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Abstract

Empathy theory replaced semi-group theory for the study of implicit evolu-
tion equations d

dτ [Bu(τ)] = Au(τ); A,B not necessarily closed: the evolution
process is described with a pair of evolution operators 〈E(τ), S(τ)〉τ>0 ‘in-
tertwined’ by the empathy relation S(τ + σ) = S(τ)E(σ). The evolution
operators associated with the transition probabilities of Markov processes,
integrated empathies and semigroups are further cases of intertwined evolu-
tion operators.

The framework of vector-valued Schwartz distributions had limited suc-
cess with certain evolution equations: their convolution theorem rests on
a bounded bilinear form; thus it applies to uniformly measurable evolution
families. In contrast, the empathy approach to the implicit Cauchy problem
leans heavily on the Laplace transform and a convolution theorem which is
applicable to strongly measurable evolution families.

This dissertation introduces a new framework which efficiently imple-
ments Sauer’s approach of giving convolution a central role in the study of
intertwined families. A convolution algebra (A , ∗) of homomorphisms be-
tween a test space of Banach space-valued group-domained functions and
the Banach space itself lies at the heart of this new framework: (A , ∗) re-
sults from the marriage of ideas of vector-valued distributions and abstract
harmonic analysis; the product ∗ generalizes the abstract convolution of the
well known convolution algebra of abstract harmonic analysis.

The framework replaces families of evolution operators with families of
homomorphisms, and their composition with ∗; homomorphisms generalize
operators and the product ∗ is more fundamental than operator composition.
We call the homomorphisms, generalized operators. A new fully developed
convolution theorem for families of homomorphisms subsumes the earlier
approaches. The framework unifies all the resolvent equations spanning C0-
semigroup, empathy theory and n-times integrated semi-groups.

We next construct a Hille-Yosida generation theorem for the implicit evo-
lution equation set in the more general setting of generalized operators. This
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new generation theorem bypasses the assumption of a uniformly bounded
empathy by pairing Banach algebra techniques, like the factorization theo-
rem, into operator theoretic problems. Kisynski’s equivalent version of the
Hille-Yosida Theorem for the abstract Cauchy problem was the forerunner
to this approach. Indeed, another convolution algebra (L1(0,∞), ∗) lies at
the heart of this approach by Kisynski.

Feller semigroups and processes fit perfectly into the framework of gen-
eralized operators. Feller semigroups are intertwined by the Chapman Kol-
mogorov equation. Our framework handles more complex intertwinements
which naturally arise from a dynamic boundary approach to an absorbing
barrier of a fly trap model: we construct an entwined pseudo Poisson process
which is a pair of stochastic processes entwined by the extended Chapman
Kolmogorov equation. Similarly, we introduce the idea of an entwined Brow-
nian motion. We show that the diffusion equation of an entwined Brownian
motion involves an implicit evolution equation on a suitable scalar test space.
We end off by constructing a new convolution of operator valued measures
which generalizes the convolution of Feller convolution semigroups.
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Chapter 1

Introduction

This introduction gives the intuition behind a new algebraic analytic frame-
work for the study of intertwined families of evolution operators such as in
empathy theory. Poincaré wrote:

‘It is by logic we prove, it is by intuition that we invent. Logic, therefore,
remains barren unless fertilised by intuition.’

Empathy theory is involved with a peculiar 1 type of implicit evolution equa-
tion which arises naturally in many known situations. Thus, the analysis
of empathy theory is very different from that of conventional semigroup
theory. These differences motivate the need for a new algebraic-analytical
framework to replace that of [5] and [28] used in conventional semigroup
theory. This new framework efficiently solves problems in empathy theory.

1.1 History Of Empathy Theory

The study of evolution equations of the form

d

dτ
[Bu(τ)] = Au(τ), (1.1.1)

so-called implicit evolution equations, motivated by partial differential equa-
tions in continuum mechanics, has been on-going for some time. In (1.1.1)
the symbols A and B denote unbounded linear operators with a common do-
main D in a Banach space X and range in another Banach space Y . Among
the first papers are [30] (in a Hilbert space setting) and [15]. In these pa-
pers the operators A and B are closed or closable and the initial condition

1For the reader unfamiliar with the terminology and physical intuition behind empathy
theory, we refer the reader to Appendix A.3

1
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specifies the initial state u(0) or Bu(0). A detailed account can be found in
[16].

There are important situations, pertaining to dynamic boundary condi-
tions, in which the operators A and B are not closable. This was pointed
out in the early study [26] of the equation (1.1.1) under the initial condition

lim
τ→0+

[Bu(τ)] = y ∈ Y. (1.1.2)

This study also revealed that closedness 2 of the operators A and B was
not crucial. It was replaced by the notion of joint closedness which states
that the operator pair 〈A,B 〉 : D → Y × Y is closed. Somewhat later it
was realized that there were two families 〈S(τ), E(τ)〉 of bounded evolution
operators involved [27], intertwined by the empathy relation

S(τ + σ) = S(τ)E(σ), (1.1.3)

where S(τ) : Y → X and E(τ) : Y → Y ; σ, τ > 0. We call the pair
〈S(τ), E(τ)〉 an empathy. It was assumed that E(τ) was a semigroup:

E(τ + σ) = E(τ)E(σ). (1.1.4)

This idea was further extended in [28] by neither assuming that the family
E(τ) was a semigroup, nor that an operator such as B existed. Instead, the
analysis was very much based on the Laplace transform for vector-valued
functions as it was done, in part, in [26, 27] and virtually at the same time
for semigroups, [1], where the notion of integrated semigroup was introduced.
It should also be mentioned that earlier this notion was implicitly used in
[15].

The points of departure in [28] were two-fold: In the first place, since the
Cauchy-problem (1.1.1), (1.1.2) makes perfect sense for τ > 0, the relation
(1.1.3) only needs to hold for σ, τ > 0. Secondly, it was assumed that the
Bochner integrals

R(λ)y =
∫

(0,∞) e
−λτE(τ)ydτ ;

P (λ)y =
∫

(0,∞) e
−λτS(τ)ydτ,

}
(1.1.5)

existed in Y and X respectively, for every y ∈ Y and λ > 0. In this setting
the empathy pseudo resolvent equations

R(λ)−R(µ) = (µ− λ)R(λ)R(µ);

P (λ)− P (µ) = (µ− λ)P (λ)R(µ);

}
(1.1.6)

2The initial condition u0 and Bu(0) requires u(0) ∈ D . This initial condition is not
feasable in many physical systems. The initial condition (1.1.2) is more feasable in appli-
cations. If B is closed and u0 exists, then the initial condition (1.1.2) also implies that
u(0) ∈ D .

2
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were obtained from (1.1.4) -(1.1.3). We call this pair 〈R,P 〉 an empathy
pseudo-resolvent. Under the invertibility assumption (Section 4.2), the linear
operators A and B defined on a domain D ⊂ X could be constructed such
that P (λ) = (λB −A)−1. It is shown in [28] that for y ∈ B[D ] the function
u(τ) = S(τ)y is the solution of the Cauchy problem (1.1.1) - (1.1.2). The
constructed operator pair 〈A,B 〉 is called the generator of the empathy
〈S(τ), E(τ)〉. Following [15], the operators P (λ) = (λB − A)

−1
are called

generalized resolvents.

A characterization of the generator of uniformly bounded empathies in
terms of properties of the generalized resolvent was given under the restric-
tive assumption that the space Y had the Radon-Nikodým property. This
restriction was first by-passed in [5], by introducing the notion of ‘integrated
empathy’ similar to the notion of integrated semigroup introduced in [1] (see
also [2]).

Integrated semigroups and empathies are instances of evolution opera-
tors that are highly intertwined. Convolution semigroups used by William
Feller [17, p. 284] for the study of Markov processes are derived from the
convolution of probability measures. The evolution operators associated
with the transition probabilities of Markov processes in [17, p. 284] are
special cases of intertwined evolution operators.

The development of a dynamic systems approach to the problems de-
scribed above was based on rather pedestrian and tedious approaches as in
[28] and [5]. In [28] and [5], the algebraic-analytic setting was time-domained
Z-valued functions which were Bochner integrable over open intervals. We
shall denote this setting as L1

loc((0,∞), Z);Z is a Banach space. In this
vectorization of L1

loc((0,∞),R), where a Banach space Z replaces R, the
Laplace Transform and a general form of the convolution theorem reported
in [5] was central.

Also important to note is that certain evolution equations have been
treated within the framework of vector-valued Schwartz distributions with
limited success (see e.g. [14]). We highlight one of the reasons for the limited
success in Section 2.9, remark 11.

1.2 The New Framework

This dissertation develops an algebraic-analytic setting in which the earlier
approaches may by included. For this we adapt some of the ideas of vector-
valued distributions and abstract harmonic analysis to define a product of
homomorphisms between a ‘test space’ of Banach space-valued functions
and the Banach space itself. The homomorphisms are, of course, linear
operators. We shall, however, persist in calling them homomorphisms to

3
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emphasize their particular role.

As in the Laurent Schwartz theory of vector-valued distributions (see
e.g. [14]) , we introduce in Section 2.1, the notion of test spaces. They con-
sist of Banach space -valued functions defined on an Abelian group G. In
contrast to the theory of vector-valued distributions where differentiability
is prominent, the requirement rather is invariance under translation. Similar
to distribution theory the homomorphisms from the space of ‘test functions’
to the underlying Banach space are important. The notion of admissible
homomorphism, when the homomorphism of a translated test function is
once again a test function, is central. We introduce a product of admissible
homomorphisms, borrowed from abstract harmonic analysis (e.g. [18, Chap.
V, §19], [23, 1.9.7]) that satisfies a power law, crucial in the work. Under
this product the homomorphisms form an associative algebra with a unit.
Bounded linear operators in the Banach space give rise to admissible homo-
morphisms. Conversely, for suitable test spaces, bounded homomorphisms
are admissible and they correspond to bounded linear operators in the test
space, called dualisms. The product of such homomorphisms corresponds
to composition of dualisms so that traditional operations can be carried out
in the test space. It should be noted that in abstract harmonic analysis,
the homomorphisms in question are linear functionals and the product is
convolution.

In Section 2.2, we introduce analytic structures to the theory by con-
sidering continuous test functions when the group G is topological. The
pervading emphasis is on a Fréchet test space of vector valued continuous
test functions. This analytic structure ensures the study of time-dependent
homomorphisms, as a replacement for families of evolution operators, from
the point of view of their integrals (Section 2.3.1), their Laplace transforms
(Section 2.4.1), their convolutions (Section 2.5) and the convolution theorem
(Section 2.6). Indeed, we construct a convolution theorem with fully devel-
oped Laplace transform theorems (Section 2.6.3) under a crucial closedness
assumption (Section 2.4.1). This fuller resemblance to the classical case
subsumes the brute force approach based on the convolution theorem of [5].

Causal relations such as the semigroup, empathy (Section 2.7) and in-
tegrated empathy (Section 2.8.2) are considered with the standard compo-
sition of operators replaced by the product of homomorphisms introduced
earlier. The corresponding resolvent equations under the ‘new’ product are
derived efficiently with a unified approach as the convolution of the Laplace
transforms of two unlike parameters (Theorem 12, Section 2.7). In Section
2.8, the resolvent equations of the classical evolution operators, as discussed
above, are placed in the present framework. Thus, we efficiently implement
Sauer’s approach of giving the convolution a central role [5].

We introduce a new analytic structure by merely changing the test space.

4
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Another pervading emphasis is on a Banach test space of bounded uniformly
continuous test functions (Section 3.1). In Section 5.2, Feller’s observation
that probability measures give rise to bounded linear operators on spaces of
continuous functions, is brought into the framework of the constructed alge-
bra of admissible homomorphisms. It turns out that the product introduced
here corresponds to the convolution of probability measures.

With this new analytic structure, we re-study families of evolution op-
erators in Section 3.2 by re-considering time-dependent normed homomor-
phisms, their integrals and their Laplace transforms. Since the integrals
involved are Bochner integrals over (mostly) open time intervals, the rela-
tion to the integrals and the behaviour of the integrands at time zero is
investigated in Section 3.2.2. To some extent the results here correspond to
results in [19]. Resolvent equations under the ‘new’ product are derived and
some properties of so-called star-semigroups, analogous to more properties
of traditional semigroups are shown to hold. In Section 3.2.3, the similarity
goes deeper: the canonical family associated with the double family 〈S, E 〉
of empathy theory [28] is an isometric representation; the corresponding
dualisms are the known semigroup and empathy relations as far as strongly
continuous semi-groups are concerned. Indeed, in Section 3.5, we show that
the classical result that every measurable semigroup is strongly continuous
is also true for normed ∗-semigroups.

The before-mentioned derived resolvent equations in the setting of our
convolution algebra of admissible homomorphisms or generalized operators,
form the basis for the definition and characterization of the ‘generators’ of
causal relations under the product of homomorphisms. In Section 4.2.1, we
perform a preliminary analysis of ‘star-empathies’ along lines similar to [28]
by constructing integral representations similar to those for classical semi-
groups (Lemma 2.7, [28]); just as in the case of the empathy(Lemma 2.7,
[28]), these integral representations show what the pair of generators of the
implicit Cauchy problem should look like. Here the roles of the test space
and the dualisms in an algebraic sense become clear. Then, in Section 4.3,
we apply the Kisynski Generation Theorem for C0-semigroups to a genera-
tion theorem for the implicit Cauchy problem in this new algebraic-analytic
setting of admissible homomorphisms: the empathy theory approach to the
implicit Cauchy problem has solutions on a non-closed dense subspace of
the regularity space generated for C0-semigroups which can be identified
with T ; this dense subspace, ∆2

K
, can be identified with T 2 . It then follows

immediately that the implicit evolution equation for Banach spaces (1.1.1)
has solutions also on ∆2

K
. Indeed, we give an exact way to measure how far

empathy theory differs from semi-group theory (Corollary 5, Section 4.3.2)
and Remark 12).

The notion of a convolution semigroup is natural in our framework of
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admissible homomorphisms: in Section 5.2, we identify random variables as
admissible linear functionals on a suitable scalar test space, and the Feller
convolution with the product of admissible homomorphisms. In Section 5.3
we approach an absorbing barrier of a Markov process with the philosophy of
dynamic boundary condition where the boundary is a body in its own right.
The absorbing boundary is seen as a distinct collection of states with zero
intensity: this is a more realistic way to model fly trap models. Therefore,
this approach gives rise to two distinct state spaces and stochastic processes
which fits in perfectly with the two state theory of empathy. This pair
of stochastic processes gives rise to a pair of transition probability density
functions which satisfy the extended Chapman Kolmogorov equation (5.3.3).
We call this process an entwined pseudo Poisson process. Indeed, in Section
5.4.1, we introduce the idea of an entwined Brownian motion in the form of
a pair of random variables entwined by the extended Chapman Kolmogorov
equation. We show that the diffusion equation of such a pair of entwined
random variables involves an implicit evolution equation on a suitable scalar
test space (Theorem 3).

For a certain test space, we vectorize the Feller convolution semigroups
into a semigroup of operator valued measures in Section 5.5: random vari-
ables are a special case of dominated admissible homomorphisms on a vector-
ized test space; such homomorphism are uniquely identified with an operator
valued measure; in particular, we construct a new convolution of operator
valued measures so that the measure associated with the product of such
homomorphisms is the convolution of their respective operator valued mea-
sures (Section 5.5.3). An immediate consequence is a vector valued version
of the extended Chapman-Kolmogorov relation (Section 5.6).

6
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Chapter 2

The New Framework:
Fréchet Test Space

The convolution algebra of abstract harmonic analysis (Appendix B.2) con-
sists of the class of admissible linear functionals, x′ : Φ → C; Φ is a trans-
lation invariant function space of group G-domained scalar functions. We
vectorize the convolution algebra of abstract harmonic analysis in two steps.

Firstly, we vectorize the function space Φ by choosing a suitable translation-
invariant subspace of group G-domained Z-valued functions; Z is a Banach
space (Section 2.1). We call this vectorized Φ a test space. Secondly, we
vectorize x′ by replacing C with Z itself (Section 2.1.1). The group G allows
certain homomorphisms, x′ : Φ → Z to play a second role as endomor-
phisms X ′ : Φ → Φ, just as in abstract harmonic analysis. We call such
homomorphisms admissible homomorphisms; the endomorphisms shall be
called dualisms; A is the class of all admissible homomorphisms. We then
construct an algebra product ∗ on A which generalizes the abstract convo-
lution of the convolution algebra of abstract harmonic analysis. Therefore,
we call ∗ a convolution.

Operators on Banach spaces are a special case of admissible homomor-
phisms for a suitable test space Φ. In this chapter, we set Φ to be C(G,Z),
the space of continuous functions with the topology of uniform convergence
of compacts; the topological group G is locally compact and second count-
able. Φ is then Frechét (Section 2.2). The analytic structure induced by
the Frechet test space Φ allows us to consider time-dependent bounded ho-
momorphisms (Section 2.3), their integrals (Section 2.3.1) and their Laplace
transforms (Section 2.4.1). The integrals involved are Bochner integrals over
(mostly) open time intervals. Indeed, the theory of time-dependent bounded
homomorphisms have a general version of the integrability theorem of Hille
([19], Theorem 3.8.2, p.85) (Theorem 6, Section 2.3.1).

7
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Thus we study families of bounded homomorphisms, as a replacement
for families of bounded evolution operators. Specifically, we consider time-
dependent bounded homomorphisms integrable over every finite open inter-
val. We denote this class by L1

loc((0,∞),AB); AB is the algebra of bounded
homomorphisms.

The framework L1
loc((0,∞),AB) will be the new algebraic-analytic set-

ting for the study of intertwined families of evolution operators (Section
2.3.2). Tradition vectorized L1

loc((0,∞),R) by replacing the algebra R with
a Banach space Z ( [1],[2]) to arrive at L1

loc((0,∞), Z), the traditional
algebraic-analytic setting for empathy theory. Our vectorization of
L1
loc((0,∞),R) replaces the algebra R naturally with another (convolution)

algebra AB, to arrive at the new algebraic-analytic setting L1
loc((0,∞),AB).

Therefore, the vectorization relies on the algebra product ∗ of the convo-
lution algebra to transfer the scalar convolution theorem as opposed to a
bounded bilinear form as in well known vector valued convolution theorems
(Appendix 2.9, Proposition 8). Bounded bilinear forms require the family of
evolution operators to be uniformly measurable (Section 2.9, Remark 11).
This assumption is too strong for empathy theory but not for vector valued
distributions for which these vector valued convolution theorems were made
for. We show that the convolution theorem L1

loc((0,∞),AB) like its fore-
runner, the convolution theorem of [5], requires no additional assumptions
by virtue of defining the Laplace Transform and convolution pointwise. In-
deed, the versatility of the framework rests on the freedom to change the
test space Φ according to the applications.

Under the crucial closedness assumption (Section 2.4.1), we transfer
the full computational power of the classical convolution theorem and the
Laplace Transform Theorems (Section 2.6.2 and 2.6.3): the convolution the-
orem of L1

loc((0,∞),AB) gives rise to the Laplace transform theorems which
are identical in nature to the classical ones (Section 2.6.3). We use this full
computational power to efficiently show that the causal relations such as
semigroups, empathy (Section 2.7) and integrated empathy (Section 2.8.2),
phrased in terms of the introduced product, yield resolvent-like equations
analogous to the ones that are crucial to the classical studies; the diverse re-
solvent equations under the ‘new’ product or convolution are all uniformly
computed as the convolution of the Laplace transforms of two unlike pa-
rameters (Theorem 12, Section 2.7) of their respective causal relations. The
resolvent equations derived here will form the basis for the definition and
characterization of the ‘generators’ of causal relations (Section 4.3) under
the product of homomorphisms. Thus, the convolution operation plays a
central role in the analysis of intertwined families of evolution operators,
by virtue of a fully developed convolution theorem and Laplace transform
theorems.

8
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2.1 Vectorized Test Space

In our considerations, the translation operators play a critical role with an
Abelian group playing the supporting role. If f is a function defined on an
Abelian group 〈G,+〉, then the Abelian 1 group G gives rise to translation
operators Rs defined by

Rsf : t ∈ G 7→ f(t− s) ∈ Z, (2.1.1)

for each fixed s ∈ G; Z is a vector space. We introduce new notation for
the translation operator Rs of equation (2.1.1) to distinguish the parameter
s from the variable t of the function f in the form of Rst :

Rstf : t ∈ G 7→ f(t− s) ∈ Z. (2.1.2)

The symbol Rst needs to be read as ‘t is replaced by t−s’. When s is intended
as a ‘parameter’, the notation fs(t) = f(t− s) will be used. The translation
operators follow certain rules which can be verified directly. These are:

R
s

t
R
r

t
= R

(s+r)

t
= R

r

t
R
s

t
; (2.1.3a)

R
s

rR
r

t
= R

r

t
R
−s
t

; (2.1.3b)

R
s

rR
−r
t

= R
s

t
R
−r
t

; (2.1.3c)

R
s

t
[g ◦ f ] = g ◦Rs

t
f = g ◦ fs . (2.1.3d)

We shall use the notation R
s

when replacement of t is understood.

A class Φ of functions defined on G and the same range is called trans-
lation invariant if f ∈ Φ implies that for every s ∈ G, fs := Rsf ∈ Φ; that
is, Φ is an R-group; R is the set of all the translation operators Rs. Trans-
lation invariant classes will be crucial in this work. From this point onward,
it will be required throughout that Φ be translation invariant. We shall
call Φ = Φ(G,Z) a test space and refer to members of Φ as test functions.
Examples of test spaces are:

1. The space of all functions from G to Z.

2. The space of constant functions. This is the classical case where Φ =
Z.

3. If G is a finite group then Φ is equivalent to a finite Cartesian power
of Z. When G is the trivial group, Φ is the same as the test space of
constant functions.

1If the group G is not Abelian then another translation operator is possible: Lsf : t ∈
G 7→ f(−s + t) ∈ Z since the group operation + is not commutative. For our purposes,
there is no need to consider both types of translation operators. Therefore we take G as
Abelian so that Rs = Ls.
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4. If G is a topological group, the following possibilities are available:
Φ = C(G,Z), the space of continuous functions from G to Z; Φ =
BC(G,Z), the space of bounded continuous functions; Φ = BUC(G,Z),
the space of bounded (G,U) → (Z,V) uniformly continuous func-
tions; V is the uniformity induced by the norm on Z; U is the uni-
formity induced by the topological group G. The latter choice will be
prominent in our considerations. If G is a compact topological group,
Φ = C(G,Z) = BUC(G,Z).

2.1.1 Admissible Homomorphisms

We shall be interested in (vector space) homomorphisms x′ : Φ → Z; Φ, Z
are vector spaces. The notation 〈f, x′ 〉 = x′(f) reminiscent of usage in
functional analysis, underlines our intention to treat these operators as if
they were linear functionals. We shall interchangeably call them vector-
valued linear functionals or homomorphisms. Such a homomorphism is called
admissible if the mapping

x′f : p 7→ 〈f−p , x′ 〉, (2.1.4)

is in Φ. When clarity demands, we use the notation x′·r to indicate that the
homomorphism removes dependence on r ∈ G; f : r ∈ G 7→ f(r) ∈ Z; f ∈ Φ.
The class of admissible homomorphisms is denoted by AΦ or A when Φ is
understood. Admissible homomorphisms take center stage: we mostly work
with admissible homomorphisms.

For a fixed f ∈ Φ, the translation mappings R
−q

generate a bundle of
“curves” {f−q : q ∈ G} in Z which is then mapped by x′ to the curve x′f .
Admissibility requires that this curve should be in Φ. Hence the translation
mappings allow each admissible homomorphism x′ to play two roles. The
default role is simply as a homomorphism of Φ→ Z. In the second role they
induce the endomorphism X ′ on Φ defined by

X ′f = x′f ; f ∈ Φ. (2.1.5)

The endomorphisms so induced will be called dualisms. Examples of admis-
sible homomorphisms are:

6. The point evaluation maps θ′q : f ∈ Φ 7→ f(q) ∈ Z are admissible

homomorphisms. In fact,
θ′q
f(p) = f(p + q) = R

−q
f(p) = [Θ′q f ](p).

Thus, Θ′
0

is the identity on Φ.

7. If A : Z → Z is a bounded linear operator, the mapping x′A : f 7→
A〈f, θ′

0
〉 is an admissible homomorphism when Φ = C(G,Z). Indeed,

[A′f ](q) =
x′
Af(q) = Af(q). We shall refer to the relation A → x′A as

10
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the canonical mapping and x′A as the associated canonical homomor-
phism.

8. When the group G is trivial, admissible homomorphisms are classical
operators.

Thus, the class AΦ can be quite large depending on the choice of Φ.

Remark 1. For a non trivial G, admissible homomorphisms generalize op-
erators. If A,B ∈ L(Z), the space of all bounded linear operators on Z,
then

〈Kz, a
′ 〉 = Az; 〈Kz, a

′ ∗ b′ 〉 = (A ◦B)z,

where Kz ∈ Φ : t ∈ G → z ∈ Z is the constant function and a′, b′ is the
associated canonical homomorphism. Therefore, if the test space Φ strictly
contains the set {Kz|z ∈ Z} of constant functions, then a′ and b′ is a strict
generalization of A and B, respectively.

The test space Φ is an AΦ -group. For our purposes, we need Φ to
be both an AΦ -group and R-group. We give the class A of admissible
homomorphisms an algebra structure by introducing an associative product.
Let x′ be a homomorphism (not necessarily in A) and suppose that y′ ∈ A .
The product homomorphism x′ ∗ y′ is defined as:

〈f, x′ ∗ y′〉 = 〈 y′f, x′〉; f ∈ Φ. (2.1.6)

The above product ∗ on A is based on the fact that Φ is simultaneously an
A-group and an R-group; the double role each x′ ∈ A plays allows (2.1.6)
to have a meaning.

In the case the classical convolution algebra, the associativity of the
product ∗ of the linear functionals follows from the translation invariance of
the linear functionals (Appendix B.2, equation (B.2.2)). We now show that
this is also the case for our vectorized convolution algebra.

Lemma 1 (Commutation rule). For arbitrary x′ ∈ A, s ∈ G and f ∈ Φ,
x′ [Rsf ] = Rs[x

′
f ]. That is, X ′[Rsf ] = Rs[X ′f ].

Proof. Direct computation shows that X ′[Rs(f)](t) = x′(R−t(Rs(f))) =
x′(Rs−t(f)) and Rs(X ′f)(t) = (X ′f)(t − s) = x′(R−(t−s)f) = x′(Rs−t(f)).
The above can be rewritten as:

Rst [
x′f(t)] = Rst 〈Rtrf, x′·r〉 = 〈RstRtrf, x′·r〉 = 〈R−tr Rsrf, x′·r〉 = x′ [Rsrf(t)],

having made use of the translation rules (2.1.3).

11
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The commutation rule plays a decisive role in the following calculations:

[ (x′∗y′)f ](t) = [x′ ∗ y′](R−t(f)) = x′(Y ′(R−t(f)))

= x′(R−t(Y ′f))

= X ′(Y ′f)(t)

= x′( y′f)(t),

for all t ∈ G. Equivalently 〈R−tr f, x′∗y′〉 = 〈 y′ [R−tr f ](r), x′·r〉 = 〈R−tr [ y
′
f ](r), x′·r〉.

Thus, we have derived the power rule which is in fact valid for y′ ∈ A and
arbitrary x′ 2:

Corollary 1 (Power Rule). For x′, y′ ∈ A and f ∈ Φ, x′ ∗ y′ ∈ A and

x′ [y
′
f ] =x′∗y′ [f ]. (2.1.7)

This leads to the associativity of the product ∗ on A 3.

Theorem 1. The admissible homomorphisms AΦ equipped with the product
∗ is an associative set/class with unit θ′0.

The product ∗ introduced here is related to composition of linear trans-
formations in the following way: If x′ and y′ are in AΦ , then by (2.1.7) and
(2.1.5)

(x′∗y′)
f = X ′ ◦ Y ′f. (2.1.8)

Thus, the product of homomorphisms corresponds to composition of their
dualisms. Therefore, the mapping

Γ : x′ ∈ AΦ 7→ X ′ ∈ L(Φ), (2.1.9)

is an isomorphism in the algebra L(Φ) of linear transformations on Φ.

Remark 2. Recall in Remark 1, that when the group G is non trivial,
admissible homomorphisms are generalized operators. Now, the product ∗ is
a generalized composition of operators: if A1, A2 ∈ L(Z) and a′1, a

′
2 ∈ AB

are the associated canonical homomorphisms, then A1◦A2 has the associated
canonical homomorphism a′1 ∗ a′2.

2Just as long as x′∗y′f is a function on G : it need not be in Φ. Therefore, the relation
x′ [y

′
f ] =x′∗y′ [f ] applies without the assumption that x′∗y′f ∈ Φ. Indeed it follows from

x′ [y
′
f ] =x′∗y′ [f ] that if x′, y′ ∈ A then x′ ∗ y′ ∈ A : y

′
f ∈ Φ implies x′(y

′
f) ∈ Φ.

3The preceding constructions are natural extensions of the well known construction of a
convolution product on the dual space X ′ of classical C-valued functionals of a translation-
invariant function space X [§ 19 [18]] or [Section 1.9.7 [23]]. This vindicates our use of the
the notation x′ for members in A , which is normally reserved for linear functionals of the
dual space X ′.
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A question to ask at this point is which linear operators on the test
space are dualisms? That is, which of the linear operators on the test space
give rise to admissible homomorphisms from Φ to Z? Let ∆ be a (vector)
subspace of Φ. A linear mapping M : ∆ → Φ is called translatable if ∆ is
translation invariant and for every p ∈ G and f ∈ ∆,

RpMf = MRpf.

The following result can be verified directly once it is realized that M induces
a homomorphism m′ defined by 〈f,m′ 〉 := 〈Mf, θ′

0
〉. It should be noted that

the induced homomorphism m′ is restricted to the ‘domain’ ∆. We call such
homomorphisms, restricted homomorphisms.

Theorem 2. A linear mapping M : Φ → Φ is translatable if and only if it
is a dualism of a restricted homomorphism. If M is a one-to-one dualism
and ∆ := M [Φ], then M

−1
: ∆→ Φ is translatable. Sums and compositions

of translatable mappings are translatable.

Proof. For the sufficient condition, the induced homomorphism m′ is admis-
sible since m′f = M(f) for all f ∈ Φ:

m′f : s 7→ (MR−sf)(0) = (R−sMf)(0) = Mf(s).

The necessary condition is immediate from Lemma 1.

The translation invariance of ∆ follows from the translation invariance
of Φ: consider f := Mf ′ ∈ ∆; fp = M(Rpf ′) ∈ ∆; f ′ ∈ Φ. Similarly, direct
computation shows M−1 commutes with Rp.

We impose a linear structure on the algebra A by requiring both Φ and
Z to be vector spaces over the scalar field C (or R); vector addition coincides
with the Abelian group operation in Φ. The linear structure is defined as
follows:

〈f, x′ + y′ 〉 : = 〈f, x′ 〉+ 〈f, y′ 〉 and 〈f, λx′ 〉 : = λ〈f, x′ 〉.

The linear structure on Φ ensures that if x′, y′ are admissible, then so are
x′+y′ and λx′: (x′+y′)(f) = x′(f) + y′(f) and λx′f = x′(λf). Furthermore,
the homogenity of x′, y′ ensures that the relation

(λx′) ∗ y′ = λ(x′ ∗ y′) = x′ ∗ (λy′).

Theorem 3. If the admissible homomorphisms in A are linear transfor-
mations (the Abelian groups Φ and Z are vector spaces; vector addition
coincides with the Abelian group operation), then the ring 〈A ,+, ∗〉 is a C-
algebra with unit θ′0.

We shall take the symbol A to mean the C-algebra 〈A ,+, ∗〉 and mem-
bers of A be called Φ-admissible vector valued functionals.

13
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2.2 Test Space With Fréchet Topology

When the group G is topological, continuous test functions may be consid-
ered, as remarked. It also opens up the possibility of introducing vector
topologies for Φ = C(G,Z) such that the translation map

p ∈ G 7→ Rpf ∈ Φ, (2.2.1)

is continuous for each fixed f ∈ Φ. This ensures that the admissibility of each
bounded x′ ∈ Hom(Φ, Z): x

′
f : p ∈ G 7→ x′ ◦f−p. If G is a topological group

and Φ := C(G,Z) one could define a locally convex topology for Φ based on
the family of seminorms |f |K = supt∈K ‖f(τ)‖Z ; K ⊂ G;K compact. If G
is locally compact and has a countable neigbourhood basis, Φ can be made
into a Fréchet space (Theorem 7.19, [31]). The Fréchet property will turn
out to be critical in the study of strong integrability. Since Z is a complete
metric space, under this topology of uniform convergence on compact sets,
the translations (equation (2.2.1)) are continuous for each fixed f ∈ Φ. This
follows from the fact that a continuous metric space valued function f on a
compact set I ⊂ G is uniformly continuous.

Theorem 4. The mapping p 7→ fp ∈ Φ is continuous.

Proof. The exponential property (2.1.3a) makes it sufficient to prove conti-
nuity at the origin for the non-linear map p → fp which is immediate from
the uniform continuity of f 4 when restricted to a compact domain.

In this chapter, we shall take this Fréchet space as our test space Φ. Let
AB denote the class of bounded homomorphisms. From Theorem 4, (AB, ∗)
is an algebra:

Theorem 5. If x′ is a bounded homomorphisms, it is admissible.

Remark 3. The translation operators impose the following minimum re-
quirements on the test space: the test space is to be (i) translation invariant
and (ii) to have a topology which ensures that the map (equation (2.2.1)) is
continuous for each fixed f ∈ Φ.

4We illustrate for G = R. We now show that 1
n
→ 0 implies f− 1

n
⇒ f on compacts.

The fixed f , when restricted to compact domain K, is uniformly continuous: for every
ε > 0, there exists a δ > 0 such that

d(x, x′) < δ ⇒ ‖f(x)− f(x′)‖ < ε.

Let Hn denote the function f− 1
n

: x : f(x + 1
n

). Then choose n large enough such that
1
n
< δ. Then ‖Hn(x) − f(x)‖ < ε for all x ∈ K. That is, Hn ⇒ f on compact K since

supx∈K ‖Hn(x)− f(x)‖ < ε.
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2.3 Time-dependent Homomorphisms

With Remark 1-2, the canonical mapping between bounded linear opera-
tors and bounded admissible homomorphisms motivates the study of time-
dependent members of bounded admissible homomorphisms, instead of tradi-
tional families of bounded evolution operators with composition of operators
replaced by the product ∗. Thus we consider a family X′ = {x′(τ) ∈ AB|τ ∈
T = R+ := (0,∞)}. The family X′ := {x′(τ)|τ > 0} can be identified with
a time-dependent AB-valued function τ 7→ x′(τ) ∈ AB.

2.3.1 Strong Integrability

In classical semi-group theory, the strong integrability of the semi-group
{E(τ)|τ ≥ 0} (time-dependent family of bounded evolution operators) en-
sured the existence of the smoothing operators V (τ) :=

∫
(0,τ)E(σ)dσ. These

operators established fundamental properties of the semigroup such as strong
continuity implies differentiability ([12], Lemma 1.3, p. 50).

Likewise, we shall be most interested in the ‘strong integrability’ of the
family X′; X′ is a replacement of the family of bounded evolution operators.
We say that X′ is (strongly) integrable over an interval I ⊆ (0,∞) if for
every f ∈ Φ, the Bochner integral

∫
I〈f, x

′(τ)〉dτ exists in Z. If this is the
case, we define the smoothing homomorphism x′I by the relation

〈f, x′I〉 =

∫
I
〈f, x′(τ)〉dτ ; f ∈ Φ. (2.3.1)

Therefore, Z needs to be a real or complex Banach space.

