 to P19 are poorly suited to ordinary

Kriging modeling. Over these problems, benchmarking via tunability found EGO and DELHS

to be equivalent, with one exception of P9 where DELHS performed better at certain OFE

budgets. For benchmarking via fixed CPVs, EGO was found to be better than DELHS on the

98

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102

β

1

2

3

4

5

P
6

lo
g
1
0
(
ε̄
)

(a) fixed CPVs

101 102

β

0

2

4

6

P
6

lo
g
1
0
(
ε̄
)

EGO
DELHS
DELHSN

(b) generalists

actual

fit
te

d

(c) P6 leave-one-out

101 102

β

0

1

2

P
7

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102

β

0

1

2

P
7

lo
g
1
0
(
ε̄
)

(e) generalists

actual

fit
te

d

(f) P7 leave-one-out

101 102

β

0

1

2

3

4

P
8

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102

β

1

2

3

4

P
8

lo
g
1
0
(
ε̄
)

(h) generalists

actual

fit
te

d

(i) P8 leave-one-out

101 102

β

2

3

4

P
9

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102

β

1

2

3

4

P
9

lo
g
1
0
(
ε̄
)

(k) generalists

actual

fit
te

d

(l) P9 leave-one-out

101 102

β

0

10

20

30

40

50

60

70

80

N
0

(m) EGO generalists

101 102
0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
r
,
F

4

6

8

10

12

14

16

N

β

Cr

F

N

(n) DELHS generalists

Figure 4.8: Comparison of EGO and DE on COCO problems P6 to P9 according to mean solution error (ε̄)
achieved at various OFE budgets (β). Shaded regions indicate β where Mann-Whitney U-tests
failed to show that the difference in means is statistically significant given a confidence level of
95%.

99

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102

β

3

4

5

6
P

10
lo

g
1
0
(
ε̄
)

(a) fixed CPVs

101 102

β

3

4

5

6

P
10

lo
g
1
0
(
ε̄
)

EGO
DELHS
DELHSN

(b) generalists

actual

fit
te

d

(c) P10 leave-one-out

101 102

β

2

3

4

P
11

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102

β

2

3

4

5

P
11

lo
g
1
0
(
ε̄
)

(e) generalists

actual

fit
te

d

(f) P11 leave-one-out

101 102

β

5.5

6.0

6.5

7.0

7.5

P
12

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102

β

4

5

6

7

8

P
12

lo
g
1
0
(
ε̄
)

(h) generalists

actual

fit
te

d
(i) P12 leave-one-out

101 102

β

1.6

2.0

2.4

2.8

P
13

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102

β

1.4

1.8

2.2

2.6

3.0

P
13

lo
g
1
0
(
ε̄
)

(k) generalists

actual

fit
te

d

(l) P13 leave-one-out

101 102

β

−1.0

−0.5

0.0

0.5

1.0

P
14

lo
g
1
0
(
ε̄
)

(m) fixed CPVs

101 102

β

−1

0

1

P
14

lo
g
1
0
(
ε̄
)

(n) generalists

actual

fit
te

d

(o) P14 leave-one-out

101 102

β

0

10

20

30

40

50

N
0

(p) EGO generalists

101 102
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
r
,
F

5

6

7

8

9

10

11

12

13

14

N

β

Cr

F

N

(q) DELHS generalists

Figure 4.9: Comparison of EGO and DE on COCO problems P11 to P14 according to mean solution error
(ε̄) achieved at various OFE budgets (β). Shaded regions indicate β where Mann-Whitney U-tests
failed to show that the difference in means is statistically significant given a confidence level of 95%.

100

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

101 102

β

1.5

1.7

1.9

2.1

2.3
P

15
lo

g
1
0
(
ε̄
)

(a) fixed CPVs

101 102

β

1.4

1.8

2.2

2.6

P
15

lo
g
1
0
(
ε̄
)

EGO
DELHS
DELHSN

(b) generalists

actual

fit
te

d

(c) P15 leave-one-out

101 102

β

1.0

1.1

1.2

1.3

1.4

P
16

lo
g
1
0
(
ε̄
)

(d) fixed CPVs

101 102

β

0.4

0.8

1.2

1.6

P
16

lo
g
1
0
(
ε̄
)

(e) generalists

actual

fit
te

d

(f) P16 leave-one-out

101 102

β

0.2

0.4

0.6

0.8

1.0

P
17

lo
g
1
0
(
ε̄
)

