
1 | P a g e  
 

The influence of a coupled formulation on the fluid dynamics in a 

large scale journal bearing. 

 

by 

Jacobus Malan Crous 

 

Submitted in partial fulfilment of the requirement for the degree 

 

Masters of Science (Applied Science) 

 

In the 

Department of Mechanical and Aeronautical Engineering 

 

 

 

 

 

 

 

Faculty of Engineering, School of the Built Environment and Information Technology 

2014  



2 | P a g e  
 

The influence of a coupled formulation on the fluid dynamics in a large scale 

journal bearing. 

 

By 

Jacobus Malan Crous 

 

Supervisors:  Prof P. S. Heyns and Dr. J. Dirker 

Department:  Mechanical and Aeronautical Engineering 

University:  University of Pretoria 

Degree:   Masters of Science (Applied Science – Mechanics) 

Keywords: Non-linearity, Fluid dynamics, Strong coupled formulation, Weak coupled 

formulation, Viscoelastic fluids, Non-Newtonian fluids, Journal bearings 

 

Summary 
 

In the pursuit of more accurate diagnostics of turbo machinery sophisticated rotor and bearing models 
are to be developed in order to better understand the dynamics of the rotor-bearing system. This 
study is concerned with such bearing models. 
 
Four distinct fluid models are developed: The first two have a viscous fluid formulation, where fluid 
dependencies enter the momentum equations primarily through the viscosity of the fluid. The last 
two have a viscoelastic fluid formulation where dependencies enter the equations through an 
additional differential constitutive relation. This constitutive relation is strongly coupled with the 
momentum equation.  
 
The dependencies included in the formulation of the fluid are: pressure, shear rate and temperature. 
The coupling of the fluid models is subject to the dependencies present in the formulation. Uncoupled, 
weakly coupled and strongly coupled formulations are compared in this work. 
 
The formulated models are solved numerically using the Finite Volume Method in the open source 
program OpenFOAM. These models were newly implemented in OpenFOAM as part of this study. The 
models are validated by comparing results with various known analytical solutions.  
 
A region of the bearing is subsequently analysed, where the dependencies of the lubricant are most 
prominent. In this region the influence of a weak and strong coupled formulation of the fluid dynamics 
in the oil film was considered. 
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In this study it is shown that both weak and strong couplings influenced the fluid behaviour 

significantly. It is shown that when these dependencies are no longer isolated in the mere adjustment 

of fluid properties is inadequate to account for the influence of dependencies. 

The weak coupled formulation shows the difference between the coupled and uncoupled 

formulations. The weak coupling influence the fluid dynamics to the same extent as the pressure 

dependency in the region considered. The departure from the classical formulation is however 

observed to be uniform in the case of a weak coupling. 

The difference between the uncoupled and strongly coupled formulation was not as great as in the 

weakly coupled case. Although the difference was less, it was seen that the presence of the strong 

coupling was about 40% of that of the temperature dependency in the region considered. The change 

in flow, for the strong coupled formulation, was non-homogenous compared to the classical 

formulation. 

The influence of the coupling is therefore different in nature. The weak coupling changes the flow 

more than the strong coupling compared to the classical formulation. The strong coupling introduce 

a new characteristic to the fluid behaviour not seen with the weak coupled formulation.  

Lastly it is shown that in order to model the bearing adequately, the fluid model and the coupling of 

the governing equations are not trivial. Great care must be taken in both the fluid model used as well 

as the formulation of the coupled equations.  
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Nomenclature 

Symbols 
𝑎 , 𝑏 Constants of the Carreau fluid 
𝑎𝑇,𝑝 Shift factor 

𝑐 Bearing clearance 
𝐶1 , 𝐶2 Constants for WLF-equation 

𝐷 Bearing diameter 
𝐷/𝐷𝑡 Material derivative 
𝐷𝑒 Deborah number 
𝑒 Eccentricity of journal centre to bearing centre 
𝑓𝑖 Body force, component 𝑖 

𝑖, 𝑗, 𝑘 Index of component (Einstein notation) 
𝑘 Thermal conductivity 
𝐾𝑠 Shear constant 
𝐿𝑐 Characteristic length of flow domain 
𝑝 Pressure 
𝑄 Heat generation term in energy equation 
𝑅𝐵 Radius of bearing 
𝑅𝐽  Radius of journal 

𝑅𝑒 Reynolds number 
𝑡 Time 
𝑇 Temperature 
𝑇0 Reference temperature 
𝑇𝑎 Taylor number 
𝑣𝑖 Velocity, component 𝑖 
𝑉 Velocity 
𝑥𝑖 Special vector (Cartesian coordinates), component 𝑖 

Greek symbols 
𝛼 Mobility constant 
𝛽 Ratio of solvent viscosity to total viscosity 
𝛾̇𝑖,𝑗 Rate-of-deformation tensor, component 𝑖, 𝑗 

𝛿𝑖,𝑗 Dirac delta function 

𝛿/𝛿𝑡 Upper convected derivative 
𝜖 Eccentricity ratio  
𝜂 Viscosity 
𝜂0 Zero shear viscosity 
𝜂𝑝 Polymer viscosity 

𝜂𝑠 Solvent viscosity 
𝜂𝑡 Total viscosity (sum of solvent and polymer viscosity) 
𝜃 Angle measure along circumference of the bearing 
𝜆1 Relaxation time 
𝜆2 Characteristic relaxation time 
𝜇 Viscosity, Dynamic viscosity 
𝜌 Density 

𝜎𝑖,𝑗 Cauchy stress tensor, component 𝑖, 𝑗  

𝜏𝑖,𝑗  Extra stress tensor, component 𝑖, 𝑗 

𝜏𝑝𝑖,𝑗  Polymeric extra stress tensor, component 𝑖, 𝑗 

𝜙 Energy partitioning coefficient 
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Φ Time duration of process 
𝜓 Barus law constant 
𝜔 Angular velocity 
𝜓 Barus law constant 

 

Abbreviations 
BEM Boundary Element Method 
CFD Computation Fluid Dynamics 
CV Control Volume 

DEVSS Discrete Elastic Viscous Split Stress 
ESKOM Electricity Supply Commision 

FDM Finite Difference Method 
FEM Finite Element Method 
FSI Fluid Structure Interaction 

FVM Finite Volume Method 
LES Large Eddy Simulation 

OpenFOAM Open Field Operation And Manipulation 
PISO Pressure Implicit with Splitting of Operator 
WLF Williams-Landel-Ferry 
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Chapter 1: Introduction 
 

The maintenance of steam turbines is an important matter and the neglect of which can result in very 

expensive catastrophic failures and even result in the loss of life. On the other hand the cost involved 

in the down-time of turbines due to scheduled maintenance is huge and therefore unnecessary 

maintenance costs millions. There is therefore a need for fault detection in such systems to determine 

the severity of faults and how they develop over time so as to find the best time to perform 

maintenance. 

 The condition of a turbo generator is, for this reason, constantly monitored through various means 

to give an indication of the overall condition of the system. In the case of turbo generators non-contact 

eddy current probes, situated at the bearings, are typically used to measure the vibration signals. This 

continuous monitoring of the system gives information regarding the condition of the system and 

allows one to monitor fault development in time. 

 This study form part of a comprehensive program to investigate to what extent more information can 

be extracted from the vibration signals measured by the eddy current probes. By numerically 

simulating the rotor-bearing system and inducing faults in the system, the response of the system to 

these faults can then be studied.  

The focus of this study is specifically on the journal bearings models. A set of four detailed bearing 

models was developed in order to determine how these models behave in the presence of various 

fluid dependencies. This study attempts to determine how the flow characteristic of the various fluid 

models are influenced when the velocity field is weakly or strongly coupled with the energy equation 

and, in some cases, the stress field. The bearing models vary in sophistication. However all four of the 

aforementioned bearing models are more sophisticated than the classical Reynolds equation.  

In order to study the influence of the coupled fields on the fluid behaviour, the following assumptions 

are relaxed compared to the classical Reynolds equation, to obtain more realistic models:   

 In deriving the Reynolds equation, the inertia terms are neglected assuming that the viscosity 

of the fluid dominates the flow. This greatly simplifies the mathematical model since the 

nonlinearity of general fluid dynamic problem arises from these terms. The issue with these 

terms is that a viscous flow dominated by its inertia terms will be unstable. It is also known 

that under these conditions propagation of instabilities is amplified (White 2006), which leads 

one to the conclusion that considering these terms is essential when considering the response 

to the system.  

 The viscosity of the lubricant is no longer considered to be constant but is rather modelled as 

a function of shear rate, temperature and pressure. Each of these either causes the fluid 

viscosity to increase or decrease. The viscosity of the bearing is crucial to the performance of 

the bearing. If it is decreased substantially (due to, for instance, a rise in temperature) it could 

lead to catastrophic failure of the rotor-bearing system. The eccentricity of the bearing is also 

expected to change with the change in viscosity as a low viscosity would results in a higher 

eccentricity ratios. (The eccentricity ratio is a measure of how much the centre of the journal 

is shifted from the bearing centre, where, 0 implies that the centres are aligned and 1 would 

imply contact between the journal and the bearing). 
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 The dependence of viscosity on temperature is diminished in practice by adding various 

polymers to the oil. These additives, being long polymer chains, affect the flow since the fluid 

properties of the oil are changed. In this study the influences of these additives are included.  

In order to do this, some of the bearing models are extended to include the behaviour of 

viscoelastic fluids. Temperature, pressure and shear rate dependencies are also considered 

for these extended models. 

The purpose of the bearing model in the context of the rotor-bearing system is to determine the forces 

on the journal. The forces generated in the bearing are due to the motion of the journal as well as 

forces acting on the rotor. The bearing model must therefore allow one to determine the transfer of 

the forces from the rotor to the bearing and the bearing to the rotor. The system therefore presents 

a complex interaction between the rotor and bearings. The starting point to study this system is to 

ensure that models representing the bearings are sophisticated enough to capture the nonlinear 

behaviour observed in the bearings. In this study the following is to be determined: how does the 

nonlinearity introduced by weak or strong couplings of the governing equations affect the different 

bearing models. In addition, if we know that the introduction of a dependency affects the operating 

conditions in the bearing in a specific way for the uncoupled system, would this dependence be 

affected by a coupling of the governing equations? Furthermore, if the coupling does affect the 

bearing model, would this influence be the same in all the bearing models considered? The reason 

why these questions cannot be easily answered is due to the superposition principle breaking down 

in the face of non-linear dynamics. By fully coupling the governing equations, a strong nonlinearity is 

introduced to the system (Christensen 2013).  

Once the models that represent this complex system have been developed, the dynamics and 

characteristic responses of the system can be studied for various operating conditions. When the 

limitations of the models and the dynamics of the system are understood, it is a relatively simple task 

to look at the manifestations of fault mechanics in the system. Therefore before studying the complete 

dynamics of the rotor-bearing system, one must first understand how each individual model is 

affected by the various dependencies. This is not trivial since the influence of each dependency could 

potentially vary from one bearing model to another.   

This study does not offer an exhaustive model of bearings or rotor-bearing interaction. It rather 

represents a first step in the direction of providing an answer regarding economical yet accurate 

bearing models: Viscoelastic fluid models in the context of steam turbine journal bearings are 

extremely resource intensive, whereas less sophisticated models might not be able to accurately 

express the flow characteristics present in the bearing. To this end it would be very beneficial to the 

further development of turbo generator diagnostics to find that for this particular case, a simple linear 

adjustment to a less sophisticated model would give sufficiently accurate results.  

The aim of the study is therefore to examine the nonlinearity introduced by coupling the governing 

equation fully and looking at how the various dependencies will manifest in the context of the 

different models. 
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1.1 Problem statement 
 

In most research projects pertaining to the dynamics of rotor-bearing systems, only very simplified 

bearing models are used due to the complexity of the systems being modelled. The first simplification 

is usually to approximate the three dimensional system as a two dimensional system. From there, 

other simplifications like constant viscosity, isothermal conditions, simplified cavitation model, steady 

state conditions and laminar flow are also commonly made.  

These assumptions typically lead to the Reynolds equation, or variations of the Reynolds equation. 

These variations are more general models than the classical Reynolds equation and are formulated to 

address a specific short coming of the classic bearing model. The Reynolds equation is a partial 

differential equation describing the pressure distribution in thin films. For more general cases the 

Reynolds equation is solved numerically using either the finite difference, finite element or finite 

volume methods, since the analytical solutions are limited to very particular cases (such as very long 

or very short bearings).  

Concerning oil-film journal bearings, much more sophisticated models have been developed. Models 

that address most of the short-comings of the Reynolds equation have been formulated. One area 

that is still lacking however is to study the difference between the individual bearing models as well 

as looking at how various dependencies would behave when the governing equations are coupled.  

With the advancements in computational power available, the focus of this work is to construct more 

substantial models of an oil film journal bearing. This was done by breaking away from the 

conventional Reynolds equation for modelling the pressure distribution in the bearing and rather use 

more general flow equations, specifically using Cauchy’s equations of motion as a starting point. Using 

these general equations, different bearing models are developed and then compared to each other, 

specifically regarding the interaction between the various governing equations.  