Central to the study of strong integrability of X′ is the following version
of a well-known theorem ([19], Theorem 3.8.2, p.85). The test space Φ being
Fréchet plays a critical role in our version of Theorem 3.8.2.

Theorem 6. Suppose the functions τ → 〈f, x′(τ)〉; τ ∈ (0,∞); f ∈ Φ are
(strongly) measurable and the homomorphisms x′(τ) are bounded. If for an
interval I ⊆ (0,∞) the integral

〈f, x′I 〉 =

∫
I
〈f, x′(τ)〉dτ, (2.3.2)

exists for every f ∈ Φ, the homomorphisms x′I : Φ → Z are bounded and
hence, admissible.

Proof. Let W : f ∈ Φ→Wf ∈ L1(R, Z) be defined by [Wf ](τ) = 〈f, x′(τ)〉.
To see that W is continuous we show that it is closed and use the closed
graph theorem (Φ is Fréchet). Suppose that fn → f in Φ and that Wfn → g
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in L1(I, Z). Then at least a subsequence of [Wfn](τ) converges to g(τ) in
Z for almost every τ ∈ I. By the continuity of x′(τ), [Wfn](τ) → [Wf ](τ)
in Z for every τ ∈ I. Hence g = Wf . Finally we note that ‖〈f, x′I 〉‖ ≤
‖Wf‖L1(I,Z)

2.3.2 New Framework

From now on we shall assume that the functions τ → 〈f, x′(τ)〉 are strongly
Lebesgue measurable. Additionally, integrals will be in the sense of Bochner.
If for all I = (0, τ); τ > 0, the smoothing homomorphism x′I ∈ AB, we
say that X′ is integrable near the origin. We let L1

loc((0,∞),AB) denote
the class of all such time-dependent AB-valued functions. This will be the
new algebraic-analytic framework for the study of intertwined families of
evolution operators.

The framework L1
loc((0,∞),AB) vectorizes L1

loc((0,∞),R) by replacing
the algebra R with another algebra AB, rather than with a plain Banach
space Z. In fact, L1

loc((0,∞),R) embeds in L1
loc((0,∞),AB): we associate

with each time-dependent scalar valued function φ ∈ L1
loc((0,∞),R), a time

dependent AB-valued function x′φ by the relation, x′φ(τ) : = φ(τ)θ′0. Clearly

x′φ ∈ L1
loc((0,∞),AB). Now, one of the motivations for this more natural

vectorization, is to construct a convolution theorem in L1
loc((0,∞),AB) that

resembles its counterpart in L1
loc((0,∞),R). A dominant theme of this new

framework is to see how far these AB -valued functions behave like scalar
valued functions in terms of convolution.

Therefore, we need the notion of Laplace closed families for our con-
volution theorem and Laplace transform theorems in L1

loc((0,∞),AB) to
resemble the scalar convolution theorem of L1

loc((0,∞), R) (Theorem 11.9B
[13]). We will show that the algebra product of the convolution algebra
transfers the scalar convolution theorem, as opposed to a bounded bilinear
form used in other well known vectorizations (Section 2.9).

2.4 Closedness

Fundamental to our investigation is the product y′ ∗ x′I for a fixed y′ ∈ AB.
We thus consider the family [y′ ∗ x′](τ) := y′ ∗ x′(τ). We say that the
homomorphism y′ ∈ AB is closed over the interval I with respect to the
family X′ if for every f ∈ Φ the mapping τ 7→ 〈f, [y′ ∗ x′](τ)〉 is strongly
measurable in Z, the integral [y′ ∗ x′]I exists and 〈f, y′ ∗ x′I 〉 = 〈f, [y′ ∗ x′]I 〉:

y′ ∗
∫
I
x′(τ)dτ =

∫
I
(y′ ∗ x′(τ))dτ. (2.4.1)

16

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



From (2.4.1) it is seen that closedness in the present sense resembles a well-
known theorem concerning the commutation of closed linear operators and
Bochner integrals. Indeed, the canonical homomorphisms 5 are closed over
any I with respect to any family X′. From direct computation it follows
that

Proposition 1. Let y′ be a canonical homomorphism. Then it is closed
over I with respect to X′.

Remark 4. I wish to point out the important role Professor Diestel played
in showing us the validity of Theorem 3.8.2 [19]. It is his proof that we
extended for the proof of Theorem 6.

2.4.1 Laplace Transform and Closedness

At this stage we introduce the Laplace transform of the family X′ formally,
for f ∈ Φ at λ > 0, by the expression

〈f, x̂′(λ)〉 =

∫ ∞
0

e−λτ 〈f, x′(τ)〉dτ =

∫ ∞
0
〈f, e−λτx′(τ)〉dτ. (2.4.2)

The family X′ is AB-Laplace transformable if x̂′(λ) ∈ AB. We denote the
class of all such functions by Lap(λ,AB). In that case, also the integrals
x′
I

exist for all finite intervals I. Clearly if the Laplace transform exists for
some λ0 is exists for all λ > λ0 . An immediate consequence of Theorem 6 is

Theorem 7. If for some λ > 0 the Laplace transform x̂′(λ) exists, it is
bounded and therefore, in AB. Additionally, the integrals x′I are bounded for
all finite intervals I ⊂ (0,∞): if X′ ∈ Lap(λ,AB), then X′ ∈ L1

loc((0,∞),AB).

In developing a convolution theorem in L1
loc((0,∞),AB), we need to in-

vestigate the distributive nature of the Laplace transform over products.
If X′ ∈ Lap(λ,AB), then the homomorphism y′ is said to be Laplace-
closed with respect to X′ if it is closed over R+

with respect to the family
{e−λτx′(τ)}, that is,

y′ ∗ x̂′(λ) =

∫
(0,∞)

e−λτ (y′ ∗ x′(τ))dτ. (2.4.3)

Theorem 8. Suppose that y′ ∈ AB and that the Laplace transform x̂′(λ)
exists. Then ∫ ∞

0
e−λτ 〈f, x′(τ) ∗ y′ 〉dτ = 〈f, x̂′(λ) ∗ y′ 〉. (2.4.4)

5Given our canonical identification of a bounded operator A with a canonical map y′A
this should not be surprising.
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If y′ is Laplace-closed over R+
with respect to X′, then the Laplace transform

̂[y′ ∗ x′](λ) exists and

〈f, ̂[y′ ∗ x′](λ)〉 = 〈f, y′ ∗ x̂′(λ)〉. (2.4.5)

Proof. The proof of (2.4.4) is fairly straightforward and a direct calculation
shows that the integral exists. When x′(τ) and y′ are interchanged in the
product the matter is more complicated. To begin with consider∫ ∞

0
e−λτ 〈f−s , x′(τ)〉dτ = 〈f−s , x̂′(λ)〉 = [X̂ ′(λ)](σ) ∈ Φ. (2.4.6)

If we apply y′ to (2.4.6) the expresion (2.4.5) follows from (2.4.1).

A family Y′ is Laplace-closed with respect to X′ if for each fixed σ > 0,
y′(σ) is Laplace-closed with respect to X′. We say that Y′ is a canonical
family if y′(τ) = A(τ)θ′0; A(τ) ∈ L(Z). The canonical families provides a
wide class of Laplace closed families.

Proposition 2. Let Y′ be a canonical family and X′ ∈ Lap(λ,AB). Then
Y′ is Laplace-closed with respect to X′.

Proof. This is immediate from Proposition 1, Section 2.3.1.

2.4.2 Empathy Laplace Transformability

In empathy theory, the family S := {S(τ) ∈ L(Z) : τ ∈ T} of bounded op-
erators is Laplace transformable at λ > 0 if the Bochner integral P (λ)z :=∫

(0,∞) e
−λτS(τ)zdτ exists in Z for every z ∈ Z and λ > 0; we call P (λ)

the resolvent operator. The canonical mapping between a bounded oper-
ator and a homomorphism associates a canonical family X′ defined by the
homomorphisms x′(τ) = S(τ)θ′0. We call X′ the associated canonical family
or the L1

loc((0,∞),AB)-analogue of S. These two families are related by
Theorem 7, Section 2.4.1:

Corollary 2. Let the family S := {S(τ) ∈ L(Z) : τ ∈ T} of bounded
operators be Laplace transformable. Then the associated canonical family X′

is AB-Laplace transformable.

It also is immediate from Proposition 2 that,

Corollary 3. Let the families S := {S(τ) ∈ L(Z) : τ ∈ T}, E := {E(τ) ∈
L(Z) : τ ∈ T} be Laplace transformable and X′,Y′ be their associated canon-
ical families. Then X′ is closed with respect to Y′.
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2.5 Convolution

Let X′,Y′ be integrable near the origin. Then X′,Y′ ∈ L1
loc((0,∞),AB). We

define the convolution X′ ~ Y′ like its scalar counterpart, by the Bochner
integrals

〈f, (x′ ~ y′)(τ)〉 =

∫
(0,τ)
〈f, x′(τ − σ) ∗ y′(σ)〉dσ; f ∈ Φ, (2.5.1)

by virtue of the natural product ∗ in AB.

The definition is formal since the existence is not known to be guaranteed
unlike in the case of L1

loc((0,∞),R). Theorem 6 gives an easy to check
criteria to ensure that x′ ~ y′ ∈ L1

loc((0,∞),AB).

Proposition 3 (Existence of Convolution). Let X′,Y′ ∈ L1
loc((0,∞),AB).

For fixed τ > 0, if the map

σ 7→ 〈f, x′(τ − σ) ∗ y′(σ)〉,

is Bochner integrable over (0, τ) for every fixed f ∈ Φ, then (x′ ~ y′)(τ) is
bounded and hence admissible.

Corollary 4. Let X = {S(τ) : τ ∈ T} and Y = {E(τ) : τ ∈ T} be
Laplace transformable families for each λ > 0 interrelated by the empathy
causal relation S(τ + σ) = S(τ)E(σ) for all τ, σ ∈ T. Then their associated
canonical families X′,Y′ have the property that X′ ~ Y′ is integrable near
the origin.

2.6 Laplace Transform Theorems

We now construct a convolution theorem and Laplace transform theorems in
L1
loc((0,∞),AB) for Laplace closed families that resembles the scalar con-

volution theorem and their Laplace transform theorems (Theorem 11.9B
[13]).

2.6.1 Transfer Lemma

The following lemma transfers the proof of the classical scalar convolu-
tion theorem, word for word, into the proof of the convolution theorem
in L1

loc((0,∞),AB).

Lemma 2. Let X′ be Laplace-closed with respect to Y′ and X′,Y′ ∈ Lap(λ,AB)
(equation (2.4.3), Section 2.4.1). Then for every f ∈ Φ, we can construct a
measurable function H on D : = (0,∞)× (0,∞) as follows :

H : D 3 (σ, τ) 7→ e−λ(σ+τ)(x′(σ) ∗ y′(τ))(f);
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which has the following properties:

lim
B→∞

∫ B

0

∫ B

0
H(σ, τ)dσdτ =

∫ ∞
0

∫ ∞
0

H(σ, τ)dσdτ ; (2.6.1)∫ B

σ=0

∫ B

τ=0
‖H(σ, τ)‖Zdτdσ <∞ for all B > 0; (2.6.2)

‖
∫
RB

H(σ, τ)dAστ −
∫
WB

H(σ, τ)dAστ‖Z → 0 as B →∞, (2.6.3)

where RB : = (0, B) × (0, B), WB is the open wedge defined by the lines
σ + τ = 2B, τ = 0 and σ = 0.

Proof. By assumption, x̂′(λ), ŷ′(λ) ∈ AB. Then x̂′(λ) ∗ ŷ′(λ) ∈ AB since
AB is closed with respect to ∗. Furthermore by the Laplace-closedness
assumption,

〈f, x̂′(λ) ∗ ŷ′(λ)〉 =

∫ ∞
σ=0

∫ ∞
τ=0

H(σ, τ)dτdσ;

hence establishing the measurability of H. The absolute summability of the
Bochner integral, ∫ ∞

σ=0

∫ ∞
τ=0
‖H(σ, τ)‖Zdτdσ <∞,

follows and we have the existence of
∫
DH(σ, τ)dAστ . Therefore,

∫
RB

H(σ, τ)dAστ

exists and is equivalent to
∫ B

0

∫ B
0 H(σ, τ)dσdτ , again by Fubini’s theorem

(Theorem 1.1.9 [2]). Thus, condition (2.6.2) follows by the absolute summa-
bility of the Bochner integral.

Now it follows by the dominated convergence theorem (Theorem 1.1.8
[2]) that

lim
n→∞

∫
Rn

H(σ, τ)dAστ =

∫
D
H(σ, τ)dAστ ; (2.6.4)

lim
n→∞

∫
Wn

H(σ, τ)dAστ =

∫
D
H(σ, τ)dAστ . (2.6.5)

Set fn : (σ, τ) ∈ D : XRnH so that H(σ, τ) = limn→∞ fn(σ, τ) for every
(σ, τ) ∈ D; XRn is the indicator function of the set Rn = (0, n) × (0, n).
Trivially ‖fn‖ ≤ ‖H‖ where ‖H‖ is integrable over D. Therefore, by the
dominated convergence theorem, limn→∞

∫
D fn(τ)dτ =

∫
DHdAστ . Equa-

tion (2.6.5) follows similarly.

Therefore, equation (2.6.1) is now immediate and (2.6.3) follows by ad-
ditionally noting that

‖
∫
RB

H(σ, τ)dAστ −
∫
WB

H(σ, τ)dAστ‖Z
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is dominated by

‖
∫
RB

H(σ, τ)dAστ −
∫
D
H(σ, τ)dAστ‖Z

+ ‖
∫
D
H(σ, τ)dAστ −

∫
WB

H(σ, τ)dAστ‖Z .

2.6.2 Convolution Theorem

The following convolution theorem, like the lemma, is a property purely of
the vector space Lap(λ,AB). It is independent of the choice of Fréchet test
space Φ.

Theorem 9. Let X′,Y′ ∈ Lap(λ,AB). If (X′ ~ Y′) is integrable near the

origin and X′ is Laplace-closed respect to Y′, then x̂′ ~ y′(λ) exists and

x̂′ ~ y′(λ) = x̂′(λ) ∗ ŷ′(λ). (2.6.6)

Proof. We start at the right hand side of equation (2.6.6 ) just as in the
proof of the convolution theorem in L1

loc((0,∞),R). Therefore, consider the

product p(B) : = (
∫ B
σ=0 e

−λσx′(σ)dσ ∗
∫ B
τ=0 e

−λτy′(τ)dτ). It turns out that,

p(B) is an approximation of x̂′(λ) ∗ ŷ′(λ). Then

p(B)(f) =

∫ B

σ=0

∫ B

τ=0
H(σ, τ)dτdσ,

by the Laplace-closedness assumption.

Now, invoke Lemma 2. Then limB→∞ p(B)(f) = 〈f, x̂′(λ) ∗ ŷ′(λ)〉 by
(2.6.1); p(B)(f) is a double integral over RB by (2.6.2); it suffices to take
p(B)(f) as a double integral over the wedge WB in the S − T plane to
evaluate p(B)(f) as B → ∞ by (2.6.3). In order to evaluate p(B)(f) as a
double integral over the wedge WB in the S − T plane:∫

WB

H(σ, τ)dAστ =

∫
WB

e−λ(σ+τ)(x′(σ) ∗ y′(τ))(f)dAστ ,

first consider the plane-to-plane transformation J : (σ, τ) ∈ S × T 7→ (σ =
f(σ, τ), σ′ = g(σ, τ)) ∈ S×Σ where f(σ, τ) = σ and g(σ, τ) = σ+τ . Then its
inverse K : (σ, σ′) ∈ S × Σ 7→ (σ = h(σ, σ′), τ = i(σ, σ′)) where h(σ, σ′) = σ
and i(σ, σ′) = σ′−σ has 1 as its Jacobian. Furthermore K maps the wedge,
W
′
B, in the S ×Σ plane defined by the Y-axis, line σ′ = σ and σ′ = 2B into
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the wedge WB of the S × Σ. Therefore, integrating H(σ, τ) over W
′
B as a

type 2 region in the S × Σ -plane, we have∫
WB

H(σ, τ)dAστ =

∫
W ′B

H(σ, τ)dAσσ′

=

∫ σ′=2B

σ′=0
e−λσ

′
∫ σ=σ′

σ=0
(x′(σ) ∗ y′(σ′ − σ))(f)dσdσ′,

by virtue of the integrability near the origin of (X′ ~Y′). We are done on
passing the limit B →∞.

Remark 5. For scalar valued functions, the convolution product ~ smooths
in general: the convolution product of two scalar functions is at least as nice
a function as either of its factors. The AB-Laplace transformability of the
convolution X′ ~Y′ confirms the property that the convolution is at least as
nice a function as either of its factors.

2.6.3 Laplace Transform Theorems

Laplace-closed AB -valued functions behave in the same way as scalar valued
functions of L1

loc((0,∞),R) as far as the convolution theorem is concerned;
the proof of the classical convolution theorem transfers word for word6.

Furthermore, if φ ∈ Lap(λ), then x̂′φ(λ) = φ̂(λ)θ′0.

Corollary 5. Let φ ∈ Lap(λ) and X′ ∈ Lap(λ,AB). Then x̂′φ ~ x
′(λ) exists

and

x̂′φ ~ x
′(λ) = φ̂(λ)x̂′(λ). (2.6.7)

Proof. By virtue of the fact that θ′0 is the identity of AB, x′φ is Laplace-closed
with respect to X′ and

〈f, (x′φ ~ x′)(τ)〉 = φ ∗ h(τ);

where h : σ 7→ 〈f, x′(σ)〉 ∈ Z; φ ∗ h(τ) :=
∫

(0,τ) φ(τ − σ)h(σ)dσ. It is well
known that if both φ and h are integrable near the origin, then so is their
convolution φ∗h ([2] p23). Now X′ ∈ Lap(λ,AB) implies that h is integrable
near the origin so the hypothesis of the convolution theorem (Theorem 9) is
met and the conclusion follows from it.

6Recall that this transfer is by virtue of the absolute summability of the Bochner
integral, the integrability near the origin of the convolution x′~y′ and the Bochner integral
x̂′(λ)∗ŷ′(λ)(f) =

∫∞
σ=0

∫∞
τ=0

H(σ, τ)dτdσ as well as the Laplace-closedness assumption. See
the proof of Theorem 9.
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The following Laplace transform theorems provide a computational power
of this new algebraic-analytic framework L1

loc((0,∞),AB). They hold in the
vector space Lap(λ,AB) and hence are independent of the choice of Fréchet
test space Φ. They further confirm the intuition that Laplace transformable
AB -valued functions behave in the same way as scalar valued functions of
L1
loc((0,∞),R).

The classical translation 7 theorems of scalar valued functions derived
new Laplace transforms from the known ones. Their proofs carry over for
AB-valued functions once we define the product eλτX′(τ) as the product
(X′

eλ·
∗ X′)(τ) := x′

eλ·
(τ) ∗ x′(τ), the translated function σx′(τ) := x′(τ − σ)

if τ − σ > 0; 0 otherwise, the dilated function x′(σ·) := x′(στ); x′
eλ·

is the

L1
loc((0,∞),AB)-analogue of the scalar exponential function eλ· : τ 7→ eλτ .

Theorem 10 (Translation on the λ-axis). If X′ ∈ Lap(λ,AB) and a ∈ R,
then (X′ea· ∗ X′) ∈ Lap(λ,AB) and

̂x′ea· ∗ x′(λ) = x̂′(λ− a). (2.6.8)

Proof. It suffices to first prove equation (2.6.8) as functionals since x̂′(λ −
a) ∈ AB will imply that X′ea· ∗X′ ∈ Lap(λ,AB). The equality as functionals

follows directly from the definition of x̂′(λ−a) just as in the scalar case.

Theorem 11 (Translation on the τ -axis). Let X′ ∈ Lap(λ,AB) and fix
σ > 0. Then −σX′ ∈ Lap(λ,AB) and

−̂σx′(λ) = eλσx̂′(λ)− (x′eλ· ~ x
′)(σ), (2.6.9)

and σX′ ∈ Lap(λ,AB), where

σ̂x′(λ) = e−λσx̂′(λ) + (x′e−λ· ~Mx′)(σ), (2.6.10)

and the mirrored function Mx′(τ) := x′(−τ).

Proof. Once again the assumption x̂′(λ) ∈ AB makes it sufficient to prove
equations (2.6.9) - (2.6.10) as functionals by virtue of Corollary 5. The proof
of equality as functionals follows word for word as for the scalar case by the
basic property of the Bochner integral.

7The dilation theorems of scalar valued functions of L1
loc((0,∞),R) also carry over

but are not needed in our current work.(Positive Dilation on the t-axis)Let X′ ∈
Lap(λ,AB) and fix σ > 0. Then X′(σ·) ∈ Lap(λ,AB) and x̂′(σ·)(λ) = 1

σ
x̂′(λ

σ
). The

proof follows directly from the definition of x̂′(λ
σ

) just as in the scalar case.
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2.7 Star Causal Relations

The only non-constant continuous functions f which satisfy the functional
equation

f(τ)f(σ) = f(σ + τ), (2.7.1)

are the exponential functions of the form f(τ) = eaτ . Thus, functional
equations axiomatically define certain time-dependent scalar function. Semi-
group and empathy relations, as discussed in Section 1.1, are examples of
functional equations for time-dependent operator valued functions. Such
causal relations of [29] are built upon composition of evolution operators.

We introduce similar relations for AB-valued functions based on the
product ∗ in AB. Consider the following functional equations involving two
time-dependent AB-valued functions X′,Y′ ∈ L1

loc((0,∞),AB):

y′(τ) ∗ y′(σ) = y′(τ + σ) = −σy′(τ); (2.7.2)

x′(τ) ∗ y′(σ) = x′(τ + σ) = −σx′(τ); (2.7.3)

x′(τ) ∗ y′(σ) = (x′−σφ ~ x
′)(τ); (2.7.4)

x′(τ) ∗ y′(σ) = (x′φ ~
−σx′)(τ); (2.7.5)

x′(τ) ∗ y′(σ) = (x′φ ~
−σx′)(τ)− (x′−σφ ~ x

′)(τ), (2.7.6)

where φ ∈ Lap(λ)(that is, φ is a scalar function Laplace transformable at
λ); λ > 0 and σ, τ > 0; −σφ : τ 7→ φ(τ + σ) if τ + σ > 0 is the shifted scalar
function; x′−σφ is defined as in Section 2.6.3 ;−σx′ : τ 7→ x′(τ +σ) if τ +σ > 0

is the translated function. We call Y′ a star-semigroup should (2.7.2) hold.
Likewise, we call the double family 〈X′,Y′ 〉 a star-empathy and integrated
star empathy should (2.7.3) and (2.7.6) hold respectively.

It is worth noting that in the case where G is the trivial group, the
star-semigroup relation (2.7.2) is the traditional semigroup. Similarly, the
star-empathy relation (2.7.3) is similar to the empathy relation discussed in
Section 1.1; the product ∗ playing the role of composition of operators in
[28]. Before long we shall show that the similarity goes deeper. The relation
(2.7.6) will be called the integrated star-empathy. Its equivalent form is:

〈f, x′(τ) ∗ y′(σ)〉 =
∫ τ

0 〈f, x
′(σ + η)− x′(η)〉dη, (2.7.7)

where φ is the scalar constantK1 : t 7→ 1 function. The previous ones, (2.7.2)
and (2.7.3), should of course also be interpreted in terms of evaluations
at f ∈ Φ. It should also be noted that the relation (2.7.7) presupposes
integrability of τ 7→ 〈f, x′(τ)〉 over finite subintervals of R+

.

The Laplace transform derived the resolvent equation of empathy the-
ory from the empathy causal relation (equation (1.1.1), Section 1.1). Sup-
pose µ 6= λ. First take the Laplace transform, Lµdτ , at parameter µ of
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the causal relation and then, Lλdσ, at parameter λ, [28]. The framework
L1
loc((0,∞),AB) captures this technique as the product of Laplace trans-

forms of unlike parameters.

Proposition 4. Suppose µ 6= λ. Let X′ ∈ Lap(λ,AB) and Y′ ∈ Lap(µ,AB),
where X′ is Laplace-closed with respect to Y′. Then

x̂′(λ) ∗ ŷ′(µ) = LλdσLµdτ(x′(τ) ∗ y′(σ)), (2.7.8)

where LλdσLµdτ(x′(τ) ∗ y′(σ)) :=
∫∞

0 e−λσdσ
∫∞

0 e−µτ (x′(τ) ∗ y′(σ))dτ

Proof. This is immediate from the definition of Laplace-closedness.

Theorem 12 (General Resolvent Equation). Suppose µ 6= λ. Let X′,Y′ ∈
Lap(λ,AB) for all λ > 0 and X′ be Laplace-closed with respect to Y′.

If x′(τ) ∗ y′(σ) is a linear combination of −σx′(τ) and (x′φ ~
−σx′) −

(x′−σφ~x
′)(τ), then x̂′(λ) ∗ ŷ′(µ) is a linear combination of x̂′(λ) and x̂′(µ);

φ ∈ Lap(λ)
⋂
Lap(µ).

Proof. We assume initially that λ > µ. We compute x̂′(λ) ∗ ŷ′(µ) directly
as LλdσLµdτ of the right hand side terms, which only involve the family
x′; invoking the appropriate Laplace transform theorems of Section 2.6.3
dictated by the right hand side terms of (2.7.3) - (2.7.5):

Lµdτ −σx′(τ) = eµσx̂′(µ)− (x′eµ· ~ x
′)(σ); (2.7.9)

Lµdτ(x′φ ~
−σx′)(τ) = φ̂(µ)[eµσx̂′(µ)− (x′eµ· ~ x

′)(σ)]; (2.7.10)

Lµdτ(x′−σφ ~ x
′)(τ) = [eµσφ̂(µ)− (φeµ· ~ φ)(σ)]x̂′(µ), (2.7.11)

we have

LλdσLµdτ −σx′(τ) = − 1

λ− µ
(x̂′(λ)− x̂′(µ)); (2.7.12)

LλdσLµdτ(x′φ ~
−σx′)(τ) = − 1

λ− µ
φ̂(µ)(x̂′(λ)− x̂′(µ)); (2.7.13)

LλdσLµdτ(x′−σφ ~ x
′)(τ) = − 1

λ− µ
(φ̂(λ)− φ̂(µ))x̂′(µ). (2.7.14)

The right hand side of equation (2.7.6) is a linear combination of the right
hand side terms of (2.7.4) - (2.7.5). For this case, by the linearity of
LλdσLµdτ ,

x̂′(λ) ∗ ŷ′(µ) = − 1

λ− µ
(φ̂(µ)x̂′(λ)− φ̂(λ)x̂′(µ)). (2.7.15)

The case of µ > λ is treated by reversing the roles of µ and λ. This role
reversal does not change the right hand side of (2.7.12) and (2.7.15). Hence,
(2.7.12) and (2.7.15) is valid for µ 6= λ.
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Therefore, the Laplace transform theorems and the functional equations
form a potent computational tool in evaluating x̂′(µ) ∗ ŷ′(λ).

Corollary 6. Assume the hypothesis of Theorem 12. In the special cases of
(i) x′(τ) ∗ y′(σ) = −σx′(τ) and (ii) x′(τ) ∗ y′(σ) = (x′φ ~

−σx′)(τ)− (x′−σφ ~
x′)(τ)

x̂′(λ) ∗ ŷ′(µ) = − 1

λ− µ
(x̂′(λ)− x̂′(µ)); (2.7.16)

x̂′(λ)

φ̂(λ)
∗ ŷ
′(µ)

φ̂(µ)
= − 1

λ− µ
(
x̂′(λ)

φ̂(λ)
− x̂′(µ)

φ̂(µ)
), (2.7.17)

respectively.

Corollary 7. Consider the the canonical families X′,Y′ of Corollary 4.
Then

x̂′(λ) ∗ ŷ′(µ) = − 1

λ− µ
(x̂′(λ)− x̂′(µ)). (2.7.18)

Remark 6. Resolvent equations are a result of the theory of Fréchet spaces.
Indeed, the Fréchet test space Φ = C(G,Z) is a very rough test space by the
standards of test spaces in distribution theory.

Remark 7. The assumptions of the general resolvent equations are weaker
than that of the general convolution theorem (Section 2.6, Theorem 9) since
one of the factors of the convolution only involves a ‘scalar’ function (see
Corollary 5).

2.8 Applications to Resolvent Equations of Clas-
sical theory

We now capture the resolvent equations of classical theory (C0-semigroups,
intertwined empathy of the implicit evolution equation and n-times inte-
grated semi-groups) into our new framework L1

loc((0,∞),AB). We have al-
ready indicated that for the case where the group G is trivial, the framework
developed here is precisely the framework for one-parameter semigroups of
bounded linear operators in the Banach space Z.

The fairly recent theory of empathy [28], as described in the introduction
involving two Banach spaces X and Y and two families S(τ) : Y → X and
E(τ) : Y → Y , seems to be quite different. This can be forged into the
present consideration by letting Z = X × Y and defining the operators
s′(τ) and e′(τ) as follows: We represent the elements of Z as z = (x, y)
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(with obvious notation). Then, we isometrically embed evolution operators
S(τ) : Y → X and E(τ) : Y → Y as Z → Z operators s′(τ) : z 7→
(S(τ)(y), 0) and e′(τ) : z 7→ (0, E(τ)(y)), respectively. The empathy relation
S(τ + σ) = S(τ)E(σ) then transfers as s′(τ + σ) = s′(τ)e′(σ). We take
S(τ), E(τ) to always mean s′(τ), e′(τ). Therefore, we work in a single state
space Z as opposed to two state spaces X,Y . Formally,

Convention 1 (Operator Identification). Let A be any operator from U →
V where U, V are subspaces of X,Y , respectively. We identify A with the
operator a′ : Z → Z where a′(x, y) := (0, Ax) if x ∈ U and (0, 0) if x /∈ U .
The other combinations of the subspaces being in Y,X, or Y, Y or X,X
respectively are done similarly.

Evidently, for more general groups G used in the test space Φ, these
causal relations go far beyond the classical. In particular, the new frame-
work L1

loc((0,∞),AB) gives the convolution a central role by virtue of a
fully developed convolution theorem (Section 2.6, Theorem 9). Thus we
efficiently implement Sauer’s approach of giving convolution a central role
in the analysis of implicit evolution equations: a single general resolvent
equation in L1

loc((0,∞),AB) captures all the resolvent equations spanning
C0-semigroups, intertwined empathy of the implicit evolution equation and
n-times integrated semi-groups.

2.8.1 Resolvent Equations of Empathy Theory

We capture the causal relations of empathy theory into our new framework
L1
loc((0,∞),AB) as follows: (i) We associate homomorphisms x′(τ), y′(τ) ∈

AB to each bounded evolution operators S(τ), E(τ) by the canonical map-
ping between operators on Z and homomorphisms (Section 2.1.1); (ii) We
show that the resulting pair of time dependent algebra valued families 〈X′,Y′ 〉
is integrable near the origin: we call X′,Y′ the L1

loc((0,∞),AB)-analogue of
the evolution family S, E respectively. (iii) We show that 〈X′,Y′ 〉 replaces
〈S, E 〉 of [28] as far as causal relations are concerned. (iv) We invoke the ma-
chinery of L1

loc((0,∞),AB) on 〈X′,Y′ 〉 to derive the fundamental properties
of 〈S,E 〉.

We now consider causal relations such as the semigroup, empathy (Sec-
tion 2.7) for the pair of canonical families 〈X′,Y′ 〉 with the standard com-
position of operators replaced by the product of homomorphisms. The re-
sulting relations are logically equivalent to the standard causal relations by
virtue of ∗ being a generalized composition (Section 2.1):

Proposition 5 (Causal relations in L1
loc((0,∞),AB)). Let X′ and Y′ be the
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associated canonical families of S and E respectively. Then,

x′(τ) ∗ y′(σ) = x′(σ) ∗ y′(τ)⇔ S(τ)E(σ) = S(σ)E(τ); (2.8.1)

y′(τ) ∗ y′(σ) = y′(σ) ∗ y′(τ)⇔ E(τ)E(σ) = E(σ)E(τ), (2.8.2)

and for causal relations,

x′(τ) ∗ y′(σ) = x′(τ + σ)⇔ S(τ)E(σ) = S(τ + σ); (2.8.3)

y′(τ) ∗ y′(σ) = y′(τ + σ)⇔ E(τ)E(σ) = E(τ + σ). (2.8.4)

Proof. Recall that x′(τ) : f 7→ S(τ)[θ0(f)] and y′(τ) : f 7→ E(τ)[θ0(f)].
Therefore, y′(τ)f : σ 7→ E(τ)f(σ) and x′(τ) ∗ y′(σ) : f 7→ S(τ)E(σ)f(0).
Consequently, the necessary conditions of equations (2.8.1) - (2.8.4) is im-
mediate. The sufficient condition of equations (2.8.1)-(2.8.4) follows from
noting that the constant functions K(0,y) : t 7→ (0, y) belongs to the test
space Φ; y ∈ Y .

Remark 8. Homomorphisms act on the function space Φ as opposed to
evolution operators acting on the Banach space Z. The constant function
Kz ∈ Φ plays the role of the state z = (0, y) ∈ Z; Kz : t 7→ z [Proposition
5].

The Laplace transformability of the pair of canonical families 〈X′,Y′ 〉
is logically equivalent conditions to that of empathy theory (Corollary 2,
Section 2.4.1).

Proposition 6 (Equivalent Notions of Laplace Transformability). Let X′

and Y′ be the L1
loc((0,∞),AB)-analogue of the evolution family S and E

respectively of [28]. Then,

S is Laplace transformable if and only if X′ is AB-Laplace transformable

Proof. By direct computation, the operator x̂′(λ) : f 7→ P (λ)[θ0(f)], in

analogy to x̂′φ(λ) = φ̂(λ)θ0 if φ ∈ Lap(λ). Therefore, x̂′(λ)f : τ ∈ R 7→
P (λ)f(τ). Consequently, the sufficient condition follows from noting that
P (λ) is bounded [Theorem 3.8.2 [19]]. The converse follows from Φ ⊃
{K(0,y)|y ∈ Y }.

Remark 9. Proposition 6 applies equally well to the other evolution family
E. Therefore, we will not make explicit references to E unless need arises.

We invoke the general resolvent equation of L1
loc((0,∞),AB) (Corollary

7, Section 2.7) for the pair 〈X′,Y′ 〉 to end up with the resolvent equations
(6), (7) of [28] (recall our identification of states with constant functions).
Formally,
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Corollary 8 (The Resolvent Equations for 〈S, E 〉). Consider 〈S, E 〉 of [28].
The resolvent equations (6), (7) of [28] are special cases of the general re-
solvent equation of L1

loc((0,∞),AB) 8.

Proof. Fix f : = K(0,y). Then x̂′(λ)∗ŷ′(µ)(f) = P (λ)R(µ)y; ŷ′(λ)∗ŷ′(µ)(f) =
R(λ)R(µ)y.

Therefore, the pair 〈X′,Y′ 〉 replaces the pair 〈S, E 〉 for all purposes
(Propositions 5 - 6, Corollary 8). The pair 〈X′,Y′ 〉 has L1

loc((0,∞),AB)
as its underlying structure; the general convolution theorem and the general
resolvent equation of L1

loc((0,∞),AB) is thus available.