(g) fixed CPVs

101 102

β

0.0

0.4

0.8

1.2

P
17

lo
g
1
0
(
ε̄
)

(h) generalists

actual

fit
te

d
(i) P17 leave-one-out

101 102

β

0.8

1.0

1.2

1.4

P
18

lo
g
1
0
(
ε̄
)

(j) fixed CPVs

101 102

β

0.6

1.0

1.4

1.8

P
18

lo
g
1
0
(
ε̄
)

(k) generalists

actual

fit
te

d

(l) P18 leave-one-out

101 102

β

0.6

0.8

1.0

1.2

P
19

lo
g
1
0
(
ε̄
)

(m) fixed CPVs

101 102

β

0.5

0.7

0.9

1.1

1.3

P
19

lo
g
1
0
(
ε̄
)

(n) generalists

actual

fit
te

d

(o) P19 leave-one-out

101 102

β

0

5

10

15

20

25

30

35

40

N
0

(p) EGO generalists

101 102
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
r
,
F

5

10

15

20

25

N

β

Cr

F

N

(q) DELHS generalists

Figure 4.10: Comparison of EGO and DE on COCO problems P15 to P19 according to mean solution error (ε̄)
achieved at various OFE budgets (β). Shaded regions indicate β where Mann-Whitney U-tests
failed to show that the difference in means is statistically significant given a confidence level of
95%. 101

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

majority of the COCO problems which were poorly suited to ordinary Kriging modeling, with an

exception for P12 were DELHS performed better for OFE budgets higher then 100. Given that

benchmarking via tunability produced better agreement with the leave-one-out tests compared

to benchmarking via fixed CPVs, benchmarking via tunability is judged to be more accurate.

Regarding the comparison of EGO and DELHS , the benchmarking via tunability results

are viewed as accurate, albeit with a low level of confidence. For a higher confidence level,

more comprehensive computational experiments could be conducted. These computational

experiments should consider the effects of varying other EGO Kriging parameters, in addition

to the EGO N0 parameter. This case study also brings to the fore a significant grey area when

it comes to benchmarking via tunability. Specifically, what CPVs of each algorithm should

be tuned? Benchmarkers need to use their discretion in this regard, as tuning insignificant

CPVs while ignoring significant CPVs, is likely to produce misleading results. For this reason,

depending on the level of certainty desired for the numerical experiments, multiple tuning

formulations should be considered. In this case study, DELHS was tuned according to N , Cr

and F , while DELHSN was only tuned according to N while Cr and F were fixed. Given the

low γ budget for tunability, DELHS and DELHSN produced mostly equivalent results, adding

confidence to the conclusion that tuning EGO according to only N0 is sufficient. However for

higher γ budgets, DELHS is expected to begin to outperform DELHSN , in which case additional

EGO CPVs should also be tuned.

4.5 Discussion

The case studies conducted illustrate many of the advantages and disadvantages of bench-

marking via tunability compared to that of benchmarking using fixed CPVs. Benchmarking via

tunability entails tuning each algorithm being compared, and is therefore more computationally

expensive compared to benchmarking via fixed CPVs on problem per problem basis. Although

the degree of extra computational expense can be reduced through the use of efficient tuning

algorithms, as was done in the case studies, the difference is still notable with the lowest degree

of extra computational expense in the conducted case studies, being a 20 fold increase. This

computational disadvantage argument holds provided that no computational resources were

used in control parameter studies as to determine the CPVs used in the fixed CPV comparison.

Benchmarking via fixed CPVs has a disadvantage in the lack of incorporation of the sensitiv-

ity of an algorithm’s performance to its CPVs. Therefore the benchmarker needs to demonstrate

that any performance difference observed is not an artifact of the choice of CPVs used, and is

representative of the algorithms themselves. An argument often used to bypass the question of

the appropriateness of CPVs used, is to compare algorithms according to default CPVs, since

it can be argued that these are the CPVs which will be used in practice. However, given the

increasing availability and use of automated algorithm configuration techniques, more prac-

titioners are using CPVs shown to work well on testing problems, which they believe to be

representative of the problem at hand. Comparison according to the performance achieved

using default CPV recommendations is problematic for another reason. Common practice for

presenting an new optimization algorithm, is to gauge that algorithm’s performance using the

102

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

default CPVs on a selected problem testbed according to selected performance criteria. Prob-

lematically however, the test suite and performance criteria which are used, often differ. Finally,

even if algorithms are compared whose default CPVs have been shown to be effective on the

same testing problems using the same performance metrics, those default CPVs are not nec-

essarily appropriate for the problems in a different benchmark testbed. For these reasons, the

choice of CPVs to use in fixed CPV benchmarking is of major significance, and using default

CPVs is deemed inappropriate if algorithms are to be compared in a holistic manner.