One might wonder whether this is necessary. It might seem unnecessary to examine the nonlinearities 

that arise due to the coupling of the equations.  

In a recent article (W. Li et al. 2011) a simple short bearing model as part of a rotor-bearing-seal model 

to study the response of the system at various operating speeds. The simple model showed the 

complexities of the non-linear system considered. However, how much would these results be 

affected by using a different bearing, rotor or seal model, and, how representative is this model of the 

real world situation? How much does the coupling of the governing equations change the 

characteristics of the flow?  

As far as the bearing model goes, it is the object of this study to consider this question in order to 

determine the complexity and sophistication of the bearing model needed to capture the relevant 

physics.  

The problem is approached as a coupled multi-field and coupled multi-physics problem (Markert 

2010). It is in the context of this coupling that the bearing models are considered.  

Accurately diagnosing fault mechanisms from the observed system response is the criterion for 

choosing the level of sophistication required.   
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The dissertation is structured as follows: 

The remainder of chapter one provides a broad view of what has been done in lubrication theory and 

what has been done in recent years to advance the classical theory of lubrication to a more general 

theory. The advancements in numerical algorithms that are able to deal with these more advance 

models are then considered. Finally the dynamics of rotor-bearing systems are considered since these 

offer the background for studying the bearing models that have been developed in the past as well as 

those developed in this study.  

Chapter two deals with the theoretical background and the mathematics needed for the development 

of the numerical solvers used in this study.  

Chapter three deals with the numerical solvers’ development form a mathematical point of view, 

implementation in OpenFOAM and benchmarking of these solvers against analytical solutions to 

determine the accuracy of the various fluid models developed.  

Finally chapter four reports on the application of the developed models to a test case which captures 

the important physics of a bearing under the operating condition applicable to the context of this 

study. This test case was chosen in view of the focus of the study: to determine the behaviour of 

different fluid models in the presence of various dependencies when the governing equations a 

coupled. Due to the severe amount of computational resources required to model a full scale steam 

turbine journal bearing, a simpler test case was chosen (see section 4.1 for more details).   

 

1.2 Literature survey 
 

The literature survey comprises four sections: 

In the first section the bearing models as well as how these models have developed as far as solution 

methodology is concerned, are considered. 

The second section looks at the expansion of bearing models to include factors that influence the fluid 

film properties.   

The third section is concerned with relevant numerical methods developed to solve complex flow 

problems. These methods are applied to various kinds of flow problems, the reason this is included in 

the literature review is that these methods are employed in this study to construct the various bearing 

models. 

Finally the fourth section is concerned with the influence of the bearings on the dynamics of a rotor.  

 

1.2.1 Bearing Models 
 

The theory of lubrication was originally formulated and discussed by Reynolds, who expanded on work 

done by Rayleigh and Stokes (Szeri 2011).  Since then analytical solutions to the Reynolds equation 
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have only been found for very specific cases: firstly isothermal bearings that are either of infinite 

length or has negligible length (Vignolo et al. 2011). 

Approximations and analytical techniques are used at present to expand the existing analytical 

solutions to more general operating conditions (Georgescu et al. 2001; Vignolo et al. 2011; X. K. Li et 

al. 2011). While these solutions remain useful, their generality cannot be compared to the numerical 

solutions that arose due to the development of the digital computer. 

Li et al. (2011) gained useful insight by means of an analytical solution that was obtained. They showed 

by means of perturbation theory that the viscoelastic effects in bearings are dependent on the 

minimum film thickness. The upper convected Maxwell constitutive model was used in this study. 

They reported a significant influence on the pressure distribution due to viscoelastic effects in their 

application and confirmed their calculations by experimental results.   

Expanding the generality through combining analytical and numerical techniques was also 

accomplished. Mukherjee used an infinite series solution to solve the pressure field and obtained an 

infinite set of differential equation from the Reynolds equation (Mukherjee 1974). Using numerical 

integration it was able to compute the forces and the torques on the journal. This approach 

generalized the existing bearing models to take into account the inclination of the journal.  

In the same year the curvature of the lubricant film (this would be the same as the curvature of the 

bearing) in the convergent-divergent zone was studied. Achieving greater accuracy in predicting the 

load-carrying capacity, friction losses and lubricant consumption through the numerical solution of a 

derived analytical expression from the Reynolds equations (Kvitnitsky et al. 1976).  

Pure numerical solutions were also developed with different purposes in mind. Performance curves 

and design procedures have been outlined through the use of numerical solutions. Using the finite 

difference method the Reynolds equation was solved for a journal bearing with supply ports 

(Majumdar 1969). Singhal (1981) looked at the relaxation methods for iterative solvers and 

convergence criteria when using the finite difference method. Using the finite difference method the 

misalignment of a journal in the bearing in pressurized journal bearings was modelled (Kayar & Khalil 

1983).  

One of the major drawbacks with the analytical solutions is that they are two dimensional. Li et al. 

(1999) described the importance of three dimensional effects in bearings that are dynamically loaded. 

They first looked at the difference between the results obtained using the Reynolds equation ,when 

solved with the long and short bearing approximations, and that of solving the full set of governing 

equations. They considered bearings with different aspect ratios (bearing length to diameter): L/D = 

10/1, 1/1, 1/10. They then used the models to predict the force acting on the journal perpendicularly 

and the torque resisted by the film. The numerical results were compared to the long bearing solution 

and found to be in good agreement. The results were seen to come closer and closer as the eccentricity 

ratio of the journal increases. This was not the case for the short bearing as there was quite a large 

discrepancy between the results. They pointed out that the reason for this is that in the case of the 

long and short bearing approximation when determining the forces in the bearing and on the film it is 

done with only the determined pressures obtained with the Reynolds equation. When working with 

the Cauchy equations of motion, however, there is an additional term computed that arise from the 

stress tensor which was neglected when only the pressure distribution is used to compute the forces. 
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The contribution of this stress tensor is more prominent in the short bearing case. In addition to this, 

it was also noted that the finite bearing takes side leakage into account. This is not done in the case 

of the short or long bearing approximations. The implication of this is that the predicted force in the 

finite bearing tends to be less than what is predicted by the other two approximations. This implies 

that the behaviour of the finite bearing does not just simply lie somewhere in between these 

extremes, but is influenced by additional factors that affect the operating conditions of the bearing. 

These additional factors are neglected when the long and shot bearing approximations are used.  

Li et al. (1999) were not the first to realize the limitations of the analytical solutions in this regards. In 

early computational work on journal bearings the finite difference method was extensively used 

(Majumdar 1969; Mukherjee 1974; Singhal 1981; Kayar & Khalil 1983), however, analyses have also 

been done using the Boundary Element Method (BEM) and/or the Finite Element Method (FEM) (Li, 

Davies, et al. 2000; Li et al. 1999; Davies & Li 1994; Li, Gwynllyw, et al. 2000; Gwynllyw & Phillips 2008; 

Kohno et al. 1994), as well as the Finite Volume Method (FVM)(Gertzos et al. 2008; Jagadeesha et al. 

2012).   

Advances in oil technology have introduced new complexities to the field of lubrication, to the extent 

that Li et al. (2000) claims that lubricants with polymer additives have rendered lubrication theory 

inapplicable. This is specifically seen with synthetic oils which contain long polymer chains that when 

added to the base oil give rise to non-Newtonian flow behaviour (Chhabra & Richardson 2011). Due 

to the realization that the assumptions made in deriving the Reynolds equation are at times very 

crude, there is a need to develop models that include more dependencies of the lubricating oil 

(Stachowiak & Batchelor 2013). 

  

1.2.2 Expanding the classical Reynolds model of lubrication 
 

There are numerous variables that influence the operation of a journal bearing system. One of the 

most important factors is the viscosity of the lubricant used. The viscosity, in turn, is influenced 

primarily by the temperature, pressure and shearing rate of the lubricant film in the bearing. According 

to Mang and Dresel (2007) these are the three main dependencies that influence the viscosity. The 

temperature and the shearing rate will cause shear thinning behaviour in the film while an increase in 

pressure will result in shear thickening (Li, Gwynllyw, et al. 2000).   

To gauge the dependence of viscosity on temperature the viscosity scale was introduced in 1928. The 

purpose of this scale is to give the viscosity dependence on the oil relative to other base oils. A base 

oil with viscosity index 0 would imply a very small dependence of the viscosity on the temperature, 

where as if an oil has an index 100 the opposite would be true. The turbine oils considered in this 

study has VIs (viscosity indices) ranging from 95 to 105. It is therefore quite clear that temperature 

dependence is very significant.  

Furthermore, Mang and Dresel (2007) also mentioned that viscosity dependence on pressure is an 

effect that is frequently underestimated in lubrication applications. Due to the exponential 

dependence of viscosity on pressure it follows that the viscosity can rapidly increase due to an increase 

in pressure. He also notes that the VI improvers, added to the lubricant, can have a significant effect 

on the pressure dependence of the viscosity.  
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Binding et al. (1999) showed the importance of taking pressure dependence into account when 

modelling journal bearings. They demonstrated that viscoelastic effects become prominent at high 

pressures. The pressure dependence of a fluid can therefore enhance other dependencies that would 

not be significant at ambient pressures.  

The importance of taking the non-Newtonian fluid behaviour of the oil into account has also been 

highlighted (Walters et al. 1997) . This specifically refers to the viscosity’s dependence on the shear 

rate.  

When considering the classical lubrication model of Reynolds it is important to note that all of the 

aforementioned dependencies of viscosity are ignored when deriving the classical Reynolds equation 

(Stachowiak & Batchelor 2013). In order to extend the generality of the classical lubrication theory, 

two approaches are commonly seen in the literature: Firstly the Reynolds equation is reformulated 

using a control volume approach to extend the classical theory to include the desired dependencies 

and effects that are to be modelled. This extension of the models might also include describing certain 

dependencies using semi-empirical models. Secondly the assumptions of the Reynolds equations are 

deemed too restrictive for certain cases (Gwynllyw & Phillips 2008) and therefore by back-tracking to 

more general fluid equations, the problem is reformulated .  

In a theoretical paper Ramesh et al. (1997) set out to extend the classical Reynolds equation to include 

some of the complexities introduced through the development of oil technology and seen in practice. 

They extended the classical Reynolds equation to include thermal effects, specifically: the dependency 

of viscosity on temperature, the effect of surface roughness on the hydrodynamic pressure 

distribution and cavitation that arise in the diverging section of the wedge when the film thickness 

increases locally. The cavitation model was also modified to take surface roughness into account.   

Continuing along this line of research, the power law has been used to model the lubricant as a non-

Newtonian fluid (Nagaraju et al. 2003). In this study the influence of the power law index on the 

performance of the bearing was considered. The Reynolds equation was extended to include the 

effects of shear thinning, by modelling the fluid as a power law fluid, and surface roughness. Cavitation 

and thermal effects were however not modelled. This study was less concerned with the extension of 

classical lubrication theory to a more general theory as the previous one. The reformulated Reynolds 

equation was then discretized using the finite volume method.  

Jagadeesha et al. (2012) extended this work even further by using the generalized Navier-Stokes 

equations with a viscous non-Newtonian model. The governing equations that was used for the flow 

was more general and included the inertia terms while deriving the classical Reynolds equation these 

terms are normally neglected. This extension alone introduced a non-linearity into the equations, 

since the inertia terms in the equations were highly non-linear (Ferziger et al. 2008). By including these 

terms, it is no longer possible to describe the flow as being just a viscous dominant flow. This would 

only be the case for low journal speeds. In addition to the above, the following was also included into 

the model: (1) Three dimensional mixing of the lubricant due to surface roughness was considered. 

This is very significant since the previous work done was primarily done with two dimensional 

equations since flow variables are averaged out across the film. (2) A more general viscous non-

Newtonian flow model was used to describe the flow. This model is able to predict the behaviour of 

Herschel-Belkley fluids. In this study (by Jagadeesha et al.) journal bearing performance characteristics 
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are derived and presented for various bearing aspect ratios. This study was conducting using the 

software package Fluent which is a finite volume method based package.  

An extension of the model developed by Jagadeesha et al. has been constructed by the reformulation 

of the Reynolds equation using a viscoelastic constitutive relation. The fluid can therefore be described 

as having a shear dependent viscosity, normal stress difference and a relaxation time associated with 

it. By discretizing the reformulated Reynolds equation by the finite difference method is can be solved 

numerically. Through such an analysis it was found that the maximum pressure in the bearing 

predicted for a Newtonian fluid differs from the viscoelastic fluid. The maximum pressure for the 

Newtonian model was shown to be either more or less than the viscoelastic model, depending on the 

angular velocity of the journal (Haosheng & Darong 2005).  