2.8.2 Resolvent Equation of n-times Integrated Empathy

The machinery of L1
loc((0,∞),AB) generates the functional equations and

the fundamental resolvent equations of the integrated semi-groups. Inte-
grated semi-groups are semigroups that result from applying a convolution
transform on a given semigroup. Hence they embody the concept of a moving
average of the entire history of the given semi-group. In general, the convo-
lution product smoothes 9 and therefore, the resulting integrated semi-group
is smoother than the given semigroup. We define the convolution transform
X′′, of X′ with K ′ as the kernel of the transform as:

X′′(τ) =

∫
(0,∞)

K ′(τ − σ) ∗ X′(σ)dσ = (K ′ ~ X′)(τ). (2.8.5)

Thus we replace the product · of the convolution transform in L1
loc((0,∞),R)

10 with ∗ to arrive at our definition of a convolution transform in L1
loc((0,∞),AB).

Consider X′ ∈ L1
loc((0,∞),AB). Then fixing a K′ ∈ L1

loc((0,∞),AB) we

8The resolvent equations for C0-semigroups are proved similarly since the Lebesgue
integral generalizes the Riemann integral.

9Loosely speaking, the convolution product of two functions is at least as nice a function
as either of its factors, that is, the better of the factors. For example, the convolution of
two discontinuous indicator functions is a continuous function. In a sense, a convolution
product with a nice enough function can be a well-defined function even when the other
factor is not a function in the classical sense. For example, this happens when that ”other
factor” is Dirac’s δ distribution which is, almost by definition, the neutral element for the
convolution operation:

δ ~ f = f ~ δ = f.

10The Laplace Transform x′′(τ) :=
∫

(0,∞)
e−τσx′(σ)dσ of a function x in L1

loc((0,∞),R)

is a convolution transform after a suitable change of variables; x′′(τ) = eτx(e−τ ); k′(τ) =
eτexp(−eτ );x′(σ) = x(e−σ); τ > 0 (Section 7, Example A [32] )
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transform X′ into another AB-valued function X′′ := K′ ~ X′, where

x′′(τ) : =

∫
(0,∞)

k′(τ − σ) ∗ x′(σ)dσ

=

∫ τ

0
k′(τ − σ) ∗ x′(σ)dσ = (k′ ~ x′)(τ), (2.8.6)

where τ > 0. The map X′ 7→ X′′ is called the convolution transform with
kernel K′ of X′ into X′′. Should X′′ be in L1

loc((0,∞),AB) one can then
view the transform Φ as transforming one evolution family X′ into another
evolution family X′′.

Consider the simplest case of a scalar valued kernel K′ := x′φ where φ ∈
Lap(λ) for λ > 0. Let X′,Y′ denote the associated canonical families of the
double family 〈S, E 〉 respectively of empathy theory. Then the convolution
transform is well defined by Section 2.6.3, Corollary 5 and it takes the form

x′′(τ) : f 7→
∫ τ

0
φ(τ − σ)S(σ)f(0)dσ.

In particular, set φn to be the power function φn(τ) := τn−1

(n−1)! where n ∈ N+.

We then call the convolution transform X′′n := x′φn~X
′ the n-times integrated

family 11 of X′; the same applies equally well to the other family Y′ so we
do not mention Y′′.

The machinery of L1
loc((0,∞),AB) generates the causal relation of the

n-times integrated empathy 〈X′′n,Y′′n〉 (equation (2.7.6), Section2.7) from the
causal relation x′(τ) ∗ y′(σ) = x′(τ + σ) of the empathy family 〈X′,Y′〉.

Proposition 7. Let X′,Y′ be the L1
loc((0,∞),AB)-analogue of the evolution

family S, E respectively of empathy theory. Then the functional equation

x′′n(τ) ∗ y′′n(σ) = (x′φn ~
−σ x′′n)(τ)− (x′−σφn ~ x

′′
n)(τ). (2.8.7)

of the n-times integrated empathy 〈X′′n,Y′′n〉 follows from the functional equa-
tion x′(τ) ∗ y′(σ) = x′(τ + σ) of the empathy family 〈X′,Y′〉.

Proof. The proof follows by direct computation. Let f ∈ Φ. Then,

〈f, x′′n(τ) ∗ y′′n(σ)〉 =

∫ τ

0
dt

∫ σ

0
φn(τ − t)φn(σ − s)S(t)E(s)f(0)ds (2.8.8)

=

∫ τ

0
φn(τ − t)dτ

∫ σ

0
φn(σ − s)S(s+ t)f(0)ds.(2.8.9)

11If we set n = 1, then φ1 is the constant 1 function so the convolution transform X′′(τ)
is the integrated empathy semigroup

∫ τ
0
x′(σ)dσ : f 7→

∫ τ
0
S(σ)f(0)dσ.
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By the change of variables s′ = s+t, the integral in equation (2.8.9) becomes∫ τ

0
φn(τ − t)dτ

∫ σ+t

t
φn(σ + t− s′)S(s′)f(0)ds′. (2.8.10)

But
∫ σ+t
t =

∫ σ+t
0 −

∫ t
0 so that

∫ σ+t
t φn(σ + t− s′)S(s′)f(0)ds′ is

x′′n(σ + t)f − (x′−σφn ~ x
′)(t)f. (2.8.11)

Denoting (x′−σφn ~ x
′)(t)f by F (t), the computation ends on noting that∫ τ

0
φn(τ − t)x′′n(σ + t)fdt = (x′φn ~

−σ x′′n)(τ). (2.8.12)

and ∫ τ

0
φn(τ − t)F (t)dt = (x′φn ~ F )(τ) = (x′φn ~ x

′
−σφn

~ x′)(τ)

= (x′−σφn ~ x
′
φn ~ x

′)(τ)

= (x′−σφn ~ x
′′
n)(τ).

A single application of Section 2.6.3, Corollary 5 to x′′n := x′φn ~ x
′, as

opposed to integrating by parts n-times on p. 336 [1], yields the relation

x̂′′n(λ) =
x̂′(λ)

λn
,

since x′φ is Laplace-closed with respect to x′. The convolution of unlike
parameters yields

x̂′′n(λ) ∗ ŷ′′n(µ) =
1

λnµn
x̂′(λ) ∗ ŷ′(µ) (2.8.13)

= − 1

λ− µ
x̂′(λ)− x̂′(µ)

λnµn
, (2.8.14)

by virtue of the resolvent equation for the empathy family 〈X′,Y′〉. Thus,

x̂′′n(λ)

φ̂n(λ)
∗ ŷ
′′
n(µ)

φ̂n(µ)
= − 1

λ− µ
(x̂′(λ)− x̂′(µ)) (2.8.15)

= − 1

λ− µ
(
x̂′′n(λ)

φ̂n(λ)
− x̂′′n(µ)

φ̂n(µ)
). (2.8.16)

Writing Pn(λ) := λnx̂′(λ) and Rn(λ) := λnŷ′(λ), we have the resolvent
equation of n-times integrated empathy. We now formally define an n-
times integrated empathy as follows: a double family 〈X′n,Y′n〉 is an n-times
integrated empathy should the functional equation

x′n(τ) ∗ y′n(σ) = (x′φn ~
−σ x′n)(τ)− (x′−σφn ~ x

′
n)(τ),
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hold. The general resolvent equation (Theorem 12 (2.7.17) ) immediately
yields

x̂′′n(λ) ∗ ŷ′′n(µ) = x̂′′n(µ) ∗ ŷ′′n(λ) = − 1

λ− µ
(x̂′′n(λ)− x̂′′n(µ)),

where x̂′′n(λ) = λnx̂′n(λ), ŷ′′n(λ) = λnŷ′n(λ). We end up with the pseudo
resolvent equations on n-times integrated semigroups of [5] once we identify
the state y ∈ Y with the constant function K(0,y) ∈ Φ, and restrict the above
operators to these functions.

Theorem 13 (Pseudo-Resolvent Equations for the integrated empathy).
Let 〈S, E 〉 be an n-times integrated empathy : definition (11.1) [5]. Then
the pseudo-resolvent equations (3.5) and (3.8) of [5] are special cases of the
general resolvent equation of L1

loc((0,∞),AB). The pseudo-resolvent equa-
tions (3.5) and (3.8) follow from the functional equation (11.1), [5].

Remark 10 (Invertible resolvent operators). Note that the resolvent equa-
tions (6), (7) of [28] follow from the functional equations (2.8.3) - (2.8.4)
of empathy theory. The functional equation (2.8.4) follows from the strong
requirement that the resolvent operator P (λ) be invertible for some fixed λ
12

2.9 A Comparison With Bilinear Formed Vector
Convolution Theorems

Let E,F and G be three Banach spaces with the bounded bilinear map
· : E×F → G|(u, v) 7→ u·v. Let f, g denote time dependent E and F - valued
functions so that the ordinary convolution f ∗ g is analogously defined as
(f∗g)(τ) :=

∫ t
0 f(t−s)·g(σ)ds, where the integral is the Bochner integral over

(0, τ). We write f ∈ Lap(λ,E) whenever f̂(λ) :=
∫

(0,∞) e
−λτf(τ)dτ ∈ E,

the integral being defined in the sense of an E-valued Bochner integral.

Proposition 8. Suppose that f ∈ Lap(λ,E) and g ∈ Lap(λ, F ). If in
addition |f |, |g| ∈ Lap(λ), then the G− valued Laplace transform of f ∗ g ∈
Lap(λ,G) where

f̂ ∗ g
λ

= f̂λ · ĝλ.

Remark 11. For the bounded bilinear form · : (S(τ), y) ∈ L(Y,X) × Y 7→
S(τ)y ∈ X, Proposition 8 requires S to be locally measurable in the uniform

12The double family 〈S, E〉 is called an empathy when this condition is combined with
the empathy relation S(τ+σ) = S(τ)E(σ) or its logically equivalent condition x′(τ+σ) =
x′(τ) ∗ y′(σ). This combination is potent: E(τ + σ) = E(τ)E(σ) and P (λ) is invertible
for all λ > 0 then follows.
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norm in order for S ∈ Lap(λ,L(Y,X)). Indeed in these frameworks, Laplace
transformability will require the over-restrictive requirement of uniform ex-
ponential boundedness. This is is too strong an assumption for empathy
theory [28].

Theorem 13 of Section 2.8.2, demonstrates that our full vectorization of
the scalar convolution theorem requires no such additional assumptions.
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Chapter 3

Normed star-semigroups:
Banach Test Space

In Chapter 2, time-dependent families of homomorphisms replaced time-
dependent families of bounded evolution operators as far as resolvent equa-
tions are concerned. For the Fréchet test space Φ := C(G,Z), bounded
homomorphisms of AB do not have a norm like the bounded evolution op-
erators they replace. For this reason, in this chapter, we take our test space
Φ to be BUC(G,Z), the Banach subspace of bounded uniformly continuous
test functions with the supremum norm; G is a locally compact topological
group. Then like the previous test space, Φ is (i) Fréchet, (ii) every bounded
Φ→ Z homomorphism is Φ-admissible and (iii) the map p ∈ G 7→ f−p ∈ Φ
is continuous for each fixed f ∈ Φ (Theorem 1, Section 3.1).

We re-study time-dependent members of AB, that is, time-dependent
normed homomorphisms, as a replacement of traditional families of evolu-
tion operators to show the advantage of working with normed admissible
homomorphisms. Specifically, we study the behaviour of time-dependent
normed homomorphisms near τ = 0 along the lines set out in [19] (Section
3.2.2). Under special cases, normed star semigroups are isometric represen-
tations of the double family of evolution operators (Section 3.2.3).

We get sharper results by studying X′ = {x′(τ) ∈ AB|τ > 0} in con-
junction with its isometric counterpart X ′ := {Γx′(τ) ∈ A ′

B|τ > 0}; A ′
B :=

Γ[AB]; Γ is defined as in equation (2.1.9), Section 2.1. In Section 3.4.1,
we study the measurability of X′ (that is, the measurability of the map
τ 7→ x′(τ)f ) in conjunction with the measurability of its isometric func-
tion space valued counterpart X ′ (that is, the measurability of the map
τ 7→ X ′(τ)f) . It is evident that the measurability of X ′ implies the mea-
surability of X′. We show that the converse is true under suitable condi-
tions on G, provided X′ is a family of bounded homomorphisms uniformly
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bounded in norm on compact intervals. Such X′ are called d-measurable.
Indeed, if G is Lindelöff, the interplay between dualism and uniform bound-
edness theorem establishes the topological measurability of X ′ (Lemma 2,
Section 3.4.1). The resulting equicontinuity is then expressed as separabil-
ity by strengthening G to be compact and metrizable (Theorem 10, Section
3.4.1). Thus, the metric-topological structure of the group G sidesteps the
need to study the complex nature of the duals of spaces of vector valued
continuous functions in the study of the measurability of the function space
valued map τ 7→ X ′(τ)f . If we additionally assume that τ 7→ ‖X ′(τ)f‖∞ is
integrable for each f ∈ Φ, then the induced integral is a Φ-valued Bochner
integral (Proposition 2, Section 3.4.2). Then, as in the classical case, every
bounded homomorphism is closed over I with respect to X′ (Corollary 1,
Section 3.4.2). This sharper closedness condition for X′ shows that closed-
ness is related to the problem of the transfer of measurability of X′ to its
isometric counterpart X ′.

Indeed, the strong integrability of X′ induces an ‘integral’ on the op-
erator valued family X ′. We call this the induced integral or p-integral
(Section 3.4.3). In fact, the strong integrability of X′ over an interval I ex-
actly happens when the dual family X ′ is p-integrable over I (Section 3.4.3,
Proposition 3). We let L1

loc((0,∞),A ′
B) denote the class of X ′ p-integrable

over any I ⊂ R+. Therefore, the dualism induces a new equivalent frame-
work L1

loc((0,∞),A ′
B) of time-dependent operator valued families. We then

construct an appropriate Laplace transform of these families which will allow
the dualism to also transfer the general convolution theorem and the general
resolvent equation of L1

loc((0,∞),AB) word for word into L1
loc((0,∞),A ′

B)
(Theorem 11, Section 3.4.3).

In classical semigroup theory, every measurable semigroup is strongly
continuous. This is also the case for every measurable d-normed star semi-
group (Theorem 12, Section 3.5). For strongly continuous star semigroups
X′ , the group G need only be locally compact for the dual X ′ to be strongly
continuous. Therefore, if 〈X′,Y′ 〉 is the canonical family of homomorphisms
associated with the strongly continuous pair 〈S, E〉, then the dual (opera-
tor) pair 〈X ′, Y ′〉 is an isometric identification with 〈S, E〉 (Proposition 5,
Section 3.6).

3.1 Banach Test Space

In our initial translation invariant test space of Φ = C(G,Z), Φ was (i)
Fréchet, (ii) every bounded Φ → Z homomorphism is Φ-admissible and,
(iii) the map p ∈ G 7→ f−p ∈ Φ was continuous for each fixed f ∈ Φ.
The subspace BC(G,Z) of bounded continuous functions is a Banach test
space under the supremum norm. Unfortunately, condition (iii) is not met:
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consider the case of G = R and f(t) = [sin t2 ]z, z ∈ Z. The even smaller
supremum-normed test space C0(R, Z) meets all these requirements except
possibly (ii); for the Banach space Z := C, (ii) is met ([18] Lemma 19.5); it
is unknown to the author for which Banach spaces, condition (ii) is met. 1

Consider the subspace (BUC(G,Z), ‖ · ‖∞) of bounded (G,U)→ (Z,V)
uniformly continuous functions; V is the canonical uniformity induced by
the norm on Z; U is the canonical uniformity induced by the topological
group G. If the topological group G is locally compact, then BUC(G,Z) is
Banach. Indeed, (BUC(G,Z), ‖ · ‖∞) meets all the requirements (i) - (iii).
From this point onward, for the test space BUC(G,Z), we shall take G as
a locally compact topological group. Note that C0(G,Z) ⊂ BUC(G,Z). In
what follows we shall take our test space to be Φ = BUC(G,Z).

Theorem 1. Let Φ be the Banach space (BUC(G,Z), ‖ · ‖∞). Then the
mappings s ∈ G 7→ fs ∈ Φ; f ∈ Φ are uniformly continuous.

3.2 Time-dependent Normed Homomorphisms

3.2.1 Strong Integrability

Every Banach space is a Fréchet space. Therefore, our version of a well-
known theorem (Theorem 3.8.2, [19], p.85) (Theorem 6, Section 2.3.1) which
is central to the study of strong integrability of X′ is also valid.

Theorem 2. Suppose the functions τ → 〈f, x′(τ)〉; τ ∈ (0,∞); f ∈ Φ
are (strongly) Lebesgue measurable in Z. If, for an interval I ⊂ (0,∞) the
Bochner integral

〈f, x′
I
〉 =

∫
I
〈f, x′(τ)〉dτ, (3.2.1)

exists for every f ∈ Φ, the homomorphism x′
I

: Φ→ Z is bounded.

Likewise, we transfer its immediate consequence:

Theorem 3. If for some λ > 0 the Laplace transform x̂′(λ) exists, it is
bounded and therefore, in AB. Additionally, the integrals x′I are bounded for
all finite intervals I ⊂ (0,∞): if X′ ∈ Lap(λ,AB) then X′ ∈ L1

loc((0,∞),AB).

3.2.2 Behaviour near the initial moment

Since the families of homomorphisms we consider are only defined for τ > 0,
we need to obtain information about their behaviour near τ = 0. Our

1It would be interesting exercise to find conditions on the Banach space Z for which
each bounded x′ ∈ Hom(Φ, Z) is admissible; Φ = (C0(R, Z), ‖ · ‖∞).
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investigation will follow the lines set out in [19]. Central to the investigation
is the following ‘net’ version of the uniform boundedness theorem:

Theorem 4. (Corollary 7.1.6 [3]) Suppose that Aτ , τ ∈ (0, 1], is a family
of bounded linear operators with common Banach space domain X such that
for every x ∈ X, the limit limτ→0Aτx exists. Then there exists a δ > 0 such
that sup0<τ<δ ‖Aτ‖ is finite.

To begin with, if the limit 〈f, i′ 〉 := limη→0+〈f, x′(η)〉exists for every
f ∈ Φ, it follows from the uniform boundedness theorem (Theorem 4) that
the homomorphism i′ : Φ→ Z is bounded 2 and therefore, in AB. If this is
the case, the family X′ is called C0 -summable (Class C0 ).

In the second place, if it is assumed that for the interval I = (0, 1) the
integral x′

I
exists, we define the homomorphisms j′(η) by

〈f, j′(η)〉 = η
−1

∫ η

0
〈f, x′(τ)〉dτ =

∫ 1

0
〈f, x′(ηξ)〉dξ. (3.2.2)

For 0 < η < 1 this is well-defined and by Theorem 2, j′(η) ∈ AB is bounded.
If the limit 〈f, j′ 〉 := limη→0+〈f, j′(η)〉 exists for every f ∈ Φ, it follows as
before that the homomorphism j′ ∈ AB because it is bounded. In this case
we say that X′ is C1 -summable (Class C1 ).

Thirdly, if the Laplace transform x̂′(λ) exists for some λ > 0, let k′(λ)
be defined by

〈f, k′(λ)〉 = 〈f, λx̂′(λ)〉 =

∫ ∞
0

exp{−ξ}〈f, x′(ξ/λ)〉dξ; f ∈ Φ. (3.2.3)

Theorem 3, ensures that these are in AB. If the limit 〈f, k′ 〉 = limλ→∞〈f, λx̂′(λ)〉
exists for every f ∈ Φ, the homomorphism k′ : Φ→ Z is once again admis-
sible. If this is so, we call X′ Abel summable (Class A).

Under certain conditions the homomorphisms i′, j′ and k′ are related.

Theorem 5. If X′ is of Class C0 , it is of Class C1 and Class A. Additionally,
i′ = j′ = k′.

Proof. We observe first that

〈f, j′(η)〉 =

∫ 1

0
〈f, x′(ησ)〉dσ. (3.2.4)

The uniform boundedness theorem applied to the integrand on the right en-
sures that the limit and the integrand can be switched. The other statement
follows from (3.2.3) in a similar way.

2‖〈f, i′ 〉‖ = limη→0+ ‖〈f, x′(η)〉‖
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The next is more technical. The family X′ is exponentially bounded if for
every δ > 0 there exist constants M = M

δ
and ω = ω

δ
≥ 0 such that for all

τ ≥ δ, ‖x′(τ)‖ ≤M exp{ωτ}.

Theorem 6. If X′ is exponentially bounded and of class C1 , then the Laplace

transform x̂′(λ) exists for sufficient large λ, X′ is Abel summable and k′ = j′.

Proof. First we notice that, because X′ is of class C1 and is exponentially
bounded, the estimate

‖〈f, j′(η)〉‖Z ≤
1

δ

∫ δ

0
‖〈f, x′(τ)〉‖dτ+

M

ωη
exp{ωη}‖f‖Φ for η ≥ δ, (3.2.5)

holds true. The term M
ωη results from a direct integration of 1

η

∫ η
δ Meωt‖f‖Φdτ .

In addition,

d

dη
[η〈f, j′(η)〉] = 〈f, x′(η)〉 for almost all η. (3.2.6)

If we (formally) take the Laplace transform of (3.2.6), the result is

〈f, x̂′(λ)〉 = λ

∫ ∞
0

η exp{−λη}〈f, j′(η)〉dη. (3.2.7)

The boundary term at τ = 0 vanishes because of the assumption that X′

is of Class C1 . The boundary term for large η vanishes because of (3.2.5)
if λ > ω. Similarly, the integral on the right of (3.2.7) exists. Hence the
Laplace transform in question exists for λ > ω.

From (3.2.7) we also see that

〈f, k′(λ)〉 = λ
2

∫ δ

0
η exp{−λη}〈f, j′(η)〉dη+λ

2

∫ ∞
δ

η exp{−λη}〈f, j′(η)〉dη.

(3.2.8)
Use of (3.2.5) shows that the second term on the right of (3.2.8) converges
to zero when λ→∞. We also note that

〈f, j′ 〉 = λ
2

∫ δ

0
η exp{−λη}〈f, j′ 〉dη+ λ

2

∫ ∞
δ

η exp{−λη}〈f, j′ 〉dη. (3.2.9)

Once again the second term converges to 0 when λ → ∞. Hence, a combi-
nation of (3.2.5) and (3.2.9) shows that

〈f, k′(λ)− j′ 〉 ∼ λ2

∫ δ

0
η exp{−λη}〈f, j′(η)− j′ 〉dη as λ→∞. (3.2.10)

By (3.2.10), 〈f, k′(λ)− j′ 〉 → 0 as λ→∞. To see this, first note that since
X′ is of class C1, for η ∈ (0, δ), there exists a constant Kδ such that

‖〈f, j′(η)− j′ 〉‖ < Kδ. (3.2.11)
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Then note that for arbitrary ε > 0, L’Hospital’s rule ensures that for λ
sufficiently large,

|λ2
η exp{−λη}| < ε

Kδ
. (3.2.12)

Combining (3.2.11) and (3.2.12), for ε > 0, there exists λ0(ε), such that
λ > λ0(ε)

‖λ2
η exp{−λη}〈f, j′(η)− j′ 〉‖ < ε, (3.2.13)

for η ∈ (0, δ). Thus, the right hand side integral of (3.2.10) has norm
bounded by εδ; δ fixed.

3.2.3 Normed star semigroups

We transfer the star causal relations of Section 2.7. The relations of par-
ticular interest are the star-semigroup relation (3.2.14), the star-empathy
relation (3.2.15) and the integrated star-empathy relation (3.2.16).

y′(τ) ∗ y′(σ) = y′(τ + σ); τ, σ ∈ R+
; y′ ∈ AB; (3.2.14)

x′(τ) ∗ y′(σ) = x′(τ + σ); τ, σ ∈ R+
; x′, y′ ∈ AB. (3.2.15)

〈f, x′(τ) ∗ y′(σ)〉 =

∫ τ

0
〈f, x′(σ + η)− x′(η)〉dη; τ, σ ∈ R+

; x′, y′ ∈ AB.

(3.2.16)

These relations (3.2.14) - (3.2.16) generate the “resolvent equations” via the
machinery of L1

loc((0,∞),AB) (Section 2.7). In these situations we shall

use special notation for the Laplace transform such as r(λ) = ŷ′(λ), p(λ) =
x̂′(λ). It should be noted that r and p, if they exist, represent bounded
homomorphisms from Φ to Z. Formally,

Theorem 7. Suppose that y′(τ) satisfies (3.2.14) and the Laplace trans-
forms r(λ) exist, for λ ≥ λ0 . If Y′ is Laplace-closed with respect to itself,
then

r(λ)− r(µ) = (λ− µ)r(λ) ∗ r(µ), (3.2.17)

for λ, µ ≥ λ0 .

Suppose that x′(τ), y′(τ) satisfy (3.2.15) and the Laplace transforms r, p
exist. If X′ is Laplace-closed with respect to Y′ then

p(λ)− p(µ) = (λ− µ)p(λ) ∗ r(µ), (3.2.18)

for λ, µ sufficiently large. For x′(τ), y′(τ) that satisfy (3.2.16) the corre-
sponding expression is

P(λ)−P(µ) = (λ− µ)P(λ) ∗R(µ), (3.2.19)

with P(λ) = λp(λ) and R(λ) = λr(λ).
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Proof. Equation (3.2.19) follows from equation (2.7.7) of Section 2.7, and
equation (2.7.17) of Corollary 6.

Consider the special case of normed star-semigroups defined by the
canonical mapping. Such normed star-semigroups are isometric represen-
tations of the double family of evolution operators: consider x′(τ) : f :
S(τ)θ′0 ∈ AB; ‖x′(τ)‖ ≤ ‖S(τ)‖ follows from ‖S(τ)f(0)‖ ≤ ‖S(τ)‖‖f(0)‖ ≤
‖S(τ)‖‖f‖∞; the reverse inequality is immediate on noting that for each z
in the unit ball of Z the function zf is in the unit ball of BUC(G,Z), where
f is in the unit ball of BUC(G,Z) such that f(0) = 1. This is the advantage
of working with the sup-normed test space Φ = BUC(G,Z) as opposed to
the Fréchet test space Φ := C(G,Z). Before long we shall show that the
similarity goes deeper: we will show that the corresponding dualisms X ′(τ)
and Y ′(τ) are the known semigroup and empathy relations in the test space
Φ = BUC(G,Z).

3.3 Operator Norm

For our purposes, the choice of norm on the test space Φ is important. In
order to meet two conditions: (AB, ∗) is (i) a unital normed algebra which
(ii) embeds isometrically as a unital normed subalgebra of the operator alge-
bra HomB(Φ,Φ). As a non-example, Φ := Lp(R, Z) with the Lp-norm fails
to meet these requirements: the identity θ′0 ∈ A is non-closeable unbounded
operator for Φ = Lp(R, Z); 1 ≤ p < ∞. Conditions (i)-(ii) ensure that each
homomorphism x′ ∈ AB embeds isometrically as a bounded operator on
Φ. In such situations, the norm on AB is called an operator norm. We
show that the supremum norm, such as in Φ = (BUC(G,Z), ‖ · ‖∞), induces
operator norms on AB.

3.3.1 Dualism Norm: Supremum Normed Test Space

Consider the unital algebra (AΦ, ∗), where Φ := (Lp(R, Z), ‖ · ‖p). The
identity functional θ′0 ∈ AΦ is badly behaved. However, its dualism 1Φ is
the bounded identity operator on Φ. The admissibility of θ′0 allows us to
re-norm θ′0 with the dualism norm or d-norm ‖·‖Γ: ‖θ′0‖Γ := ‖1Φ‖ = 1. The
d-norm is well defined since Γ is 1-1 3 . Indeed, Γ is an algebra isomorphism
by the Power Rule (Lemma 2, Section 1.3.1).

The admissible homomorphism x′ ∈ A is dualism-normed (d-normed) if
and only if X ′ = Γ(x′) ∈ L(Φ). We let AC denote the set of all d-normed

3Injectivity follows from the relation(x
′
f)(0) = 〈f, x′ 〉; x′1 6= x′2 if and only if there exists

f ∈ Φ such that 〈f, x′1 〉 6= 〈f, x′2 〉 ⇔ (x
′
1f)(0) 6= (x

′
2f)(0)⇔ (x

′
1f) 6= (x

′
2f)⇔ x′1 6= x′2
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admissible homomorphisms in A . Then the dualism norm is an operator
norm on AC .

Proposition 1. The dualism norm is an operator norm on AC .

Proof. It is easy to verify that AC is a normed vector space under ‖·‖Γ: ‖x′+
y′‖Γ := ‖X ′+Y ′‖ ≤ ‖X ′‖+‖Y ′‖ = ‖x′‖Γ+‖y′‖Γ. Also note that Γ(θ′0) = 1Φ.
Finally, submultiplicativity of ‖·‖Γ follows from the submultiplicative nature
of the operator norm ‖·‖: ‖x′∗y′‖Γ = ‖Γ(x′∗y′)‖ = ‖X ′◦Y ′‖ ≤ ‖X ′‖‖Y ′‖ =
‖x′‖Γ‖y′‖Γ

The norm of AB is an operator norm once we show AB = AC up to
norms. Growth conditions on the translation operators 4 ensure that the
subalgebra AB ⊂ AC .

Lemma 1. Let M := sups∈G{‖Rs‖|s ∈ G} < ∞. Then AB ⊂ AC . If
additionally M ≤ 1, then ‖x′‖Γ ≤ ‖x′‖.

Proof. For each fixed s ∈ G, ‖〈R−sf, x′〉‖ ≤ ‖x′‖‖R−sf‖. Hence, ‖X ′‖ ≤
M‖x′‖. The condition ‖x′‖Γ ≤ ‖x′‖ < ∞ for all x′ ∈ AB ensures that
AB ⊂ AC .

The inclusion AB ⊂ AC is strict for the test space Φ := L1(R, Z) 5:
although M = 1 (each translation operator Rτ is an isometry), the identity
θ′0 /∈ AB.

A supremum normed test space ensures the reverse inclusion AB ⊃ AC

by the reverse inequality ‖x′‖Γ ≥ ‖x′‖ : |〈f, x′〉| = |(X ′f)(0)| ≤ ‖X ′f‖∞. In-
deed, AB = AC by Lemma 1: each translation operator R−s is an isometry;
‖R−sf‖∞ = ‖f‖∞. Thus, the norm of AB coincides with its d-norm.

Theorem 8. Let the test space Φ be supremum-normed. Then the norm of
AB is an operator norm: the norm coincides with the dualism norm. Fur-
thermore, the map Γ : x′ 7→ X ′ is an identity preserving isometric embedding
of the unital algebra AB into the Banach algebra L(Φ).

Theorem 9. Let Φ be the Banach space (BUC(G,Z), ‖ · ‖∞). The mapping
Γ : x′ → X ′ for bounded x′ is norm-preserving and the algebra AB of bounded
homomorphisms is a Banach algebra: the norm on AB is an operator norm.

4This is not surprising given that the dualism norm is constructed from Γ.
5The elements of Φ are equivalence classes of functions which differ from one another

only on a null set. Therefore, one can define the action of the translation operator Rτ and
x′ ∈ AB as if these equivalence classes are functions: f = g a.e implies Rτf = Rτg a.e
and x′(f) = x′(g) a.e.
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Remark 1. The results in this section have shown the importance of the
norm of the test space Φ and a growth condition on the translation operators.
It would be interesting exercise to find other norms on function spaces for
which the dualism norm and the usual norm coincide.

3.4 Operator Normed Homomorphisms

We re-study an operator normed family X′ = {x′(τ)|τ ∈ T}, in conjunction
with its isometric counterpart X′ = {X ′(τ) = Γ(x′(τ)) ∈ A ′

B|τ ∈ T}; A ′
B :=

Γ[AB]. This will extend the corresponding results for X′ as a (plain) normed
homomorphism family of Section 2.3. In particular, the closedness condition
of Proposition 1, Section 2.4. The correspondence X′ ↔ X′ is unique: Γ is an
algebra isomorphism; AB is isometrically isomorphic to the unital algebra
A ′
B ⊂ L(Φ) (Theorem 9). We call X′ the dual of X′ and denote it as Γ(X′).

3.4.1 d-measurability

Closedness may under circumstances be viewed in terms of the problem
of the transfer of measurability of the mapping τ → 〈ϕ, x′(τ)〉 in Z to the
measurability of the mapping τ → X ′(τ)ϕ in Φ. In short, how does ‘dualism’
transfer the property of measurability: if τ 7→ x′(τ)f is measurable, that is,
X′ is strongly measurable in Z, then is it true that X ′ : τ 7→ X ′(τ)f is
measurable,that is, its dual X′ is strongly measurable in Φ?

We say that X′ is dualism-measurable (d-measurable) if for every f ∈ Φ
the mapping τ → X ′(τ)f is measurable in Φ (we always assume that τ 7→
x′(τ)f is measurable). Now, the measurability of τ 7→ X ′(τ)f implies the
measurability of τ 7→ x′(τ)f : 〈f, x′(τ)〉 = 〈X ′(τ)f, θ′

0
〉 and θ′

0
is bounded.

Thus, d-measurability of X′ implies strong measurability of X′ in Z. The
difficulty with the converse statement lies in the complex nature of the duals
of spaces of continuous functions. The essence of the problem seems to be
in the structure of the topological group G. If, for example, G is at most
countable, there is no problem. For a more general G we need the following
lemma:

Lemma 2 (Topological Measurability). Let Φ = BUC(G,Z), where G is
Lindelöff. If τ 7→ X ′(τ)f is separably valued and X′ = {x′(τ)|τ > 0} is a
family of bounded homomorphisms uniformly bounded in norm on compact
intervals, then τ 7→ X ′(τ)f is topologically measurable (that is, the inverse
image of every open subset of Φ is a measurable subset of (0,∞)); f ∈ Φ is
fixed.

Proof. Since the Φ-valued map τ 7→ X ′(τ)f is separably valued, we as-
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sume without loss of generality that the the metric space Φ is separable or
equivalently Lindelöff. Therefore, to prove the topological measurability of
τ 7→ X ′(τ)f , it suffices to show that for every ε > 0, there exists a non-trivial
measurable set M containing τ0 such that

τ ∈M ⇒ sup
q∈G
{‖[X ′(τ)f ](q)− [X ′(τ0)f ](q)‖} < ε,

for every fixed τ0 > 0.

This follows essentially from a diagram chase of neighbourhoods. Now,
for any fixed q1 ∈ G

‖[X ′(τ) f ](q)− [X ′(τ0)f ](q)‖ < ‖[X ′(τ)f ](q)− [X ′(τ)f ](q1)‖
+ ‖[X ′(τ)f ](q1)− [X ′(τ0)f ](q1)‖+ ‖[X ′(τ0)f ](q1)− [X ′(τ0)f ](q)‖.

(3.4.1)

The measurability of the map Wq1 : τ 7→ 〈f−q1 , x′(τ)〉 and the uniform
continuity of the function X ′(τ0)f ∈ Φ ensures that there is a measurable
set M( ε3 ; τ0, q1) ⊂ R+ containing τ0 and a neighbourhood q1 +U( ε3 ; τ0) ⊂ G,
such that for τ ∈M( ε3 ; τ0, q1) and q ∈ q1+U( ε3 ; τ0), the latter two proximities
of equation (3.4.1) are both less than ε

3 .

For the first proximity, the equicontinuity of {H(τ) := X ′(τ)f |τ ∈ K};
K is a compact set containing τ0 (Appendix C.2.2,Theorem 1 & Proposition
4), ensures that there exists a neighbourhood q1 + V ( ε3 ,K) such that for
q ∈ q1 + V ( ε3 ,K) the former inequality is less that ε

3 for each τ ∈ K: the
neighbourhood q1 + V ( ε3 ,K) is independent of τ ∈ K.