Benchmarking via tunability by incorporating the effects of CPVs into the benchmarking

process mitigates these issues, provided certain pitfalls are avoided. Firstly, care should be

taken that the tuning formulations for each algorithm compared are appropriately constructed.

CPVs which are identified as influential in an algorithm’s documentation should be tuned, as

those are the CPVs the normal automated algorithm configuration practitioner would adjust.

Secondly, the effect of the tuning algorithm on the tunability results needs to be considered,

as the tuning algorithm used may be better suited for one algorithm’s tuning formulation

than another algorithm’s tuning formulation. Thirdly, when stochastic tuning algorithms are

used, checks need to be made that the tunability results are consistent from one tuning run to

another. Ultimately however, benchmarking via tunability is a numerical process, and therefore

the results obtained should be scrutinized accordingly.

Conclusions from the benchmarking via tunability’s chapter together with those from the

tMOPSO and MOTA chapters, follow next, in the conclusion to this thesis.

103

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5

CONCLUSION

The tMOPSO and MOTA tuning algorithms, together with an investigation into benchmarking

via tunability have been presented. Each of these contributions was presented in its own chap-

ter, together with supporting numerical experiments. Conclusions for each chapter, a general

conclusion and recommendations for future research, follow.

In Chapter 2, the tMOPSO algorithm is proposed for tuning stochastic optimization algo-

rithms under multiple OFE budgets. Central to the proposed algorithm is the direct incorpo-

ration of CPV sensitivity to OFE budgets into the tuning problem formulation through the of

use of a multi-objective optimization. tMOPSO is specialized for tuning stochastic algorithms

through the use of a noise-handling strategy which uses MWUTs to pre-emptively terminate

the resampling process and thereby boost tuning efficiency. Furthermore, tMOPSO utilizes the

historical information from optimization runs used to assess the performance resulting from a

specified CPV tuple for a given OFE budget, as to quantify that CPV tuple’s performance at

OFE budgets lower than the specified OFE budget. To efficiently process this information,

fast Pareto dominance checking and Pareto dominance likelihood checking procedures are used.

Conducted numerical experiments verify that tMOPSO is effective at tuning optimization al-

gorithms. Specifically, for the tuning problems used and when compared under even tuning,

tMOPSO was found to be better than or at least comparable to existing multiple OFE bud-

get tuning algorithms. Furthermore, the numerical experiments conducted also indicate that

tuning an optimization algorithm under multiple OFE budgets using tMOPSO should be more

effective compared to setting up multiple uncoupled tuning problems each of which is focused

on a different single OFE budget.

In Chapter 3, the MOTA algorithm is proposed for tuning stochastic optimization algo-

rithms according to multiple utility measures under multiple OFE budgets. MOTA uses many

objective optimization to achieve this end, with an objective for each utility measure and an

extra speed objective as to tune under multiple OFE budgets. Decomposition is used to solve

the resulting many objective optimization problem, with the original problem being broken up

into multiple bi-objective subproblems. Similarly to tMOPSO, MOTA utilizes the history in-

formation from CPV assessment runs, so that one CPV tuple assessment run is used to gauge

104

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

utility at multiple OFE budgets. The bi-objective decomposition scheme used by MOTA is

well-aligned to making use of this history information. Numerical experiments were conducted

to gauge MOTA’s performance. For the specialist tuning problems, MOTA is effective at deter-

mining specialist CPV tuples over a range of OFE budgets, having a comparable performance

to the tMOPSO algorithm. For the many objective generalist tuning problems, MOTA outper-

formed the tMOPSO and RANDM tuning algorithms. This superior performance is attributed

to MOTA being designed from the ground up as a many objective tuning algorithm.