Another useful extension of the classical Reynolds equation that is worth noting for this research is 

the extension of the theory to a three dimensional model that takes journal misalignment into account 

due to the deformation of the rotor shaft. The pressure distribution can be substantially different from 

the classical theory depending on the severity of the misalignment. The location of the minimum and 

maximum film thickness changes depending on eccentricity ratio of the bearing as well as journal 

misalignment. It follows that the location of the maximum pressure also changes as a function of these 

two variables. Interestingly it was found that the load capacity, attitude angle, amount of oil leakage 

and friction coefficient is independent of journal misalignment (Sun & Changlin 2004). 

The latter approach is useful in expanding the generality of lubrication theory. The shortcoming of this 

model, however, remains: the inertia terms of the fluid film are neglected from the model (the work 

done by Jagadeesha et al. is an exception). The severity of this shortcoming is better understood in 

the light of the Taylor-Couette problem.  The Taylor-Couette problem is essentially a stability analysis 

of the fluid between two concentric rotating cylinders (Owens & Phillips 2002). In order to analyse the 

stability of the flow the Taylor number is defined as (in the case where the outer cylinder is stationary): 

𝑇𝑎 = 2𝑅𝑒2  (
𝑐

𝑅𝐽
) 

 

 
(1.1) 

where Re is the Reynolds number of the flow, describing the ratio of inertia forces to viscous forces 

(White 2006), c is the clearance of the bearing and RJ is the radius of the inner cylinder. The Taylor 

number presents a similar ratio to the Reynolds number; however it is translated to a cylindrical 

domain. The Taylor number becomes important since it increases as the bearing size increases, mainly 

due to the bearing clearance increasing for larger bearings (Lisyanskii et al. 2006).  The journal bearings 

for steam turbines have Reynolds numbers of 20 000 under normal operating conditions (Uhkoetter 

et al. 2012). The inertia terms in this kind of flow would be dominant and the flow would be fully 

turbulent. Similarly the Taylor number the steam turbine bearings considered in this study 

corresponding to transitional flow would be around 6 400. The corresponding Taylor number for the 

aforementioned case studied by Uhkoetter et al. is two orders of magnitude higher than this. In order 

to adequately model this kind of problem, it is necessary to break away from the Reynolds equation 

and consider a reformulation of the problem. 

A three dimensional multiphase bearing model that takes turbulence, temperature and mixing of the 

lubricant into account was developed by Uhkoetter et al. (2012). The multiphase model was developed 

in order to understand the influence of cavitation in heavy duty steam and gas turbines. It was 
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concluded that when modelling these kinds of bearings a cavitation model is essential. The multiphase 

model had to be modified from the more common formulation to deal with the high shear rates 

encountered in this case. Although a multiphase model was employed, the film was still assumed to 

be incompressible and the lubricant Newtonian. Despite these assumptions the work gives very good 

insight into the shortcomings of the classical Reynolds model as well as providing very good 

visualizations of the flow within these large scale bearings. 

In considering the formulation of problem in order to include the inertia terms of the flow, a significant 

amount of work was done by Davies, Gwynllyw, Phillips and Xi. In their research they use more 

generalized flow models. This allows them to construct more sophisticated bearing models.  

Modelling concentric cylinders at high eccentricity ratios they were able to look at the influence of 

various factors that influence the operating conditions of the bearings. By modelling the fluid as a 

viscoelastic fluid, using the White-Metzner constitutive relation, they showed that the relaxation time 

of the lubricant can significantly affect the load carrying capacity of the bearings, even showing 

increased load carrying capacity of up to 20%, due to the difference in normal stresses (Davies & Li 

1994). In later studies less general fluid models were used. This would usually entail a generalized 

Newtonian formulation with a non-Newtonian viscosity relation (this is also called a viscous 

formulation, since the non-Newtonian viscous part of the flow is modelled while neglecting any 

elasticity of the fluid). 

Continuing the inclusion of various constitutive models into the context of lubrication theory, Grecov 

and Clermont (2005) applied a stream-tube method as well as domain decomposition to model 

lubricants that have Newtonian properties, non-Newtonian properties (by using the generalized 

Newtonian model as the constitutive relation) and viscoelastic fluid properties. For the modelling of 

the viscoelastic fluids the Upper Convected Maxwell model was used as well as the K-KBZ integral 

constitutive relation that deals with fluids that have a high relaxation time, therefore having a greater 

dependence on the fluid’s previous states.   

Looking at the temperature and pressure dependencies of viscosity it has been shown that pressure 

thickening behaviour is dominant at high eccentricities. This implies that shear thickening of the 

lubricant is dominant at high eccentricities, unlike the usual shear thinning behaviour of a temperature 

dependence(Davies & Li 1994).   

By analysing the effect of thermal boundary conditions on the temperature of the film it was shown 

that a Dirichlet boundary conditions on the journal and Biot (or Robbins) boundary condition on the 

bearing casing gave the best results for modelling automotive bearings(Davies & Li 1994). However it 

has since been shown in independent research, that the adiabatic thermal boundary condition for the 

bearing casing is more accurate when the film is in the turbulent range (Stachowiak & Batchelor 2013). 

The Biot number in the Biot boundary condition constructs a boundary condition that is a linear 

interpolation between the Dirichlet and Neumann boundary conditions. If the Biot number is small 

the boundary condition will tends to the Neumann boundary condition and vice versa. In this way it 

was shown that the choice of boundary condition can significantly influence the maximum 

temperature in the lubricating film and therefore the dominance of the temperature dependence of 

the viscosity of the bearing (Li et al. 2000). If shear thinning is dominant in the bearing the viscosity of 

the bearing will decrease and therefore the eccentricity of the bearing will increase. If bearings are 

therefore not designed with this in mind, temperature rises in the bearing could lead to bearing failure. 
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In general it was shown that treating bearings with a thermal analysis yields lower load carrying 

capacities of about 6% than predicted by an isothermal analysis.  

The first study by Davies and Li (1994) considered a steady state and a two dimensional problem, while 

in subsequent studies analysis of the transient dynamics have been performed as well as looking at 

the factors that influence the dynamics of the journal. The most significant were found to be three 

dimensionality (Li et al. 1999)  and temperature of the lubricant(Li, Davies, et al. 2000).  

The influence of neglecting the third dimension, either axially (as is the case in the long bearing 

approximation) or circumferentially (as is done with the short bearing approximation) was considered 

under both steady state conditions and transient dynamical conditions. Analysing the results by 

computing the force and torque acting on the journal for the steady state conditions showed good 

agreement between the numerical results and the long bearing approximation. The short bearing 

approximation, however, did not validate the numerical results. The reason they give to explain this is 

the neglecting of the extra stress terms of the Cauchy stress tensor when computing the forces on the 

journal. When just the trace of the stress tensor was used to compute the pressure distribution it was 

found to be in agreement with the short bearing approximation. This shows that the pressure 

distribution of both the short and the long journal bearing in the limit compares well with the 

numerical results (Li et al. 1999). This is a very important result since this shows that although the 

pressure distribution in the bearing might be predicted accurately, care must be taken in computing 

the force from only the pressure. This further also shows that when the force on the bearing is to be 

computed, it is not merely a superposition of the two approximated solutions. One cannot compute 

the long bearing solution and the short bearing solution and interpolate between them to find the 

force acting on a bearing that is not described by either of them. For transient cases the journal paths 

were considered while varying the load applied to the journal as well as the aspect rations of the 

bearings. It was shown that the aspect ratio significantly affect the eccentricity ratio at which the 

journal will operate.  

The effect of viscoelastic fluid model and relaxation times of the lubricant was studied for various gap 

sizes of the bearing on the dynamics of journal bearings. It was found that for an Oldroyd-B fluid (a 

fluid described by a non-linear differential constitutive relation), an increase in the relaxation time of 

the lubricant would result in higher load carrying capacities of the bearing. This was however not the 

case with the linear PTT lubricant1 for which a decrease in load carrying capacity was observed for 

higher relaxation time. This is, however, not the only dependence that the lubricant exhibited: it was 

also seen that an increase in the shear and extensional parameters of the PTT model would result in 

increasing shear thinning of the lubricant as well as shear hardening. These conclusions are drawn by 

looking at the orbital paths and eccentricities of the bearings in its dynamical state (Gwynllyw & 

Phillips 2008). This study is therefore an extension of the earlier one done by Davies and Li (1994), 

considering the influence of viscoelasticity on bearings operating under steady-state conditions.  

In a more general context viscoelasticity has been shown, even at moderate Weissenberg numbers, 

to greatly influence the flow condition between two eccentric cylinders (Liu & Grecov 2011). The load 

                                                           
1 Like the Oldroyd-B model, it is described by a non-linear differential constitutive relation. The PTT 
constitutive relation has an additional term, compared to the Oldroyd-B model, which described shear 
thinning and a bounded extensional viscosity 
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capacity of the bearing was shown to increase and the overall performance of the lubricant was 

improved when viscoelastic behaviour was present.  

In all the above-mentioned studies it was assumed that the fluid film is incompressible. In a 

preliminary study the influence of compressibility of the lubricant was explored on journal bearings 

(Bollada & Phillips 2007). A simple Newtonian model with linear relations between density and 

pressure was used in order to determine the extent of the influence of compressibility. The analysis 

was done under steady-state conditions as well as the isothermal condition. It was, however, explicitly 

mentioned that these assumptions would be rectified in subsequent papers. The model would then 

also be extended to include a full cavitation model. The development of these models have been seen 

in literature, however, their application to journal bearings is still lacking (Lind & Phillips 2011; S. J. 

Lind & Phillips 2012; S. Lind & Phillips 2012). 

In this preliminary paper, however, it was found, quite surprisingly, that the compressibility of the 

lubricant plays a significant role on the dynamics of the bearing even at Mach numbers as low as 0.02. 

It was seen that the compressibility of the lubricant would increase the load carrying capacity of the 

bearing due to the asymmetry of the pressure distribution. A mechanism that breaks this asymmetry 

would generate a resultant force that acts in the line that connects the centre of the bearing with the 

centre of the journal (Bollada & Phillips 2007).  

In recent years there has been increased interest in using smart fluids for lubrication purposes. Electro-

Rheological Fluids (ERFs) or Magneto-Rheological Fluids (MRFs) are both examples of this. The 

properties of these fluids change in the presence of a magnetic or electric field. In order to model 

these fluids in the context of lubrication theory the Bingham fluid model is used. Such a model was 

implemented in the Fluent environment in order to find the following performance characteristics of 

these lubricants: eccentricity ratio, attitude angle of the journal, pressure distribution, friction 

coefficient, lubricant rate of flow and maximum pressure given the length to diameter ratio of the 

bearing as well as the dimensionless shear number. The analysis performed was isothermal and 

incompressible. The flow was modelled using a generalized Newtonian formulation (Gertzos et al. 

2008). 

Most of the bearing models constructed through the reformulation of the film dynamics through the 

use of more general flow equations was applied to bearings found in the automotive industry. These 

bearings have dimensions that differ greatly form that considered in the present study. As mentioned 

previously, the size of the bearing would have a significant effect of the fluid dynamics of the fluid 

film. The conclusions made regarding dependence of the operating conditions on various fluid 

properties comes under scrutiny to determine which effect can simply be translated to the larger 

bearings as well as other fluid models. 

The various factors that influence the lubricant film were highlighted in this section. These 

dependencies from the base of the study, since the influence of these dependencies on one another 

are considered in this study. 
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1.2.3 Recent developments in numerical techniques dealing with fluid flow 

 

A large body of work exist for Computation Fluid Dynamics (CFD) as well as computational rheology. 

In this section therefore only the recent and relevant articles will be discussed. Due to the diversity of 

the field it would be very difficult to cover the development of the entire field.  

The field of CFD and Computational Rheology has been developing rapidly with the increasing 

availability of computational power. This being said, although a large amount of work has been done 

in solvers for viscoelastic fluids, the generalization to compressible solvers is still under-developed 

(Bollada & Phillips 2007). In a recent study Phillips et al. (2012) showed that the generalization of a 

viscoelastic solver from an incompressible solver to a compressible solver is far from trivial. One of the 

main issues that arise is that the fundamental link between the velocity gradient tensor and the 

Cauchy stress tensor disappears once the fluid elements are no longer considered to conserve their 

volume. This clearly leads to various difficulties that should be addressed if a compressible model is 

to be developed (Bollada & Phillips 2012). Although the importance of such a model to the response 

of journal bearings cannot be discounted, the difficulties that arise due to such a formulation place it 

outside of the scope of this study. It is surely something that would have to be revised if one is to 

improve the current models.  

Oliveira et al. (1998) used a finite volume based method to solve viscoelastic fluids with a differential 

constitutive relation. This model was then applied to two test cases: the entry flow problem and the 

bounded and unbounded flow past a cylinder. A Rhie-Chow inspired interpolation scheme was 

developed that required less storage space and was therefore more efficient. A second order scheme 

was used to discretize the convection terms: the linear upwind differencing scheme (LUWD), which is 

an extension of the upwind differencing scheme (UDS). The scheme is extended by taking two 

upstream values into account instead of just one.  This leads to a stable and robust numerical model 

that gave good results compared when with experiments. 