Therefore, for τ ∈ N(ε; τ0, q1) := M( ε3 ; τ0, q1)
⋂
K,

sup
q∈q1+W (ε)

‖[X ′(τ)f ](q)− [X ′(τ0)f ](q)‖ < ε,

where W (ε; q1) = V ( ε3 ,K)
⋂
U( ε3 ; τ0). Now G has the Lindelöff property so

any q ∈ G will belong to one of the countably many qi + W (ε; qi); i ∈ N.
Thus,

sup
q∈G
‖[X ′(τ)f ](q)− [X ′(τ0)(f)](q)‖ < ε,

for τ ∈ M :=
⋂∞

1 N(ε; τ0, qi) (measurable sets are closed under countable
intersection by the σ-algebra property of measurable sets).

Remark 2. This proof was an interplay between the uniform boundedness
theorem and dualism: the uniform boundedness theorem ensured the equicon-
tinuity of the family X′ over compacts and then the dualism, by virtue of the
continuity of the map p→ f−p, generates an equicontinuous subset of contin-
uous functions {X ′(τ)f |τ ∈ [α, β] in the nice space Φ = BUC(G,Z) which
then ensures that the desirable properties of τ → X ′τ (f).
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We now have,

Theorem 10. Suppose that G is a compact metric abelian group and that
X′ = {x′(τ)|τ > 0} is a family of bounded homomorphisms uniformly bounded
in norm on compact intervals. If X′ is strongly measurable in Z, it is d-
measurable.

Proof. The compactness ofG immediately ensures thatG is Lindelöff. Topo-
logical measurability and measurability coincides for essentially separably
valued functions. Therefore, by Lemma 2, we need only show that τ →
X ′(τ)f is essentially separably valued in Φ. For the metric space Φ, separa-
bility and total boundedness are equivalent. We now prove separability in
Φ as total boundedness.

Let I be a compact nontrivial subinterval of R+
. For fixed f ∈ Φ the

mapping τ → 〈f, x′(τ)〉 is measurable in Z. There is, therefore, a set N0 ⊂ I
of measure zero such that the set {〈f, x′(τ)〉 : τ ∈ I0 := I \ N0} ⊂ Z is
separable.

Since G is compact and metrizable, it is separable. Suppose the set
{sn : n = 1, 2, . . . } is dense in G. By the argument above, there are “null-
sets” Nn ⊂ I such that {X ′(τ)f(sn ) = 〈f−sn , x

′(τ)〉 : τ ∈ In := I \ Nn} is
separable. Let N∞ := ∪∞n=1Nn , and let I∞ = I \ N∞ . Then for each fixed
s ∈ G, the set

{X ′(τ)f(s) : τ ∈ I∞} ⊂ Z,

is separable by the uniform continuity of the the map s 7→ f−s.

Let us consider the set ΥI := {X ′(τ)f : τ ∈ I∞} ⊂ Φ. From the local
uniform boundedness of X ′(τ), it follows that ΥI is equicontinuous. We
come to the conclusion, by the Ascoli-Arzelà theorem (e.g. [4, p. 210]), that
it is totally bounded and therefore, separable in Φ. Since R+

can be covered
by a countable sequence of compact subintervals, it now follows that the
function τ → X ′(τ)f is essentially separably valued in Φ.

3.4.2 d-integrability

The transfer of the strong measurability of X′ by dualism (Theorem 10)
allows us to consider the integrability of the dual X′: we say that a d-
measurable X′ is dualism-integrable (d-integrable) 6 if τ 7→ ‖X ′(τ)f‖∞ is

6For the function space valued map τ 7→ X ′(τ)f to be Bochner integrable it must be
measurable and τ 7→ ‖X ′(τ)f‖∞ must be integrable. The former condition eliminates well
known cases of the latter case being true and the function not being Bochner integrable.
Indeed, the former case only ensures that a sequence of Φ-valued simple functions converges
uniformly to τ 7→ X ′(τ)f : uniform convergence does not ensure convergence in L1 as in
the case of sn := 1

n
X[0,n]; uniform convergence with L1-convergence ensures that Bochner

integrability in Φ.
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integrable over I for each fixed f ∈ Φ. The d-integrability of X′ sets the
stage for the test space Φ to do work just like its counterpart in the Laurent
Schwartz theory of vector valued distributions:

Proposition 2. If X′ is d-integrable, then X ′If := (Γx′I)f = (Γ
∫
I x
′(τ)dτ)f

is a Bochner integral,
∫
I X
′(τ)fdτ , for each fixed f ∈ Φ.

Proof. We bootstrap the case of τ 7→ X ′(τ)f being a step function in Φ
which is elementary. The bootstrap rests upon the well known fact that
uniform convergence in Φ implies pointwise convergence.

Closedness may under some circumstances be viewed as the problem of
the transfer of measurability of the mapping τ → 〈f, x′(τ)〉 in Z to the
d-integrability of the mapping τ → X ′(τ)f in Φ:

〈f, y′ ∗
∫
I
x′(τ)dτ 〉 = 〈(Γ

∫
I
x′(τ)dτ)f, y′ 〉.

Once the dualism Γ
∫
I x
′(τ)dτ is a Bochner integral

∫
I X
′(τ)fdτ in Φ, we

sharpen the closedness condition of Proposition 1, Section 2.4, with the well
known theorem concerning the commutation of closed linear operators and
Bochner integrals:

Corollary 1 (Closedness). Assume the hypothesis of Theorem 10. If X′ is
d-integrable over I, then every y′ ∈ AB is closed over I with respect to X′.

Proof. 〈
∫
I X
′(τ)fdτ, y′ 〉 =

∫
I〈X

′(τ)f, y′ 〉dτ =
∫
I〈f, y

′ ∗ x′(τ)〉dτ .

Remark 3. The closedness condition of Proposition 1, Section 2.4, involved
‘trivial’ bounded homomorphisms in the form of canonical homomorphisms.
The compact metrizability of the group G allows our test space Φ to do work:
the Φ-valued Bochner integral is equivalent to the induced integral. This is
the key for a sharper closedness condition for X′ by studying X′ in conjunc-
tion with its isometric counterpart X′. This sharper closedness condition for
X′ is similar to the classical case of bounded evolution operators.

3.4.3 Equivalent Framework: induced integral

The dualism X ′I := Γ
∫
I x
′(τ)dτ may be seen as an ‘induced’ integral. The

family X′ is homomorphism valued so its integral x′I =
∫
I x
′(τ)dτ is also a

homomorphism; the dual family X′ is operator valued so its ‘integral’ X ′I
should be an Φ → Φ operator. We construct the ‘integral’ X ′I (operator
valued) with exactly the same philosophy behind constructing x′I : we drop
X ′ : τ 7→ X ′(τ) to a time dependant Z-valued family by evaluating X ′ at a
fixed f ∈ Φ, denoted X ′(f), and then at a fixed s in the common domain
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G of the functions in Φ; the second evaluation is needed since X ′(f) is a
function space Φ-valued time dependant function.

The action of X ′I on f ∈ Φ is another function in Φ. We denote this
action as X′If in order to make it clear we are dealing with a function. We
now define X ′I as follows:

X′If : s 7→
∫
I
X ′s(f)dτ ∈ Z; f ∈ Φ. (3.4.2)

Therefore, the integral X ′I may be seen as some induced integral which
we shall denote as p −

∫
I X
′(τ)dτ . We call this the induced integral: For

each fixed f ∈ Φ, the group elements s ∈ G generate a bundle of time
domained “curves” {X ′s(f) : τ → [X ′(τ)f ](s)} in Z. The Bochner inte-
gral

∫
I X
′
s(f)dτ ∈ Z exists should the functions τ 7→ 〈f, x′(τ)〉; f ∈ Φ,

be strongly Lebesgue measurable; [X ′(τ)(f)](s) = x′(τ)(R−sf). Then the
(operator-valued) integral X ′I

X ′If : s 7→
∫
I
X ′s(f)dτ ∈ Z; f ∈ Φ, (3.4.3)

over the interval I ⊂ (0,∞) is well defined.

We say that the family X ′ is locally p-integrable, if X ′I ∈ A ′
B for every

I = (0, τ) ⊂ (0,∞); τ > 0. We let L1
loc((0,∞),A ′

B) denote the class of all
such families. Like for their AB-valued counterpart an immediate question
is: when will the the integral X ′I be in A ′

B ? The dualism Γ(X′I) is precisely
X ′I by direct computation: Γ and p−

∫
are interchangeable. This vindicates

our notation (3.4.3) and choice of p-integral.

X′If =X′I f. (3.4.4)

That is, the strong integrability of X′ over I ensures that the dual family X ′

is p-integrable over I: the strong integrability of X′ induces an ‘integral’ on
X ′. Indeed these two integrals ‘coincide’:

Proposition 3 (Equivalent Framework). Let X ′ ∈ L1
loc((0,∞),A ′

B). Then
X ′ ∈ L1

loc((0,∞),A ′
B) if and only if X′ ∈ L1

loc((0,∞),AB).

Proof. Write X ′ = Γ(X′). The crux of the proof is the important observation
X ′(τ)(f)(s) = 〈R−sf, x′(τ)〉 since Γ(x′(τ)) = X ′(τ). Therefore,

X ′s(f) = X′(R−sf).

For the sufficient condition, the admissibility of X′I ∈ AB ensures that X ′I ∈
A ′
B (Theorem 5, Section 2.2). For the necessary condition, firstly each x′(τ)

is bounded by the continuity of both X ′(τ) and θ0. The strong integrability
of X′ is immediate from 〈f,X′I 〉 = [ X′If ](0). The continuity and thus,
admissibility of the homomorphism X′I is then immediate.
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At this stage we similarly introduce the induced Laplace transform of
the family X ′ formally. If for each s ∈ G, the Laplace transforms∫

(0,∞) e
−λτ [X ′(τ)f ](s)dτ exists, then we naturally define the operator valued

induced Laplace transform as

[X̂ ′(λ)
p
f ] : s :

∫
(0,∞)

e−λτ [X ′(τ)f ](s)dτ ∈ Z; f ∈ Φ. (3.4.5)

We say that the family X ′ is p-Laplace transformable if and only if X̂ ′
p
(λ) ∈

A ′
B. We let Lap(λ,A ′

B) denote the class of all such families. It is immediate
from the proof of Proposition 3 that X ′ ∈ Lap(λ,A ′

B) if and only if X′ ∈
Lap(λ,AB). Formally,

Proposition 4. The map Γ commutes with the p-Laplace Integral Trans-
form:

X̂ ′
p
(λ) = ΓX̂′(λ). (3.4.6)

We can now transfer the general convolution theorem and the general
resolvent equation of L1

loc((0,∞),AB) by formally defining their convolution
(X ′ ~ Y ′) for X ′, Y ′ ∈ L1

loc((0,∞),A ′
B) by the Bochner integrals

X ′ ~ Y ′(τ)f : s ∈ G :

∫
(0,τ)
〈R−sf, x′(τ − σ) ∗ y′(σ)〉dσ, (3.4.7)

where f ∈ Φ; s ∈ G. Therefore, X ′ ~ Y ′ ∈ L1
loc((0,∞),A ′

B) if and only if
X′ ~Y′ ∈ L1

loc((0,∞),AB).

Theorem 11 (Transfer from L1
loc((0,∞),AB) into L1

loc((0,∞),A ′
B)). The

general convolution theorem and the general resolvent equation of
L1
loc((0,∞),AB) transfer word for word into L1

loc((0,∞),A ′
B) by merely re-

placing ∗ of (AB, ∗) with ◦ of (A ′
B, ◦).

3.5 d-Normed Star Semigroups

For the time-dependent d-normed family X′, some of the results of classical
semigroup theory carry over to star-semigroups. For example we have a
Miyadera type result ([19] Lemma 10.2.1) in L1

loc((0,∞),AB), where strong
measurability combined with the semigroup property implies uniform bound-
edness on compacts:

Lemma 3 (Miyadera in L1
loc((0,∞),AB)). Let Φ = BUC(G,Z). If X′ is

a star-semigroup and for every f ∈ Φ the function τ > 0 7→ 〈f, x′(τ)〉 is
measurable, then ‖x′(τ)‖ is uniformly bounded on compact subintervals of
R+

.
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Proof. The mapping Γ : x′ 7→ X ′ is norm preserving so that ‖〈f, x′ ∗ y′ 〉‖ ≤
‖x′‖‖y′‖‖f‖∞. It is then immediate that the proof by contradiction of
Lemma 10.2.1 [19] carries over word for word.

The interplay between the uniform boundedness in norm on compacts
and the compact metrizability of the abelian group G of the test space Φ =
BUC(G,Z) established the d-measurability of X′ (Theorem 10). Therefore,
it is immediate from Lemma 3 that every strongly measurable d-normed
star-semigroup is d-measurable:

Corollary 2 (Dualism Preserves Measurability). Suppose that G is a com-
pact metric abelian group. If X′ is a star-semigroup and for every f ∈ Φ
the function τ > 0 7→ 〈f, x′(τ)〉 is measurable, then τ > 0 7→ X ′(τ)f is
(uniformly) measurable; f ∈ Φ is fixed.

Now recall the well known result that a strongly measurable semigroup
is strongly continuous (Lemma 3, Chap. VIII [11] ). The strong continuity
property of measurable classical semigroups, however, is not analogously
true for star-semigroups. To investigate this, we consider the dualisms X ′(τ)
induced by the homomorphisms x′(τ). From Theorem 1, Section 3.1, it is
seen that the family X′ = {X ′(τ)|τ > 0} is a semigroup of bounded linear
operators in the space Φ. Hence if X′ is d-measurable, then the semigroup
X is strongly continuous.

Therefore, under suitable restrictions on G, from Corollary 2, the d-
measurability of X′ transfers the proof of Lemma 3, Chap. VIII [11] word
for word. Indeed, the submultiplicativity of the norm: ‖x′ ∗ y′‖ ≤ ‖x′‖‖y′‖
ensures that the proof of exponential boundedness (Corollary 5, Chap. VIII
[11]) to also carry over word for word. Therefore,

Theorem 12. Let Φ = BUC(G,Z); G is a compact metric abelian topo-
logical group. If X′ is a star-semigroup and for every f ∈ Φ the function
τ > 0 7→ 〈f, x′(τ)〉 is measurable, then ‖x′(τ)‖ is uniformly bounded on
compact subintervals of R+

, x′(τ) is strongly continuous and exponentially
bounded.

Thus, for star-semigroups, Theorems 5 and 6 of Section 3.2.2, apply.

3.6 Isometric Embedding Of Empathy Theory

In the study of d-normed star semi-groups (Section 3.5), the strong measur-
ability of X′ is the starting assumption in the investigation of X′. This is in
line with [19], [11] for classical semigroups. We likewise demonstrated that
strong measurability is a more fundamental concept than strong continuity
(Theorem 12).
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The strong continuity of the evolution family is the starting assumption
for some authors. Indeed, the assumptions of empathy theory ensure strong
continuity of the double family of evolution operators 〈S, E〉 (Theorem 2.2,
[28]). Should this also be our starting assumption for X′, that is, τ > 0 7→
〈f, x′(τ)〉 is continuous for each f ∈ Φ, then under much weaker restrictions
on the group G, the isometric counterpart X ′ is strongly continuous. More
precisely, if G is locally compact, then the dualism transfers the strong
continuity of the family X′ (uniformly bounded over compacts) into the the
strong continuity of X ′ (Appendix C.3.1, Theorem 2).

Suppose 〈X′,Y′ 〉 is the canonical family of homomorphisms associated
with the strongly continuous pair 〈S, E〉; x′(τ) := S(τ)θ′0 and y′(τ) :=
E(τ)θ′0 (Section 2.8). Then 〈X′,Y′〉 is an isometric identification with 〈S, E〉
as far as strongly continuous semi-groups are concerned; X ′(τ) = Γ(x′(τ))
and Y ′(τ) = Γ(y′(τ)).

Proposition 5 (Operator Identification). Let Φ = BUC(G,Z), ‖ · ‖∞); G
is locally compact. Then the pairs 〈S(τ), E(τ)〉, 〈P (λ), R(λ)〉 embeds iso-

metrically as pairs 〈X ′(τ), Y ′(τ)〉, 〈X̂ ′
p
(λ), Ŷ ′

p
(λ)〉, respectively. Further-

more, the functional equations (resolvent equations) are preserved. Indeed,
if 〈S(τ), E(τ)〉 is strongly continuous, then so is 〈X ′(τ), Y ′(τ)〉 .

Proof. It suffices to prove it for the family X′ (the proof for Y′ is similar).
Since Γ : x′ 7→ X ′ is norm preserving, ‖X ′(τ)‖ = ‖S(τ)‖. The proof of the

induced Laplace integrals 〈X̂ ′
p
(λ), Ŷ ′

p
(λ)〉 is done similarly.

The strong continuity and the local boundedness of S (Theorem 2.2,
[28]) ensures that the family X′ of bounded homomorphisms is strongly
continuous and simply bounded over compacts. Therefore, the family X′
is strongly continuous (Theorem 2, Appendix C.3.1). Finally, the algebra
isomorphism Γ transfers the causal relations in AB of Proposition 5, Section
2.8.1, into A ′

B .
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Chapter 4

Generation Theorem: Star
Implicit Cauchy Problem

The well known convolution algebra (L1(0,∞), ∗) lies at the heart of Kisyn-
ski’s equivalent formulation of the Hille-Yosida Theorem: a Banach algebra
representation T on (L1(0,∞), ∗) generates the C0-semigroup (E(τ))τ≥0 sat-
isfying the abstract Cauchy problem. The solution or regularity space for
the abstract Cauchy problem can be constructed purely from T alone. Thus,
we can identify this regularity space with T . For brevity, we shall use the
notation L1(0,∞) to denote the convolution algebra (L1(0,∞), ∗).

In this chapter, we adapt Kisynski’s formulation to construct a Hille-
Yosida-Kisynski generation theorem for the implicit Cauchy problem (Equa-
tions (1.1.1)-(1.1.2), Section 1.1). We show that the solution or regularity
space for the implicit Cauchy problem is a non-closed dense subspace of the
solution space for the abstract Cauchy problem; indeed, the regularity space
for the implicit Cauchy problem can be identified with T 2 . Furthermore,
this empathy theory adaptation of the Kisynski approach shows how much
empathy theory differs from semi-group theory.

We then demonstrate the versatility of Kisynski’s formulation by adapt-
ing it also to a Hille-Yosida-Kisynski generation theorem for the implicit
Cauchy problem cast in our more general framework of admissible homo-
morphisms or generalized operators. This should not be surprising since the
framework of generalized operators is based on another convolution algebra,
(AB, ∗).

50

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



4.1 Generation Theorem: Classical Implicit Cauchy
Problem

Recall that for the implicit Cauchy problem (equations (1.1.1)-(1.1.2), Sec-
tion 1.1), the operators A and B are not closable, thus, precluding the
commuting of B with the time derivative or the limit at τ = 0+ in (1.1.1)
and (1.1.2). The classical generation problem (for implicit evolution equa-
tions) is to assume an empathy pseudo-resolvent 〈R,P 〉 defined for a scalar
λ ∈ U , where U is the half-ray (0,∞) (Section 1.1); that is, R(λ) ∈ L(Y )
and P (λ) ∈ L(Y,X) satisfies (1.1.6). Then, find a ‘generator’ of an empathy
in the form of an operator pair 〈A,B 〉 and empathy 〈S(τ), E(τ)〉 (Section
1.1) related to the implicit Cauchy problem (1.1.1)-(1.1.2).

We adapt Kisynski’s approach [22] to the Hille-Yosida theorem (for the
abstract Cauchy problem) of constructing a representation T of a Banach-
subalgebra of pseudo-resolvents R(λ) by the convolution algebra L1(0,∞).
We show that for the empathy approach, a different ‘representation’ T ′ by
L1(0,∞) is needed to represent P (λ) and generate S(τ) of an empathy
〈S(τ), E(τ)〉, which is not defined at τ = 0, where u(τ) = S(τ)y solves
(1.1.1) for y in a non-closed isomorphic dense subspace of the solution space
of the abstract Cauchy problem.

Suppose 〈S(τ), E(τ)〉τ>0 is an empathy. Then the integral representa-
tions of the action of the assumed empathy on the subspace ∆Y := R(λ)[Y ]
gives a clue of how 〈A,B 〉 should look like (Lemma 2.7 [28]). Indeed, by
these integral representations, the behaviour of S(τ) and E(τ), which is
not defined at τ = 0 on ∆Y , is expressed as an asymptotic property of the
Laplace transforms of the empathy resolvents which is well defined on ∆Y .

Theorem 1. [28] Assume the existence of the empathy 〈S(τ), E(τ)〉τ>0,
the empathy pseudo-resolvent 〈R(λ), P (λ)〉 and the invertibility assumption.
Then the implicit Cauchy problem (1.1.1)-(1.1.2) has solution u(τ) = S(τ)y
for almost all τ > 0 on y ∈ ∆Y . For any y ∈ ∆Y ,

lim
λ→∞

λR(λ)y = y, lim
λ→∞

λP (λ)y = Jy, (4.1.1)

where J := P (λ)R(λ)−1 need not be closed.

Remark 1. The empathy approach of introducing a pair of evolution fami-
lies and a pair of invertible resolvents showed that closedness of the operators
A and B was not crucial: the ‘impossible’ commutation was bypassed to a
specially constructed space B[D ] = ∆Y of Y .

Therefore, an empathy 〈S(τ), E(τ)〉 deviates much from a C0-semigroup
E(τ): T ′ is a linear map on L1(0,∞) and is not an algebra representation
and need not be closed; furthermore, S(0) = J on ∆Y deviates from the
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C0-semigroup behaviour E(0) = 1 in the sense that J need not be closed;
indeed, S(0) = J extends the behaviour in [28], of the assumed empathy
〈S(τ), E(τ)〉 which is not defined at τ = 0 on ∆Y but expressed as an
asymptotic property of the strong Laplace transforms (Theorem 1 (4.1.1)).
The notation S(0) = J on ∆Y means limτ→0+ S(τ)y = Jy for y ∈ ∆Y .

4.1.1 Kisynski Regularity Space

Consider a pseudo-resolvent R, where U is the half-ray (0,∞). Then the
Kisynski regularity space ∆K ⊂ Y defined as

∆K := {y ∈ Y | lim
λ→∞

‖λR(λ)y − y‖ = 0}, (4.1.2)

and (ii) an operator AE defined by its graph

{(y, y′) ∈ Y × Y | lim
λ→∞

‖λ(λR(λ)y − y)− y′)‖ = 0}. (4.1.3)

The Kisynski regularity space ∆K is a space where the resolvent (R(λ))λ>0

behaves asymptotically as the identity operator 1; the domain of the operator
AE is the space where the Yosida approximants converge 2.

Under the growth condition ‖λR(λ)‖ = O(1), namely, lim supλ→∞λ‖R(λ)‖ <
∞, the space ∆K is the closed subspace ∆Y of Y and as such it is a Banach
space.

Proposition 1. (Proposition 5.2 [22]) If lim supλ→∞λ‖R(λ)‖ < ∞, then
∆K is closed.

Proof. Let y ∈ ∆K . Then writing y = (y − yn) + yn,

λR(λ)y − y = [1 + λR(λ)](y − yn) + [λR(λ)yn − yn],

where (yn) is a sequence of elements of ∆K that converges to y. With
lim supλ→∞‖λR(λ)yn − yn‖ = 0,

lim supλ→∞‖λR(λ)y − y‖ ≤ [1 + lim supλ→∞λ‖R(λ)‖]‖yn − y‖,

for every n ∈ N.

1This is a translation (to resolvents) of the strong continuity assumption of a semigroup
E(τ) on ΦY behaving like the identity operator near τ = 0: limτ→0+ E(τ)f = f for allf ∈
ΦY . The numerical heuristic of the construction (4.1.2) lies in the relation λ1

λ−A = λR(λ);
that is, the Hille pseudo resolvent coincides with the Banach algebraist’s resolvent. Taking
the limit λ→∞ of the left hand side term leads to 1.

2This is a translation (to resolvents) of the classical result that the infinitesimal gen-
erator of a semigroup coincides with the generator of the resolvent. The motivation for
the construction (4.1.3) lies in the well known Yosida approximants of the infinitesimal
generator of a C0-semi-group (Appendix D, Definition 4).
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Furthermore, the pseudo-resolvent R becomes a resolvent R(λ,AE) =
(λ − AE)−1; with generator AE . We consider the restriction, R(λ)|∆

K
,

of R(λ) to the subspace ∆K in order to construct a C0-semigroup on the

Banach space ∆K with generator AE so that (λ − AE)−1 = R(λ) on ∆K .
Indeed, R(λ)|∆

K
is a 1-1 continuous extension of R(λ) restricted to ∆Y ,

R(λ)|∆
Y

. We let [R(λ)|∆
K

]−1 denote the inverse of R(λ)|∆
K

.

Proposition 2. [22] Let ‖λR(λ)‖ = O(1). Then
(i) The Kisynski regularity space ∆K is a closed subspace of Y .
(ii) The generator AE is closed, where Dom(AE) is dense in ∆K .
(iii) For each λ ∈ U , (a) R(λ)[∆K ] ⊂ ∆K and (b) R(λ)|∆

K
is the resolvent

R(λ,AE). That is, R(λ)|∆
K

is a 1-1 continuous extension of R(λ)|∆
Y

.

(iv) R : λ→ R(λ)|∆
K

is locally analytical.

Proof. Now (ii) is immediate from Corollary 5.3 [22]. For (iii), Proposition
5.4, [22], ensures that R(λ)|∆

K
is the resolvent R(λ,AE) = (λ − AE)−1,

where the resolvent set of AE contains U := (0,∞). Thus, for each λ ∈ U ,
R(λ)[∆K ] ⊂ ∆K and R(λ)|∆

K
is 1-1.

Finally (iv) follows from (iii) by Proposition 1.3 (ii), Section IV.1, [12].

Now, if we assume the more stringent Widder Growth Condition,

sup
λ>0;k∈N

{‖[λR(λ)]k‖} <∞,

then every pseudo-resolvent R is the image of a bounded algebra represen-
tation 3 T of the canonical pseudo-resolvent (r(λ) := e−λ)λ∈(0,∞) of the
convolution algebra L1(0,∞),

r(λ)− r(µ) = (µ− λ)r(λ) ∗ r(µ), (4.1.4)

where e−λ : τ ∈ (0,∞) 7→ e−λτ . Indeed, the identification T : r(λ) 7→ R(λ)
is unique in the following sense:

Theorem 2. [22] Let R(λ);λ > 0, satisfy the Widder Growth Condition.
Then there exists a unique (bounded) Banach algebra representation T :
L1(0,∞) → L(Y ) such that (i) T (e−λ) = R(λ) and (ii) T algebraically
reconstructs the Kisynski regularity space ∆K as ∆

K′ :

∆K = ∆Y =
⋃

φ∈L1(0,∞)

T (φ)[Y ] =: ∆
K′ . (4.1.5)

3We say that a representation T of an algebra L on a linear space Φ is an algebra
homomorphism T from L into the algebra L(Φ).
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Proof. Firstly T is an algebra homomorphism on the total subset S :=
{e−λ|λ > 0} of L1(0,∞): T (e−λ ∗ e−µ) = T (e−λ)T (e−µ) by virtue of the
resolvent equation (4.2.6). Now T extends uniquely to an algebra represen-
tation on the entire L1(0,∞) by the Widder Growth Condition .

The algebraic reconstruction (4.1.5) of the Banach space ∆K follows
from the factorization theorem for representations of the Banach algebra
L(Y ) (Theorem 5.2.2 [23]).

With the algebraic ∆
K′ , as opposed to the equivalent ∆K , a C0-semigroup

E = (E(τ) : ∆
K′ → ∆

K′ )τ≥0 on ∆
K′ is constructed by right shift maps, Rτ ,

on the function space L1(0,∞). For every τ ≥ 0 and φ ∈ L1(0,∞),

E(τ)[T (φ)] := [T (Rτφ)], (4.1.6)

where the right translate of φ by τ is the element Rτφ ∈ L1(0,∞); Rτφ(ξ) =
φ(ξ − τ) if ξ ∈ (τ,∞) and Rτφ(ξ) = 0 if ξ ∈ (0, τ ]. We call the space ∆

K′ ,
the T -regularity space since T uniquely reconstructs the space ∆K .

Theorem 3. [22] The construction (4.1.6) uniquely defines a C0-semigroup
(E(τ) : ∆

K′ → ∆
K′ )τ≥0 on the T-Kisynski regularity space ∆

K′ . That is,

for y = T (φ)y′ ∈ ∆
K′ ,

E(τ)y = E(τ)[T (φ)y′]

is independent of representation of y. E(0) is the identity operator on ∆
K′

and not the whole space Y .

Proof. The independence of representation follows from E(τ)y = d
dτG(τ, y),

where G(τ, y) : τ 7→ [T (X(0,τ))](y) (Theorem 4.2, (4.9), [22]) since Rτφ =
d
dτ [X(0,τ) ∗ φ].

Remark 2. In Kisynski’s approach [22] to the Hille Yosida theorem, the
reconstructed C0-semi-group (E(τ))τ≥0 is defined on ∆

K′ as opposed to the
reconstructed C0-semi-group of the Hille Yosida theorem which is defined on
the whole space Y . Kisynski’s approach is an equivalent formulation of the
Hille Yosida theorem [7]. Therefore, there is no loss of generality in E(0)
being the identity operator on ∆

K′ and not the whole space Y .

Therefore, every semigroup constructed from a pseudo-resolvent which
satisfies the Widder Growth Condition is essentially an image of a transla-
tion semigroup. From this point onward, we shall always assume the Widder
Growth Condition for any pseudo-resolvent R. The Widder Growth Con-
dition was critical in constructing the T -regularity space, ∆

K′ , the solution

space for the abstract Cauchy problem. We now introduce T 2-regularity
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space, ∆2
K′

, an isomorphic dense subspace of the T -regularity space. We

will show ∆2
K′

is a solution space for the more general star implicit Cauchy

problem. Thus, the T 2-regularity space is a large solution space.

Remark 3. We can represent the construction (4.1.6) as the commuting
diagram:

φ ∈ L1(0,∞)

Rτ

��

T //T (φ) ∈ L(Y )
Θf ′

//

Y ′(τ)

��

T (φ)f ∈ ∆
K′

Y ′(τ)

��

Rτφ ∈ L1(0,∞)
T //Y ′(τ)(T (φ)) ∈ L(Y )

Θf ′
//Y ′(τ)(T (φ)f) ∈ ∆

K′

Diagram 1. C0 − semigroup (E(τ))τ≥0 on the T-Kisynski regularity space ∆
K′ .

4.1.2 Empathy Regularity Space

Consider the subspace, ∆2
K′ , of the T -regularity space:

∆2
K′ := R(λ)[∆

K′ ] (4.1.7)

Thus, ∆2
K′

is the domain of the inverse [R(λ)|∆
K

]−1 = [R(λ)|∆
K′

]−1.

Proposition 3. The T 2−regularity space, ∆2
K′ is (i) an isomorphic dense

subspace of ∆
K′ and (ii) the representation (4.1.7) is independent of the

choice of λ.

Proof. (i) is immediate from firstly noting that R(λ)|∆
K′

is 1-1 (Proposition

2 (ii)) and secondly that ∆2
K′ = Ran(R(λ)|∆

K′
) = Dom([R(λ)|∆

K′
]
−1

) =

Dom(λ − AE) = Dom(AE) which is a dense subspace of ∆
K′ (Proposition

5.4 [22]). For (ii), we show that R(λ)[∆
K′ ] ⊂ R(µ)[∆

K′ ];λ, µ ∈ U . Consider

the dense subspace R(λ)[∆Y ] of R(λ)[∆
K′ ]

4 . Then y ∈ R(λ)[∆Y ] implies

y = R(λ)R(µ)y′ for some y′ ∈ Y since ∆Y is independent of representa-
tion. Therefore, y = R(µ)R(λ)y′ ∈ R(µ)[∆Y ] by the commutativity of the
resolvents. Thus, R(λ)[∆Y ] ⊂ R(µ)[∆Y ]. The reverse inclusion is proved
similarly.

4∆Y is a dense subspace of ∆
K′ (Theorem 2, (4.1.5)). The boundedness of R(λ)

ensures that R(λ)[∆Y ] is a dense subspace of R(λ)[∆
K′ ].
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With the T 2−regularity space, we construct an empathy 〈E(τ), S(τ)〉τ>0

from the pseudo-resolvent pair 〈R,P 〉. The construction of S(τ) on the T 2

regularity space is inspired by the critical identity (5), Lemma 2.3 [28].
We construct (S(τ) : ∆2

K′
→ ∆X )τ>0 as follows: For every τ > 0 and

φ ∈ L1(0,∞),

S(τ)[R(λ)T (φ)] := P (λ)[E(τ)T (φ)], (4.1.8)

where ∆X = P (λ)[Y ].

For construction (4.1.8) to be well defined, we show that the T 2-regularity
space is invariant under E(t).

Lemma 1. For each τ ≥ 0, E(τ)[∆2
K′ ] ⊂ ∆2

K′. Indeed, for every φ ∈
L1(0,∞), T (φ)[∆2

K′ ] ⊂ ∆2
K′ :

Proof. This follows from the fact that E(τ) and R(λ) commute on ∆K and
∆K′ is invariant under E(τ) 5 . The latter statement follows from the fact
that convolution is commutative in L1(0,∞):

T (φ)(RλT (ϕ)y) = T (φ)T (e−λ)T (ϕ)y = T (φ ∗ e−λ ∗ ϕ)y = T (e−λ ∗ φ ∗ ϕ)y

= RλT (φ ∗ ϕ)y,

where φ ∗ ϕ ∈ L1(0,∞)

Theorem 4. Construction (4.1.8) uniquely defines an empathy 〈S(τ), E(τ)〉t>0

and is independent of representation of y ∈ ∆2
K′

. The empathy relation

(1.1.3) holds on ∆2
K′

. On the T 2-regularity space ∆2
K′

,

S(0) = J, that is, lim
τ→0+

S(τ)y = Jy, (4.1.9)

y ∈ ∆2
K′

.

Proof. The following proof is purely algebraic. We show that if there is
y′, y′′ ∈ Y such that

R(λ)T (φ)y′ = R(µ)T (φ′)y′′

then
P (λ)[E(τ)T (φ)y′] = P (µ)[E(τ)T (φ′)y′′]

5For y ∈ ∆
K′ , Rλy has Bochner integral representation

∫
(0,∞)

e−λτE(τ)y. Commuta-

tivity follows from the semi-group relation E(τ)E(σ) = E(τ + σ), where E(σ) : ∆
K′ →

∆
K′ since (E(τ))τ≥0 is a semi-group on ∆

K′ (cf. Lemma 2.3 (4) [28]) .
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The crux is the invertibility of R(λ)|∆
K′

(Proposition 2 (ii)) and indepen-

dence of representation of J(λ)|∆2
K′

:= P (λ)[R(λ)|∆
K

]
−1

which we shall de-

note as Rλ and Jλ, respectively; similarly denoting the restriction P (λ)|∆
K′

as Pλ:

P (λ)[E(τ)T (φ)y′] = PλE(τ)[R−1
λ RµT (φ′)y′′]; (4.1.10)

= JλRλ[E(τ)R−1
λ RµT (φ′)y′′]; (4.1.11)

= JλE(τ)[RλR
−1
λ RµT (φ′)y′′]; (4.1.12)

= JλE(τ)RµT (φ′)y′′; (4.1.13)

= JµRµE(τ)T (φ′)y′′; (4.1.14)

= PµE(τ)T (φ′)y′′, (4.1.15)

where (4.1.11) and (4.1.15) follows from equation J |∆2
K′
Rλ = JλRλ =

Pλ since both Rλ[E(τ)R−1
λ RµT (φ′)y′′] and Rµ[E(τ)T (φ′)y′′] belong to ∆2

K′

(both E(τ)R−1
λ RµT (φ′)y′′ and E(τ)T (φ′)y′′ belong to ∆

K′ ); (4.1.12) and

(4.1.14) follows from Rλ commuting with E(τ) on ∆
K′ ; (4.1.13) follows

from RλR
−1
λ RµT (φ) = RµT (φ).