In Chapter 4, work regarding benchmarking via tunability is presented. The idea behind

benchmarking via tunability is that if a numerical method is well-suited to a problem, then it

should be easy to determine parameter settings which result in good performance. Accordingly,

benchmarking via tunability compares optimization algorithms according to the difficulty of

selecting CPVs which result in favorable performance. In order to compare benchmarking using

tunability against the traditional approach of benchmarking via fixed CPVs, case studies were

conducted to compare various algorithms over multiple OFE budgets. For the conducted case

studies, benchmarking via tunabily produced better results compared to comparison using fixed

CPVs. Benchmarking via tunablity is a useful tool for comparing optimization algorithms in a

holistic manner, where the different CPV choices available to the algorithm user are included

into the benchmarking process. By incorporating the CPV choices available to an optimization

practitioner into the benchmarking process, benchmarking via tunability offers a significant

paradigm shift compared to benchmarking according to fixed CPVs. This paradigm shift favors

the increasing number of practitioners which employ automated algorithm configuration during

the process of numerical optimization.

Tuning optimization algorithms under multiple OFE budgets is the unifying theme of this

thesis. The tMOPSO algorithm is developed for tuning an optimization algorithm to a single

problem under multiple OFE budgets. MOTA expands upon tMOPSO as to conduct many-

objective tuning over multiple OFE budgets. Finally, multiple OFE budget tuning is used in

the case studies conducted to investigate benchmarking optimization algorithms according to

their tunability. Benchmarking via tunability could be done using a single OFE budget tuning

algorithm, however the results obtained would be limited to a single OFE budget. Bench-

marking via tunability, using a multiple OFE budget tuning algorithm as to gauge algorithm

performance over a range of OFE budgets is more useful, since the number of OFEs available

to an optimization practioner varies widely.

Avenues for future research are available for both tuning under multiple OFE budgets,

and for benchmarking via tunability. In particular, MOTA’s effectiveness at tuning multi-

objective optimization algorithms to multiple performance measures at multiple OFE budgets

needs to be gauged. Further investigation could also be done with regard to utilizing CPV

trends to enhance performance when determining specialist CPVs for a problem suite under

multiple OFE budgets. Lastly, benchmarking via tunability has been conceptually presented

and demonstrated on select case studies. Conducting additional case studies, together with

mathematical formalization of the concepts behind benchmarking via tunability, should further

contribute to the field of numerical optimization.

For success at numerical optimization, practitioners need to select an optimization algorithm

105

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

and CPVs for that algorithm which are appropriate for the problem they are engaged with. Ac-

cordingly, an optimization algorithm and CPVs need to be selected which are effective for the

numerical characteristics of the objective function, constraints imposed, and termination crite-

ria of the problem at hand. To aid practitioners in this task, two new tuning algorithms named

tMOPSO and MOTA are presented, and benchmarking via tunability is discussed. Specifically,

tMOPSO and MOTA are tuning algorithms for determining CPVs which are effective on rep-

resentative testing problems, while benchmarking via tunability aims to inform a practitioner

of which optimization algorithm should be tuned to those problems. Consequently, tMOPSO,

MOTA, and benchmarking via tunability, can be used to assist the process of numerical opti-

mization, thereby benefiting the many design processes which rely on numerical optimization

to create an effective product.

106

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

BIBLIOGRAPHY

Auger, A. and Hansen, N. (2005). Performance evaluation of an advanced local search evo-

lutionary algorithm. In The 2005 IEEE Congress on Evolutionary Computation, volume 2,

pages 1777 – 1784 Vol. 2.

Balaprakash, P., Birattari, M., and Stützle, T. (2007). Improvement strategies for the F-Race

algorithm: Sampling design and iterative refinement. Hybrid Metaheuristics, pages 108–122.

Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2005). Sequential parameter optimization.

In The 2005 IEEE Congress on Evolutionary Computation, volume 1, pages 773–780. IEEE.

Bartz-Beielstein, T., Parsopoulos, K., and Vrahatis, M. (2004). Design and analysis of optimiza-

tion algorithms using computational statistics. Applied Numerical Analysis & Computational

Mathematics, 1(2):413–433.

Berry, A. and Vamplew, P. (2006). An efficient approach to unbounded bi-objective archives:

Introducing the mak tree algorithm. In Proceedings of the 8th Annual Conference on Genetic

and Evolutionary Computation, page 626. ACM.

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiobjective selection based

on dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669.