In studying viscoelastic flows, a semi-Lagrangian finite volume scheme with a staggered grid 

arrangement has been applied to contraction flows. A differential Oldroyd-B constitutive relation was 

used to describe the viscoelastic behaviour of the fluid. The Lagrangian nature of the scheme was 

incorporated into the finite volume context in order to trace particles over a single time step. This is 

done by means of a particle following transformation, using the latter transformation the convection 

terms in the momentum equation as well as the constitutive relation was evaluated. This numerical 

scheme was found to be stable and bypasses the numerical diffusion difficulties associated with the 

upwind differencing scheme (Phillips & Williams 1999).  

The computation of non-isothermal viscous and viscoelastic fluid models in contraction geometries 

was considered by Wachs et al. (2002). In this work three fluid models were compared: a Newtonian 

fluid model, a generalized Newtonian fluid model with thinning viscosity and a viscoelastic fluid model 

with a differential constitutive relation. The shear thinning of the generalized Newtonian model is 

described by the Carreau model. The differential constitutive relation used for the viscoelastic fluid is 

the Upper Convected Maxwell relation.  All these fluids were modelled as having a temperature 

thinning viscosity, described by the William-Landel-Ferry equation. The three fluid models were then 

compared to one another by looking especially at the length of the recirculating flow region at various 

contraction ratios of the contraction geometry. A further comparison was done by looking at how the 
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temperature dependence of each of these models affects the size of this recirculation zone. The 

numerical discretization was done with the finite-volume method using a staggered grid arrangement 

(Wachs et al. 2002).  

In their study Wachs et al. (2002) used the EVSS (Elastic Viscous Stress Splitting) formulation in order 

to stabilize the numerical solver. The problem that arises from the explicit evaluation of the stress 

tensor in time is that it leads to constraints on the time step size having to be extremely small. If the 

time step size is not chosen sufficiently small the solver diverges rapidly. This formulation splits the 

viscous and elastic parts of the tensor and allows one to evaluate part of it implicitly in time and 

therefore achieve greater accuracy. The formulation is not restricted to a particular discretization 

method but rather can be applied directly to the general governing equations in its continuous form. 

This method has been extended to the DEVSS (Discrete Elastic Viscous Stress Splitting), which is an 

easier formulation to implement (Gucnette & Fortin 1995) and has been adopted in work related to 

viscoelastic flows (Habla et al. 2012; Omowunmi & Yuan 2013; Favero & Secchi 2009). In this extension 

an elliptical term is added to the governing equations which can then be evaluated implicitly in time. 

This additional term strengthens the diagonal dominance of the matrix obtained from the discretized 

set of equations. This in turn increases the stability of the numerical scheme.  

In the context of OpenFOAM, an open source CFD package, Favero et al. (2009) developed a 

viscoelastic module in which some of the more commonly used differential constitutive relations are 

available. These constitutive models include: the UCM (Upper Convected Maxwell), Oldroyd-B, 

Giesekus, PTT (Phan-Thien-Tanner), FENE-P and FENE-CP (Finitely Extensible Nonlinear Elastic) fluid 

models. The P refers to Peterlin, whose idea forms the basis of the FENE-P and FENE- CP models. In 

addition, some derivations of the Pom-Pom models with both single and multimode form are included 

in this module.  The advantage of using OpenFOAM to develop such a module is that it is able to handle 

non-orthogonal, unstructured meshes as well as dynamic meshes therefore allowing one to apply 

these flow models to complex geometries. It also has a wide variety of already programmed 

interpolation and discretization schemes (Favero & Secchi 2009). In a paper by Faverco and Secchi 

(2009), the solver was applied to 4:1 contraction geometries using only the Giesekus constitutive 

model. In another paper (Mu et al. 2012) this idea was extended to three dimensional contraction 

geometries and extended to include the PTT and FENE-P constitutive relations.  OpenFOAM was, 

however, not used in the aforementioned study but rather a finite element method package was used.  

Non-isothermal viscoelastic flows have been considered in the OpenFOAM environment by Habla et 

al. (2012). They studied Oldroyd-B fluids with temperature dependencies modelled by the William-

Landel-Ferry equation and used the same fluid properties as the Wachs et al. (2002) study. A 4:1 

contraction geometry was used to study the stress in the fluid at various Deborah numbers. In order 

to study the stress field more accurately an interpolation scheme obtained through a second order 

linear regression scheme was used.  

Two-phase flow models have also been implemented in OpenFOAM. Looking at two-phase turbulent 

flows modelled with a LES (Large Eddy Simulation) model. Several cavitation models were simulated 

which have great significance in marine turbines as well as power turbines (Bensow & Bark 2010).  

Two-phase flow models have also been developed for viscoelastic flows using the volume-of-fluid 

method. This solver is also able to simulate the surface effects of the fluid. The models have the 

following differential constitutive relations available: Oldroyd-B, Giesekus, FENE-P, FENE-CR, PTT, 
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Pom-Pom and XPP models. Using this, free surface effects such as the Weissenberg and the Die Swell 

effect have been studied. Comparison to several experiments was also done and found to be in good 

agreement (Habla et al. 2011). 

The time dependent non-linear dynamics of polymer solutions were studied with respect to the effect 

of model parameters, the inertia of the fluid and the contraction ratio in microfluidic contraction flow. 

This study was also done in OpenFOAM and critically compares the rheometric material function of 

the FENE-CP model to that of the LPTT (Linear Phan-Thien-Tanner) model (Omowunmi & Yuan 2013). 

Due to the complexities of the fluid dynamics considered in the present study and the small body of 

literature available on the coupling of these general fluid equations, numerical techniques from 

various areas of CFD are employed. These numerical techniques, their development and application 

were presented in this section.  

 

1.2.4 Rotor-bearing systems 
 

Journal bearings, in the context of steam turbines, are not isolated units operating by themselves, but 

rather form the support structure for the rotor. It is therefore important to note that the study of 

journal bearing dynamics is crucial when studying the dynamics of the rotor bearing system (Szeri 

2011).  

The acoustic emissions form a journal bearing has given some insight as to how sensitive the dynamics 

of the bearings are with respect to the material properties of the system. The magnitude of the applied 

load, the flexibility of the bearing casing and the viscosity of the lubricant all influence the acoustic 

behaviour of the bearing. This would influence the response of the rotor-bearing as a whole (Bouaziz 

et al. 2012).  

The load carrying capacity of the journal bearing is usually computed by integrating the pressure 

distribution obtained through the Reynolds equation (Szeri 2011; Luneno & Aidanpää 2010). In order 

to reduce the complexities and the computational power required to deal with the full Reynolds 

equation, the short or long bearing solution is usually used to compute the forces acting on the rotor 

(Avramov & Borysiuk 2011; Luneno & Aidanpää 2010; W. Li et al. 2011).  

Chaotic behaviour in journal bearing orbital paths have been reported. This was due to a nonlinear 

treatment of the restoring force in the bearings, while looking at the dynamics of flexible rotors (Chen 

1998). It was seen that the angular velocities at which chaotic behaviour is very prominent 

corresponds to the operating conditions for many systems of this kind. One of the primary factors that 

contribute to this chaotic behaviour is the nonlinear suspension provided by the journal bearings. This 

would result in broad band vibration in the system. It is therefore necessary to consider the influence 

of the journal bearings on the response of the entire system. 

A third order Taylor expansion was used by Sawicki and Rao (2001) in order to evaluate the nonlinear 

dynamic coefficients for a given position of the journal in the orbital path. The need for a nonlinear 

analysis of this kind is necessary in cases where the vibration amplitude of the journal is large. In this 

case the reaction force from the bearing is nonlinear. The reaction force of the bearing must therefore 
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be computed with higher order techniques since the linear theory is inadequate in predicting the 

reaction force of the film to the journal.   

Luneno and Aidanpää (2010) considered the different results obtained by linear and non-linear 

analyses on the rotor bearing system. They found that the linear model was unable to give the correct 

orbital paths for the shaft in the bearing if the eccentricity ratio or the angular velocity of the shaft 

becomes too high.  The linear model predicted elliptical journal orbits that grow bigger as the speed 

of the journal increases. The linear model was, however, unable to predict deviations from the 

elliptical journal orbit behaviour that is present at higher angular velocities.  At eccentricity ratios 

larger than 0.6 the oil film behaviour became highly nonlinear, at which point the linear model was 

not sufficient to predict dynamic responses in the system. 

A similar study was performed where the differences between the linear and nonlinear models were 

considered in its ability to predict the orbital paths of the journal (Moreira et al. 2000). The bearing 

model used, however, was different: a modified Reynolds equation was used that employed a semi-

empirical model for the turbulent shear stress at the wall of the journal and the bearing casing. The 

bearing model was isothermal, two dimensional and incompressible. It was seen, however, that the 

nonlinear model compared well with experimental results. 

The nonlinear dynamics of an asymmetric rotor was studied by Avramov and Borysiuk (2011). Using 

the short bearing solution to model the dynamic forces that the bearings exert on the rotor, and taking 

into account the gyroscopic moments which act on the disk, the response of the rotor was studied for 

various angular velocities. By looking at the Hopf bifurcation point by means various techniques they 

found mono-harmonic and poly-harmonic vibrations. In light of this analysis concluded that a linear 

analysis of the rotor-bearing system is unable to describe the complexities of the system under self-

sustained vibrations.  

Hamilton’s principle was used by Li et al. (2011) to construct a novel nonlinear model of the rotor-

bearing-seal system, improving the previous models. The system was modelled in terms of the kinetic 

and potential energies of the shaft and disk. Work was then done on the system by means of bearing 

forces acting on the shaft and forces from the steam acting on the rotor. The model is quite simple as 

it uses a five node finite element model to describe the rotor and disk and uses the short bearing 

theory to model the bearing forces. Looking at Bifurcation maps, time-history diagrams, Poincare 

maps, Fourier transforms of the response and trajectory maps of both the bearing and the disk they 

showed that the system had highly nonlinear behaviour as the angular velocity of the shaft increases 

above 700 rad/s.  

The nonlinear dynamics in shaft lines due to coupling misalignment was studied by Pennacchi et al. 

(2012) using a more sophisticated approach as far as the rotor model is concerned. A detailed finite 

element model was constructed for the rotor which was supported by journal bearings modelled by 

the Reynolds equation. The journal bearing model was then solved using the finite differencing 

method. This allowed for a more elaborate dynamic analysis on the system and allowed them to 

diagnose coupling misalignments in the rotor by looking at the higher order harmonic components of 

the response (Pennacchi et al. 2012).  

The dynamic analysis of journal bearings are complicated further by various dependencies such as: 

heat transfer and pressure (Davies & Li 1994; Solghar & Gandjalikhan Nassab 2011), type of lubricant 
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used (Li, Gwynllyw, et al. 2000; Gwynllyw & Phillips 2008; X. K. Li et al. 2011), the diameter to length 

ratio (Li et al. 1999), the surface roughness of the bearing surface (Jagadeesha et al. 2012), 

compressibility of the fluid film (Bollada & Phillips 2007), turbulence in the fluid film (Solghar & 

Gandjalikhan Nassab 2011) and cavitation (Wang et al. 2011). These factors influence the orbital path 

of the journal in the bearing; it would therefore have a direct influence of the response of the system 

as was shown in most of the articles sighted above.  

A modified form of the Reynolds equation was used by Jagadeesha et al. (2012) to look at the transient 

response of non-Newtonian journal bearings taking into account the roughness of the bearing surface. 

This model was solved using the finite element method. The power law was used to describe the non-

Newtonian fluid film, the effect of transverse and stationary surface roughness was then studied on 

the bearing orbital path. It was found that surface roughness has a significant effect on the operating 

conditions of the bearing. Generally it was seen that surface roughness benefits the operating 

conditions as the minimum film thickness in the bearing is increased or unaffected, but never 

decreased, by these two types of surface roughness considered. 

A stability analysis was performed by Mongkolwongrojn and Aiumpronsin (2010). They showed that 

the stability of the rotor’s response is strongly influenced by the bearings. This is affected by the 

surface roughness of the bearing, the lubricant used as well as the rigidity of the metal liner of the 

bearing. It was shown that transverse surface roughness patterns results in a more stable system 

compared to longitudinal roughness patterns. Further more stability was shown to increase with a 

decrease in length diameter ratio of the bearing.  

The influence of cavitation on the dynamics of journal bearings was studied by Wang et al. (2011). 

Considering the difference between the Reynolds boundary condition on the pressure field, which 

forces the pressure to be zero in the diverging section of the bearing where cavitation is expected, 

and an improved Elron cavitation model. The bearing was subjected to dynamic loads and it was found 

that the cavitation model used can significantly affect the journal orbital and the response of the 

bearing. Additional damping is provided by the cavitation mechanism. This damps dynamic responses 

in the system as seen by analysing the orbital path of the journal in dynamically loaded cases (Li, 

Davies, et al. 2000). 