The empathy relation which is well defined by Lemma 1 follows from the
semi-group property of (E(σ))σ≥0 and the construction (4.1.6) of Theorem
3. Suppose y = R(λ)T (φ)y′ ∈ ∆2

K′
. Then,

S(τ + σ)y = S(τ + σ)R(λ)T (φ)y′ = P (λ)E(τ)T (Rσφ)y′.

By the commutativity of E(σ) and R(λ) on ∆
K′ ,

S(τ)E(σ)y = S(τ)E(σ)R(λ)T (φ)y′ = S(τ)R(λ)E(σ)T (φ)y′.

Now invoking the construction (4.1.6) of Theorem 3 and then (4.1.8),

S(τ)E(σ)y = S(τ)R(λ)T (Rσφ)y′ = P (λ)E(τ)T (Rσφ)y′.

The initial condition(4.1.9) follows from the commutativity of the limτ→0+

operator with bounded P (λ) and E(0) being the identity operator on ∆
K′ ,

that is, limτ→0+E(τ)y = y for all y ∈ ∆
K′ .

Remark 4. The constructed empathy 〈S(τ), E(τ)〉 can be well defined at
τ = 0 on ∆

K′ = ∆Y by (4.1.8) since E(0) is well defined on ∆
K′ . However,

since the empathy relation S(τ+σ) = S(τ)E(σ) only makes sense for σ, τ >
0, we do not define 〈S(τ), E(τ)〉 at τ = 0. Therefore, the notation S(0) = J
on ∆2

K′
means limτ→0+ S(τ)y = Jy for y ∈ ∆2

K′
. Note however a direct

substitution τ = 0 into (4.1.8) also yields S(0) = J .
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Therefore, the empathy 〈S(τ), E(τ)〉 deviates much from a C0-semigroup
E(τ): S(0) = J on ∆2

K′
deviates from C0-semigroup behaviour E(0) = 1 in

the sense that J need not be closed; furthermore, the linear map T ′ which
represents P (λ) on L1(0,∞) is not an algebra representation and need not
be closed; in contrast, a bounded algebra representation T on L1(0,∞)
represents a resolvent R(λ); S(τ) on ∆2

K′ is essentially the image under
T ′ of a exponentially pre-convolved translation semigroup; in contrast, the
semigroup E(τ) on ∆

K′ is essentially the image under T of a translation
semigroup.

Corollary 1. The homomorphism T ′ = JT on the convolution algebra
L1(0,∞) represents P (λ) and generates S(τ) on the domain ∆2

K′ as fol-
lows:

T ′(e−λ) = P (λ);T ′(e−λ ∗Rτφ) = S(τ)[R(λ)T (φ)], (4.1.16)

where φ ∈ L1(0,∞). T ′ is not an algebra representation and need not be
closed.

Proof. T ′(e−λ) = P (λ) is immediate from T (e−λ) = R(λ) and J = P (λ)R−1(λ).
By the canonical resolvent equation (4.1.4), T ′ cannot be an algebra repre-
sentation; T ′ = P (λ)R−1(λ)T , where R−1(λ)T is closed since it is the prod-
uct of T bounded andR−1(λ) closed; thus, T ′ is the product of P (λ) bounded
and [R−1(λ)T ] closed and so need not be closed. Finally, from (4.1.8),
X ′(τ)[R(λ)T (φ)] = JR(λ)[E(τ)T (φ)] = JE(τ)[R(λ)T (φ)] = JT (e−λ)T (Rτφ)
= JT (e−λ ∗Rτφ) = T ′(e−λ ∗Rτφ).

We represent the above construction diagrammatically as follows, where
we use the following notation AY := L(Y ),AX := L(Y,X). The diagram
starts with a φ ∈ L1(0,∞):

φ
T //T (φ) ∈ AY

Y ′(τ)

��

Rλ //RλT (φ) ∈ AY

S(τ)

��

//RλT (φ)y ∈ ∆2
K′

S(τ)

��
Y ′(τ)T (φ) ∈ AY

Pλ //PλY
′(τ)T (φ) ∈ AX //S(τ)RλT (φ)y ∈ X

Diagram 2 : Construction of transition map (S(τ))τ>0 on ∆2
K′ by the representation T ′;

Remark 5. By (4.1.16), one can identify 〈P (λ), S(τ)〉 with T ′. Similarly,
one can identify 〈R(λ), E(τ)〉 with T . Therefore, a pair 〈T, T ′ 〉 is used to
generate an empathy 〈E(τ), S(τ)〉. One can identify the domains of the
empathy 〈∆

K′ ,∆
2
K′
〉 with the pair 〈T, T 2 〉.
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4.1.3 Invertibility assumption

Up to this point we have not used the invertibility assumption. The invert-
ibility assumption constructs the operator B := R(λ)P (λ)−1 which ensures
that the critical identity on ∆2

K′

BS(τ) = E(τ), (4.1.17)

when one notes that ∆2
K′
⊂ ∆Y . With the empathy 〈S(τ), E(τ)〉, for each

y ∈ ∆2
K′

,

u : t 7→ u(τ) = S(τ)y, (4.1.18)

is a solution of the implicit evolution equation (1.1.1), Section1.1: apply B
to (4.1.18) and then invoke (4.1.17):

v : t 7→ Bu(τ) = E(τ)y. (4.1.19)

Hence

d

dt
v(τ)y = AEE(τ)y = AEBS(τ)y =: ASS(τ)y, (4.1.20)

where AS := AEB, for every t > 0. Furthermore, P (λ) = (λB−AS)−1 since
B = R(λ)P−1(λ) and AS = λB − R−1(λ)B by AE = λ − R−1(λ). Thus,
〈AS , B 〉 is the generator of the empathy 〈S(τ), E(τ)〉.

With (4.1.20), we are left with the initial condition of the implicit Cauchy
problem. Once again from (4.1.17), for each y ∈ ∆2

K′
, limt→0+ BS(τ)y = y

since (E(τ))t>0 is a C0-semigroup on ∆
K′ ⊃ ∆2

K′
. Therefore, we arrive

at a Hille-Yosida-Kisynski theorem for the implicit evolution equation on
a non-closed dense isomorphic subspace of the solution space for the Hille-
Yosida-Kisynski theorem for C0-semigroups (Theorem 5.5 [22]) .

Theorem 5 (Hille-Yosida-Kisynski Generation-A). Consider the empathy
pseudo-resolvent 〈R(λ), P (λ)〉. Under the assumption that R satisfies the
Widder Growth Condition and the invertibility assumption, we can construct
an empathy 〈S(τ), E(τ)〉t>0 and a pair of generators 〈AS , B 〉 such that for
y ∈ ∆2

K′
, the implicit Cauchy problem (1.1.1)-(1.1.2), Section 1.1, is satisfied

when one sets u(τ) = S(τ)y and A to be the generator AS. Indeed, P (λ) =
(λB −A)−1.

Remark 6. Technically, the operator S(τ) of an empathy 〈S(τ), E(τ)〉τ>0

is defined on a Banach space. It suffices to define S(τ) on the dense sub-
space ∆2

K′
of the Banach space ∆

K′ since there is a unique extension by the

boundedness of S(τ).
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However, it is important to note that just as in the case of the abstract
Cauchy problem, ∆2

K′
represents the solution space for the implicit Cauchy

problem (1.1.1)-(1.1.2), and not the domain of the evolution operator. The
solution space for the abstract Cauchy problem is a non-closed dense sub-
space of the domain of the evolution operator, (Proposition 3.1.9 (h) [2] or
Theorem 6.7 [12]) . Likewise, ∆2

K′
is a non-closed dense subspace of the

domain ∆
K′ , of the evolution operator E(τ).

Remark 7. Our algebraic version of the Hille -Yosida-Kisynski theorem for
the implicit Cauchy problem improves Theorem 8.2 [28], where Y was as-
sumed to have the Radon-Nikodym property and ‖λP (λ)‖ = O(1). Theorem
8.2 [28] was based on the standard Hille-Yosida Theorem. In contrast, the
proof of theorem 5 was based on Kisynski’s equivalent algebraic formulation
of the standard Hille-Yosida Theorem. It is thus, not surprising the proof of
theorem 5 is algebraic in nature.

4.1.4 Bochner Integral Representation

Empathy theory ([28]) assumes that the R(λ)y and P (λ)y are (Bochner)
Laplace integrals. Indeed such representations force the boundedness of
R(λ) and P (λ) (Theorem 3.8.2 [19]). The extra assumption that B is
closed, ensures that this is the case for ∆2

K′
for the constructed empathy

〈S(τ), E(τ)〉 even though in [28], B need not be closed:

Proposition 4. Assume the invertibility assumption. Let y ∈ ∆2
K′

. If B

is closed, then R(λ)y =
∫∞

0 e−λtE(τ)ydt, and P (λ)y =
∫∞

0 e−λtS(τ)ydt are
Bochner Laplace integrals in Y and X respectively; λ > 0.

4.2 Star Implicit Cauchy Problem

We now lift the results of Section 4.1 into the more general setting of admis-
sible homomorphisms. In this setting, the implicit Cauchy problem takes
the more general form

d

dτ
〈f, b′ ∗ x′(τ)〉 = 〈f, a′ ∗ x′(τ)〉, lim

τ→0+
〈f, b′ ∗ x′(τ)〉 = 〈f, θ′

0
〉, (4.2.1)

where 〈θ′
0
, f 〉 = f(0) is the unit of (AB , ∗); 0 is the identity of the group

G. We call (4.2.1) the star-implicit Cauchy equation. It is important to
note that for the special case of G being the trivial group, a′ = Aθ′

0
and

b′ = Bθ′
0
, the star-implicit Cauchy equation (4.2.1) becomes the implicit

Cauchy equation of (1.1.1), Section 1.1, with initial condition (1.1.2). In
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this section, we take Φ := BUC(G,Z) and the topological group G to be
locally compact.

Suppose ΦX ,ΦY are two closed translation invariant subspaces of Φ;
ΦX ,ΦY are then Banach spaces. Heuristically, ΦX ,ΦY play the roles of the
Banach spaces X,Y of Section 4.1, respectively. We say that the half-ray
U -domained pair of functions 〈r′, p′ 〉 is a star empathy pseudo-resolvent pair
on 〈ΦY ,ΦX 〉 if

r′(λ)− r′(µ) = (λ− µ)r′(λ) ∗ r′(µ); (4.2.2)

p′(λ)− p′(µ) = (λ− µ)p′(λ) ∗ r′(µ), (4.2.3)

for λ, µ ∈ U ; r′(λ), p′(λ) : ΦY → Z are admissible homomorphisms with
dualisms R′(λ) : ΦY → ΦY , P′(λ) : ΦY → ΦX . Likewise, the pair 〈X′,Y′ 〉
is a star-empathy if 〈X′,Y′ 〉 satisfies (i) the star-empathy relation y′(τ+σ) =
y′(τ) ∗x′(σ) and (ii) the star-semigroup relation x′(τ +σ) = x′(τ) ∗x′(σ) for
σ, τ > 0.

The problem at hand is, given a star empathy pseudo-resolvent 〈r′, p′ 〉,
construct a ‘generator’ of a star-empathy 〈X′,Y′ 〉 in the form of a homo-
morphism pair 〈a′, b′ 〉 related to the star implicit Cauchy equation (4.2.1),
where p′(λ) = (λb′ − a′)−1. We call this the star generation problem (for
implicit evolution equation).

4.2.1 A First analysis of Star Empathy

The star-empathy X′,Y′ play the roles of the empathy S := {S(τ)|τ >
0}, E := {E(τ)|τ > 0} of [28], respectively. We analyze the star-empathy
along the lines similar to [28], by constructing integral representations sim-
ilar to those for classical semi-groups (Lemma 2.7, [28] and Appendix D.2,
Lemma 1). Just as in the case of empathy theory (Lemma 2.7, [28]), these
integral representations show what the generators 〈a, b〉 should look like.
There are differences forced by the generality of the framework, though. A
point that will become clear is that the analysis needs to be performed in
the space Z because measurability is not transfered to the dualisms. On the
other hand the dualisms lend themselves perfectly to pure algebra.

Suppose the families X′ and Y′ satisfy the star-empathy relation (3.2.15)
(Section 3.2.3). The hypotheses of Theorem 7, Section 3.2.3, will be contin-
ued here. In particular, that the family Y′ is Laplace-closed with respect to
itself and X′ is closed with respect to Y′.

Theorem 6. The family Y′ is a star-semigroup. In addition, the following
identities hold:

y′(τ) ∗ r′(λ) = r′(λ) ∗ y′(τ); (4.2.4)

x′(τ) ∗ r′(λ) = p′(λ) ∗ y′(τ). (4.2.5)
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Proof. The first assertion is a consequence of the identity 〈f, x′(ρ+σ+τ)〉 =
〈f, x′(ρ)∗y′(σ+τ)〉 = 〈f, x′(ρ+σ)∗y′(τ)〉 = 〈f, x′(ρ)∗ [y′(σ)∗y′(τ)]〉 derived
from(3.2.15) (Section 3.2.3). By taking the Laplace transform with respect
to ρ at λ one obtains 〈f, ŷ′(λ) ∗ [x′(σ + τ)− x′(σ) ∗ x′(τ)]〉 = 0 for all λ and
all f . From the uniqueness of the Laplace transform [2, Theorem 6.2.3] the
conclusion is evident.

To derive the identities (4.2.4) and (4.2.5) it is sufficient to observe that
y′(σ) ∗ y′(τ) = y′(τ) ∗ y′(σ) and x′(σ) ∗ y′(τ) = x′(τ) ∗ y′(σ).

As a consequence of Theorem 12, Section 3.5, applied to X′ we have

Corollary 2. The family X′ is locally uniformly bounded in norm and ex-
ponentially bounded.

4.2.2 Integral Representations

We proceed to study the Laplace transforms r′(λ), p′(λ) and in the process
use the associated dualisms R′(λ),P′(λ) without assuming d-measurability.
The dualisms, therefore, cannot be considered as Laplace transforms; they
are induced integrals. It is expedient, though, to note that in terms of du-
alisms, the identities (3.2.17)-(3.2.18), (4.2.4) -(4.2.5) for the pair 〈r′(λ), p′(λ)〉,
transcribe into the following identities for the pair 〈R′(λ),P′(λ)〉:

Theorem 7. Consider the pair of operator valued dualisms R′(λ),P′(λ).
Then,

R′(λ)−R′(µ) = (µ− λ)R′(λ)R′(µ) = (µ− λ)R′(µ)R′(λ); (4.2.6)

P′(λ)−P′(µ) = (µ− λ)P′(λ)R′(µ) = (µ− λ)P′(µ)R′(λ). (4.2.7)

and

Y ′(τ)R′(λ) = R′(λ)Y ′(τ); (4.2.8)

P′(λ)Y ′(τ) = X ′(τ)R′(λ). (4.2.9)

Proof. Recall that the map Γ is an algebra homomorphism (equation(2.1.8),
Section 2.1.1): the algebraic relations in ∗ are then transcribed as relations
in ◦.

Next we define the domains ∆
Y ′ = R′(λ)[ΦY ] and ∆

X′ = P′(λ)[ΦY ],

both being vector subspaces of Φ. From (4.2.6)-(4.2.7) it is clear that these
domains do not depend on the choice of λ. From the identities (4.2.8)-(4.2.9)
it is seen that

Y ′(τ)[∆
Y ′ ] ⊂ ∆

Y ′ and that X ′(τ)[∆
Y ′ ] ⊂ ∆

X′ .

62

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Now we are set up for the following integral representation of the action of
the homomorphisms x′(τ), y′(τ) on the subspace ∆

Y ′ :

Lemma 2. Suppose that f = R′(λ)fλ ∈ ∆
Y ′ . Then

〈f, y′(τ)〉 = exp{λτ}
[
〈f, θ′

0
〉 −

∫ τ

0
exp{−λσ}〈fλ, y′(σ)〉dσ

]
, (4.2.10)

〈f, x′(τ)〉 = exp{λτ}
[
〈fλ, p′(λ)〉 −

∫ τ

0
exp{−λσ}〈fλ, x′(σ)〉dσ

]
. (4.2.11)

Proof. To derive (4.2.10) we note that

〈f, y′(τ)〉 = 〈R′(λ)fλ, y
′(τ)〉 = 〈fλ, y′(τ) ∗ r′(λ)〉 = 〈fλ, r′(λ) ∗ y′(τ)〉,

by (4.2.4) in the final step. Then

〈f, y′(τ)〉 =

∫ ∞
0

e−λσ〈fλ, y′(σ) ∗ y′(τ)〉dσ =

∫ ∞
0

e−λσ〈fλ, y′(σ + τ)〉dσ,

since y′(τ) is a ∗-semigroup. By the change of variable σ′ := σ + τ and the
relation

∫∞
τ =

∫∞
0 −

∫ τ
0 ,

〈f, y′(τ)〉 = eλτ [〈fλ, rλ 〉 −
∫ τ

0
e−λσ〈fλ, y′(σ′)〉dσ′].

We are done on noting that 〈fλ, r′(λ)〉 = 〈R′(λ)fλ, θ
′
0
〉 = 〈f, θ′

0
〉. The

representation (4.2.11) is obtained in a likewise manner.

The ‘domain’ 〈∆
Y ′ ,∆X′ 〉 play an important role in the behaviour of

x′(τ) and y′(τ) at τ = 0. This follows from Lemma 2:

Corollary 3 (Behaviour at the Origin). For f ∈ ∆
Y ′ , limτ→0+〈f, y′(τ)〉 =

〈f, θ′
0
〉. There exists a linear map j′0 : ∆

Y ′ → Z such that limτ→0+〈f, x′(τ)〉 =

〈f, j′0 〉. If every dualism R′(λ);λ > 0 is one-to-one, then j′0 has the repre-
sentation

〈f, j′0 〉 = 〈fλ, p′(λ)〉. (4.2.12)

Proof. The first assertion follows directly from (4.2.10). The second asser-
tion is more difficult. From (4.2.11) it is seen that the limit exists and equals
〈fλ, p′(λ)〉.

Suppose f = R′(λ)fλ = R′(µ)fµ. To show that the representation
(4.2.12) is independent of λ, it suffices to show P′(λ)fλ = P′(µ)fµ: P′(λ)fλ =
P′(µ)[fλ + (µ− λ)R′(µ)fµ] by (4.2.7); fµ = fλ + (µ− λ)R′(µ)fµ by the in-
vertibility of R′(µ) and (4.2.6).
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If it is assumed that for some ξ > 0 the dualism P′(ξ) is invertible,
then there is a purely algebraic proof, based on (4.2.6) and (4.2.7), that
every P′(λ) and every R′(λ) is invertible (see [28]). Indeed, the linear map
J′ = P′(λ)[R′(λ)]

−1
: ∆

Y ′ → ∆
X′ does not depend on λ and

〈f, j′0 〉 = 〈fλ, p′(λ)〉 = 〈J′f, θ′
0
〉.

Proposition 5. The operator J′ := P′(λ)[R′(λ)]
−1

is independent of the
choice of λ. If it is assumed that for some ξ > 0 the dualism P′(ξ) is
invertible, then J′ maps ∆

Y ′ onto ∆
X′ in a one-to-one way.

Proof. The crux of the proof is that R : λ 7→ R′(λ) is a pseudo-resolvent
on Φ; that is, a HomB(Φ,Φ)-valued function defined on a scalar λ ∈ U ⊂ C
satisfying (4.2.6); Φ is a Banach space. The resolvent equation (4.2.6)
ensures that every R′(λ) has common null space (kernal) NE , and com-
mon range ∆

Y ′ . Now, R becomes the resolvent exactly when NE = {0} :

NE = {0} if and only if R′(λ) is the resolvent R(λ,A) of a closed operator
A := λ1X − 1

R′(λ) , this representation being independent of the choice of λ

(Theorem 1, Chapter VIII, p. 216 [33]).

Let f ∈ Dom(R′(λ)−1) = ∆
Y ′ ; f := R′(λ)fλ; fλ ∈ Y . Then P′(λ)R′(λ)−1f

= P′(λ)fλ = P′(µ)R′(λ)−1f + (µ− λ)P′(µ)f = P′(µ)[µ− (λ−R′(λ)−1)]f .
Now invoke the relation that µ−R′(µ)−1 = λ−R′(λ)−1 ([33] p. 216).

Remark 8. The independence of representation of J′ in Proposition 5, does
not require the invertibility the dualism P′(ξ).

The inverse of J′ has the representation J′−1 = R′(λ)[P′(λ)]
−1

=: B′,
and B′ is independent of the choice of λ 6. B′ is a ‘backward’ one-to-one map
from ∆

X′ onto ∆
Y ′ . Now applying (4.2.11) to f := B′g; g = P′(λ)gλ ∈ ∆

X′ ,
the result is

〈B′g, x′(τ)〉 = exp{λτ}
[
〈g, θ′

0
〉 −

∫ τ

0
exp{−λσ}〈gλ, x′(σ)〉dσ

]
. (4.2.13)

The above integral representation (4.2.13) allows us to differentiate 〈B′g, x′(τ)〉
as the product f(τ)g(τ), where g(τ) =

[
〈g, θ′

0
〉 −

∫ τ
0 exp{−λσ}〈gλ, x′(σ)〉dσ

]
6Originally ([26]), the map B′ conceptualized a backward map from effect X to cause

space Y in the sense of BS(τ)y = E(τ)y. However, this holds only for certain y ∈ Y.
empathy theory got around this problem by adopting a resolvent based approach: let the
resolvents P,R be the analogue to S, E respectively; then we require analogously that
B′ transform P to R. In empathy theory, we achieve this by defining B := RλP

−1
λ

(independent of the choice of λ) by the invertibility assumption. This then does indeed
hold for all y ∈ Y .
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and f(τ) = eλτ . We differentiate by the product rule to get for almost all
τ > 0,

d

dτ
〈B′g, x′(τ)〉 = λ〈B′g, x′(τ)〉 − 〈[P′(λ)]−1g, x′(τ)〉. (4.2.14)

Inspired by (4.2.14), we define another ‘backward’ linear mapping A′ :
∆
X′ → Φ as A′ := λB′ − [P′(λ)]

−1
. Once again it can be proved (alge-

braically) from (4.2.7) that A′ does not depend on the choice of λ.

The following identities on the action of the operators B′X ′(τ), B′Y ′(τ)
on the subspace ∆

Y ′ will be of importance to us:

Lemma 3. Let f = R′(λ)f
λ
∈ ∆

Y ′ . Then

B′X ′(τ)f = R′(λ)Y ′(τ)f
λ

= Y ′(τ)f ; (4.2.15)

A′X ′(τ)f = Y ′(τ)[λf − f
λ
]. (4.2.16)

Proof. These identities are derived from Theorem 7, (4.2.8) and (4.2.9).

Remark 9. It is appropriate to remark that (4.2.15) is in some accordance
with the theory of B-evolutions [26].

The operators A′ and B′ induce admissible homomorphisms a′ and b′:

〈f, a′ 〉 := 〈A′f, θ′
0
〉; (4.2.17)

〈f, b′ 〉 := 〈B′f, θ′
0
〉. (4.2.18)

This follows from P′(λ)−1 : ∆
X′ → Φ being translatable; P′(λ) is a one-

to-one dualism (Theorem 2, Section 2.1.1). Therefore, we can translate the
operator identities (4.2.15) - (4.2.16) to (admissible) homomorphisms:

〈f, b′ ∗ x′(τ)〉 = 〈f
λ
, r′(λ) ∗ y′(τ)〉; (4.2.19)

〈f, a′ ∗ x′(τ)〉 = 〈λf − f
λ
, y′(τ)〉. (4.2.20)

We are now set up for integral representations of the action of the homo-
morphisms b′ ∗ x′(τ) on the subspace ∆

Y ′ .

Theorem 8. For f = R′(λ)f
λ
∈ ∆

Y ′ ,

〈f, b′ ∗ x′(τ)〉 = exp{λτ}
[
〈f, θ′

0
〉 −

∫ τ

0
exp{−λσ}〈f

λ
, y′(σ)〉dσ

]
.

Proof. The equation (4.2.15) can be re-phrased in the form 〈f, b′ ∗ x′(τ)〉 =∫∞
0 exp{−λρ}〈f

λ
, y′(ρ) ∗ y′(τ)〉dρ by virtue of (4.2.19). Use of Theorem 6

and an obvious change of variable as in the proof of Appendix D.2, Lemma1,
leads to the required result.
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Our final result is

Theorem 9. Let 〈x′(τ), y′(τ)〉 be a star empathy. If P′(ξ) is invertible for
some ξ > 0 and f ∈ ∆

Y ′ then the implicit Cauchy problem

d

dτ
〈f, b′ ∗ x′(τ)〉 = 〈f, a′ ∗ x′(τ)〉 for almost all τ ;

lim
τ→0+

〈f, b′ ∗ x′(τ)〉 = 〈f, θ′
0
〉,

is satisfied by 〈a′, b′ 〉 defined by (4.2.17)-(4.2.18).

Proof. From Theorem 8, (4.2.19) and (4.2.20), d
dτ 〈f, b

′ ∗ x′(τ)〉 = λ〈f, b′ ∗
x′(τ)〉 − 〈f

λ
, y′(τ)〉 = 〈λf − f

λ
, y′(τ)〉 = 〈f, a′ ∗ x′(τ)〉. The limit part is

evident from Corollary 3.

The pair 〈a′, b′ 〉 will be called the generator of the empathy 〈X′,Y′ 〉.

Remark 10. The case of star-semigroups is also covered in the analysis
above. Evidently this happens when Y′ = X′ and then, of course, p′ = r′.
The homomorphism b′ in this case reduces to θ′

0
, the unit in the algebra of

homomorphisms.

4.3 Star Generation problem

We do not directly solve the star generation problem from the given ho-
momorphism valued star empathy pseudo-resolvents 〈r′, p′ 〉 on 〈ΦY ,ΦX 〉.
Instead, we first solve the generation problem with the operator valued du-
alisms 〈R′,P′ 〉;U = (0,∞); R′(λ) = Γ(r′(λ)),P′(λ) = Γ(p′(λ)), without
assuming d-measurability; R′(λ),P′(λ) are induced integrals only.

Our first important observation is:

Proposition 6. R′ is a pseudo-resolvent on ΦY ; U = (0,∞).

Proof. The map Γ translates (4.2.2) into the resolvent equation (4.2.6).

4.3.1 T -Regularity Space

We now lift the results of Section 4.1.1 for the pseudoresolvent R on a
Banach space Y into the (operator) dualism R′ on a function test space
Φ = BUC(G,Z). Therefore, we will borrow the notations of Section 4.1.1.
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Consider the pseudo-resolvent R′, where U is the half-ray (0,∞). From
R′, we analogously construct (i) a Kisynski regularity space ∆K ⊂ ΦY de-
fined as

∆K := {f ∈ ΦY | lim
λ→∞

‖λR′(λ)f − f‖ = 0}, (4.3.1)

and (ii) an operator A′Y ′ defined by its graph

{(f, f ′) ∈ ΦY × ΦY | lim
λ→∞

‖λ(λR′(λ)f − f)− f ′)‖ = 0}. (4.3.2)

Proposition 2, Section 4.1.1, carries over word for word for the pair 〈∆K , A
′
Y ′ 〉.

We extend Proposition 2, Section 4.1.1, by showing that ∆K is translation
invariant.

Proposition 7. Let ‖R′(λ)‖ = O(1). Then
(i) The Kisynski regularity space ∆K is a translation invariant closed sub-
space and as such it is a Banach space closed under translations.
(ii) The generator A′Y ′ taken as an operator is closed, where the inclusion
Dom(A′Y ′) ⊂ ∆K is dense.
(iii) For each λ ∈ U , (a) R′(λ)[∆K ] ⊂ ∆K and (b) R′(λ)|∆

K
is the resolvent

R′(λ,A′Y ′) = (λ−A′Y ′)−1. That is, R′(λ)|∆
K

is a 1-1 continuous extension

of R′(λ)|∆
Y ′

.

(iv) R′ : λ→ R′(λ)|∆
K

is locally analytical.

Proof. For (i), it suffices to show that ∆
Y ′ = R′(λ)[ΦY ] is translation in-

variant 7. This is immediate from the translation invariance of ΦY when
one notes that R′(λ) is a dualism and hence trivially commutes with the the
shift map.

(ii)-(iv) follows similarly as in Proposition 2, Section 4.1.1.

Our approach is to solve the generation problem initially with the (op-
erator) dualisms and then backtrack these dualisms as homomorphisms.
Therefore, we show that the dualism R′(λ) is translatable.

Corollary 4. Let ‖R′(λ)‖ = O(1). Then, R′(λ)|∆
K

is translatable for each

λ ∈ U .

Proof. The boundedness of R′(λ)|∆
K

and the shift operators, transfers the

translatability of R′(λ)|∆
Y ′

from the translation invariant subspace ∆
Y ′ to

its closure ∆K (also translation invariant) by writing each f ∈ ∆K as a limit
of a sequence in ∆

Y ′ .

7By the dense inclusion, for any f ∈ ∆
K′ , there exists a sequence (fn) ⊂ ∆

Y ′ which

converges to f . Then Rsfn → Rsf by the boundedness of the shift map Rs. The Cauchy
sequence (Rsfn) is a sequence in ∆

Y ′ by the translation invariance of ∆
Y ′ . Thus, Rsf ∈

∆
K′ by the dense inclusion.
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Under the Widder Growth Condition supλ>0;k∈N{‖[λR′(λ)]k‖} < ∞,
Section 4.1.1 and Theorem 2 - 3 carries over word for word for the dualism
R′(λ).

Theorem 10 (Reconstructed Kisynski Regularity Space). Let R′(λ);λ > 0,
satisfy the Widder Growth Condition. Then, there exists a unique (bounded)
Banach algebra representation T : L1(0,∞)→ L(ΦY ) such that (i) T (e−λ) =
R′(λ) and (ii) T algebraically reconstructs the Kisynski regularity space ∆K

as ∆
K′

∆K = ∆Y =
⋃

φ∈L1(0,∞)

T (φ)[ΦY ] =: ∆
K′ . (4.3.3)

With the algebraic ∆
K′ , as opposed to the equivalent ∆K , we construct

a strongly continuous semigroup Y ′(τ) : ∆
K′ → ∆

K′ by right shift maps,

Rτ , on L1(0,∞) alone; for every τ ≥ 0 and φ ∈ L1(0,∞),

Y ′(τ)[T (φ)] = [T (Rτφ)], (4.3.4)

where the right translate of φ by τ is the element Rτφ ∈ L1(0,∞); Rτφ(ξ) =
φ(ξ − τ) if ξ ∈ (τ,∞) and Rτφ(ξ) = 0 if ξ ∈ (0, τ ]. We shall call ∆

K′ the
T-Kisynski regularity space since T uniquely reconstructs the space ∆K .

Theorem 11 (C0-semigroup on T-Kisynski Regularity space ). The con-
struction (4.3.4) uniquely defines a C0-semigroup Y ′ = (Y ′(τ) : ∆

K′ →
∆
K′ )τ≥0 on the T-Kisynski regularity space ∆

K′ . That is, for f = T (φ)f ′ ∈
∆
K′ ,

Y ′(τ)f = Y ′(τ)[T (φ)f ′],

is independent of representation of f . Y ′(0) is the identity operator on ∆
K′

and not the whole space Y .

From this point onward we shall always assume the Widder Growth
Condition for any pseudo-resolvent R′.

4.3.2 T 2-Regularity Space

We now lift the results of Section 4.1.2, for the generalized resolvent P on
a Banach space Y into the (operator) dualism P′ on a function test space
Φ = BUC(G,Z). Therefore, we will borrow the notations of Section 4.1.2.

Consider the subspace, ∆2
K′ , of the T -regularity space:

∆2
K′ := R′(λ)[∆

K′ ]. (4.3.5)

We extend Proposition 3, Section 4.1.2 by showing that ∆2
K′ is translation

invariant
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Proposition 8. The T 2−Kisynski regularity space, ∆2
K′ := R′(λ)[∆

K′ ] is

(i) an isomorphic dense subspace of ∆
K′ , (ii) independent of representation

λ ∈ U and (iii) is translation invariant. Thus, the inclusion

∆2
K′ ⊂ ∆

K′ ,

is a dense inclusion.

Proof. (i)-(ii) is proved as in Proposition 3, Section 4.1.2. For (iii), the
translation invariance of ∆2

K′ := R′(λ)[∆
K′ ] follows from the translation

invariance of ∆
K′ by the commutativity of the shift operators Rs and the

dualisms R′(λ).

We may now define a translatable operator P′(λ)[R′(λ)|∆
K

]
−1

on ∆2
K

.

We shall denote this operator as J′(λ)|∆2
K

. Formally,

Lemma 4. The translatable operator J′(λ)|∆2
K

: ∆2
K
→ ∆

X′ is independent

of representation λ ∈ U ; ∆
X′ := P′(λ)[ΦY ′ ]. We thus, denote J′(λ)|∆2

K
as

J′|∆2
K

.

Proof. The independence of representation of J′(λ)|∆2
K

follows word for word

from the proof of Proposition 5, Section 4.2.2. The translatability follows
from composition preserving dualisms.

Then as in Lemma 1, Section 4.1.2, ∆2
K′ is an invariant subspace of each

Y ′(τ), τ ≥ 0 and T (φ), φ ∈ L1(0,∞):

Lemma 5. For each τ ≥ 0, Y ′(τ)[∆2
K′ ] ⊂ ∆2

K′. Indeed, for every φ ∈
L1(0,∞), T (φ)[∆2

K′ ] ⊂ ∆2
K′ :

With the T 2−regularity space, we construct an empathy (dualism)
〈X ′(τ), Y ′(τ)〉τ>0 from the pseudo-resolvent pair 〈R′,P′ 〉, just as in equa-
tion(4.1.8), Section 4.1.2. The construction of the second transition map
(X ′(τ) : ∆2

K′
→ ∆

Y ′ )τ≥0 on the T 2 regularity space is also inspired by the

critical identity (5), Lemma 2.3 [28]. For every τ ≥ 0 and φ ∈ L1(0,∞)

X ′(τ)[R′(λ)T (φ)] := P′(λ)[Y ′(τ)T (φ)], (4.3.6)

where ∆
X′ = P′(λ)[ΦY ].

Theorem 12 (Empathy on T 2-Kisynski Regularity space ). The construc-
tion (4.3.6) uniquely defines a transition map X ′ := (X ′(τ) : ∆2

K′
→
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∆
X′ )τ>0, on the T 2-Kisynski regularity space ∆2

K′
. That is, for f =

R′(λ)T (φ)f ′ ∈ ∆2
K′

,

X ′(τ)f = X ′(τ)[R′(λ)T (φ)f ′] = P′(λ)[Y ′(τ)T (φ)f ′],

is independent of representation of f . Indeed, for every f = R′(λ)T (φ)f ′ ∈
∆2
K′

,

X ′(τ + σ)f = X ′(τ)Y ′(σ)f. (4.3.7)

On the T 2-regularity space ∆2
K′

,

X ′(0) = J′, that is, lim
τ→0+

X ′(τ)f = J′f, (4.3.8)

f ∈ ∆2
K′

.

Remark 11. The constructed empathy 〈X ′(τ), Y ′(τ)〉 can be well defined
at τ = 0 on ∆

K′ = ∆
Y ′ by (4.3.6) since Y ′(0) is well defined on ∆

K′ .