Beyer, H. (2000). Evolutionary algorithms in noisy environments: Theoretical issues and guide-

lines for practice. Computer Methods in Applied Mechanics and Engineering, 186(2-4):239–

267.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for

configuring metaheuristics. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 11–18. Citeseer.

Branke, J. and Elomari, J. (2012). Meta-optimization for parameter tuning with a flexible

computing budget. In Proceedings of the 14th International Conference on Genetic and Evo-

lutionary Computation Conference, pages 1245–1252. ACM.

107

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Brockhoff, D. and Zitzler, E. (2009). Objective reduction in evolutionary multiobjective opti-

mization: Theory and applications. Evolutionary Computation, 17(2):135–166.

Bui, L., Abbass, H., and Essam, D. (2009). Localization for solving noisy multi-objective

optimization problems. Evolutionary Computation, 17(3):379–409.

Clerc, M. and Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence

in a multidimensional complex space. IEEE Transactions on Evolutionary Computation,

6(1):58–73.

Coello, C., Pulido, G., and Lechuga, M. (2004). Handling multiple objectives with particle

swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3):256–279.

Conover, W. (1999). Practical Nonparametric Statistics. John Wiley & Sons, third edition.

Das, S. and Suganthan, P. (2010). Differential evolution: A survey of the state-of-the-art. IEEE

Transactions on Evolutionary Computation, (99):1–28.

Deb, K. and Agrawal, R. (1994). Simulated binary crossover for continuous search space.

Complex Systems, 9:1–34.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005). Scalable test problems for evolution-

ary multiobjective optimization. In Evolutionary Multiobjective Optimization, pages 105–145.

Springer London.

den Besten, M. L. (2004). Simple Metaheuristics for Scheduling: An empirical investigation

into the application of iterated local search to deterministic scheduling problems with tardiness

penalties. PhD thesis.

Di Pierro, F., Khu, S.-T., and Savić, D. A. (2007). An investigation on preference order ranking

scheme for multiobjective evolutionary optimization. IEEE Transactions on Evolutionary

Computation, 11(1):17–45.

Dolan, E. and Moré, J. (2002). Benchmarking optimization software with performance profiles.

Mathematical programming, 91(2):201–213.

Dréo, J. (2008). Multi-criteria meta-parameter tuning for mono-objective stochastic metaheuris-

tics. In 2nd International Conference on Metaheuristics and Nature Inspired Computing.

Dréo, J. (2009). Using performance fronts for parameter setting of stochastic metaheuristics. In

Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Com-

putation: Late Breaking Papers, pages 2197–2200. ACM.

Durillo, J. J. and Nebro, A. J. (2011). jMetal: A Java framework for multi-objective optimiza-

tion. Advances in Engineering Software, 42:760–771.

108

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Dymond, A.S.D., Engelbrecht, A.P., and Heyns, P.S. (2011). The sensitivity of single objective

optimization algorithm control parameter values under different computational constraints.

In IEEE Congress on Evolutionary Computation (CEC), pages 1412–1419. IEEE.

Dymond, A.S.D., Engelbrecht, A.P., Kok., S., and Heyns, P.S. (2014). Tuning optimization

algorithms under multiple objective function evaluation budgets. IEEE Transactions on

Evolutionary Computation, Volume Still not known(X):Preprint should be available from

June 2014.

Dymond, A.S.D., Kok., S., and Heyns, P.S. (2013). The sensitivity of multi-objective optimiza-

tion algorithm performance to objective function evaluation budgets. In IEEE Congress on

Evolutionary Computation (CEC), pages 1868–1875. IEEE.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In Pro-

ceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995.

MHS ’95, pages 39–43.

Eiben, A., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141.

Engelbrecht, A.P. (2007). Computational Intelligence: An Introduction. Wiley.

Grefenstette, J. (1986). Optimization of control parameters for genetic algorithms. IEEE

Transactions on Systems, Man and Cybernetics, 16(1):122–128.

Handl, J., Lovell, S. C., and Knowles, J. (2008). Multiobjectivization by decomposition of scalar

cost functions. In Parallel Problem Solving from Nature–PPSN X, pages 31–40. Springer.

Hansen, N., Auger, A., Finck, S., Ros, R., et al. (2010). Real-parameter black-box optimization

benchmarking 2010: Experimental setup. INRIA.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation, 9(2):159–195.

Huband, S., Hingston, P., Barone, L., and While, L. (2006). A review of multiobjective test

problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computa-

tion, 10(5):477–506.