A fully coupled bearing-rotor system was simulated by Liu et al. (2010). Using a monolithic Fluid 

Structure Interaction (FSI) method the deformation of both the bearing and the rotor was simulated. 

A simple cavitation model was employed that varies the properties of the lubricant according to the 

pressure of the lubricant in the diverging section of the bearing. This model was used to compute the 

orbital path of the journal for varying degrees of dynamic instability. The elastic dynamics of the rotor 

and the bearing was considered, the elasticity of the material of the rotor and bearing were seen to 

significantly influence the orbital path of the journal. The study showed the extent to which modelling 

errors can influence the predicted results for highly nonlinear systems (Liu et al. 2010).  

The literature on rotor-bearing systems shows emphatically the non-linearity of these systems. 

Predicting the evolution of these non-linarites (i.e. the development of the dynamics in the rotor-

bearing system) becomes obscure when all the non-linarites are not accounted for or not allowed to 

interact with one another. (Due to the super-position principle breaking down one can no longer 

model systems individually and extrapolate the behaviour of the systems in the presence of other 

factors influencing the operating conditions).  The accurate prediction of the dynamics of the rotor-
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bearing system hinges on adequately modelling and accounting for interaction of the non-linarites 

present in the system.  

 

1.2.5 Summary  
 

Looking at the complexity of the work done in the past decade in the field of tribology it is evident 

that the classical and linear models are no longer sufficient to model all the complexities in the system. 

This can further be seen when looking at the response in literature to develop exceedingly 

sophisticated nonlinear models to investigate the dynamics of the rotor-bearing systems.  In addition 

to the nonlinearities introduced through the dynamics of the system, additional factors that are 

essential to the construction of an accurate model demands more complex models to capture the 

physical laws governing the dynamics of the system. The issue that arise in the realm of nonlinear 

mechanics is that the superposition principle is not applicable. Caution should therefore be taken 

when looking at a single dependency and extrapolating the effect it has to the general nonlinear 

system. A single dependency would not necessarily influence the general system in the same way 

when other dependencies are present. The literature cited above showed definitively that nonlinear 

dynamics are common in the kinds of problems considered in this study. This implies that to merely 

extrapolate results from one model to another would be quite naïve. There is thus merit in looking at 

how well the dependencies translate from one model to another when the models considered are not 

uncoupled, but rather strengthens the non-linearity further by coupling the governing equations with 

one another.   

In this study we will therefore not be looking to consider the influence of various dependencies on the 

bearing operating conditions individually. Rather we want to compare various models that take into 

account various nonlinearities and look at how these nonlinearities behave in the presence of one 

another.   
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Chapter 2: Models and Theory 
 

The modelling of a journal bearing is not a simple matter. There are numerous mechanisms of heat 

generation and deformation, amongst many others, which influence the operating conditions of the 

bearing. Although the modelling of a bearing becomes exceedingly complex if one considers all 

mechanisms influencing its performance, it is always important not to lose sight of what is the 

information that needs to be extracted from the model. Once one has a clear view of the output 

parameters that one needs to extract from the model, it is easier to determine which of the 

aforementioned mechanisms are most important to capture in the model.  

Due to the adhesion of the oil to the surface of the journal, the oil is dragged by the rotating journal 

to form a converging and diverging regions in the pressure field. The converging region is where the 

film thickness decreases due to the eccentricity of the journal; this causes an increase of pressure in 

this region. As the fluid passes through the narrow gap the pressure starts decreasing, this is due to 

the film thickness increasing again. The decrease in pressure could cause cavitation of the oil film if 

the pressure drops below the saturation pressure of the oil for the particular operating temperature. 

The pressure in this region (diverging region) would usually not be much lower than atmospheric 

pressure (if the bearing is not pressurized). The existence of these regions is essential for effective 

lubrication as this induced pressure field is what supports the loading on the bearing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 is a simple representation of a bearing. The eccentricity, indicated by e on the figure, is the 

offset of the journal from the centre line of the bearing. The clearance of the bearing, denoted by c, 
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Figure 1: Schematic of a Journal Bearing 
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is the difference between the journal radius and the bearing radius. The eccentricity ratio, denoted in 

the text by 𝜖, is the ratio between the eccentricity and the clearance of the bearing.  

𝜖 =
𝑒

𝑐
  

(2.1) 

The direction of 𝜃 is indicated. The reference point of 𝜃 (the point on the circumference where 𝜃 = 0) 

is set to correspond to the zero pressure point before the maximum pressure is encountered (the 

point of zero pressure does not vary with eccentricity, as can be seen by the solution of the Reynolds 

equation presented in section 2.1.8). Setting this reference point will always yield the maximum 

pressure within the bearing between the angles 00 and 1800 (this is also the reference point selected 

for 𝜃 in section 3.2.1). 

For quick and simple calculation the Reynolds equation is usually used to determine the following 

bearing parameters, as mentioned in the book of Stachowiak and Batchelor (2013): (1) The pressure 

distribution, which is obtained by solving the Reynolds equation. (2) The load capacity which is 

computed from integrating the pressure field. (3) The friction force, obtained from the torque acting 

on the oil film, which in turn is computed from the pressure field. (4) The mass flow rate of lubricant 

supplied to the bearing which is important in the effective design of bearings. If the mass flow rate is 

too high the fiction force is increased in the bearing. In the case where the mass flow rate is too low 

it could lead to metal to metal contact. This could lead to damage of the bearing and even breakdown 

of the system.   

The Reynolds equation is derived from the Navier-Stokes equations. The revised assumptions in the 

development of the coupled formulation are: 

1. The fluid is being modelled as a Newtonian fluid. This assumption is addressed by starting 

from two more general points. Firstly the oil is modelled as a shear thinning Non-Newtonian 

fluid. The equations of motion are a generalized Newtonian formulation and are more general 

than the Navier-Stokes equations. Secondly the oil is modelled as a viscoelastic fluid, and the 

Cauchy equations of motion are used with two different constitutive relations for describing 

the stress field in the fluid. 

2. Fluid inertia is neglected (fluid inertia is still neglected with the Stokes formulation). As 

mentioned before, the Taylor number being high in steam turbine bearings indicate that the 

inertia forces will be dominant (opposed to the viscous forces). Furthermore in this study we 

are looking to develop a bearing model that would eventually be used to diagnose fault 

mechanisms. Since the response of the lubricant film is important to study the response of 

the rotor-bearing system it follows that the inertia terms must be included. 

3. The viscosity is constant throughout the film. This assumption is crude since the viscosity is 

usually a function of temperature, pressure and shearing rate. The temperature and shearing 

of the fluid will have a shear thinning effect on the fluid and the pressure a shear thickening 

effect. 

4. The uncoupling of the governing equations. The governing momentum and energy equations 

and the constitutive relation for the stress field (in the viscoelastic formulation) are all 

coupled, either by a weak or a strong coupling.   
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For the non-Newtonian model the temperature dependency of the viscosity implies a fully coupled 

system of equations: the momentum equation is dependent on viscosity which is dependent on 

temperature. The energy equation has a heat generation term due to viscous dissipation which is 

affected by the velocity gradients in the flow and the viscosity. The flow would therefore influence the 

amount of heat generated and the amount of heat generated will affect the flow though the viscosity 

dependence of the temperature. For the viscoelastic models the above holds, however an additional 

equation is added to the set of governing equations, the constitutive relation. The constitutive relation 

is fully coupled with the temperature and momentum equations. The momentum equation is 

dependent on the extra stress tensor which comes out of the solution of the constitutive relation. The 

temperature equation has an additional dependence in the viscous dissipation term on the extra-

stress tensor. Finally the constitutive relations contain both convective and explicit temperature 

terms. This therefore also forms a fully coupled set of equations. 

 

2.1Governing equations 
 

2.1.1 Continuity equation: 
 

The continuity equation or conservation of mass equation is (Temam and Miranville 2005): 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑣𝑗) = 0 

 
(2.2) 

   
where 𝜌 is the density of the continuum, t is time, 𝑣𝑗 is the velocity component of the velocity vector. 

Einstein’s notation is used with the index j indicating that the index j runs through all the vector 

components (in this case three) and the components are summed.  

In this study the lubricant is assumed to be incompressible and therefore (2.2) reduces to: 

𝜕

𝜕𝑥𝑗
(𝑣𝑗) = 0 

 

 
(2.3) 

This is an important assumption for the numerical solution, since the velocity field being free from 

divergence is vital to the solution algorithms used in this study (see appendix A.2 for more details). 

 

2.1.2 Linear Momentum equations: 
 

The linear momentum equations for a continuum are defined below (Temam and Miranville 2005). 

These are also called the Cauchy equations of motion (Reddy 2009): 

𝜌 (
𝜕𝑣𝑖

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

3

𝑗=1

) =
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖  

 

 
(2.4) 
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where i and j ranges from 1 to 3. The terms inside the bracket on the left hand side of (2.4) represent 

the change of the velocity at a point with respect to time and the convective flux at a point 

respectively. The first term on the right hand side is the divergence of the stress tensor (this stress 

tensor is also called the Cauchy stress tensor) and 𝑓𝑖 is the body force acting on a volume element in 

the direction i. 

The Cauchy stress tensor describes the stress in the fluid element due to surface tractions acting on 

the fluid element. For an incompressible fluid there is no dilation of the fluid element (in the case of 

the fluid being incompressible, the volume of the element will remain the same and the only 

deformation of the element will be due to shearing of the element).  

The total stress tensor (or the Cauchy stress tensor) can be decomposed into its hydrostatic and 

deviatoric components as follows (Reddy 2009): 

𝜎𝑖𝑗 = − 𝛿𝑖𝑗𝑝 + 𝜏𝑖𝑗  (2.5) 

where 𝛿𝑖,𝑗 is the Dirac delta function, p is the pressure and 𝜏𝑖,𝑗 are the components of the extra stress 

tensor. The equation (2.5) is not solvable (numerically or analytically) since the system of equations is 

underdetermined. Therefore additional equations are needed to complete the set of equations and 

make the problem well-posed. This is provided in the form of a constitutive relation that describes the 

stress in the fluid as a function of the deformation of the fluid. This constitutive relation is crucial as it 

affects the entire model and is specific to the material modelled.  

The theoretical complexity of modelling a viscoelastic continuum is that it has a ‘memory’. That is the 

current state of the fluid is dependent on previous states of the fluid and not only on the current 

condition. Energy is therefore stored and released as the continuum undergoes loading and is released 

when the loading is no longer applied. This is contrary to fluids such as water or air where the energy 

applied to the fluid is dissipated through motion of the fluid. The greater the ability of the fluid is to 

store energy the greater its dependence will be on the history of the previous states.  The extent to 

which a fluid is dependent on the previous history can be measured by the Deborah number, defined 

as (Szeri 2011): 

𝐷𝑒 =
𝜆1

Φ
 

 
(2.6) 

where 𝜆1 is the relaxation time and Φ is the time duration of the process. When De is zero the 

continuum is a Newtonian fluid however if De is infinite the continuum is a Hookean solid (Owens & 

Phillips 2002). The Deborah number determines the complexity of the fluid that is to be modelled. 

When the Deborah number is small the viscous forces are dominant and therefore only viscosity 

dependencies are to be modelled. As the Deborah number increases the elastic behaviour of the fluid 

becomes more prominent. A constitutive relation of the fluid is required to describe the relationship 

between the velocity gradient tensor and the stress tensor as this relation is no longer linear, as is 

assumed for a Newtonian fluid. The fluid is now classified as being of differential type as the 

constitutive relation is described by a differential equation. For the synthetic oils considered in this 

study a differential fluid model is used (Szeri 2011).  

The consistency, flow properties and viscosity of a lubricant are key parameters to the operation of 

the bearing. It is therefore very important how the fluid is modelled and which properties are included 

in the model (Mang & Dresel 2007). Due to the small relaxation times associated in literature with 
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synthetic oils used in journal bearings, differential constitutive models are sufficient to model the fluid 

behaviour (Gwynllyw & Phillips 2008). 

 

2.1.3 Viscoelastic models: 
 

Two viscoelastic models are used in this study. The two models are both of differential kind. Oldroyd 

type models are the simplest non-linear viscoelastic fluid models. The Oldroyd-B model is only suitable 

to model dilute polymer solutions (Owens & Phillips 2002). Due to the limitations of the Oldroyd-B 

model a second model, the Giesekus model, is included in this study. Compared to the Oldroyd-B 

model, the Giesekus model has an additional term in the constitutive relation which arises from taking 

the polymer orientation into account. The constitutive relations used for the viscoelastic fluids are of 

a general non-isothermal formulation. The more general form of the constitutive models to the 

author’s knowledge has not yet been used in the context of journal bearings. The inclusion of this term 

is important in order to strongly couple the differential constitutive relation and the energy equation 

with one another. 