However, since the empathy relation X ′(τ + σ) = X ′(τ)Y ′(σ) only makes
sense for σ, τ > 0, we do not define 〈X ′(τ), Y ′(τ)〉 at τ = 0. Therefore,
the notation X ′(0) = J′ on ∆2

K′
means limτ→0+X

′(τ)f = J′f for f ∈ ∆2
K′

.

Note however a direct substitution τ = 0 into (4.3.6) also yields X ′(0) = J′.

Corollary 1, Section 4.1.2, carries over word for word for the dualism
P′(λ):

Corollary 5. The homomorphism T ′ = J′T on the convolution algebra
L1(0,∞) represents P′(λ) and generates X ′(τ) on the domain ∆2

K′ as fol-
lows:

T ′(e−λ) = P′(λ);T ′(e−λ ∗Rτφ) = X ′(τ)[R′(λ)T (φ)], (4.3.9)

where φ ∈ L1(0,∞). T ′ is not an algebra representation and need not be
closed.

Remark 12. By (4.3.9), one can identify 〈P′(λ), X ′(τ)〉 with T ′. Similarly,
one can identify 〈R′(λ), Y ′(τ)〉 with T . Therefore, a pair 〈T, T ′ 〉 is used to
generate an empathy 〈Y ′(τ), X ′(τ)〉. One can identify the domains of the
empathy 〈∆

K′ ,∆
2
K′
〉 with the pair 〈T, T 2 〉.

4.3.3 Invertibility assumption

The invertibility assumption takes the form for some ξ > 0, the dualism
P′(ξ) is invertible. Then as in [28], there is a purely algebraic proof, based
on (4.2.6) and (4.2.7), that every P′(λ) and every R′(λ) is invertible. This
assumption with the relation ∆2

K′
⊂ ∆

Y ′ ensures that the critical identity

(4.2.15) for f ∈ ∆2
K′

. Indeed,
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Proposition 9. Let R′ satisfy the Widder Growth Condition; U := (0,∞).
If we assume the invertibility assumption, then J′|∆

Y ′
of Proposition 5, Sec-

tion 4.2.2, is a 1-1 closed extension of J′|∆2
K′

.

Proof. This is immediate from the relation ∆2
K′
⊂ ∆

Y ′ .

By Lemma 3, equation (4.2.15), Section 4.2.2, it is then immediate from
the relation ∆2

K′
⊂ ∆

Y ′ that

B′X ′(τ)f = Y ′(τ)f for all f ∈ ∆2
K′
. (4.3.10)

Indeed, the pair 〈Y ′, X ′ 〉 satisfies the generation problem for the implicit
Cauchy problem in the operator algebra HomB(Φ,Φ): set

u : τ 7→ u(τ) = X ′(τ)f ; f ∈ ∆2
K′
. (4.3.11)

Then apply B′ to (4.3.11) and then invoke (4.3.10):

v : τ 7→ B′u(τ) = Y ′(τ)f for each f ∈ ∆2
K′
. (4.3.12)

Hence

d

dτ
v(τ)f = A′Y ′Y

′(τ)f = A′Y ′B
′X ′(τ)f ; (4.3.13)

= A′SX
′(τ)f, (4.3.14)

where A′S := A′Y ′B
′, for every τ > 0. Note that (4.3.14) is true for all

τ > 0; this is an improvement of Theorem 9, Section 4.2.2 which is only
true for almost all τ > 0. Furthermore, P′(λ) = (λB′ − A′S)−1 since B′ =
R′(λ)P′−1(λ) and A′S = λB′ − R′−1(λ)B′ by A′Y ′ = λ − R′−1(λ). Thus,
〈A′S , B′ 〉 is the generator of the empathy 〈Y ′, X ′ 〉.

4.3.4 Backtrack

We backtrack the operator valued pair 〈Y ′, X ′ 〉 into the (admissible) homo-
morphism valued pair 〈Y′,X′ 〉 by the θ′0 map: y′(τ) := θ′0Y

′(τ), x′(τ) :=
θ′0X

′(τ). Therefore, we need to show that the operators Y ′(τ) and X ′(τ)
are translatable. We need the following lemma:

Lemma 6. Consider the map T : L1(0,∞)→ L(ΦY ) of Section 4.3.1, The-
orem 10. If every operator T (e−λ) is translatable, then T (φ) is translatable
for every φ ∈ L1(0,∞)
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Proof. First consider ψ ∈ S := span{e−λ|λ > 0}. Then the linearity of the
shift map Rs ensures that T (ψ) is translatable. Now consider an arbitrary
φ ∈ L1(0,∞). Then there is a sequence (ψn)n≥0 in S that converges in L1

to φ (S is a total set of L1(0,∞)). Then for each fixed f ∈ Φ,

RsT (ψn)f → RsT (φ)f

in the norm of ΦY since T (ψn) → T (φ) in operator norm of L(ΦY ) (T
is bounded) and Rs : ΦY → ΦY is bounded. Noting that T (ψn)Rsf →
T (φ)Rsf completes the proof.

Proposition 10. Let R′ satisfy the Widder Growth Condition; U := (0,∞)
and (Y ′(τ))τ≥0 be the associated C0-semi-group defined on the Banach space
∆
K′ of Theorem 11, Section 4.3.1. Let (X ′(τ) : ∆2

K′
→ ∆

X′ )τ≥0, be the

transition map defined on the T 2-Kisynski regularity space ∆2
K′

by equation

(4.3.6), Theorem 12, Section 4.3.1. Then each Y ′(τ) : ∆
K′ → ∆

K′ and

X ′(τ) : ∆2
K′
→ ∆

X′ is translatable.

Proof. Y ′(τ) is translatable on ∆
K′

8 follows directly from Lemma 6 (T (r(λ)) =

R′(λ) is a dualism and so is translatable). From equation (4.3.6), Theorem
12, Section 4.3.1, the transition map X ′(τ) is also translatable on ∆2

K′
since

composition of translatable mappings are translatable (Theorem 2, Section
2.1.1).

Likewise, we backtrack the translatable operator valued pair of genera-
tors 〈A′S , B′ 〉 into the pair 〈a′s, b′ 〉 by the θ′0 map: a′s := θ′0A

′
S , b := θ′0B

′ are
admissible (not necessarily bounded) homomorphisms a′s := θ′0A

′
S , b
′ := θ′0B

′

both defined on ∆X′ . By the invertibility assumption, P′(λ) and R′(λ)
are one-to-one dualisms on the translation invariant subspace ΦY ′ . There-
fore, B′ := R′(λ)[P′(λ)]−1 is translatable (Theorem 2, Section 2.1.1). Now
A′Y ′ = λ−R′(λ)−1. Thus, A′Y ′ and consequently A′S := A′Y ′B

′ are translat-
able by Theorem 2, Section 2.1.1.

Indeed, the relations (4.3.11) - (4.3.14) for the operator valued pair
〈Y ′, X ′ 〉 carry over to the (admissible) homomorphism valued pair 〈Y′,X′ 〉:

Lemma 7. Let f ∈ ∆2
K′

. Then the pair 〈X′,Y′ 〉 is a star empathy and

(i) 〈f, b′ ∗ x′(τ)〉 = 〈f, y′(τ)〉
(ii) d

dτ 〈f, b
′ ∗ x′(τ)〉 = 〈f, a′S ∗ x′(τ)〉 for all τ > 0

Proof. By Theorem 12, (4.3.7),

〈f, x′(τ) ∗ y′(σ)〉 = 〈X ′(τ)Y ′(σ)f, θ′0 〉 = 〈X ′(τ + σ)f, θ′0 〉 = 〈f, x′(τ + σ)〉.
8∆

K′ is translation invariant.
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For (i), by (4.3.10),

〈f, b′ ∗ x′(τ)〉 = 〈B′X ′(τ)f, θ′0 〉 = 〈Y ′(τ)f, θ′0 〉 = 〈f, y′(τ)〉.

For (ii), first note that the time derivative d
dτX

′(τ)f commutes with the
bounded operator θ′0 since the definition of the time derivative involves only
linear operations and the limit operation. Therefore, by (4.3.14)

d

dτ
〈f, b′ ∗ x′(τ)〉 =

d

dτ
θ′0B

′X ′(τ)f = θ′0
d

dτ
B′X ′(τ)f ;

= θ′0A
′
SX
′(τ)f = 〈f, a′S ∗ x′(τ)〉.

We now address the initial condition of the implicit Cauchy problem.
From (4.3.10), for each f ∈ ∆2

K′
, limτ→0+ B′X ′(τ)f = f since (Y ′(τ))τ>0 is

a C0-semigroup on ∆
K′ ⊃ ∆2

K′
. Then, by the boundedness of θ′0,

lim
τ→0+

〈f, b′ ∗ x′(τ)〉 = 〈f, θ′
0
〉,

for each f ∈ ∆2
K′

. Therefore, we solve the generation problem for the

star implicit evolution equation on a non-closed dense subspace of the reg-
ularity space for the Hille-Yosida-Kisynski theorem (Theorem 5.5 [22]) for
C0-semigroups.

Theorem 13 (Hille-Yosida-Kisynski Generation-B). Consider the star pseudo-
resolvent pair 〈r′, p′ 〉. Let 〈R′,P′ 〉 denote the operator valued dualisms. Un-
der the assumption that R′ satisfies the Widder Growth Condition and the
invertibility assumption, we can construct an empathy 〈X′ = (x′(τ)),Y′ =
(y′(τ))〉τ≥0 and a pair of generators 〈a′, b′ 〉 such that for f ∈ ∆2

K′
, the star

implicit Cauchy problem (4.2.1) is satisfied when one sets the generators
b′ := θ′0B

′ and a′ = a′s := θ′0A
′
S. Indeed, p′(λ) = (λb′ − a′)−1.

Proof. From P′(λ) = (λB′ − A′)−1, that is, P′(λ)(λB′ − A′) = (λB′ −
A′)P′(λ) = 1, it is immediate that p′(λ) = (λb′− a′)−1 when one notes that
θ′0(X ′Y ′)(f) = 〈f, x′ ∗ y′ 〉.

4.3.5 Bochner Integral Representation

Empathy theory ([28]) assumes that r′(λ)f, p′(λ)f are (Bochner) Laplace
integrals. Indeed, such representation force the boundedness of r′(λ) and
p′(λ) (Theorem 3.8.2 [19]). The extra assumption that the dualism B′ =
R′(λ)P′−1(λ) is closed, ensures that this is the case for ∆2

K′
for the con-

structed empathy 〈x′(τ), y′(τ)〉 even though in [28], B′ need not be closed:
we first show that the dualisms R′(λ),P′(λ) are d-integrable:
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Lemma 8. Assume the invertibility assumption and that the dualism B′ is
closed. Let f ∈ ∆2

K′
. Then the dualisms

R′(λ)f =

∫ ∞
0

e−λτY ′(τ)fdτ ; (4.3.15)

P′(λ)f =

∫ ∞
0

e−λτX ′(τ)fdτ , (4.3.16)

are Bochner Laplace integrals in Φ; λ > 0.

Proof. The representation (4.3.15) follows from ∆2
K′
⊂ ∆

K′ and the assump-

tion that R′ satisfies the Widder Growth Condition; U := (0,∞) (Theorem
5.5 [22]). From (4.3.10) and the commutativity of the Bochner integral with
the closed operator B′, we have: R′(λ)f = B′

∫∞
0 e−λτX ′(τ)fdτ . We are

done on noting that J′λ = (B′)−1.

The boundedness of θ′
0

immediately ensures that representations of r′(λ)f

and p′(λ)f as Bochner Laplace integrals.

Corollary 6. Assume that R′ satisfy the Widder Growth Condition and the
invertibility assumption. Let f ∈ ∆2

K′
. If the dualism B′ is closed, then,

r′(λ)f =

∫ ∞
0

e−λτy′(τ)fdτ ; p′(λ)f =

∫ ∞
0

e−λτx′(τ)fdτ, (4.3.17)

are Bochner Laplace integrals in Z; λ > 0.

Remark 13. Under the additional assumptions of Lemma 8, we have a
quick proof of Lemma 2, equations (4.2.10)-(4.2.11), Section 4.2.2. The
Laplace representations (4.3.15)- (4.3.16) for X ′(τ)f and Y ′(τ)f of Lemma
8, ensures that the integral representations of Lemma 2.7, [28], carry over
word for word to X ′(τ)f and Y ′(τ)f since the dualisms X ′(τ) and Y ′(τ)
are operator valued. Then we are done on applying the bounded operator θ′

0
.

Indeed, noting that ∆2
K′
⊂ ∆

Y ′ , Theorem 8, Section 4.2.2 carries over word

for word.

Therefore, under this stronger condition of d-integrability, we do not ob-
tain integral representations of the homomorphism actions for 〈f, x′(τ)〉 and
〈f, y′(τ)〉 directly, as we did in Section 4.2.2. Instead, we first obtain integral
representations of the operator valued actions for the dualisms X ′(τ)f and
Y ′(τ)f and then ‘backtrack’ these operator valued representations into ho-
momorphism valued representations by the relations 〈f, x′(τ)〉 = 〈X ′(τ)f, θ′

0
〉

and 〈f, y′(τ)〉 = 〈Y ′(τ)f, θ′
0
〉. This approach is reminiscent of the philosophy

of the classical Laplace transform approach to solving differential equations
which converts the original calculus problem into a ‘dual’ algebra world: the
dualisms that live here are algebraic induced Laplace transforms. Thus, the
map Γ maps analytic homomorphisms into algebraic dualisms.
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Chapter 5

Feller Semigroups and
Processes

So far in applications, admissible homomorphisms were of an elementary
nature: canonical homomorphisms of the form Aθ′0 where A was a bounded
operator; if G is the trivial group, admissible homomorphisms are classical
operators. In this chapter, we show Feller semigroups and processes are
admissible homomorphisms and the Feller convolution is the product ∗ of
(AΦ, ∗) by another judicious choice of test space Φ.

5.1 Scalar Test Spaces

A real valued random variable Y uniquely induces a finite regular Borel
measure µY (called the distribution or probability law of Y) or a unique dis-
tribution function, FY, of µY. The Riesz Representation Theorem identifies
µY isometrically with a bounded admissible homomorphism, y′µY , on the
scalar test space, ΦS := C0(G,Z);Z := R 1 .

〈f, y′µY 〉 =

∫
R
fdµY =: EµYf. (5.1.1)

The value of y′µY at f is nothing but the “expectation” of f(Y) in terms
of µY [31, Theorem 5.6 p. 291]. The integral in (5.1.1) is defined as in
[11, IV.8.10]. Since µY is a probability measure, y′µY is bounded. In fact
‖y′µY‖ = 1. Thus y′µY ∈ AB . We shall always take the topological group G
as the locally compact abelian group (R,+) in this chapter.

Remark 1. Two finite Borel measures µ and ν on R are identical if
∫
fdµ =∫

fdν for all f ∈ Φ := BC(G,Z);G,Z = R ([3], Proposition 1.2.20). Thus

1Every bounded homomorphism on ΦS is admissible ([18] Lemma 19.5).
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the test space Φ is a domain of definition for finite Borel measures. Indeed,
in probability theory, the weak convergence of measures is defined on Φ.

Remark 2. We work with the distribution µ instead of the random variable
itself Y : (Ω,F ,P)→ (R,B(R)) in order to shift focus from the complicated
sample space (Ω,F ,P) to the easier space (R,B(R)); that is, (R,B(R)) ef-
fectively becomes the new sample space. This change of sample space is fine
when we are concerned with properties like the expectations of random vari-
ables: E(Y ) =

∫
Ω Y (ω)dP(ω) =

∫
R ydµ(y);E(f(Y )) =

∫
Ω f(Y )(ω)dP(ω) =∫

R f(y)dµ(y).

William Feller’s treatment of limit theorems in probability [17, Chap.
VIII], on the other hand, leads to the larger test space C[R] of continuous
real-valued functions f on R for which the limits at ±∞ exist. With obvious
adaptation of notation, let Φ = C[R;Z]. Since members of Φ are bounded
and uniformly continuous, it falls well within the framework of a Banach
test space Φ = BUC(R, Z) of Chapter 3. Indeed, C[R] is isomorphic to
C[0, 1] and for any linear functional x′ on C[R] there exists a unique Borel
measure µ on R and two unique numbers a and b such that 〈f, x′ 〉 =

∫
fdµ+

af(+∞) + bf(−∞) ([3], Corollary 5.2.10).

Remark 3. The so-called ‘weak convergence’ of probability theory describes
a mode of convergence of the distributions of the random variables, that
is, measures on R, and not the random variables themselves; it is not the
values of the random variables converging but the measures, taken as lin-
ear functionals, in the weak*-topology, on the function space, BC(R), of
real-valued, bounded and continuous functions on R (Definition18.1, [24]).
We shall nevertheless, refer to this type of convergence as weak convergence
from this point onwards. The Central Limit Theorem is an example of weak
convergence.

Sometimes, C0(R) is not the best choice of test space to study the weak
convergence of measures on R which escape to infinity. The sequence of
probability distributions µn := 1

2δ0 + 1
2δn converges to an improper distribu-

tion 1
2δ0 (mass is a half) in C0(R). In C[R], µn converges to 1

2δ0 + 1
2δ∞

(mass is 1); 〈f, δ∞ 〉 = f(+∞).

Neither is the test space BC(R) for reasons explained in Section 3.1.

5.2 The Feller convolution

A time homogenous Markov transition probability function Q plays a dual
role as a Borel measurable function and a probability measure ([17], VI. 11,
Definition 1). To capture this dual role, Feller introduces the Feller star or
convolution A ? B (Definition 1, [17], p. 141), to denote integration with
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respect to a measure A 2 as defined in [11, IV.8.10] or [31, Definition 4.21
p. 227]. The idea is based on the well-known result that the distribution
function of the sum of two independent random variables with distribution
functions F and G is given by the convolution function F ? G (notation of
[17, V, equation (1.10) p. 131])

F ? G(x) =

∫ ∞
−∞

G(x− y)F{dy}, (5.2.1)

and the observation that for functions in the space C[R], the convolution
function F ? f belongs to C[R]

x→ (F ? f)(x) =

∫ ∞
−∞

f(x− y)F{dy},= (Ff)(x), (5.2.2)

and therefore, the distribution function F defines a bounded linear operator
F : f ∈ C[R] : F ? f ∈ C[R] in C[R].

Indeed, the Feller convolution captures the operator representation of a
space-homogenous time homogenous Markov transition probability function
Q:

Definition 1. ([6] Definition 2.9.7) The unique operator Tτ : BC(R) →
BC(R) associated with the Markov transition function Q is called the oper-
ator representation of Qτ :

(Tτf)(x) =

∫
R
f(y)Qτ (x|R) = EQτ (x|R)[f(y)].

We say Q has a space-homogenous density if Qτ (x|Γ) =
∫

Γ kτ (x, y)dy =∫
Γ φτ (x− y)dy. Brownian motion is a typical example.

Proposition 1. Consider a time homogenous Markov transition probability
function Qτ (x|Γ) := P{Y (σ + τ) ∈ Γ|Y (σ) = x} which is independent of σ
([17] X.1 (1.1)). Then if Q has a space-homogenous density, the operator
representation Tτ is a Feller convolution:

(Tτf)(x) = (Qτ (x|R) ? f)(x)

5.2.1 Capturing the Feller Convolution in the framework

We now show that the Feller convolution ? is a special case of the product
∗ of admissible homomorphisms. In the light of Proposition 1, we formally
define the Feller operator representation of the random variable Y:

2The second factor B is free to be a function or a measure and in that case A ? B
is then accordingly a function or measure, respectively. For instance, µ ? f denotes the
function (µ ? f)(x) :=

∫
R f(x − y)dµ(y); f is a function locally integrable near the origin

and µ the σ-finite Borel measure and µ ? ν denotes the convolution measure µ ? ν(E) :=∫
G
ν(E − y)dµ(y); ν is a measure.
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Definition 2. Let Y be a random variable defined on the probability space
(Ω,F ,P) with probability distribution µ. Then we define the (Feller) operator
representation of Y to be the dualism Y ′µ := Γ(y′µ) where,

Y ′µf : x 7→
∫
G
f(x+ y)dµ(y), (5.2.3)

where G := R and f ∈ ΦS or C[R].

Remark 4. Equation (5.2.3) coincides with the definition of Section 2.3.21
[3].

Theorem 1. Let y′F and y′G be the homomorphisms induced by the probabil-
ity distributions F and G, then y′F ∗ y′G is induced by the convolution F ? G
defined in (5.2.1). Moreover,

y′
F
∗y′
Gf = Y ′FY

′
Gf =

[F?G]′
f. (5.2.4)

Additionally, the dualism Y ′F to y′F has the form Y ′F f = Ff .

Proof. It is well known that for every Borel measurable function f integrable
over G, ∫

G
f(t)d(µ ∗ ν)(t) =

∫
G2

f(x+ y)d(µ× ν)

µ, ν are σ-finite Borel measures. Thus, the convolution measure of the mea-
sures identifiable with y′F and y′G in AB coincides with the measure identi-
fiable with their product linear functional y′F ∗ y′G ∈ AB.

Remark 5. For our purposes, we are only concerned about the weak con-
vergence of a sequence of probability distributions µn to another probability
distribution, like µ. In such cases, this implies that the corresponding se-
quence of (operator) dualisms Y ′µn := Γ(y′µn) in C[R], converges strongly to
Y ′µ since BC(R) ⊃ C[R] ([3], Lemma 5.4.18 p. 173 or [17], VIII.3 Theorem
1 p. 255 / Theorem 1a. p. 257). Since ΦS ⊂ C[R], we obviously have
strong convergence as well on this smaller test space.

Let M(Z) denote the Banach space of distributions, that is, Z-valued
regular measures of bounded variation on the σ-ring, B , of Borel sets of
G. Let Z be the Banach space R. For the smaller test space ΦS ⊂ C[R],
we have a sharper form of Theorem 1: the identification J : µY 7→ y′µY is
an isometric Banach space isomorphism between M(Z) and HomB(Φ, Z) by
the Riesz Representation. Then we rephrase Theorem 1 as follows:

Theorem 2 (Feller Star is the algebra product). Let Z := R and the test
space Φ := ΦS. Then the Feller star ? can be identified with the product
∗ of AB. That is, the identification J : µY 7→ y′µY lifts into an isometric
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algebra isomorphism between the unital Banach algebras (M(Z), ?, δ0) and
(AB, ∗, θ′0) which preserves the identities3. The products ? and ∗ will be used
interchangeably.

Remark 6. In Feller’s approach the space Z is simply the real line. As re-
marked in [17, X.6] the case of multivariate distribution functions is treated
by letting G = Rn

.

5.3 Convolution semigroups and beyond

Consider a family Y := {Y(τ)|τ ∈ T} of random variables defined on a
probability space (Ω,F ,P). We call Y a time continuous stochastic process if
the indexing set T is (0,∞) or [0,∞). Now Y has stationary increments if the
distribution µτ of the increments (Yσ+τ −Yσ) depends only on the length τ
of the interval and not on σ; Y has independent increments if the increments
(Y(τj+1) − Y(τj)) are independent whenever 0 ≤ τ1 < τ2 < ... < τn; 1 ≤
j < n; n ≥ 1. We say Y is autonomous when it has stationary independent
increments. We identify an autonomous processes Y := {Y(τ)|τ ∈ T} with
its family of distributions {µτ |τ ∈ T}.

It is well known that the one-parametric family of probability distribu-
tions {µτ |τ ∈ T} of an autonomous stochastic process satisfies the Chapman-
Kolmogorov relation ([17] VI. 4, (4.1))

µτ+σ = µτ ? µσ;σ, τ > 0. (5.3.1)

Indeed, Adam Bobrowski [3, Definition 7.6.1] introduced the more restrictive
notion of a convolution semigroup of measures (defines µτ at τ = 0) which
is a star-semigroup of bounded homomorphisms:

Definition 3 (Convolution Semigroup of Measures). A family {µτ |τ ≥ 0}
of Borel measures on R is said to be a convolution semigroup of measures
iff (a) µ0 = δ0 (b) µτ converges weakly to δ0, as τ → 0+, and (c)

µτ+σ = µτ ? µσ;σ, τ ≥ 0. (5.3.2)

It is well known ([17], VI 4, p. 177) that the only family of distributions
{µτ |τ ≥ 0} that play the role of the distributions of (Yσ+τ −Yσ) 4 of a time
continuous autonomous process Y are those that satisfy (5.3.1).

Within the confines of Section 5.2, if we let y′F (τ) be the (admissible) ho-
momorphism induced by F (·, τ), this leads to y′F (τ) being a star-semigroup

3J(δ0) = θ′0; δ0 is the Dirac point mass measure which assigns measure 1 to any set A
containing 0 and measure 0 otherwise.

4The random variable (Yσ+τ −Yσ) has an infinitely divisible distribution. Hence the
associated distribution satisfies equation (5.3.1).
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of bounded homomorphisms. If we (partially) follow the Feller text, y′F (τ)
is strongly continuous and all the results of Section 3.2.2 apply. Moreover,
the results of Section 3.2.3 concerning star-semigroups apply.

Proposition 2. Let y′(τ) be the admissible homomorphism induced by µτ of
a convolution semi-group of measures. Then, y′(τ) is a strongly continuous
∗-semigroup of bounded homomorphisms satisfying equation (3.2.14), Sec-
tion 3.2.3 and the dualisms Y ′(τ) a strongly continuous Feller convolution
semigroup [17, IX. 2, Definition 1].

Proposition 3. Every convolution semigroup {µτ |τ ≥ 0} of Definition 3,
Section 5.3, has a uniquely associated C0-semi-group on ΦS := C0(G).

Proof. Each distribution µτ or y′µτ is isometrically identified with the bounded
operator (dualism) E(τ) := Y ′µτ ∈ HomB(ΦS). Now, Definition 3(a), Section
5.3, is equivalent to y′µ0

= θ′0 which is equivalent to E(0) = 1ΦS
; Definition

3 (b), Section 5.3, implies 〈f, y′µτ 〉 → 〈f, y
′
µ0
〉 as τ → 0+ for each f ∈ ΦS

which implies E(τ)f = f as τ → 0+ for each f ∈ ΦS (Remark 5, Section
5.2); Definition 3 (c), Section 5.3, is equivalent to y′µτ+σ

= y′µτ ∗ y
′
µσ which

is equivalent to E(τ + σ) = E(τ) ◦E(σ). In short, E is a C0-semigroup.

5.3.1 Extended Chapman Kolmogorov Equation

Now, consider another time continuous stochastic process X := {X(τ)|τ >
0}. We say that X has empathetic stationary independent increments with Y
if (i) the distribution ντ of the increments (Xσ+τ −Yσ) depends only on the
length τ of the interval and not on σ, for any σ, τ and (ii) the increments
(X(τj+1) − Y(τj)) are independent of the increments (Y(τj) − Y(τj−1))
whenever 0 ≤ τ1 < τ2 < ... < τn; 1 ≤ j < n; n ≥ 1. Then, ντ satisfies the
the extended Chapman-Kolmogorov relation

ντ+σ = ντ ? µσ;σ, τ > 0. (5.3.3)

Remark 7. It is important to note that {ντ |τ > 0} is not be defined at
τ = 0, although {µτ |τ ∈ T} can be defined at τ = 0. Furthermore, Y is not
independent of X. We call 〈Y,X〉 a convolution empathy.

The notion of convolution empathy extends the notion of a convolution-
semigroup. We call the pair of distributions 〈µτ , ντ 〉τ>0 for which (5.3.1)
and (5.3.3) holds, a convolution empathy.

Proposition 4. Let x′(τ), y′(τ) be the admissible homomorphisms induced
by the distributions µτ , ντ of a convolution empathy 〈µτ , ντ 〉, respectively;
τ > 0. Then the pair 〈x′(τ), y′(τ)〉 is a star-empathy and the dualisms
〈X ′(τ), Y ′(τ)〉 satisfies the empathy relation Y ′(τ +σ) = Y ′(τ)X ′(σ);σ, τ >
0.
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Proof. From Theorem 1, it is immediate the pair 〈x′(τ), y′(τ)〉 is a star-
empathy. Then the empathy relation is immediate from Γ preserving ∗ as
◦.

Convolution semigroups are complexly intertwined. Much more so are
convolution empathies. It should also be noted that Feller’s approach amounts
to the assumption that the dualisms are continuous in τ and therefore, mea-
surable in Φ and d-measurability is implied.

5.3.2 Entwined Pseudo Poisson Process

We approach an absorbing barrier of a Markov process with the philosophy
of dynamic boundary condition where the boundary is taken a body in its
own right. The absorbing boundary is seen as a distinct collection of states
with zero intensity: this is a more realistic way to model fly trap models.
Therefore, this approach gives rise to two distinct state spaces and stochas-
tic processes which fits in perfectly with the two state theory of empathy.
Indeed, we construct a new stochastic process with state space N which is
intertwined with the classical pseudo Poisson process where the intensity
(> 0) of the states are all equal. This pair of stochastic processes gives
rise to a pair of transition probability density functions which satisfy the
extended Chapman Kolmogorov equation. We call this process an entwined
pseudo Poisson process.

The conditional version of the classical Chapman Kolmogorov equation
(5.3.1) is

Qτ+σ(x,Γ) =

∫
y∈Γ

Qτ (x,Γ)Qσ(y,Γ);σ, τ > 0. (5.3.4)

where Qτ (x,Γ) is the measure and Qσ(y,Γ) the function; Γ = R. Typical
examples of time continuous processes which satisfy (5.3.4) arise even in
processes with state space N:

Let X := {1̄, ..., n̄} denote the n̄ fly traps; Y := {1, ...,m} are the safe
spots. In a 1-D setting, X will be a singleton (an absorbing barrier).

These two distinct state spaces X,Y give rise to two distinct transitions:
the n-step transition rnij = P (Yn = j|Y0 = i) within the safe states of Y and
the n-step transition tn

ij̄
= P (Xn = j̄|Y0 = i) into the fly traps of X.

rnij =

|Y |∑
k=1

rn−1
ik pkj ; r

1
ij = pij ; (5.3.5)

tnij̄ =

|Y |∑
k=1

rn−1
ik skj ; t

1
ij̄ = sij̄ ; (5.3.6)
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where pij denotes the one step transition P (Yn+1 = j|Yn = i); sij̄ denotes
the one step transition P (Xn+1 = j̄|Yn = i). Indeed, direct computation
shows

tp+q
ij̄

=

|Y |∑
k=1

rqikt
p
kj̄

=

|Y |∑
k=1

rpikt
q
kj̄

; p, q ∈ N; (5.3.7)

Now we arrive at the continuous time version of the discrete Markov
chains (5.3.5) - (5.3.6) by conditioning on the number of transitions occurring
in time interval (0, t]:

Qτ (i,Γ = {j}) = P (Yτ = j|Y0 = i) = e−λτ
∞∑
n=0

rnij
(λτ)n

n!
; (5.3.8)

Rτ (i,Γ = {j̄}) = P (Xτ = j̄|Y0 = i) = e−λτ
∞∑
n=0

tnij̄
(λτ)n

n!
; (5.3.9)

That is, all the states in Y have the same intensity λ > 0 and all the states
in X have the same intensity of 0.

The pseudo Poisson process (5.3.8) satisfies the requirements of the
Chapman Kolmogorov equation (5.3.4) which takes the form

P (Yτ+σ = j|Y0 = i) =

|Y |∑
k=1

P (Yτ+σ = j|Yτ = k)P (Xτ = k|Y0 = i).

The measure Qσ(x,Γ) of (5.3.4) is defined on measure space (Γ = N,P(N))
as the function Qσ(y,Γ) is a countably valued N-domained function. Sim-
ilarly the entwined pseudo Poisson process (5.3.9) satisfies the (countable)
conditional version of the extended Chapman Kolmogorov equation:

Rτ+σ = Rτ ? Qσ;σ, τ > 0. (5.3.10)

The extended Chapman Kolmogorov equation (5.3.10) has the conditional
form:

Rτ+σ(x,Γ) =

∫
y∈Γ

Rτ (x,Γ)Qσ(y,Γ);σ, τ > 0. (5.3.11)

where Rτ (x,Γ) is the measure and Qσ(y,Γ) the function; Γ = R. For
Γ = N, we have the countable conditional version of the extended Chapman
Kolmogorov equation

P (Xτ+σ = j̄|Y0 = i) =

|Y |∑
k=1

P (Xτ+σ = j̄|Yτ = k)P (Yτ = k|Y0 = i).

The notion of convolution empathy extends the notion of a convolution-
semigroup. We call the pair of distributions 〈µτ = Qτ , ντ = Rτ 〉τ>0 for
which (5.3.10) and (5.3.1) holds, a convolution empathy.
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Proposition 5. Let y′(τ), x′(τ) be the admissible homomorphisms induced
by the distributions µτ , ντ of a convolution empathy 〈µτ , ντ 〉, respectively;
τ > 0. Then the pair 〈x′(τ), y′(τ)〉 is a star-empathy and the dualisms
〈X ′(τ), Y ′(τ)〉 satisfies the empathy relation X ′(τ +σ) = X ′(τ)Y ′(σ);σ, τ >
0.

Proof. From Theorem 1, it is immediate the pair 〈x′(τ), y′(τ)〉 is a star-
empathy. Then the empathy relation is immediate from Γ preserving ∗ as
◦.

5.4 Fokker Planck Equations

Having established a precise mathematical meaning of the relationship be-
tween probability distributions and operators, let us follow William Feller a
little further by considering a family {µτ |τ > 0} of distributions which satis-
fies the convolution equation (5.3.1) (compare Defintion 3). The convolution
equation (5.3.1) plays a central role in the development of limit theorems and
Markov processes. In the latter (5.3.1) expresses the Chapman-Kolmogorov
relation. If we let x′(τ) be the (admissible) homomorphism induced by µτ .
By Theorem1 x′(τ) is a star-semigroup of bounded homomorphisms and the
dualism X ′(τ) (in Feller’s words) a convolution semigroup. For a Feller con-
volution semigroup, if it assumed that the distributions µτ have variance
σ2 = cτ , it follows ([17], IX.4) that the convolution semigroup has a gener-
ator A′ whose domain includes the class C

∞
of functions whose derivatives

are also in C[R], and hence it is strongly continuous.

In the special case where µτ is the normal (Gaussian) distribution with
zero mean and variance τ , the generator can be calculated:

A′f = 1
2
d2f
dx2

for f ∈ C∞ . We may now apply the results of Section 4.2.1 for semigroups,
taking B′ as the identity. For f ∈ C

∞
, v(τ, x) = X ′(τ)f(x) satisfies the

Fokker-Planck equation
∂v
∂τ = 1

2
∂2v
∂x2 . (5.4.1)

If we translate back to the original homomorphisms the equation (5.4.1)
becomes

∂
∂τ

∫
R
f(x)µτ {dx} = 1

2

∫
R

∂2

∂x2 f(x)µτ {dx}. (5.4.2)

If (5.4.2) can be phrased is terms of probability densities, it is the proper
formulation of the diffusion equation so often used in physics against which
Feller issues a stern warning.
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5.4.1 Entwined Brownian Motion

Let X := {W (τ) : Ω → R|τ ≥ 0} ≡ {µτ := µW (τ)|τ > 0} be a Brownian
motion in one dimension; Ω is the space of right continuous functions ω :
[0,∞) → R with finitely many jumps in any finite time interval. Then it
is well known that {µτ := µW (τ)|τ ≥ 0} is a convolution semigroup. For
the test space Φ := ΦS , the induced family of homomorphisms x′ is strongly
continuous. Therefore, X ′ := {X ′(τ) := Γ(x′(τ))|τ ≥ 0} is a strongly
continuous contraction semi-group on ΦS (Theorem 2, Appendix C.3).