Hutter, F., Hoos, H., Leyton-Brown, K., and Murphy, K. (2009a). An experimental investigation

of model-based parameter optimisation: SPO and beyond. In Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computation, pages 271–278. ACM.

Hutter, F., Hoos, H., Leyton-Brown, K., and Stützle, T. (2009b). ParamILS: An automatic

algorithm configuration framework. Journal of Artificial Intelligence Research, 36(1):267–306.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive

black-box functions. Journal of Global optimization, 13(4):455–492.

109

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M. (2011). The irace package,

iterated race for automatic algorithm configuration. IRIDIA, Université Libre de Bruxelles,

Belgium, Tech. Rep. TR/IRIDIA/2011-004.

López-Ibáñez, M. and Stützle, T. (2011). Automatic configuration of multi-objective ACO

algorithms. Swarm Intelligence, pages 95–106.

López-Ibáñez, M. and Stützle, T. (2012). The automatic design of multiobjective ant colony

optimization algorithms. IEEE Transactions on Evolutionary Computation, 16(6):861 –875.

Malan, K. and Engelbrecht, A. (2009). Quantifying ruggedness of continuous landscapes using

entropy. In IEEE Congress on Evolutionary Computation (CEC), pages 1440–1447. IEEE.

Maron, O. and Moore, A. (1997). The racing algorithm: Model selection for lazy learners.

Artificial Intelligence Review, 11(1):193–225.

Moré, J. and Wild, S. (2009). Benchmarking derivative-free optimization algorithms. SIAM

Journal on Optimization, 20(1):172–191.

Mostaghim, S. and Teich, J. (2005). Quad-trees: A data structure for storing pareto sets in mul-

tiobjective evolutionary algorithms with elitism. Evolutionary Multiobjective Optimization,

pages 81–104.

Nannen, V. and Eiben, A. (2007). Relevance estimation and value calibration of evolutionary

algorithm parameters. In Proceedings of the 20th International Joint Conference on Artifical

intelligence, pages 975–980. Morgan Kaufmann Publishers Inc.

Pedersen, M. (2010). Tuning & Simplifying Heuristical Optimization. PhD thesis, University of

Southampton, School of Engineering Sciences, Computational Engineering and Design Group.

Pedersen, M. and Chipperfield, A. (2008). Parameter tuning versus adaptation: proof of prin-

ciple study on differential evolution.

Poš́ık, P., Huyer, W., and Pál, L. (2012). A comparison of global search algorithms for contin-

uous black box optimization. Evolutionary Computation, pages 1–32.

Radulescu, A., López-Ibáñez, M., and Stützle, T. (2013). Automatically improving the any-

time behaviour of multiobjective evolutionary algorithms. In Evolutionary Multi-Criterion

Optimization, pages 825–840. Springer Berlin Heidelberg.

Roustant, O., Ginsbourger, D., Deville, Y., et al. (2012). DiceKriging, DiceOptim: Two R

packages for the analysis of computer experiments by kriging-based metamodeling and opti-

mization. Journal of Statistical Software, 51.

Salehinejad, H., Rahnamayan, S., Tizhoosh, H., and Chen, S. (2014). Micro-differential evolu-

tion with vectorized random mutation factor. In IEEE Congress on Evolutionary Computation

(CEC). IEEE.

110

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Saxena, D. K., Duro, J. A., Tiwari, A., Deb, K., and Zhang, Q. (2013). Objective reduction

in many-objective optimization: Linear and nonlinear algorithms. IEEE Transactions on

Evolutionary Computation, pages 77–99.

Shi, Y. and Eberhart, R. (1998). Parameter selection in particle swarm optimization. In

Evolutionary Programming VII, pages 591–600. Springer.

Sierra, M. and Coello, C. (2005). Improving PSO-based multi-objective optimization using

crowding, mutation and ε-dominance. In Evolutionary Multi-Criterion Optimization, pages

505–519. Springer.

Smit, S. K. and Eiben, A. E. (2009). Comparing parameter tuning methods for evolutionary

algorithms. In IEEE Congress on Evolutionary Computation, pages 399–406. IEEE.

Smit, S. K. and Eiben, A. E. (2010a). Beating the ‘world champion’ evolutionary algorithm via

REVAC tuning. In 2010 IEEE Congress on Evolutionary Computation, pages 1–8. IEEE.