Order fluids might seem like the most logical constitutive relations to use in looking for the next 

generalisation from generalized Newtonian fluids. The issue with these models is, however, that the 

third order models have a maximum allowable shear rate, which in the case of bearings is not an 

acceptable limitation. Second order models are also unstable in unsteady flow situations since the 

variations in Rivlin-Ericksen tensors must be slow (Owens & Phillips 2002). Although this particular 

study is not concerned with the unsteady flow conditions present in the bearing, considering the 

context of the study and future work these models are avoided as they are too limiting in the context 

of the overall problem that is being solved.  

In the previous section the Cauchy stress tensor was separated into the pressure and the extra stress 

tensor. The constitutive models presented in the following sections deal with the extra stress tensor 

in various ways. Firstly the extra-stress tensor is separated into solvent and polymer stress 

contributions: 

𝜏𝑖𝑗 = 𝜂𝑠𝛾̇𝑖𝑗 + 𝜏𝑝,𝑖𝑗 (2.7) 

where the first term on the right hand side represents the Newtonian solvent contribution and the 

corresponding solvent viscosity, 𝜂𝑠. The tensor associated with the solvent stress contribution is the 

rate of deformation tensor, represented by (Reddy 2009): 

𝛾̇𝑖𝑗 = [
𝜕𝑣𝑖

𝜕𝑥𝑗
+ 

𝜕𝑣𝑗

𝜕𝑥𝑖
] 

 
(2.8) 

The second term on the right hand side of (2.7) is the polymer contribution to the stress. The 

constitutive relations now enter in order to deal with the polymer stress contribution in equation (2.8). 

The constitutive relations used for the viscoelastic flow in this study are differential constitutive 

relations. These constitutive relations are non-linear due to the convective time derivative used. The 

time derivative used in these equations is the first convected derivative of the stress tensor (also called 

the Upper-convected derivative) defined as (Christensen 2013): 
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𝛿𝜏𝑖𝑗

𝛿𝑡 
=  

𝜕𝜏𝑖𝑗

𝜕𝑡
+ 𝑣𝑘

𝜕𝜏𝑖𝑗

𝜕𝑥𝑘
− 𝜏𝑘𝑗

𝜕𝑣𝑖

𝜕𝑥𝑘
− 𝜏𝑖𝑘

𝜕𝑣𝑗

𝜕𝑥𝑘
 

 
(2.9) 

Here k is employed in the summation in the same way i and j was used before. This derivative is needed 

to formulate the non-linear constitutive model (such as the Oldroyd-B model) in contrast to the linear 

model which uses only the first term on the right hand side of equation (2.9) (The linear Jeffery’s fluid 

model is an example of this). The convected derivative is formulated to have an independence of 

superposed rotation of the polymer in the fluid. The derivative therefore takes into account the 

motion of the particle through the solvent while neglecting the rotation of the polymer. 

In order to deal with the non-isothermal problem and account for the coupling of the energy and the 

differential constitutive relation time-temperature superposition is applied (Zhmayev et al. 2008). For 

both of the constitutive relations used in this study these general forms are used to describe the stress 

field’s dependence on temperature (Wachs et al. 2002). The approach here is adopted from the above 

cited work. 

The momentum equation can be rewritten to explicitly contain the polymer and solvent flow 

contributions as follows:  

𝜌 (
𝜕𝑣𝑖

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

3

𝑗=1

) = −
𝜕𝑝

𝜕𝑥𝑖
+

𝜕τ𝑝,𝑖𝑗

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑗
[𝜂𝑠𝛾̇𝑖𝑗] 

 
(2.10) 

The body forces have been neglected since the only body force that would have an influence on the 

fluid is gravity, and since all the other forces would be much greater (such as shearing and pressure 

gradients) the force of gravity on the fluid can be neglected. 

 

2.1.4 Giesekus model: 
 

The Giesekus model is a generalization of the Oldroyd-B model. The Giesekus model has an additional 

term that allows the model to describe shear thinning behaviour. The model falls into a larger group 

of differential constitutive relations that modify the Oldroyd-B model in order to reduce the limitations 

of it. The constitutive relations, for the polymeric stress, are of the general form:  

𝜏𝑝 + 𝜆1

𝛿𝜏𝑝

𝛿𝑡
+ 𝑓(𝜏𝑝, 𝛾̇) = 𝜂𝑝𝛾̇ 

 

 
(2.11) 

Both 𝜏𝑝 and 𝛾̇ are tensors that describe the stress in the polymer chains and the rate-of-shear tensor 

respectively. The constants 𝜆1 and 𝜂𝑝 are material properties and represent the relaxation time and 

polymer viscosity respectively (Owens & Phillips 2002). The right most function on the left hand side 

sets this model apart from the Oldroyd-B model. Both constitutive relations considered in this study 

can be derived from a molecular model consisting of dumbbells, connected by a spring, suspended in 

a Newtonian solvent. The Fokker-Planck equation is used to derive an equation describing the 

probability density of the polymer orientation in the suspension. One of the key aspects that set 

constitutive relation derived from this platform apart is the way in which the spring force between 

dumbbells are dealt with.  

For the Giesekus model the added term in the constitutive relation is chosen to be:  
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𝑓(𝜏𝑝, 𝛾̇) = 𝛼
𝜆1

𝜂𝑝
𝜏𝑝
2 

 
(2.12) 

The new scalar, 𝛼, in the added term is called the mobility constant. The addition of this term gives a 

fluid model that has a non-vanishing second normal stress difference, a bounded extensional viscosity 

as well as shear thinning behaviour (Giesekus 1982).  

The non-isothermal formulation of the Giesekus model is (Zhmayev et al. 2008):  

𝜏𝑝,𝑖𝑗 + 𝛼
𝜆1

𝜂𝑝
𝜏𝑝,𝑖𝑗
2 + 𝜆(𝑇)

𝑇0

𝑇
[
𝛿𝜏𝑝,𝑖𝑗

𝛿𝑡
− 𝜏𝑝,𝑖𝑗

𝐷𝑙𝑛(𝑇)

𝐷𝑡
] =  𝜂𝑝(𝑇)𝛾̇𝑖𝑗  

 
(2.13) 

For the temperature dependence of viscosity and the relaxation factor the Williams-Landel-Ferry 

(WLF)-equation is used. In the case where relaxation time is divided by viscosity as is the case in the 

second term of the above equation, the shift function cancels out and therefore only the reference 

values are used for these mechanical properties in this term. This is indicated by not explicitly stating 

that these properties are functions of temperature. 

 

2.1.5 Oldroyd-B fluid model: 
 

An Oldroyd-B fluid is the simplest non-linear viscoelastic constitutive model and therefore it is the 

most logical step for a more general fluid model than the generalized Newtonian fluid. The model is 

arrived at by assuming that the polymers act as dumbbells connected by linear Hookean springs in a 

Newtonian solvent. 

𝜏𝑖𝑗 + 𝜆1

𝛿𝜏𝑖𝑗

𝛿𝑡
= 𝜂0 [ 𝛾̇𝑖𝑗 + 𝜆2

𝛿𝛾̇𝑖𝑗

𝛿𝑡
]  

 
(2.14) 

The constant on the left hand side is the relaxation time of the fluid, the viscosity on the right hand 

side is the total viscosity (that is the sum of the solvent viscosity and the polymer viscosity) and the 

second constant on the right hand side is the characteristic relaxation time of the fluid defined as (also 

see equation 4.7, for definition of 𝛽): 

𝜆2 =
𝜂𝑝𝜆1

(𝜂𝑝 + 𝜂𝑠)
= (1 − 𝛽)𝜆1  

 

 
(2.15) 

Using the definition of the characteristic fluid relaxation time, the Oldroyd-B constitutive relation and 

the splitting of the extra stress tensor it follows that the polymer contribution of the stress tensor can 

be computed from the Upper-Convected Maxwell equation (Owens & Phillips 2002): 

𝜏𝑝,𝑖𝑗 + 𝜆1

𝛿𝜏𝑝,𝑖𝑗

𝛿𝑡
= 𝜂𝑝𝛾̇𝑖𝑗 

 

 
(2.16) 

where the viscosity now refers to the polymer viscosity. The temperature dependence of the polymer 

contribution to the fluid is introduced as before with the Giesekus model. This dependence is 

described by the WLF-equation, which acts as a shift function on the viscosity and the relaxation time. 

This however is not yet a full coupling of the temperature and the stress field. The more general 

expression of the Oldroyd-B constitutive relation, fully coupled with the energy equation, can be 

obtained by setting the mobility parameter in the non-isothermal Giesekus model to zero (Thomas et 

al. 2004): 
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𝜏𝑝,𝑖𝑗 + 𝜆(𝑇)
𝑇0

𝑇
[
𝛿𝜏𝑝,𝑖𝑗

𝛿𝑡
− 𝜏𝑝,𝑖𝑗

𝐷𝑙𝑛(𝑇)

𝐷𝑡
] =  𝜂𝑝(𝑇)𝛾̇𝑖𝑗 

 
(2.17) 

In this case all the mechanical properties have dependencies on temperature and pressure and are 

computed by applying a shifting factor to these fluid properties (see section 2.1.10 for details).  

  

2.1.6 Generalised Newtonian fluid model: 
 

The magnitude of the Deborah number can be seen as a measure of how dominant the polymer 

additives are in the fluid. In the case where the flow is dominated mostly by the solvent and therefore 

the elasticity of the fluid becomes negligible, the relaxation time of the fluid tends to zero (Szeri 2011). 

For both the Giesekus and Oldroyd-B constitutive relations, as the polymer contribution to the flow 

tend to zero, the constitutive relations reduce to: 

 𝜏𝑝,𝑖𝑗 = 𝜂𝑝𝛾̇𝑖𝑗 

 

(2.18) 

The solvent and the polymer viscosities are therefore no longer separated. It is then assumed that the 

extra-stress tensor is a linear function of the strain rates which leads to (Owens & Phillips 2002): 

𝜏𝑖𝑗 = Λ𝛿𝑖𝑗

𝜕𝑣𝑘

𝜕𝑥𝑘
+ 𝜂 [

𝜕𝑣𝑖

𝜕𝑥𝑗
+ 

𝜕𝑣𝑗

𝜕𝑥𝑖
] 

 
(2.19) 

The first term on the right hand side represents the volumetric expansion at a point. The stress tensor 

can therefore be expanded as: 

𝜎𝑖𝑗 = −𝛿𝑖𝑗𝑝 +  Λ𝛿𝑖𝑗

𝜕𝑣𝑘

𝜕𝑥𝑘
+ 𝜂 [

𝜕𝑣𝑖

𝜕𝑥𝑗
+ 

𝜕𝑣𝑗

𝜕𝑥𝑖
] 

 
(2.20) 

The equation of motion can be written as (White 2006): 

𝜌 (
𝜕𝑣𝑖

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

3

𝑗=1

) = −𝛿𝑖𝑗

𝜕𝑝

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
[𝜂 (

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
) + 𝛿𝑖𝑗Λ

𝜕𝑣𝑘

𝜕𝑥𝑘
]  

 
(2.21) 

The equation is left in terms of Cartesian coordinates, although initially one might think that cylindrical 

coordinates would be better suited for the problem. However due to the curvature of the two surfaces 

in the analysis the surfaces can be approximated as being straight. Comparing the curvature of the 

surfaces with the dimensions of the geometry it can be seen that the curvature of the surface becomes 

negligible. This justifies the choice. Writing these equations in cylindrical coordinates introduces extra 

terms into the equation which increases the complexity of the equations and consequently the 

computational time to solve the equations (Szeri 2011).  

 

2.1.7 Stokes Flow: 
 

A further simplification can be made for flows where the viscous part of the fluid dominates the flow. 

In this case the flow is assumed to have negligible effects form the inertia of the fluid. The Reynolds 

number is a measure of the ratio of inertial forces in the fluid to the viscous forces in the fluid (White 

2006): 
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𝑅𝑒 =
𝜌𝑉𝐿𝑐

𝜂
 

 
(2.22) 

For inertial effects to be negligible the Reynolds number must be much smaller than one (𝐿𝑐 refers to 

the characteristic length of the flow domain). If this is the case the inertia terms can be neglected from 

the equation of motion (White 2006): 

𝜌 
𝜕𝑣𝑖

𝜕𝑡
= −𝛿𝑖𝑗

𝜕𝑝

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
[𝜂 (

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)] 

 

 
(2.23) 

For Stokes flow it is common to neglect the term on the left hand side also. The reason for this is that 

if we assume that the inertial effects are small no sudden changes in velocity are allowed as this would 

suddenly increase the flow conditions to the point where the Stokes flow model breaks down. On 

physical grounds, in the case of this study, it therefore makes sense to neglect this term also. The term 

is retained however for the sake of the numerical computations: this term stabilizes the numerical 

solver and helps reach a converged solution quicker. Once steady state conditions are reached this 

term would disappear and therefore is only present while the solution has not converged.  

The reason this model is added to the study is that it serves as a representative of the classical 

Reynolds equation which have been modified to take the various dependencies considered in this 

study into account. This model therefore serves as a crucial part of the study when the models are to 

be compared to one another.  