Remark 8. By Proposition 1, Section 5.2, the dualism Y ′τ is precisely the
standard transition operators T (τ)f : s ∈ G 7→

∫
y∈G pτ (s, y)f(y)dy associ-

ated with the transition kernels or density pτ (x, y) = 1√
2πτ

e−
∆2

2τ ; ∆ = x− y;

Y ′τf : s ∈ G 7→
∫
x∈G f(x+s)pτ (0, x)dx, where pτ (0, x) = pτ (s, x+s). Indeed,

the Brownian motion {Y ′τ |τ > 0} is a Feller process on G.

The diffusion equation associated with the Brownian motion is imme-
diate from the Hille-Yosida Theorem for contraction semi-groups. We call
〈Y,X〉 an entwined Brownian motion should 〈Y,X〉 be a convolution empa-
thy, where X is a Brownian motion in one dimension. The diffusion equation
associated with entwined Brownian motion is also immediate from the Hille
Yosida Generation theorem for the implicit evolution equation (Theorem 13,
Section 4.3.3). In the notation of Theorem 13, Section 4.3.3.

Theorem 3. Consider an entwined Brownian motion 〈Y,X〉 as a double
family of homomorphisms (or finite regular Borel measures) on ΦS. If we
assume the existence of the star pseudo-resolvent pair 〈r′, p′ 〉 and the invert-
ibility assumption, then for f ∈ ∆2

K′

d

dτ
〈f, b′ ∗ y′(τ)〉 = 〈f, a′ ∗ y′(τ)〉; lim

τ→0+
〈f, b′ ∗ y′(τ)〉 = 〈f, θ′

0
〉,

where b′ := θ′0B and a′ = a′s := θ′0AS. Indeed, p′(λ) = (λb′ − a′)−1.

Remark 9. We shall construct a new convolution of vector valued measures
to give a vector valued version of the extended Chapman-Kolmogorov relation
(5.3.3) for a suitable vector valued test space defined on the locally compact
Abelian group G = (R,+).

5.5 Vector Valued Feller construction

Another rendition of Feller’s construction would be to let Φ = C[R] and to
consider vector-valued measures (e.g. [8]). The difficulty would then be to
define convolution of measures. For the smaller test space ΦS ⊂ Φ = C[R]

84

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



our vectorization of the Feller construction proceeds in the same way we
vectorized the admissible homomorphisms of classical convolution algebra
of abstract harmonic analysis; after all, distributions are isometrically iden-
tifiable with (scalar) admissible homomorphisms on the (scalar) test space
ΦS .

5.5.1 Vectorized Feller Test Space

We set the Banach test space ΦV := C00(G,Z); C00(G,Z) denotes the space
of continuous Z-valued functions with compact support5; Z is a Banach
space. We need only define continuous admissible homomorphisms on the
dense subspace C00(G,Z) since there is a unique extension to ΦV . Then ΦV

is (i) translation invariant, (ii) Frechet and (iii) the map p ∈ G 7→ f−p ∈ ΦV

is continuous for each fixed f ∈ ΦV .

Remark 10. We shall mainly consider the strong convergence of sequences
of equibounded homomorphisms, taken as operators, on ΦV . Homomor-
phisms induced by probability measures, are special cases of equibounded ho-
momorphisms. For sequences of equibounded homomorphisms, it suffices to
establish strong convergence on the dense subspace C00(G,Z) ([3], Section
5.4.17). In the setting of probability theory, strong convergence is referred
to as weak convergence .

Proposition 6. For the vector valued, translation invariant Banach test
space ΦV , the mappings s ∈ G 7→ fs ∈ Φ; f ∈ Φ are uniformly continuous.
For the special case of Z = R, every bounded homomorphism is admissible;
that is, AB and M(Z) are isomorphic Banach spaces.

Proof. For Z = R, the admissibility of each bounded homomorphism follows
from Lemma 19.6 [18]. Therefore, every distribution can be taken as an
element of AB.

Remark 11. It would be an interesting exercise to find conditions on the
Banach space Z for which each bounded x′ ∈ Hom(Φ, Z) is admissible.

5.5.2 Vectorized Admissible Homomorphisms

Distributions (random variables) were identified with bounded admissible
homomorphisms on a scalar valued test space ΦS (Theorem 2, Section 5.2).
In this section, we ‘vectorize’ these homomorphisms as dominated bounded
admissible homomorphisms on the vectorized test space ΦV . An alternative
approach is to vectorize the range by considering operators on the test space

5Note the inclusion C00(G,Z) ⊂ C0(G,Z) ⊂ BUC(G,Z) under the sup norm. For the
case of Z = R, C00(G,Z) = C0(G,Z) by the Urysohn Lemma.
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ΦS into L(Z). These two approaches are equivalent (Theorem 1, Section III,
§19, p. 377 [10]).

We say that a bounded homomorphism on ΦV is dominated if there exists
a regular positive measure λ dominating the homomorphism x′ in the sense:

‖〈f, x′〉‖ ≤
∫
|f |dλ, (5.5.1)

for every f ∈ C00(G,Z). Then such homomorphisms have a partial Riesz
representation theorem:

Theorem 4 (Vector Riesz Representation). (Theorem 2, III, §19, [10])
Each dominated bounded admissible homomorphism x′ can be identified uniquely
with an operator-valued measure µ̄ ∈ M(L(Z)) by the following identifica-
tion:

〈f, x′〉 :=

∫
fdµ̄ (5.5.2)

for every f ∈ C00(G,Z).

Theorem 5. Let x′ ∈ HomB(ΦV , Z) be a dominated bounded admissible
homomorphism. Then x′ has a unique extension to a bounded functional x̃′

on L1
λ(G,Z) such that the unique operator L(Z)-valued measure µ̄ associated

with x′ is of the form:

µ̄(A) : z ∈ Z 7→ 〈zXA, x̃′〉, (5.5.3)

for every Borel set A ∈ B; XA is the indicator function on A.

Proof. Intuitively, the dominance condition (5.5.1) ensures that if x′ is con-
tinuous on C00(G,Z) under the supremum norm, then x′ is also continuous
on C00(G,Z) under the L1

λ(G,Z)-topology. Since C00(G,Z) is a dense sub-
space of L1

λ(G,Z), there is a unique continuous extension denoted by x̃′, to
L1
λ(G,Z).

Remark 12. Consider an autonomous time continuous stochastic process
X with its family of (time-independent transition) distributions {µτ |τ ∈ T}
(Section 5.3). For the test space C[R], C0(R) or C(K);Kcompact, the fam-
ily {x′µτ |τ > 0} is an equibounded family of dominated bounded admissible
homomorphisms.

Thus, a dominated bounded admissible homomorphism x′ ∈ HomB(ΦV , Z)
can be regarded as a vectorized probability transition distribution.

It is important to note that the subclass, AD, of dominated admissible
homomorphisms, form a subalgebra of AB.
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Proposition 7. Let x′, y′ ∈ AD. Then x′ ∗ y′, x′ + y′, λx′ ∈ AD.

Proof. Without loss of generality, we can assume that x′, y′ ∈ AB is domi-
nated by the same regular positive measure λ: suppose x′ and y′ are dom-
inated by the regular positive Borel measures γ and µ respectively; then
λ := γ + µ 6 is a regular positive Borel measure (the set of regular positive
Borel measures is a linear space) which dominates both x′ and y′.

By the dominance of first x′ and then y′, ‖〈Y ′f, x′〉‖ ≤
∫
‖Y ′f‖dλ ≤∫

‖f−s‖dλ ≤
∫
‖f‖dλ.

5.5.3 Vectorized Feller Star

Let µ̄ and ν̄ be the unique operator-valued measures in M(L(Z)) uniquely
associated with the dominated admissible homomorphisms x′ and y′ on ΦV ,
respectively (Theorem 4, Section 5.5.2). Then, just as in the scalar case,
we would like the convolution measure µ̄ ∗ ν̄ to coincide with the unique
measure associated with the product x′ ∗ y′ ∈ AB (the product x′ ∗ y′ is also
dominated [Proposition 7]), in order for the convolution semigroup equation
(5.3.2), Section 5.3, to be a special case of the convolution of operator-
measures.

Now, given two measures µ̄, ν̄ ∈ M(L(Z)), their convolution µ̄ ∗ ν̄ ∈
M(L(Z)) since operator composition is a L(Z) × L(Z) → L(Z) bilinear
map, where µ̄ ∗ ν̄(A) := µ̄ × ν̄(A2); for each Borel set A ∈ B , the pullback
set A2 := {(s, t) : s + t ∈ A} belongs to B(R × R) [Theorem IV.2, [20]].
Unfortunately, the convolution ∗ of measures in M(L(Z)) is based on the
bilinear form of operator composition and hence has a highly restrictive
Fubini Theorem (Theorem III.1 [20]) requiring separability of one of the
measures: Let A ∈ B(G) and A2 := {(s, t) ∈ G × G|s + t ∈ A}. For
every A2 ∈ B(G × G) and each fixed s, the section As2 : = {t ∈ G|(s, t) ∈
A2} = A − s ∈ B(G); A − s is the set A shifted s to the left. Then, the
separability of ν̄(B(G)) is needed to ensure that the operator-valued function
ϕA2 : s 7→ ν̄(As2) is uniformly measurable, for the Bochner integral in L(Z),
of following equation to make sense: µ̄ ∗ ν̄(A) = µ̄× ν̄(A2) =

∫
ϕA2(s)dµ̄(s).

Therefore, we construct a new convolution of measures in M(L(Z))
which we shall denote asF, such that (i) µ̄Fν̄ ∈M(L(Z)) and (ii) µ̄Fν̄ = γ̄
for the purpose of getting µ̄ ∗ ν̄ to coincide with λ without any further as-
sumptions; γ̄ is the unique measure in M(L(Z)) associated with x′ ∗y′. Just
as in the Feller star ?, the symbol AFB stands for integration with respect
to the measure A ∈M(L(Z)). We formally define this new convolution, F,
of measures in M(L(Z)), since existence has not yet been proven:

6λ(A) := γ(A) + µ(A) for each A ∈B
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Definition 4 (Convolution in M(L(Z))). Let µ̄, ν̄ ∈ M(L(Z)). Let A ∈
B(G). Then the weak-convolution µ̄Fν̄ is an operator-valued set domained
function on the Borel σ-field B, where the operator µ̄Fν̄(A) ∈ L(Z), is
defined pointwise at each z ∈ Z as follows:

µ̄Fν̄(A) : z ∈ Z 7→
∫
ϕA2,z(s)dµ̄(s) ∈ Z, (5.5.4)

where ϕA2,z : s 7→ ν̄(A− s)z ∈ Z.

Remark 13. The Z-valued function ϕA2,z : s 7→ ν̄(A − s)z ∈ Z can be re-
garded as the weak*-version of the operator-valued function ϕA2: the weak-
convolution, F, is based on the bilinear form B on Φ × Hom(Φ, Z) → Z,
B(f, x′) = 〈f, x′〉 as opposed to the standard bilinear form of operator com-
position on L(Z)× L(Z)→ L(Z).

We begin by showing that given two measures µ̄, ν̄ ∈ M(L(Z)), their
weak convolution µ̄ ∗ ν̄ ∈ M(L(Z)). Pleasantly, the admissibility of the
uniquely associated homomorphisms x′, y′ is a sufficient condition for the
existence of µ̄Fν̄ ∈ M(L(Z)). We need the following lemma which follow
from the inclusions C00(G,Z) ⊂ ΦV ⊂ L1

λ(G,Z) being ‖·‖∞ and ‖·‖1 dense,
respectively:

Lemma 1. Let x′ be a bounded ΦV -admissible homomorphism dominated
by a regular positive measure λ. Then x′ is L1

λ(G,Z)-admissible.

Proof. The crux of the lemma is that the dualism X ′ preserves continuous
extensions. The isometric shift operators on (Φ, ‖ · ‖∞) ensures that the
operator X ′ is bounded on (Φ, ‖·‖∞) into itself. Furthermore, X ′ is bounded
on (Φ, ‖ · ‖1) into itself by the dominance of x′ by a regular positive measure
λ together with the isometric shift operators on (Φ, ‖ · ‖1): ‖〈R−sf, x′〉‖ ≤∫
‖R−sf‖dλ =

∫
‖f‖dλ.

Let X ′ denote the unique continuous extension of X ′ to L1
λ(G,Z). Con-

sider the operator X̃ ′ : f ∈ L1
λ(G,Z) : 〈R−sf, x̃′〉. X ′ = X̃ ′ since they agree

on the dense subspace (C00(G,Z), ‖ · ‖1).

We now show that L1
λ(G,Z)-admissibility is the key to the weak convolution

µ̄ ∗ ν̄ ∈M(L(Z)).

Theorem 6. Let µ̄, ν̄ ∈ M(L(Z)) be the unique operator-valued measures
in M(L(Z)) associated with the dominated admissible homomorphisms x′, y′

on ΦV , respectively. Then

(i) µ̄Fν̄ ∈M(L(Z));
(ii) µ̄Fν̄ = γ̄, where γ̄ is the unique measure in M(L(Z)) associated with
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the dominated admissible homomorphism x′ ∗ y′.
(iii) F is associative.

For the case of Z = C, the Feller star ? and F, and the convolution ∗
of measures coincide.

Proof. Firstly, the function ϕA2,z of Definition 4, (5.5.4) is the function

Ỹ ′(zXA) ∈ L1
λ(G,Z) by the L1

λ(G,Z)-admissibility of y′ [Lemma 1]; Ỹ ′ is
the dualism of y′. By direct computation,

ν̄(As2)(z) := 〈zXA−s, ỹ′〉 = 〈R−szXA, ỹ′〉 = Ỹ ′(zXA)(s) (5.5.5)

Now, µ̄Fν̄(A)(z) :=
∫
ϕA2,z(s)dµ̄(s) = 〈Ỹ ′(zXA), x̃′〉 by the Vector Riesz

RepresentationTheorem (Theorem 4, (5.5.2)) 7. Thus,

µ̄Fν̄(A)(z) = 〈zXA, x̃′ ∗ ỹ′〉 = 〈zXA, x̃′ ∗ y′〉,

On the other hand, the unique operator-valued measure γ̄ ∈ M(L(Z))
associated with the dominated admissible homomorphisms x′ ∗ y′ is given

by, γ̄(A) : z ∈ Z 7→ 〈zXA, x̃′ ∗ y′〉 (Theorem 5, (5.5.3)) Therefore, γ̄ = µ̄Fν̄
proving both (i) and (ii). Property (iii) is immediate from the associativity
of the product of homomorphisms in AB.

Finally if one notes that for C the ordered set {1} is a basis, setting
z = 1 in the construction (5.5.4) reduces µ̄Fν̄ to the traditional convolution
measure µ̄ ∗ ν̄. Hence, ?, F, and ∗ coincide for Z = C.

5.5.4 A More General Dominating Condition

In Section 5.5.3, we constructed the weak convolution of operator-valued
measures that vectorized the classical Feller star or convolution (Definition
1, [17], p. 141) . This construction rested on the concept of a dominated
admissible homomorphism (equation (5.5.1), Section 5.5.2). We introduce
a new ‘norm’ on (vectorized) homomorphisms x′ ∈ Hom(ΦV , Z) which at-
tempts to easily characterize whether x′ is dominated.

Definition 5 (Operator norm relative to Borel setA). Let x′ ∈ Hom(ΦV , Z).
Fix a Borel set A ∈ B. Let C00(G,Z|A) be the subspace of C00(G,Z) con-
sisting of functions with compact support ⊂ A. Then

‖x′‖A := sup |〈f, x′ 〉|, (5.5.6)

where f belongs to the unit ball of C00(G,Z|A). We call ‖ · ‖A the operator
norm relative to A.

7For each f ∈ L1
λ(G,Z),

∫
fdµ̄ = 〈f, x̃′〉 by the density of C00(G,Z) in L1

λ(G,Z), the
boundedness of x′ and the completeness of the Banach space Z
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Now, dominated (scalar) homomorphisms on ΦS have an easy charac-
terization in terms of this norm:

Theorem 7 (Relative Operator Norm). (Section §19, Corollary 1, [10]) A
homomorphism x′ on ΦS is dominated if and only if ‖x′‖A < ∞ for every
Borel set A ∈ B.

For the vector valued case ΦV , each fixed z∗ ∈ Z∗ induces a dominated
x′z∗ ∈ HomB(Φ,C) as follows:

x′z∗ : f 7→ 〈x′(f), z∗ 〉,

where x′ ∈ Hom(ΦV , Z). Hence, there is a regular Z∗-valued measure µ̄z∗

with bounded variation such that

x′z∗ : f 7→
∫
fdµ̄z∗ . (5.5.7)

Therefore, we naturally construct a L(Z,Z∗∗)-valued additive set function,
µ̄, on B as follows:

µ̄(A) : x ∈ Z 7→ (z∗ ∈ Z∗ 7→ µ̄z∗(A)x ∈ C), (5.5.8)

where (z∗ ∈ Z∗ 7→ µ̄z∗(A)x ∈ C) is an element of Z∗∗. Therefore,

Proposition 8. Consider a homomorphism x′ ∈ HomB(ΦV , Z). Let ‖x′‖A <
∞ for every Borel set A ∈ B. Then we can construct a L(Z,Z∗∗) additive
set function µ̄ of bounded semi variation such that

〈f, x′ 〉 =

∫
fdµ̄ (5.5.9)

Remark 14. The left hand term of equation (5.5.9) is Z-valued, but the
right hand term is Z∗∗-valued. Therefore, we take Z as a subspace of Z∗∗

for equation (5.5.9) to make sense.

Proof. The construction of the L(Z,N ′∗)-valued Borel measure µ̄, rests on
the existence of a norming space N ′ for Z. We say that N ′ ⊂ Z∗ is a norming
space for Z provided if for every z ∈ Z, we have |z| = sup{|〈z, n′ 〉|n′ ∈ N ′1}
where N ′1 is the unit ball of the subspace N ′.

5.6 Vector Valued Chapman-Kolmogorov

The notion of a convolution semi-group of probability measures on R began
with an autonomous stochastic process X := {X(τ)|τ > 0} with its unique
family of transition distributions {µτ |τ > 0}, which satisfy the Chapman
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Kolmogorov relation (5.3.1). For the (scalar) test space ΦS , the framework
of dualisms L1

loc((0,∞),A ′
B) identified the convolution semi-group with a

C0-semigroup on ΦS (Proposition 3, Section 5.3). In this section, we vec-
torize Proposition 3, Section 5.3, to operator-valued probability transition
distributions.

5.6.1 Dominated Operator-valued Distributions

Each transition distribution µτ is uniquely identified with a bounded domi-
nated admissible homomorphism, x′µτ , on the scalar valued test space ΦS . A
dominated admissible homomorphism on the vector valued test space ΦV ,
that is, changing the domain of x′µτ to ΦV , is equivalent to vectorizing the
range of x′µτ , that is, considering x′µτ as an operator from ΦS to L(Z) ( The-
orem 1, Section III, §19, p. 377 [10]). Therefore, we shall consider operator
L(Z)-valued transition distributions {µ̄τ |τ > 0}; µ̄τ is a L(Z)-valued Borel
measure of bounded variation.

Since weak convolution F is a vectorized Feller star ? (Theorem 6, Sec-
tion 5.5.3), we introduce the notion of an extended Chapman-Kolmogorov
relation for {µ̄τ |τ > 0} as:

µ̄τ+σ = µ̄τFµ̄σ; τ, σ > 0, (5.6.1)

Now, for (5.6.1) to make sense, we need to additionally assume that each
µ̄τ is an operator-valued measure in M(L(Z)) uniquely associated with a
dominated admissible homomorphism on ΦV (Theorem 6, Section 5.5.3).
We shall call such measures dominated L(Z)-valued Borel measures.

Remark 15. For the case Z = R, (5.6.1) becomes the classical Chapman-
Kolmogorov relation, (5.3.1).

Indeed, we formally define a dominated operator-valued convolution semi-
group as follows:

Definition 6 (Dominated Convolution Semigroup). A family {µ̄τ |τ ≥ 0}
of dominated L(Z)-valued Borel measures on R is said to be a dominated
operator-valued convolution semigroup of measures iff (a) µ̄0 = δ̄0 (b) µ̄τ
converges v-weakly to δ̄0, as τ → 0+, and (c)

µ̄τ+σ = µ̄τ ? µ̄σ;σ, τ ≥ 0, (5.6.2)

where we define the v-weak convergence of a sequence µ̄n of dominated
L(Z)-valued Borel measures on R to another dominated L(Z)-valued Borel
measure µ̄ as follows:
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Definition 7 (V-weak Convergence). A sequence µ̄n of dominated L(Z)-
valued Borel measures on R v-weak converges to another dominated L(Z)-
valued Borel measure µ̄ provided the corresponding sequence of (operator)
dualisms X ′µ̄n := Γ(x′µ̄n) on ΦV converges strongly to X ′µ̄ := Γ(x′µ̄).

Remark 16. Definition 7 is not vacuous by virtue of Appendix C.3.1, The-
orem 2.

Just as in the classical case, by choosing ΦV as the test space, the
framework L1

loc((0,∞),A ′
B) turns out to be the framework to identify the

dominated operator-valued convolution semigroup {µ̄τ )|τ ≥ 0} with a C0-
semigroup, {E(τ)|τ > 0}, on the Banach space ΦV .

5.6.2 Generalized Random Variables

Let x′µ̄τ ∈ AB denote the dominated bounded admissible homomorphism
uniquely associated with the dominated L(Z)-valued Borel measure µ̄τ (The-
orem 4, Section 5.5.2). Dualism isometrically identifies each x′µ̄τ , with the
bounded (dualism) operator X ′(τ) on ΦV ; X ′(τ) := Γ(x′µ̄τ ) ∈ A ′

B [ Theorem
8, Section 3.3.1]; we call X ′(τ) an operator representation of a generalized
random variable. We will show that E(τ) := X ′(τ) gives the desired C0-
semigroup.

Remark 17. The dominance condition ensures that ‖X ′(f)‖∞ ≤ ‖f‖1;
X ′(f) ∈ ΦV .

Definition 6(c) of Section 5.6.1, is equivalent to x′µτ+σ
= x′µτ ∗ x

′
µσ ,

which is equivalent to E(τ + σ) = E(τ) ◦ E(σ) in similar manner to (c)
of Proposition 3, Section 5.3. Indeed, µ̄τ+σ = µ̄τFν̄σ iff y′µ̄τ+σ

= y′µ̄τ ∗x
′
ν̄σ iff

Y ′τ+σ = Y ′τ ◦X ′σ for appropriately defined families. Finally, Definition 6(b)
of Section 5.6.1, implies E(τ)f = f as τ → 0+ for each f ∈ ΦV .

Proposition 9. Every dominated operator-valued convolution semigroup
{µ̄τ |τ ≥ 0} of Definition 6, Section 5.6.1, has an associated C0-semi-group
on ΦV .

92

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Appendix A

Intuition of Empathy Theory

Causality is the study of causes, effects and causation; causation explains
why the system changes from cause to effect; the term ‘system’ stands for
the well identifiable object under study.

An analytical description of causality needs the notion of (i) a state,
which roughly speaking is a good description of the system, (ii) transition
maps which are associations between states at different times capturing the
observer analytically, (iii) causal relations which are the relationships be-
tween the transition maps capturing the notion of how the system changes
from one state to another as opposed to a mere description and (iv) causa-
tion which captures the model analytically.

This appendix shows how the intertwined families of empathy theory
arise naturally as causal relations and causation.

A.1 Foundations

Causality has as its basis the notions of time and state. The essence of time
is ‘before’ and ‘after’. Time, denoted by T , is simply a linear ordered se-
quence of events on a chronometer (a universal stopwatch which does not
interfere with the system) and is thus mapped in a one-one manner onto
a a continuum of real numbers. The elements of T will be denoted by the
real number τ . State pertains to a mathematical description of whatever is
considered to be adequate to represent the system. Indeed, in the classical
mechanics of a particle, the state of a particle is the ordered tuple of data
such that knowing this data at instant τ and the laws of the model, deter-
mines future values of the ordered tuple of data for time ρ > τ . States in
general will be denoted by the symbol x, y. For example, let the system be a
single Newtonian particle and the property of study its position as it moves
through space. Then since the future position of a particle is determined
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by the particle’s current position q and it’s velocity v, the ordered pair of
functions (q, v) will denote the state of the particle. As another example,
let the system be an open solid which we represent as a subset Ω in three
dimensional Euclidean space E3 and the property of study be heat trans-
fer. Then the states will be the ordered pair (u(p), q(p)) where p is a point
on Ω and u(p), q(p) represents the temperature and thermal energy density
functions at point p.

The state space is a set of all the possible states of the system and
we denote it by Y. For example, the state space of the before mentioned
Newtonian particle will be the set of all pairs of position and velocity it
passes through its journey. Likewise the state space of the solid Ω will be
the set of all pairs of functions over the entire body of the object. The
requirement of a set is not trivial: every two considered state should be
distinct. The state space is therefore, the pure data set for the observer: it
is important to note that there is no notion of time at all in the state space.
In order to capture the notion of when a state a is close to another state b,
we endow the state space Y with a topology. From this point onward, we
take Y as a topological space.

A.1.1 Phase Space

The concept of the phase space marries the notion of time and state. Indeed,
a fundamental assumption of causality is that the state changes as time goes
by: the position of the particle changes with time, tracing out a directed
path in the state space Y; the temperature distribution at each point of
the body changes with time. Therefore, we consider states that depend on
time. Therefore, the notion of phase space captures the observer watching
the system evolve in time. We capture this notion with mappings u : τ 7→
u(τ) ∈ Y where τ denotes time on the time continuum T . As it is sensible
to associate a unique state to a given time τ , the mapping u has to be a
function. The set of such functions is denoted by Φ(T ;Y) and is called
the phase space over the continuum T . The phase space can be considered
a visualization of change. It mathematically encodes a transition map: a
description of the state u(τ) of a dynamic process evolving to a state u(ρ)
at some later time ρ. It is important to note that the concept of a state is
indeed powerful : no matter how the particle (the system) arrived at state
u(τ), once in state u(τ), its future state u(ρ) is determined for ρ > τ . The
state u(τ) is considered the ‘event’ that gives rise to - causes - the event
(effect) state u(ρ).
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A.1.2 Causal Relations

The notion of causal relations explains how the state u(τ) evolves to a state
u(ρ) at some later time ρ as opposed to a mere description of the phase curve.
The manner in which the states evolve is represented by causal relations.
We formulate these causal relations as functions C defined on the state space
into itself: they map the point u(τ) on a phase curve to the point u(ρ) on
the same curve for a time ρ > τ . That is,

u(ρ) = C(ρ, τ)u(τ). (A.1.1)

The expression (A.1.1) says the event u(ρ) evolved from the event u(τ).

A very fundamental assumption is that (A.1.1) holds for all τ and ρ
in the time continuum T for which τ < ρ : all points on a given phase
space curve evolved from earlier points on the curve. Then, if there is some
time σ between τ and ρ (τ < σ < ρ), the state of u(σ) is result of u(τ) :
u(σ) = C(σ, τ)u(τ) and, in turn is the cause of x(ρ) : u(ρ) = C(ρ, σ)u(σ).
Therefore,

u(ρ) = C(ρ, σ)[C(σ, τ)u(τ)]. (A.1.2)

Since (A.1.2) has to hold for all t ∈ T , it is reasonable to postulate the
relation

C(ρ, τ) = C(ρ, σ) ◦ C(σ, τ), (A.1.3)

for all τ < σ < ρ. Relation (A.1.3) has so far yielded very few results.

A special case of (A.1.3) which did yield a mathematically rich and deep
theory was based on the assumption that the effect of the state u(τ) on any
later state ρ is determined solely by the the difference η = ρ − τ . We call
such systems autonomous. Under this assumption the function C is of the
form:

C(ρ, τ) = E(ρ− τ). (A.1.4)

Therefore, the causal relation (A.1.3) becomes

E(ρ− τ) = E(ρ− σ) ◦ E(σ − τ), (A.1.5)

where the composition of function E amounts to the addition of the argu-
ments. With E as a function of one positive real variable, the increase in
time, by (A.1.5) we have

E(ξ + γ) = E(ξ) ◦ E(γ) = E(γ) ◦ E(ξ). (A.1.6)

One can interpret the time increases ξ and γ as time if time τ = 0 is part of
the continuum T since ξ = ξ− 0 will be the increase since the initial instant
τ = 0. We use the term semigroup to denote the evolution according to
(A.1.6).
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A.1.3 Causation

Causation addresses the question why states change. In mathematical mod-
elling, the mechanism of an evolution process, the causation is often captured
in an equation of evolution in the following differential form

u′(τ) = Au(τ) + f(τ, u(τ)), (A.1.7)

with u′(τ) being the time rate of change (a total derivative) along the tra-
jectory of the process in phase space, and A some ‘operator’ which captures
the mechanism of the causation. The operator A represents the influence
of internal agents and f the influence of external agents. Equation (A.1.7)
should be interpreted as: the rate at which the states change is caused by
the work of the internal agents to which it is added the influence of external
agents.

If the evolution equation (A.1.7) under the initial condition

lim
τ→0+

u(τ) = a, (A.1.8)

has a unique solution, the considerations of the previous sections are appli-
cable. For then the mapping t 7→ u(τ) defines a curve in the state space Y
which represents some causal relation.

A.2 Intuition of Semigroups

Semigroups are the simplest examples of states which evolve in time from
a given initial state a in the state space Y. Indeed, if we let u(τ) = E(τ)a
for τ > 0, the curve u(τ) represents a continuum of states which originate
from a; u(τ) is a curve in the state space Y. In order to bring meaning to
the notion of ‘tangent vector’ to each of the points of the curve u(τ), ‘the
states a and b are close to each other’, and the curve ‘u(τ) is continuous’,
additional structure is required of Y. Therefore, we enrich the time con-
tinuum T = {0 < τ < ∞} and the phase space Φ(T ;Y) with the following
additional topological structures: T is endowed with with the usual topology
of the real line; the state space Y is a Banach space. Then, mathematical
properties of semi-flows such as their long-term behaviour, which lead to
the concept of strange attractors and attractors, can be derived. If in ad-
dition the mappings E(τ) are bounded linear operators, the theory yields
very deep and spectacular results. The assumption of boundedness means
that u(τ) := E(τ)a (τ fixed) varies continuously with the initial data a;
the motion {u(τ)|τ > 0} in the phase space Φ(T ;Y) is assumed to satisfy a
linear homogenous dynamical system; therefore, the Superposition Principle
imposes linearity of each E(τ). Therefore, it makes sense to define the state
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space Y as a vector space. Indeed, state spaces are taken as Banach spaces
to facilitate analysis.

In particular, if the causal relation is a semigroup (A.1.6), it is known
there is an operator A for which the problem (A.1.7), (A.1.8) with f = 0
has a unique solution, for a well-defined subset of the state space Y. In fact,
the causation mechanism A is already captured in the transition map : the
state y is in the domain D(A) of the linear operator A if the limit

Ay := lim
h→0+

E(h)y − y
h

, (A.2.1)

exists. If for all a ∈ D(A) the curve u(τ) = E(τ)a in Φ(T ;Y) is continuous,
the derivative u′(τ) exists in Y and

u′(τ) = Au(τ). (A.2.2)

For transition maps defined under less restrictive condition such a theorem
is not in general known.

A.3 Intuition of Empathy Theory

There are situations where a single state space is inadequate for a good
description of transition map. Consider for example, the thermal interaction
between a potato and its skin. For this case, two state spaces X and Y are
considered; space Y represents the whole system (the potato and its skin)
and X a significant part of it (what is inside the skin). Then there would
be two phase spaces Φ(T ;X) and Φ(T ;Y). The interactive transition map
is described by two families of causal mappings . The one, E(τ) acts totally
within the space Y while the other, S(τ), maps from Y to X to describe
change in the ‘world’ X in ‘empathy’ with the changes in Y. The causal
relation postulated is

S(τ + σ) = S(τ) ◦ E(σ) = S(σ) ◦ E(τ), (A.3.1)

and is called the empathy relation; we say that the transition map E(σ)
intervenes empathetically with the transition map S(τ); indeed, the tran-
sition map S(τ) makes the transition map E(σ) behave in a conventional
way as a semigroup: E(τ + σ) = E(τ)E(σ) under additional assumptions.
The empathy relation describes a way in which curves in the state spaces X
and Y evolve in interaction with each other. Analysis of empathy relations
differs from that of semi-flows or semigroups since it involves mappings be-
tween different spaces. Nonetheless, under some additional assumptions, it
turns out that the causation in this case is reflected by implicit evolution
equations of the form

[Bu(τ)]′ = Au(τ), (A.3.2)
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with A and B being mappings from a subset of X to the space Y : the
additional assumptions ensure the family E(τ) is a semigroup and that the
two families E(τ) and S(τ), acting in unison by virtue of (A.3.1), generate
a pair of linear operators A and B and a domain DY ⊂ Y such that for y0 ∈
DY , u(τ) = S(τ)y0 satisfies the evolution equation (A.3.2). It is important
to note that A and B map ‘backwards’ from effect X to cause Y. The initial
condition for (A.3.2) (analogous to (A.1.8)) is :

lim
τ→0+

Bu(τ) = y0 ∈ Y. (A.3.3)

In this case, we require the solution u(τ) = S(τ)y0 of (A.3.2) to additionally
satisfy the initial condition (A.3.3). Thus it can be said that the state y0 ∈ Y
‘causes’ the ‘effect’ u(τ) ∈ X ( in general, Y represents the state of causes
and X a space of effects).

A.3.1 Departures From Semigroup Theory

Empathy theory is a strict generalization of the abstract Cauchy problem :
set X = Y and B = 1X. Indeed, we note four major differences. Firstly, a
pair of state spaces Y, X. The analysis of empathy theory involves operators
between Banach spaces Y and X, the solution (effect) and the causal state
space respectively. It is impossible to define the notion of powers of operators
and the identity operator for such operators. In semigroup theory these
notions gives rise to the analyticity of the resolvent R(λ) and the concept
of the infinitesimal generator. Secondly, empathy theory works with a pair
of evolution families: E : τ > 0 : E(τ) : Y → Y; S : τ > 0 : S(τ) :
Y → X. The analysis of empathy theory insists that the pair of evolution
families are only defined on the open interval (0,∞). Differentiation is,
after all, properly defined on open sets, and initial conditions are in the
form of limits as τ → 0+. Indeed, no assumption whatsoever is made of the
evolution operators at the origin τ = 0. This is in contrast to the well-known
theory of semigroups where the point τ = 0 is included (C0-semigroups).
Thirdly, a pair of non-closeable generators A,B which are backward maps
from the solution or effect space X into the space of causes Y. The non-
closeability of B precludes interchange of B with d

dτ or
∫
dτ in equation

(1.1.1); it is impossible to reduce it to the well known abstract Cauchy
problem. Fourthly, empathy theory involves a a pair of resolvents 〈R,P 〉
satisfying a pair of resolvent equations R(λ) − R(µ) = −(λ − µ)R(λ)R(µ)
and P (λ) − P (µ) = −(λ − µ)P (λ)R(µ). In short, the objects of study in
empathy theory, comes in pairs.
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Appendix B

Convolution Algebra of
Abstract Harmonic Analysis

Convolution is the basic operation of harmonic analysis. In a very general
sense, convolutions correspond to weighted averages. For example, given two
2π-periodic functions f, g, their convolution f ∗ g is defined as f ∗ g(t) =
1

2π

∫ π
−π f(t− s)g(s)ds. If we set g = 1 then f ∗ g(t) = 1

2π

∫ π
−π f(s)ds which is

the average of f over the ‘circle’ [−π, π].

The objects of harmonic analysis are diverse: functions and measures
defined on any topological group like (−∞,−∞) or the circle group S1 :=
{z ∈ C||z| = 1}. A very general definition of convolution is therefore re-
quired to capture the different definitions of the convolutions of the diverse
objects of study.