Smit, S. K. and Eiben, A. E. (2010b). Parameter tuning of evolutionary algorithms: Generalist

vs. specialist. Applications of Evolutionary Computation, pages 542–551.

Smit, S. K., Eiben, A. E., and Szlávik, Z. (2010). An MOEA-based method to tune EA

parameters on multiple objective functions. In IJCCI (ICEC), pages 261–268. Citeseer.

Storn, R. and Price, K. (1997). Differential evolution - a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359.

Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., and Tiwari, S. (2005).

Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter

optimization. KanGAL Report.

Wagner, T. and Wessing, S. (2012). On the effect of response transformations in sequential

parameter optimization. Evolutionary Computation.

Wang, Y., Cai, Z., and Zhang, Q. (2011). Differential evolution with composite trial vector gen-

eration strategies and control parameters. IEEE Transactions on Evolutionary Computation,

15(1):55 –66.

Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE Trans-

actions on Evolutionary Computation, 1(1):67–82.

Xi, Z., Hu, C., and Youn, B. D. (2012). A comparative study of probability estimation methods

for reliability analysis. Structural and Multidisciplinary Optimization, 45(1):33–52.

Yuan, Z., de Oca, M., Birattari, M., and Stützle, T. (2011). Modern continuous optimization

algorithms for tuning real and integer algorithm parameters. Swarm Intelligence, pages 203–

214.

Zhang, J. and Sanderson, A. (2009). JADE: Adaptive differential evolution with optional

external archive. IEEE Transactions on Evolutionary Computation, 13(5):945–958.

111

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on

decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731.

Zhang, Q., Liu, W., Tsang, E., and Virginas, B. (2010). Expensive multiobjective optimization

by MOEA/D with gaussian process model. IEEE Transactions on Evolutionary Computation,

14(3):456–474.

Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., and Tiwari, S. (2008). Multiobjective

optimization test instances for the CEC 2009 special session and competition. University of

Essex and Nanyang Technological University, Technical Report. CES-487.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective evolutionary algo-

rithms: Empirical results. Evolutionary computation, 8(2):173–195.

Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective search. In Parallel

Problem Solving from Nature-PPSN VIII, pages 832–842. Springer.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength Pareto

evolutionary algorithm. In EUROGEN, pages 95–100. Citeseer.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., and da Fonseca, V. (2003). Performance

assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on

Evolutionary Computation, 7(2):117 – 132.

112

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Introduction
	Tuning Optimization Algorithms under Multiple Objective Function Evaluation Budgets
	Related Work
	Proposed Tuning Algorithm
	Handling the Noise Resulting from Tuning Stochastic Algorithms
	Specialization for Tuning Stochastic Algorithms under Multiple Objective Function Evaluation Budgets
	Performing Resampling Interruption Checks and Pareto-optimal Front Approximation Updates
	Tuning Optimization Algorithm

	Numerical Setup
	Application Layers
	Algorithms Tuned
	Tuning Algorithms Compared

	Numerical Results
	Comparison of Tuning Algorithms Focused on Multiple OFE Budgets
	Comparison with Tuning Algorithms Focused on a Single OFE Budget
	Scrutinization of the Tuning Results

	Many Objective Tuning using Bi-objective Decomposition
	Related Work
	MOTA Algorithm
	Tuning Problem Formulation
	Specialization for Algorithms whose Utility Indicator Values need to be Numerically Approximated using Sample Runs
	Bi-objective Decomposition
	Handling the Noise Resulting from Tuning a Stochastic Algorithm
	Algorithm Overview

	Numerical Setup
	Tuning Problems Used
	Algorithms Tuned
	Tuning Algorithms Compared

	Numerical Results
	Selecting the CPVs for the Compared Tuning Algorithms
	Specialist Tuning Results
	Generalist Tuning Results

	Benchmarking Optimization Algorithms According to Their Tunability
	Preliminaries
	Definitions
	Benchmarking in the Context of the No Free Lunch Theorems

	Related Work
	Benchmarking via Tunability
	Case Studies
	Comparing an Optimization Algorithm against Itself
	Benchmarking over a Group of Problems
	The Equivalence of Algorithms at Very Low OFE Budgets
	Comparing of Optimization Algorithms Developed for Different OFE Budget Ranges

	Discussion

	Conclusion