 

2.1.8 The Reynolds equation and solutions: 
 

The Stokes flow model presented in the previous section is simply the generalized Newtonian fluid 

model with inertia terms neglected. Starting at this point, the assumptions mentioned in the first 

section of this chapter are applied, and an order of magnitude analysis is done on the equation of 

motion (Szeri 2011). The result is the Reynolds equation for lubrication (Owens & Phillips 2002): 

𝜕

𝜕𝜃
[ (1 + 𝜖 cos(𝜃))3

𝜕𝑝 

𝜕𝜃
] + (

𝑅

2𝐿
)
2 𝜕

𝜕𝑧
 [(1 + 𝜖 cos(𝜃))3

𝜕𝑝 

𝜕𝑧
] =  −6𝜂𝜔𝑅2

𝜖

𝑐2
sin (𝜃) 

 
(2.24) 

The first term on the left hand side governs the circumferential pressure gradient whereas the second 

term governs the axial pressure gradients. The variable 𝜃 is runs along the circumference of the 

bearing and Z runs in the axial direction of the bearing. The right hand side of the equation represents 

the shear rate of the bearing (Szeri 2011).   

Two cases exist where solutions can be found for this equation: 

The first is the long bearing solution. The bearing is assumed to be of infinite length, this implies that 

there would be no pressure relief in the axial direction and hence the second term on the left hand 

side can be neglected. This assumption leads to an ordinary differential equation which can be solved 

to yield the pressure distribution (Owens & Phillips 2002): 

𝑝 = 𝑝0 +
6𝜂𝜔𝑅2

𝑐2

𝜖 sin(𝜃) (2 + 𝜖 cos(𝜃))

(2 + 𝜖2)(1 + 𝜖 cos(𝜃) )2
  

 
(2.25) 
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The second solution is the short bearing solution. It is assumed that the bearing is short enough to 

allow pressure release in the axial direction to be dominant. The circumferential pressure gradient is 

assumed to be small enough to be neglected, yielding an ordinary differential equation that again can 

be solved to yield: 

𝑝 = 𝑝0 +
3𝜂𝜔𝜖 sin(𝜃)

𝑐2(1 + 𝜖 cos(𝜃))3
 (

𝐿2

4
− 𝑧2) 

 
(2.26) 

These solutions have proven to be accurate for length to diameter ratios of 10:1 for the long bearing 

solution and 1:10 for the short bearing solution respectively. 

 

2.1.9 Energy equation: 
 

The energy equation follows from the first law of thermodynamics and therefore gives a differential 

description of internal energy at a point in terms of heat and work. The heat that is transferred in the 

system is heat generated in the oil due to viscous dissipation and it is transferred from the oil film to 

the journal and to the bearing casing through conduction and convection.  

Assuming that there is no internal heat generation in the fluid apart from viscous dissipation and 

neglecting interdiffusional convection and the Dufour effect and assuming incompressibility of the 

fluid the energy equation reduces to (Faghri et al. 2010):  

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑇

𝜕𝑥𝑗

3

𝑗=1

) = 
𝜕

𝜕𝑥𝑗
[𝑘

𝜕𝑇

𝜕𝑥𝑗
] + σij

𝜕𝑣𝑖

𝜕𝑥𝑗
 

 

 
(2.27) 

where 𝐶𝑝 is the heat capacity, k is the thermal conductivity and T is the temperature. 

The first term on the left hand side of the equation inside the brackets is the temporal change in the 

energy per unit volume and the second is the heat transferred by convection. The terms on the right 

hand side of the equation represents the heat transferred by thermal conduction and the heat 

generated due to viscous dissipation.  

The viscous dissipation term is the contraction of two second rank tensors where the contraction of 

two vectors is defined as: 

𝜎̿: ∇V⃗⃗ =  σij

𝜕𝑣𝑖

𝜕𝑥𝑗
 

 

(2.28) 

where 𝜎̿  and ∇V⃗⃗  are two tensors of the same rank. This term describes the heat generated as a result 

of the friction between the fluid layers. This is produced by the shear forces acting between the fluid 

layers. 

In order to arrive at this equation it had to be assumed that the fluid is incompressible. Due to this 

assumption the viscous dissipation term can be simplified by splitting the Cauchy stress tensor into its 

hydrostatic and deviatoric components:  
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σij

𝜕𝑣𝑖

𝜕𝑥𝑗
= (−𝛿𝑖𝑗𝑝𝑖  +  𝜏𝑖𝑗)

𝜕𝑣𝑖

𝜕𝑥𝑗
  

(2.29) 

Since the contraction of the two tensors (the Cauchy stress tensor and the velocity gradient tensor) 

produces a scalar (since the energy equation must be a scalar equation), multiplying the terms out 

and grouping all the terms in which pressure appears, yield: 

−𝛿𝑖𝑗𝑝
𝜕𝑣𝑖

𝜕𝑥𝑗
= 𝑝 ∇ ∙ (𝑣 ) = 0  

 
(2.30) 

The last term is zero due to the continuity equation (2.3). It follows therefore that for incompressible 

fluids, only the extra-stress tensor contributes to the viscous dissipation term and therefore the 

energy equation can be written as: 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑇

𝜕𝑥𝑗

3

𝑗=1

) = 
𝜕

𝜕𝑥𝑗
[𝑘

𝜕𝑇

𝜕𝑥𝑗
] + τij

𝜕𝑣𝑖

𝜕𝑥𝑗
 

 

 
(2.31) 

This is the formulation employed in the viscous fluid solvers “genStokesFoam” and “ViscFoam”. These 

solvers are developed in the OpenFOAM environment (see section 3.1 for more detail).  

An additional complication for the differential fluid models is the ability of the polymers to store 

mechanical energy (similar to compression and tension in springs). For instance, when the fluid 

undergoes constant shearing not all of the work done on the system will be dissipated immediately 

(which is typically the case with a Newtonian fluid). Heat generation in a viscoelastic fluid, by means 

of shear, is in part due to viscous dissipation and partly due to the compression and elongation of the 

polymers in the fluid. Mechanical energy stored in compressed or elongated polymers are partly 

dissipated by heat transferred from the polymer to the fluid. The heat generation by this mechanism 

is accounted for as follows (Habla et al. 2012; Wachs et al. 2002): 

Q = 𝜏𝑠,𝑖𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
+ 𝜙𝜏𝑝,𝑖𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
+ (1 − 𝜙)

𝑡𝑟(𝜏𝑝,𝑖𝑗)

2𝜆1(𝑇)
 

 
(2.32) 

The constant 𝜙 is called the energy partitioning coefficient and weights the heat generation from the 

polymer, due to viscous dissipation and mechanical dissipation. The heat source in the fluid is now 

also denoted by the scalar Q. The final form of the energy equation used in the viscoelastic fluid solvers 

is therefore: 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑇

𝜕𝑥𝑗

3

𝑗=1

) = 
𝜕

𝜕𝑥𝑗
[𝑘

𝜕𝑇

𝜕𝑥𝑗
] + 𝑄 

 
(2.33) 

where (2.32) will reduce to (2.29) if the polymer behaviour of the flow can be neglected or if the fluid 

is a generalised Newtonian fluid.   

In their book, Stachowiak and Batchelor (2013) give a generic example of how prominent the 

conduction heat transfer mechanism is in the overall heat transfer process in the bearing. One might 

be tempted to neglect conduction heat transfer at high shaft velocities as convection should be the 

dominant heat transfer mechanism.  Convection is indeed the dominant mechanism for heat transfer, 

however the conduction of heat is not negligible:  in a thick film journal bearing with a shaft angular 

velocity of 3000rpm and a minimum film thickness of 0.1mm, total heat transfer through conduction 
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is about 17%. This implies an increase of 17% to the total heat transferred since thermal convection 

and thermal conduction occurs in series.  

Heat transfer through both conduction and convection is therefore important and must be considered 

when modelling the heat transferred in the bearing.  

 

2.1.10 Viscosity models: 
 

In section 2.1.2 the linear momentum equation was presented. In this formulation viscosity was 

assumed to vary through space and have a dependence on the thermodynamic properties of the 

system. The constitutive relation of the fluid would therefore be incomplete without the formulation 

of this dependence. The viscosity is assumed to have a dependence on temperature, pressure and 

shear rate. The shear thinning behaviour of the fluid is modelled using the Carreau model (Wachs et 

al. 2002):  

𝜂(𝛾̇) =
𝜂0

(1 + (𝐾𝑠𝛾̇)𝑏)𝑎 
 

 

 
(2.34) 

In section 3.2.3 it is shown that this model varies between power law model and the standard 

Newtonian model. The Cross law model is mimicked by imposing limits on the minimum and maximum 

viscosities. These minimum and maximum viscosities are chosen in order to set the minimum and 

maximum viscosity allowed when all the viscosities are factored in (Chhabra & Richardson 2011). 

Furthermore, this model for shear rate dependence of viscosity is only used for the generalised 

Newtonian fluid. In deriving the differential constitutive relations the solvent is assumed to be 

Newtonian. The Giesekus model describes shear thinning behaviour through the addition of the term 

that describes polymer orientation (see section 2.1.4).  

The shear rate is defined as (Owens & Phillips 2002): 

𝛾̇2 = 2 [(
𝜕𝑣1

𝜕𝑥1
)
2

+ (
𝜕𝑣2

𝜕𝑥2
)
2

+ (
𝜕𝑣3

𝜕𝑥3
)
2

] + (
𝜕𝑣1

𝜕𝑥2
+

𝜕𝑣2

𝜕𝑥1
)
2

+ (
𝜕𝑣1

𝜕𝑥3
+

𝜕𝑣3

𝜕𝑥1
)
2

+ (
𝜕𝑣3

𝜕𝑥2
+

𝜕𝑣2

𝜕𝑥3
)
2

 

 

 
(2.35) 

The WLF-equation  is used to describe the temperature dependence of viscosity as well as the 

relaxation time of the fluid (Habla et al. 2012). The WLF-equation provides a shift factor that describes 

how the fluid properties changes due to temperature. The change of the fluid property is applied to 

the property at some reference temperature. Therefore the WLF-equation perturbs the value of the 

property around this reference value. The WLF equation is: 

𝑎𝑇 = exp(−
𝐶1(𝑇 − 𝑇0)

𝐶2 + 𝑇 − 𝑇0
) 

 
(2.36) 

C1 and C2 are constants and T0 is a reference temperature. The pressure dependence of the fluid is 

modelled in a similar way by the Barus law as (Li, Gwynllyw, et al. 2000; Owens & Phillips 2002): 
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𝜂 = 𝜂0 exp(−
1

3
𝜓𝑡𝑟𝑎𝑐𝑒(𝜎)) 

(2.37) 

Minus a third of the trace of the Cauchy stress tensor is the effective pressure at a point in the fluid. 

Due to the form of the Barus law and the WLF-equation, it is simple to combine these two 

dependencies into one shift factor as follows (Owens & Phillips 2002):  

𝑎𝑇,𝑝 = 𝑒𝑥𝑝(−
𝐶1(𝑇 − 𝑇0)

𝐶2 + 𝑇 − 𝑇0
 −

1

3
𝜓𝑡𝑟𝑎𝑐𝑒(𝜎)) 

 

 
(2.38) 

This shift factor is applied to the shear rate dependence in the same way as before.  

The shift is added to the Carreau model to give the three fold viscosity dependency on shear rate as 

follows (Wachs et al. 2002; Owens & Phillips 2002): 

𝜂(𝑇) =
𝑎𝑇,𝑝𝜂0

(1 + (𝑎𝑇𝐾𝑠𝛾̇)
𝑏)𝑎  

 (2.39) 

The relaxation time describes the time needed for the viscoelastic fluid to return to its original state 

after a disturbance has occurred (Chhabra & Richardson 2011). This relaxation time will have a 

dependence on temperature and pressure, similar to that of the viscosity (Habla et al. 2012): 

𝜆(𝑇) = 𝑎𝑇,𝑝𝜆(𝑇0) (2.40) 

 

2.1.11 Elasto-hydrodynamics: 
 

Elasto-hydrodynamics include two important mechanisms that influence the operating conditions. 

The first is with regards to the viscosity model. This specifically includes the effect of pressure on the 

viscosity as was discussed in section 2.1.10. The second is the elastic deformation of the metal surfaces 

in the bearing.  

Under high pressure conditions the fluid film has an increase in viscosity (this would increase the load 

caring capacity of the bearing) which significantly influences the operating conditions. The sudden 

thickening of the oil in a region results in a greater film thickness than what is predicted in the classical 

theory (Szeri 2011). If the film thickness varies in a region this will have a direct influence on the orbital 

path of the bearing. Since this is of great importance in this study it is therefore crucial to take these 

effects into account. 