B.1 Translation invariant linear functionals

For this purpose, we view the objects of study uniformly as translation
invariant linear functionals. This we do by virtue of distributions on the
topological group in question. The following example is instructive.

Let f be a function defined on the topological group S1; f ∈ L1(S1).
First set the test space, D(S1), to be the space of all the scalar valued S1-
domained smooth test functions. Then the space, D′(S1), of all distributions
on the circle group S1 consists of all the linear functionals x∗ on D(S1) that
are continuous in the usual distributional sense 1. We identify f ∈ L1(S1)

1Firstly, we say that a sequence (τ(n)) of test functions in D(S1) is null iff
limn→∞ ‖τ(n)‖Cp = 0 where ‖τ(n)‖Cp =

∑
0≤j≤p ‖τ

(j)(n)‖∞ for every p ∈ N. Then

the linear functional x∗ on D(S1) is continuous in the sense that limn→∞ x
∗(τ(n)) = 0 for

all null sequences (τ(n)) in D(S1).
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with the distribution x∗f : τ ∈ D(S1) 7→
∫
S1 τf ; x∗f ∈ D′(S1).

Now x∗f plays a second role as an operator,X∗f , on D(S1) by the group

structure of S1:
X∗f (τ) : a ∈ S1 7→ 〈τ,Rax∗f 〉,

where we define the right translated distribution Rax∗f as 〈τ,Rax∗f 〉 :=

〈Raτ, x∗f 〉; Ra is the right shift map which maps each test function τ of

D(S1) into the shifted function τ(· − a); a ∈ S1. Indeed, both D(S1) and
D′(S1) are translation invariant spaces.

We say that x∗f is a translation invariant functional provided its dualism
X∗f commutes with every shift operator Ra:

X∗f [Raφ] = [Ra]X∗fφ. (B.1.1)

Theorem 1. [Functions as translation invariant linear functionals]
Every f ∈ L1(S1) is a translation invariant linear functional on D(S1).

Remark 1. Traditionally, objects of harmonic analysis are studied uni-
formly as translation invariant operators on the distribution space D′(S1):
each Ra : x∗ : Rax∗ is viewed as an operator on D′(S1) and each x∗ ∈ D(S1)
is viewed as the operator on D′(S1) : Lx∗ : y∗ : x∗ ∗ y∗ where

x∗ ∗ y∗ : τ : x∗[Y ∗τ ]

for every τ ∈ D(S1) and x∗ is translation invariant in the sense that

RaLx∗ = Lx∗R
a. (B.1.2)

Proposition 1. If every distribution in D′(S1) is translation invariant in
the sense of (B.1.1), our definition of x∗f as a translation invariant functional
(B.1.1) is a sufficient condition for (B.1.2)

Proof.
〈τ,Ra(x∗f ∗ x∗)〉 = 〈Raτ, x∗f ∗ x∗〉 = 〈τ ′, x∗f 〉;

where τ ′ : a : 〈Raτ,Rax∗〉 while

〈τ, x∗f ∗Rax∗〉 = 〈τ ′, x∗f 〉;

since 〈τ,Ra(Rax∗)〉 = 〈Raτ,Rax∗〉.

B.2 Convolution Algebra

Hewitt and Zukermann (§19 [18]) developed a very general notion of convo-
lution called the convolution on dual spaces (Chapter 1.9.7 [23]) to capture
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the notion of the convolution of translation invariant linear functionals. It
has the following three constructs motivated by the previous example:

Construct 1. Test space. Let G be an abelian group (not necessar-
ily topological). Then the linear space D of all scalar valued functions on G
plays the role of the test function space.

We insist that the domain of the test functions be a group G so that
for any element a ∈ G one can use the group structure to define the right
translation map Ra : D → D|f 7→ Raf where

Raf : t ∈ G 7→ f(t− a). (B.2.1)

It is critical to note that the new function Raf is in D again for every a ∈ G.
Since this is the case for every f ∈ D we say that D is translation invariant.
We shall always take D as translation invariant.

Construct 2. Translation invariant linear functional. We insist that
every linear functional x′ (not necessarily bounded) 2 defined on D is trans-
lation invariant, that is,

x′[Raf ] = Ra[x′f ]; (B.2.2)

for every a ∈ G. Now, for (B.2.2) to make sense, we need to impose an
additional requirement on each x′ that it plays an extra role as an endomor-
phism on D. Therefore, each x′ plays a double role as a linear functional
and as an endomorphism X ′ on D defined by

X ′f = x′f ; f ∈ D; (B.2.3)

where

x′f : a ∈ G 7→ x′[R−af ]. (B.2.4)

The endomorphisms so induced will be called dualisms: X ′f(0) = 〈f, x′ 〉.
Note that the group structure once again is crucial in definition (B.2.4).

Therefore, we rewrite equation (B.2.2) as

x′ [Raf ] = Ra[ x
′
f ]. (B.2.5)

Construct 3. Convolution Algebra. By the double role of each trans-
lation invariant functional, we can now meaningfully define the product
functional x′ ∗ y′ as follows:

2The linear functional x′ is not necessarily bounded to make the framework as general
as possible; it plays the role of a distribution in Example 1.
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x′ ∗ y′ : f ∈ D 7→ x′( y′f). (B.2.6)

Let A be a space of translation invariant linear functional on D which is
closed with respect to ∗. Then we call A a convolution algebra.

Hewitt (§19 [18]) calls the product ∗ a convolution : let D be the space
C0(G) of all continuous scalar valued functions defined on a locally compact
abelian group G which vanish at infinity 3. Then the dual space C0(G)∗ of
all bounded linear functionals on C0(G) is M(G) the space of all complex
regular Borel measures on G. Taking x′, y′ ∈ C0(G)∗, their product x′ ∗ y′
according to equation (B.2.6) coincides with the linear functional identifiable
with the convolution measure of the measures identifiable with x′ and y′.

3A function f on G is said to vanish at infinity if for every ε > 0, there exists a compact
subset K of G such that |f(t)| < ε for all t ∈ G\K
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Appendix C

Dualism Transfers Strong
Continuity

Consider the function space Φ of continuous functions. Compact sets of Φ
are necessarily equicontinuous. Equicontinuous subsets are also (topologi-
cally) finite. We study equicontinuous sets of admissible homomorphisms
acting on subsets of Φ. Indeed, such a set behaves like a singleton set as far
as the image of a compact set is concerned (Appendix C.1, Proposition 1).

Given an equicontinuous set of admissible homomorphisms {x′(τ)|τ ∈ I}
, when is the ‘dual’ operator valued set {X ′(τ) = Γ(x′)|τ ∈ I} equicontin-
uous? For the test spaces Φ = C(G,Z), C0(G,Z), and BUC(G,Z), the
subset {X ′(τ)f |τ ∈ I} is an equicontinuous subset of Φ for each fixed f ∈ Φ
(Appendix C.2.1, Proposition 2 ). Indeed, simple boundedness ensures that
if the set of admissible homomorphisms {x′(τ)|τ ∈ I} is equicontinuous then
the dual set of operators {X ′(τ) = Γ(x′)|τ ∈ I} is equicontinuous (Appendix
C , Proposition 3 & Theorem 3).

Given a strongly continuous family of admissible homomorphisms X′ :=
{x′(τ)|τ ∈ R+}, the ‘dual’ family of operators X′ := {X ′(τ)|τ ∈ R+} is
strongly continuous if X′ is simply bounded over compacts (AppendixC.3,
Theorem 2). The crux is that the simple boundedness of X′ over compacts
ensures the equicontinuity of X′ over compacts.

C.1 Equicontinuous Sets of Linear Mappings

A compact subset of a general topological space is finite (small) in a topo-
logical sense: every open cover has a finite subcover. A compact subset of
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a function space of continuous functions is necessarily equicontinuous 1. An
equicontinuous set, H, is also finite (small) topologically: every f ∈ H be-
haves like a single fixed function f0 ∈ H as far as the topological concept of
continuity (and hence uniform continuity) 2 and vanishing at infinity 3. An
equicontinuous subset of a function space of continuous functions behaves
like a singleton set.

Consider an equicontinuous homomorphism valued subsetH = {x′(τ)|τ ∈
I} ⊂ AB

4. Then H behaves like a single fixed bounded homomorphism
x′(τ0) ∈ H as far as the image of a compact set is concerned:

Proposition 1 (Equicontinuous image of a compact set is bounded). Let
H := {x′(τ)|τ ∈ I} ⊂ HomB(Φ, Z) be an equicontinuous subset of bounded
homomorphisms; Φ := C(G,Z);Z is a metric space; G is a topological
group. If K ⊂ Φ is compact, then the image set {x′(τ)[K]| τ ∈ I} :=⋃
τ∈I{x′(τ)[K]} is a bounded subset of Z.

Proof. Let V denote an ε-open ball about x′(τ0)f ∈ Z for a fixed τ0 ∈ I.
By the equicontinuity of the set {x′(τ)|τ ∈ I}, there is a neighbourhood U
about f ∈ Φ such that x′(τ)[U ] ⊂ V for every τ ∈ I. Now {g + U |g ∈ K}
is an open covering of K and by the compactness of K, K is a subset of a
finite subcover of this family:

K =
⋃

1≤i≤k
gi + U.

Therefore, the image set

{x′(τ)[D]| τ ∈ I} ⊂
⋃

1≤i≤k
{x′(τ)(gi) + V |τ ∈ I},

is a bounded subset of Z since V is bounded, {x′(τ)(gi)|τ ∈ I} is a bounded
subset and a finite union of bounded subsets is bounded.

1Equicontinuity in a function space of continuous functions is the analogue of precom-
pactness in a general topological space.

2Saying f ∈ Φ := C(R, Z); Z a metric space, is continuous is equivalent to: for each
neighbourhood V ⊂ Z, there is a neighbourhood U ⊂ R with f [U ] ⊂ V . If H ⊂ C(R, Z) is
equicontinuous, then the same neighbourhood U ⊂ R works for all the f ′ ∈ H for every
challenge V .

3Saying f ∈ Φ := C0(R, Z); Z a metric space, vanishes at infinity is to say that for
every ε > 0 there exists a compact set K(ε) ⊂ R such that |f(x)| < ε for every x ∈ R\K(ε):
there exists a U := R\K(ε) such that f [U ] ⊂ Bε(0); U is open so U and V := Bε(0) are
both neighbourhoods . If H ⊂ Φ is equicontinuous then the same neighbourhood U works
for all the functions in H for every challenge V . Therefore, for the same compact set K(ε),
|f(x)| < ε for every x ∈ R\K(ε) for every f ∈ H.

4To say that each linear mapping x′ ∈ Hom(Φ, Z) is continuous is equivalent to

For each neighbourhood V ⊂ Z, there is a neighbourhood U ⊂ Φ with x′[U ] ⊂ V .

If the same neighbourhood U works for each x′(τ) ∈ H then H is called equicontinuous.
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C.2 Dualism Transfers Equicontinuity

Each x′(τ) ∈ AB plays a dual role as an operator X ′(τ) ∈ Hom(Φ,Φ). Under
what condition does dualism transfer equicontinuity: given an equicontinu-
ous set of admissible homomorphisms H := {x′(τ)|τ ∈ I}, when is the ‘dual’
operator valued set H ′ = {X ′(τ) = Γ(x′)|τ ∈ I} ⊂ A ′

B equicontinuous? We
give answers for the following test spaces: Φ = C(G,Z) (Chapter 2.2) and
the smaller test spaces Φ0 = C0(G,Z) and Φ1 = BUC(G,Z).

C.2.1 Pointwise Equicontinuity

Let Φ := C(G,Z);Z is a metric space. In this section we take G to be a
topological group. We say that the ‘dual’ setH ′ = {X ′(τ)|τ ∈ I} is pointwise
equicontinuous if {X ′(τ)f |τ ∈ I} ⊂ Φ is equicontinuous for each f ∈ Φ.
Dualism transfers equicontinuity in the following sense: the equicontinuity
of the family {x′(τ)|τ ∈ I} implies the pointwise equicontinuity of the dual
family {X ′(τ)|τ ∈ I}.

Proposition 2 (Dualism respects equicontinuity). Let Φ := C(G,Z). Let
{x′(τ)|τ ∈ I} ⊂ AB be an equicontinuous family of continuous admissible
homomorphisms. Then {X ′(τ)|τ ∈ I} is pointwise equicontinuous.

Proof. For each fixed f ∈ Φ, X ′(τ)f : q : 〈f−q, x′(τ)〉 is the composition of
x′(τ) ∈ Hom(Φ, Z) with the continuous map T : ω ∈ G 7→ f−ω ∈ Φ. It is
straightforword to show that the continuity of T transfers the equicontinuity
of the set {x′(τ)|τ ∈ I} ⊂ Hom(Φ, Z) into the equicontinuity of the set
{X ′(τ)f |τ ∈ I} ⊂ Φ.

Remark 1. Propositions 1 - 2 are equally valid for the smaller test spaces
Φ0 and Φ1: continuous homomorphisms are admissible for these test spaces.

Remark 2. In Proposition 2, the dualism (by virtue of the continuity of
the map p 7→ f−p) generates an equicontinuous subset {X ′(τ)f |τ ∈ I} of
continuous functions in the nice function space Φ.

C.2.2 Simple Boundedness

A simply bounded family 5 of continuous homomorphisms on a Frechet space
is equicontinuous (uniform boundedness theorem [Theorem 3, [25]]). Thus if
dualism transfers simple boundedness, then both the linear mapping valued
families {x′(τ)|τ ∈ I} ⊂ AB and {X ′(τ)|τ ∈ I} ⊂ A ′

B are equicontinuous

5Let F be a Frechet space and G a convex space. Then we say that the family T :=
{tα : F → G|α ∈ I} of continuous operators is simply bounded if for each fixed point
f ∈ Φ, the set {〈f, tα〉|α ∈ I} ⊂ G is bounded.
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should the former family be simply bounded. This is the case for Φ =
C(G,Z) should we assume that G is a second countable topological group.

Proposition 3 (Dualism transfers equicontinuity). Let Φ = C(G,Z); G is
a second countable topological group. Let the family X′ := {x′(τ)|τ ∈ I} ⊂
HomB(Φ, Z) of continuous homomorphisms be simply bounded. Then the
families {x′(τ)|τ ∈ I}and {X ′(τ)|τ ∈ I} are equicontinuous.

Proof. Since G is second countable, Φ = C(G,Z) is Frechet. Therefore, by
the uniform boundedness theorem [Theorem 3, [25]], it suffices to show that
the set {X ′(τ)|τ ∈ I} ⊂ Φ is simply bounded since each X ′(τ) is continuous.
That is,

sup
τ∈I
{‖X ′(τ)f |K‖} <∞,

for any compact set K ⊂ R+; f ∈ Φ fixed 6. This is immediate from noting
that the set {X ′(τ)f |K ; τ ∈ [α, β]} = {x′(τ)[D]; τ ∈ I}; D := {Rpf |p ∈
K} ⊂ Φ is an equicontinuous image of a compact set (Appendix C.2.1,
Proposition 1).

For the Banach test spaces Φ0,Φ1, the set of bounded homomorphisms
{x′(τ)|τ ∈ I}) is equicontinuous if and only if ‖x′(τ)‖ < M for all τ ∈ I.
Thus, the operator valued family {X ′(τ)|τ ∈ I} is simply bounded 7 since

‖〈f−q, x′(τ)〉‖ ≤M‖f‖∞,

for all q ∈ G; ‖f−q‖∞ = ‖f‖∞. By the uniform boundedness theorem [The-
orem 3, [25]] 8, for any topological group G, dualism transfers equicontinuity
for these test spaces:

Theorem 1 (Dualism transfers equicontinuity). Let Φ = BUC(G,Z) or
C0(G,Z). Let the family X′ := {x′(τ)|τ ∈ I} ⊂ AB be simply bounded.
Then the families {x′(τ)|τ ∈ I} and {X ′(τ)|τ ∈ I} are equicontinuous.

Remark 3. In view of the fact that the product ∗ is a generalized com-
position it is not surprising that ∗ preserves equicontinuity: if {x′(τ)} and
{Y ′(τ ′)} are equicontinuous on the compacts [α, β] and [α′, β′], then x′(τ) ∗
y′(τ ′) is jointly equicontinuous 9.

6The seminorms ρK(f, g) := ‖(f − g)|K‖∞ ; K ⊂ G is compact, generate a convex
topology on Φ.

7sup{‖X ′(τ)f‖∞|τ ∈ I} <∞; f ∈ Φ is fixed.
8Note that each X ′(τ) is bounded (Chapter 3.3.1, Theorem 8) and that Φ0,Φ1 are

Banach so trivially Frechet
9That is, for each ε-ball Bx′(τ)∗y′(τ ′)f (ε) about x′(τ) ∗ y′(τ ′)f ∈ Z there exists a

neighbourhood Uf ⊂ Φ about f such that x′(τ) ∗ y′(τ ′)[Uf ] ⊂ Bx′(τ)∗y′(τ ′)f (ε) for all
τ ∈ [α, β], τ ′ ∈ [α′, β′]. This follows immediately from the definitions.
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We end off by noting that {X ′(τ)|τ ∈ I} being equicontinuous is a
sufficient condition for {X ′(τ)|τ ∈ I} being pointwise equicontinuous.

Proposition 4 (Equicontinuity implies Pointwise Equicontinuity). Let Φ =
C(G,Z), BUC(G,Z) or C0(G,Z). If {X ′(τ)|τ ∈ I} ⊂ A ′

B is an equicontin-
uous family of bounded operators, then {X ′(τ)|τ ∈ I} is pointwise equicon-
tinuous.

Proof. The proof of Appendix C.2.1, Proposition 2 follows through by noting
that X ′(τ)f : q : 〈f−q, x′(τ)〉 is the composition θ0 ◦ X ′(τ) ◦ T of three
continuous maps.

C.3 Dualism Transfers Strong Continuity

The family of admissible homomorphisms X′ := {x′(τ)|τ ∈ R+} is strongly
continuous if the mapping τ ∈ R+ 7→ 〈f, x′(τ)〉 ∈ Z is continuous; f ∈ Φ
is fixed. Likewise, the ‘dual’ family of operators X′ := {X ′(τ)|τ ∈ R+} is
strongly continuous if the mapping τ ∈ R+ 7→ X ′(τ)f ∈ Φ is (uniformly)
continuous for each fixed f ∈ Φ. Under what condition does dualism transfer
strong continuity: given a strongly continuous family X′ when is the ‘dual’
operator valued family X′ strongly continuous? We give answers for the
following test spaces: Φ = C(G,Z), C0(G,Z) and BUC(G,Z).

C.3.1 Simple boundedness over compacts

We now show that if the strongly continuous family X′ is simply boundedness
over compacts then the dual family X′ is also strongly continuous. We first
prove the result for the test space Φ = C(G,Z); G is metrizable second
countable topological group.

Proposition 5 (Dualism transfers Strong Continuity). Let Φ = C(G,Z); G
is metrizable second countable topological group. Let the strongly continuous
family X′ := {x′(τ)|τ ∈ R+} ⊂ AB be simply bounded over compacts 10. If
X′ is strongly continuous, then {X ′(τ)|τ ∈ R+} is strongly continuous.

Proof. For a first countable space R+, continuity and sequential continuity
are equivalent. We prove the strong continuity of X′ by showing that for
each fixed τ0 ∈ R+, if τn → τ0 then

Hn := X ′(τn)f ⇒K H0 := X ′(τ0)(f), (C.3.1)

10We say that X′ := {x′(τ)|τ ∈ R+} is simply bounded over compacts if for every
compact interval [α, β], sup{x′(τ)f |τ ∈ [α, β]} <∞ for each fixed f ∈ Φ.
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where f ∈ Φ is fixed; Hn ⇒K H0 iff the convergence is uniform on any
compact set K of the common domain G of the functions Hn, H by virtue
of the fact that G is metrizable.

The crux of the proof is that a sequence of continuous functions that
converges pointwise also converges uniformly on compacts provided that the
sequence of functions is equicontinuous: the strong continuity of X′ imme-
diately ensures the pointwise convergence of the sequence of functions Hn:

[X ′(σn)f ](ω)→ [X ′(τ0)(f)](ω). (C.3.2)

Therefore, once we show {X ′(τn)} is pointwise equicontinuous, the proof is
complete. The local compactness of R+ allows us to assume without loss of
generality that {τn|n ∈ N} belongs to a compact neighbourhood of τ0 thus
ensuring {X ′(τn)} is equicontinuous (Appendix C.2.2, Proposition 3) and
hence pointwise equicontinuous (Appendix C.2.2, Proposition 4).

If the topological group G is locally compact, then the test space Φ =
BUC(G,Z) is Banach and hence Frechet. Therefore, we can drop the re-
quirement that G is second countable should G be locally compact. For-
mally:

Corollary 1 (Dualism Respects Continuity). Let Φ = BUC(G,Z); G is
locally compact and metrizable. Let the strongly continuous family X′ :=
{x′(τ)|τ ∈ R+} ⊂ AB of bounded homomorphisms be simply bounded over
compacts. Then X′ = {X ′(τ)|τ ∈ R+} is strongly continuous.

Proof. By virtue of BUC(G,Z) ⊂ C(G,Z), all the statements in the proof of
Proposition 5 follow through with the help of Appendix C.2.2, Theorem 1 11.
Therefore, to complete the proof we now show Hn ⇒K H0 implies Hn ⇒
H0. This is immediate on noting that G locally compact and Hausdorff
implies each of its points has a compact neighbourhood; hence the uniform
continuity ensures uniform convergence.

For the test space Φ = C0(G,Z), one can even drop the local compact-
ness of G:

Corollary 2 (Dualism Respects Continuity). Let Φ = C0(G,Z); G is
metrizable. Let the strongly continuous family X′ := {x′(τ)|τ ∈ R+} ⊂ AB

of bounded admissible homomorphisms be simply bounded over compacts. If
X′ is strongly continuous then X′ = {X ′(τ)|τ ∈ R+} is strongly continuous.

11Appendix C.2.2, Theorem 1 establishes that {Hn} ⊂ Φ1, is an equicontinuous set of
uniformly continuous functions
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Proof. By virtue of C0(G,Z) ⊂ C(G,Z), all the statements in the proof
of Proposition 5 follow through with the help of Appendix C.2.2, Theorem
1 12. Therefore, to complete the proof we now show Hn ⇒K H0 implies
Hn ⇒ H0. The crux of the matter is that {Hn} ⊂ Φ0, is an equicontinuous
set of continuous functions which vanish at infinity. This ensures that for
every ε > 0, there exists a compact Kε ⊂ G such that ‖Hn|G\Kε‖∞ < ε for
every n. Now, H0 also vanishes at infinity. Hence there exists a compact
K ′ε ⊂ G such that ‖H0|G\K′ε‖∞ < ε. Now consider the compact set

K ′′ε := Kε

⋃
K ′ε.

Since G\K ′′ε is a subset of both G\Kε and G\K ′ε,

‖(Hn −H0)|G\K′′ε ‖∞ < 2ε,

for every n. Now by virtue of Hn ⇒K H0, for n large enough

‖(Hn −H0)|K′′ε ‖∞ < 2ε.

Hence Hn ⇒ H0.

A topological space that is locally compact, Hausdorff and second count-
able is metrizable (Theorem 7.16 [31]). Therefore,

Theorem 2 (Dualism Transfers Strong Continuity). Let Φ = C(G,Z),
BUC(G,Z) or C0(G,Z); G is locally compact, Hausdorff and second count-
able. If the strongly continuous family X′ := {x′(τ)|τ ∈ R+} ⊂ AB of
bounded admissible homomorphisms is simply bounded over compacts, then
X′ = {X ′(τ)|τ ∈ R+} is strongly continuous.

12Appendix C.2.2, Theorem 1 establishes that {Hn} ⊂ Φ0, is an equicontinuous set of
continuous functions
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Appendix D

C0-semigroup Generation
Theorems

D.1 Infinitesimal Generator

Let {E(τ)|τ ≥ 0} denote a uniformly continuous semigroup on the Banach
space Y . Then

E(τ) = eτA; (D.1.1)

E′(τ) = AE(τ), (D.1.2)

for some bounded operator A. We say that A is the infinitesimal gener-
ator of the semigroup E. The infinitesimal generator A is independent of
time or time invariant, unlike the family {E(τ)|τ ≥ 0}, implying a sense
of permanence. Now A contains all the information on {E(τ)|τ ≥ 0} : A
generates or germinates into {E(τ)|τ ≥ 0} under the exponential function 1

; indeed, the association A ↔ {E(τ)|τ ≥ 0} is unique. The causal relation
E(τ + σ) = E(τ)E(σ) ensures the differentiability of {E(τ)|τ ≥ 0} so the
causation mechanism (D.1.2) makes sense. Furthermore A is evaluated as
the right hand side time derivative at τ = 0: A = d

dτE(0+).

For many natural semigroups defined on concrete function spaces, the
requirement for uniform continuity is too strong. Consequently uniform
continuity is replaced by strong continuity and we arrive at the theory of C0-
semigroups and an analogue of the notion of a generator of a C0-semigroup.

The analogue of the generator A of a uniformly continuous semigroup is
a closed unbounded operator (A,D(A)) defined on a dense subspace D(A)
of Y : each y ∈ Y induces a phase curve Ey : τ 7→ E(τ)y in the phase space;

1The exponential function is constructed by virtue of the functional calculus on the
Banach algebra of bounded operators on a Banach space.
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we define Ay as the right hand side derivative d
dτEy(0

+) analogous to the

uniform case and D(A) := {y ∈ Y | ddτEy(0
+) exists}. Then d

dτEy = AEy
for each y ∈ D(A). Hence D(A) plays a pivotal role. Formally,

Definition 1 (Infinitesimal Generator of a C0-semigroup). Let {E(τ)|τ ≥
0} denote a strongly continuous semigroup on the Banach space Y . Then we
define the generator of the semigroup {E(τ)|τ ≥ 0} as the closed unbounded
operator operator (A,D(A)) defined on a dense subspace D(A) of Y :

Ay is the right hand derivative d
dτEy(0

+),

and

D(A) := {y ∈ Y | d
dτ
Ey(0

+) exists}.

Therefore, the strong operator topology enables us to construct the ana-
logue of the generator A of a uniformly continuous semigroup in the theory
of strongly continuous semigroups. The price to pay is that (A,D(A)) has
to be closed, have a dense domain and have a spectrum in a proper left half
plane.

The generation problem for C0-semigroups is to characterize those linear
operators A generate a strongly continuous semigroup E := {E(τ)|τ ≥ 0}
satisfying the ACP,

d

dτ
E(τ)y = AE(τ)y; (D.1.3)

lim
τ→0+

E(τ)y = y, (D.1.4)

for y in a special subspace of Y

D.2 Integral Representations

Consider a semigroup {E(τ) : Y → Y |τ ≥ 0} on a Banach space Y . We say
that {E(τ) : Y → Y |τ ≥ 0} is a E-semigroup if for every y ∈ Y and λ > 0
the Laplace transforms

R(λ)y :=

∫
(0,∞)

e−λτE(τ)ydt, (D.2.1)

exists as a Bochner integral.

Theorem 1. Let the family E be an E-semigroup. Then the following iden-
tities hold:

R(λ)E(τ) = E(τ)R(λ); (D.2.2)

R(λ)−R(µ) = −(λ− µ)R(λ)R(µ) = −(λ− µ)R(µ)R(λ), (D.2.3)

for arbitrary positive λ, µ, τ
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Proof. The identity (D.2.2) follows from E(τ)E(σ) = E(σ)E(τ) after taking
Laplace transforms with respect to σ. The identity (D.2.3) follows from the
semigroup property.

Next we define the domain ∆Y := R(λ)[Y ] which is a vector subspace
of Y . From (D.2.3), it is clear that this domain does not depend on the
choice of λ. From (D.2.2), E(τ) : ∆Y → ∆Y for each t. We study the action
of E(τ) on this subspace to see what the infinitesimal generator A should
look like. After all, A is not defined everywhere. We call ∆Y , the Sauer
regularity domain.

We obtain an important integral representation of E(τ)y for y ∈ ∆Y .

Lemma 1. Let y = R(λ)yλ ∈ ∆Y where yλ ∈ Y . Then

E(τ)y = eλτ [y −
∫ τ

0
e−λσS(σ)yλds]. (D.2.4)

Proof. Since y = R(λ)yλ, from direct calculations (τ is fixed)

E(τ)y = eλτ
∫ ∞

0
e−λ(σ+τ)E(σ + τ)yλds.

The change of variable σ′ = σ + τ gives

E(τ)y = eλτ
∫ ∞
τ

e−λσ
′
E(σ′)yλdσ

′.

Writing
∫∞

0 as
∫∞

0 −
∫ τ

0 ,

E(τ)y = eλτ [R(λ)yλ −
∫ τ

0
e−λσS(σ)yλds].

The above integral representation allows us to calculate d
dτE(τ)y as the

product f(τ)g(τ) where f(τ) = eλτ and g(τ) = y −
∫ τ

0 e
−λσS(σ)yλds. We

differentiate by the product rule to get

d

dτ
E(τ)y = [λ−R−1(λ)]E(τ)y for almost all τ,

provided R(λ) is invertible on ∆Y for all λ > 0 2. Furthermore, by the
integral representation,

lim
τ→0+

E(τ)y = y,

2The commutativity of E(τ) and R−1(λ) follows from pre and post multiplying the
identity (D.2.2)
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for y ∈ ∆Y .

Therefore, we define the operator A : ∆Y → Y as A := λ − R−1(λ) .
Once again it can be proved (algebraically) that A does not depend no the
choice of λ. Finally, we have

Theorem 2. If E is an E-semigroup and R(λ) is invertible on ∆Y for all
λ > 0 and y ∈ ∆Y , then the abstract Cauchy problem

d

dτ
E(τ)y = AE(τ)y for almost all τ ; (D.2.5)

lim
τ→0+

E(τ)y = y, (D.2.6)

is satisfied for almost all τ .

D.3 Approximations of Infinitesimal Generator

The pseudo-resolvent operatorsR(λ) (D.2) constructed the infinitesimal gen-
erator A of an E-semigroup E . For a plain semigroup one cannot initially
assume the existence of such resolvents. Hille extended the Banach alge-
braist’s formulation of a resolvent of a bounded operator A to the resolvent
of a closed operator A in order to construct bounded operators An which
approximate A.

Definition 2 (Unbounded Generator of a Resolvent). Fix an unbounded
operator A : D(A) ⊂ Y → Y . Then A is called a generator of the resolvent
Rλ,A : λ ∈ ρ(A) 7→ R(λ,A) := (λ−A)−1 ∈ L(Y ) where (λ−A) is 1-1.

It turns out that such resolvents are equivalent to the resolvents R(λ) (
D.1, equation (D.2.1)) of an E-semigroup ( D.3.2, Theorem 4). This obser-
vation is the crux of Yosida’s approximation of the infinitesimal generator
A by bounded operators An ( D.3.2, Definition 4).

D.3.1 Hille approximations

Hille treated the semigroup E generated by the operator A as an exponential
function t 7→ eτA. Thus, the generation problem for the abstract Cauchy
problem can be posed as follows: can a closed densely defined operator
(A,D(A)) be constructed in such a way that the family E(τ)y = [eτA]y is a
strongly continuous semigroup satisfying the ACP. Diagrammatically,
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A
what sense [eτA]y

//E(τ)y

Diagram 3 : Hille approach to the Generation Problem for ACP

The well known one-dimensional case formula eτA = limn→∞(1+ τ
nA)n is

problematic for unbounded operators since powers of unbounded operators
are involved: convergence is unlikely. Therefore, we resort to an equivalent
form involving negative powers

eτA = lim
n→∞

(1− τ

n
A)−n,

which can be rewritten using bounded resolvent operators R(λ,A) := (λ1−
A)−1 ∈ L(Y ) in the form of

E(τ)y := [eτA]y = lim
n→∞

[
n

τ
R(
n

τ
,A)]ny. (D.3.1)

Hille then showed that the above limit exists when a growth condition is
imposed on the powers of the resolvent R(λ,A):

Theorem 3 (Generation theorem). Let (A,D(A)) be a densely defined
closed operator on a Banach space Y . Then the above limit (D.3.1) ex-
ists and defines a strongly continuous semigroup {E(τ)|τ ≥ 0} satisfying:

(i) E(τ + σ) = E(τ)E(σ);
(ii) E(0) = 1;
(iii) limt→0+ E(τ)y = y, y ∈ Y ,

if and only if there exists constants ω ∈ R,M > 0 such that the resolvent set
of A contains the half-line (ω,∞) and the growth condition

[(λ− ω)R(λ,A)]n ≤M,

is imposed.

D.3.2 Yosida Approximants

Yosida’s approach approximated A by a sequence (An)n∈N of bounded op-
erators and hope that

E(τ)y := [eτA]y = lim
n→∞

[eτAn ]y, (D.3.2)

since the exponential function for bounded operators is well defined. The
motivation behind the construction of the approximants An ∈ L(Y ) lies in
the fact that the pseudo-resolvent R(λ) coincides with the resolvent R(λ,A)
of the infinitesimal generator A of the semigroup
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Definition 3 (Pseudo Resolvent of C0-semigroup). Let {E(τ)|τ ≥ 0} be a
C0-semigroup. Then we define the pseudo resolvent R as the function of
the scalar λ into L(Y ); R : λ 7→ R(λ) ∈ L(Y ) where R(λ) : y ∈ Y 7→∫

[0,∞) e
−λτEy(τ)dt ∈ Y .

Theorem 4. Fix the generator A of the resolvent R(λ,A) to be the generator
of the C0-semigroup {E(τ)|τ ≥ 0}. Then the (bounded) resolvent R(λ,A)
coincides with the pseudo-resolvent R(λ) : y ∈ Y 7→

∫
[0,∞) e

−λτEy(τ)dt on

λ ∈ ρ(A).

Therefore, R(λ)(λ − A) is the identity operator on D(A). For all y ∈
D(A),

AR(λ)y = λR(λ)y − y

Set λ := n. Now the numerical analogue of nAR(n,A) is the number
An := nA

n−A = A
1−n−1A

where An
n→∞−→ A. Therefore, we define the Yosida

approximations of A by

An = n2R(n,A)− n = nAR(n,A)

and indeed Any → Ay for all y ∈ D(A). Formally,

Definition 4 (Yosida Approximants). Let {E(τ)|τ ≥ 0} be a C0-semigroup
and A the infinitesimal generator of the semigroup. Then we define the
Yosida approximations of A by the bounded operators

An = n2R(n,A)− n = nAR(n,A).

Diagrammatically,

AyOO

n→∞

eτAny //E(τ)y

��
Any := (n2R(n,A)− n)y oo R(λ)y

Diagram 4 : Yosida Approximants

Theorem 5. Let {E(τ)|τ ≥ 0} be a C0-semigroup. Then the limit (D.3.2)
exists for all y ∈ Y ; An ∈ L(Y ) and An = n2R(n,A)−nI: An is constructed
purely from the resolvent. Furthermore, the association A ↔ {E(τ)|τ ≥ 0}
is unique.

Remark 1. The generalization of the concept of a resolvent of an unbounded
operator (Definition 2) is adequate for C0 semigroup theory on Banach
spaces by virtue of Theorem 6: Definition 2 forces A to be closed.
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Constructing the family {E(τ)|τ ≥ 0} using equation (D.3.2) satisfies the
Generation Theorem 3. Formally,

Theorem 6. The family {E(τ)|τ ≥ 0} constructed using equation (D.3.2)
satisfies the Generation Theorem 3; An = n2R(n,A) − n = nAR(n,A).
Diagrammatically,

AyOO

n→∞

[eτAn ]y
//E(τ)y

Any := nAR(n,A)y oo A

Diagram 5 : Yosida solution to the Generation Problem for the ACP
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