The second mechanism is the deformation of the bearing case due to the induced pressure field in the 

bearing. Although this is certainly an important effect to study when considering the transient 

behaviour of bearings (Stachowiak & Batchelor 2013), it is not considered in this study but is 

recommend as a crucial topic to be studied in a follow up study. 
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2.1.12 Cavitation: 
 

Due to the converging and diverging section in the journal bearing it is known that in the diverging 

region sub atmospheric pressures can result. In gas lubrication this would not be a problem. However, 

with liquid films the pressure in the diverging region would frequently drop below the vapour pressure 

of the oil and consequently result in bubble formation. This formation can be accelerated by high 

temperatures occurring in the bearing due to viscous dissipation. The process of these bubbles 

forming is called gaseous cavitation. When these gas bubbles collapse there is a sudden spike in stress 

in the bearing, due to shock waves propagating form the area of collapse. This can cause permanent 

damage to the bearing structure (Stachowiak & Batchelor 2013).   

Due to the formation of bubbles in the film, cavitation modelling has to deal with two issues: firstly to 

account for the change in viscosity and secondly the compressibility introduced to the system due to 

the bubble formation in the film.   

It has been shown that liquids that have no contaminants can sustain negative pressures to a degree. 

However due to the large amount of wear in the system introducing impurities in the oil, the oil loses 

its ability to sustain negative pressures and cavitation would occur more frequently (Stachowiak & 

Batchelor 2013).  

If cavitation occurs in a system it will have an effect on the response of the system. The cavitating 

region is compressible and acts as a damper in the response of the system (D. R. Gwynllyw, et al. 2000). 

It is therefore important in the stability of the system especially at high eccentricities. 

The study of cavitation in the response of rotor-bearing systems is therefore important. Modelling 

cavitation requires considering multi-phase flow. The fluid is no longer considered to be 

incompressible and the density of the fluid is allowed to change throughout the film. In addition shock 

waves are produced in the film due to the collapse of the cavitation bubbles (Bensow & Bark 2010).  

The complexities of modelling cavitation are therefore quite apparent. A general treatment of it is 

beyond the scope of this study. It is highlighted here due to its importance in the dynamics of the 

system as well as the need to consider it in further research.  

2.2 Boundary Conditions 
 

2.2.1 Momentum equation boundary conditions: 
 

For the surfaces of the journal and the bearing casing a non-slip boundary condition holds: 

At the journal surface: 

|𝑉⃗ 𝑟𝑒𝑙|   =  |𝜔⃗⃗ 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛||𝑟 | 

 

(2.41) 

At the surface of the bearing casing: 

𝑉⃗ 𝑟𝑒𝑙   = 0 
 

(2.42) 

Two more boundary conditions are required for the axial direction. This choice is not trivial since this 

boundary condition can be affected by a fault mechanism in the seals. In the case where a three 
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dimensional bearing is modelled, the pressure at the ends of the bearing will be set to the atmospheric 

pressure or the pressure withstood by the seals at the ends of the bearing.  

𝑃𝑍=−𝐿 = 𝑃𝑍=𝐿 = 0 ; 𝑃𝑍=−𝐿 = 𝑃𝑍=𝐿 = 𝑃𝑠𝑒𝑎𝑙   
 

(2.43) 

 

Figure 2: Front and side schematic of bearing 

Figure 2 illustrates the front and side views of the bearing respectively. The Ends of the bearing (in the 

Z-direction) is indicated since this is where the boundary conditions (2.43) are applied.  

In section 3.2.1 the bearing model considered is infinite in length and therefore the pressures at the 

ends of the bearing do not have to be set. This boundary condition applied in principle to the numerical 

case study described in section 4.1. 

 

2.2.2 Energy equation boundary conditions: 
 

The thermal boundary conditions in a bearing can potentially present just as much trouble as the 

governing equation when solving the problem. In ideal bearings an isothermal or adiabatic boundary 

condition is applied. The heat transfer is assumed to be dominant in the radial direction for such 

bearings.  

The journal is assumed to be at constant temperature. This assumption is not entirely valid, however, 

it does give reasonable results when compared to experimental results (Szeri 2011). The assumption 

is based on the observation that heat is conducted in the axial direction within the journal. The amount 

of heat that is conducted along the axis is usually quite high due to the thermal conductivity of metal 

being high. The journal therefore would remain at a constant temperature. This boundary condition 

is employed in the current work. 

The isothermal and adiabatic boundary conditions therefore refer to the boundary condition applied 

to the stationary surface, the bearing casing, rather than the journal. Although neither of these 

assumptions are entirely correct either, the following observations were made by Szeri (2011): 

1) The isothermal analysis is seen to predict temperatures much lower than the adiabatic analysis. 

 

Journal  

Oil Film 
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𝑍 =  −𝐿 𝑍 =  𝐿 
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2) When comparing the results to experiments the adiabatic analysis gave good agreement with 

the flow condition in the laminar regime whereas the isothermal analysis gave good agreement 

with the turbulent regime.  

The boundary condition is therefore dependent on the flow regime. This is not surprising as it is 

generally known that heat transfer is enhanced in the turbulent flow regime (Faghri et al. 2010). 

Oil is forced into the bearing through the oil inlet, the location of the inlet is specific to each bearing. 

Oil leaves the bearing in two ways: through an oil outlet (the location of which similarly to the inlet 

depends on the bearing specification) and oil flows out in the axial direction through leakage of the 

seals. (The amount to which this can occur depends on the bearing, seals and the age of the seals). 

The implication of this is that one needs to specify thermal boundary condition for each of these 

inlets and outlets. For the inlet the isothermal boundary condition is sufficient, since the oil that 

enters though the inlet is mixed in a reservoir and is then pumped through the system allowing for 

significant mixing and therefore a temperature of the oil at the inlet. This is subject to the assumption 

that there is no back flow into the inlet (the severity of this assumption will depend on the location 

and size of the bearing). The oil that exits though the outlet is set to have an adiabatic boundary 

condition. Due to the size of the outlet the oil that exits though it will conduct an insignificant amount 

of heat compared to the heat conducted though the structural part of the bearing. A similar 

argument holds for the oil that escapes due to oil leakage (Szeri 2011).  

The boundary conditions applied to the test case in Chapter 4 is discussed in 4.1. For both the journal 

and bearing surface boundary conditions a constant temperature (Dirichlet) boundary condition is 

chosen. The primary reasons for this choice of boundary conditions are: (1) the temperature profile 

develops to a steady profile rapidly. The temporal development of the energy equation is quite 

costly. The time steps used in this work is of the order 1 ns, where the energy equation would usually 

require up to 20 seconds reach equilibrium. (2) The temperature profile also closely resembles the 

contour plot computed by Davies et al. (1994) in their work. This choice of boundary conditions 

therefore yields efficient and accurate solutions.  (3) The Reynolds numbers reported for the flow 

within the bearing place the flow well within the turbulent regime (Uhkoetter et al. 2012). According 

to Szeri (2011) isothermal boundary conditions are better suited for the turbulent flow regime.  
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Chapter 3: Numerical solvers and benchmarks: 
 

3.1 Constructing the Solvers 
 

3.1.1 “genStokesFoam” and “ViscFoam” viscous fluid solvers 
 

“genStokesFoam” is an inertia-less fluid solver developed in the OpenFOAM environment. The name 

is derived from the Stokes formulation of creep flow where inertia terms in the momentum equations 

are neglected. The stress field is described by a generalised Newtonian constitutive relation, which is 

a linear constitutive relation. The viscosity of the fluid is assumed to be a function of temperature, 

pressure and shear rate. The viscosity is therefore the property of the flow that couples the 

momentum and the energy equations: the velocity field is affected by changes in the fluid’s viscosity 

which is a function of the temperature field. The temperature field is affected by the fluid’s viscosity 

through the viscous dissipation term. The viscous dissipation term is formulated in terms of the fluid’s 

viscosity and the velocity field. The governing equations are therefore fully (or strongly) coupled (Bird 

et al. 1977).  

The “ViscFoam” fluid solver follows a similar formulation, with the only difference being the inclusion 

of the inertia terms in the momentum equation.  

In order to solve these sets of equations numerically the PISO (Pressure Implicit with Splitting of 

Operator) algorithm is used. Details of the algorithm are included in appendix A (see A.2). The 

algorithm is outlined below, as it is implemented in the “genStokesFoam” and “ViscFoam” solvers 

respectively:  

 Compute the velocity field form the initial pressure field or from the pressure field computed 

in the previous time step. 

 Correct the pressure field by using the newly computed velocity field and applying the 

continuity condition to the equations (the number of pressure corrections varies with 

application). 

 The velocity field is corrected based on the corrected pressure field. 

 Correct the mass flux at the boundaries according to the preservation of mass in the system. 

 Compute the temperature field from the energy equation using the new velocity field. 

 Adjust the viscosity according to the pressure temperature and shear rate dependencies. 

 Repeat the above until the momentum and energy equations have converged below a 

specified residual. 

In this algorithm there are two correction steps: the pressure and velocity correction steps. These 

corrections are performed within each time step. The number of times each of these corrections is 

performed varies with application. In the OpenFOAM environment these two correction steps are 

referred to as corrections and non-orthogonal corrections respectively. The number of non-

orthogonal corrections determines how many times the discrete Poisson equation is solved. Solving 

this equation yields the pressure correction that is applied to the pressure field. The number of 

corrections made to the pressure field is determined by the number of non-orthogonal correctors. 

The number of corrections (as referred to in OpenFOAM) determines the number of times the velocity 

field is corrected within a time step. This correction of the velocity field only follows when the 
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correction of the pressure field has been completed for the current time step. In this study it was 

found that when the eccentricity of the bearing was increased, the non-orthogonality of the mesh was 

also increased. As the non-orthogonality of the mesh was increased in the converging and diverging 

sections of the bearing, the number of pressure corrections needed to stabilise the fluid solver, was 

increased. This held for both the viscous and the viscoelastic solvers. Maintaining a balance between 

computational time and accuracy, however, is important, since applying more corrections than 

needed wastes computational resources (In sections 3.2.1 this was particularly important due to the 

change of the eccentricity ratio). The balance was established in this work by finding the smallest 

number of pressure corrections needed to reach a converged solution on the mesh for which mesh 

independence had been established. 

The implementation of the momentum equation requires some consideration. The main concern is 

how to deal with the constitutive relation. When working with the Navier-Stokes equation this does 

not require much care as the Laplacian term can simply be evaluated implicitly and hence there is no 

cause for concern. The issue when dealing with more complex formulations is that only part of the 

constitutive relation can be evaluated implicitly. Therefore part of the constitutive relation is then 

termed with the source term and evaluated explicitly. Neglecting the proper evaluation of the 

constitutive relation gives rise to instabilities and consequently requires much more computational 

resources to achieve a converged solution.   

The constitutive relation for the generalized Newtonian fluid was described in section 2.1.6 of chapter 

2. By applying the divergence operator to equation (2.19) the following is obtained: 

𝜕𝜏𝑖,𝑗

𝜕𝑥𝑗
= 

𝜕

𝜕𝑥𝑗
[Λ𝛿𝑖,𝑗

𝜕𝑣𝑘

𝜕𝑥𝑘
+ 𝜂𝛾̇𝑖𝑗] 

 

 
(3.1) 

From the continuity equation for an incompressible fluid, given in equation (2.3), it follows that the 

first term inside the bracket on the right hand side will disappear. This term is sometimes retained in 

order to improve the stability, since continuity will not be satisfied initially. The principle, however, is 

still applied in other terms arising from the variation in viscosity. Applying the chain rule to what 

remains from (3.1) yields: 

𝜕

𝜕𝑥𝑗
[𝜂𝛾̇𝑖,𝑗] = (

𝜕𝜂

𝜕𝑥𝑗
) 𝛾̇𝑖,𝑗 + 𝜂

𝜕𝛾̇𝑖,𝑗

𝜕𝑥𝑗
 

 

 
(3.2) 

The first term on the right hand side can be reduced further; however it is left as it is. Reducing it 

further will not impact on whether it is evaluated implicitly or explicitly, in OpenFOAM the gradient 

operator is always evaluated explicitly. These additional terms will disappear once the solution is 

converged. While the fluid solver is converging to a solution, these terms stabilises the fluid solver 

(Oliveira et al. 1998).  

The divergence of the rate-of-deformation tensor can be simplified by using the continuity equation 

(2.3).  This reduces the term to the Laplacian of the velocity field, which can be evaluated implicitly. 

The implemented constitutive relation then becomes: 

𝜕

𝜕𝑥𝑗
[𝜂𝛾̇𝑖,𝑗] = (

𝜕𝜂

𝜕𝑥𝑗
) 𝛾̇𝑖,𝑗 + 𝜂

𝜕2𝑣𝑗

𝜕𝑥𝑗
2  

(3.3) 
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where the first term on the right hand side is the outer product of a gradient vector and the rate of 

deformation tensor and is treated explicitly. The second term on the right hand side is the Laplacian 

of the velocity field and is treated implicitly. 

The implicit and explicit evaluation of terms determines the stability and consequently the amount of 

computational resources needed to solve the problem. The stability of an explicit evaluation is 

dependent on the mesh size and the associated time step. If the mesh is fine the time step needs to 

be adjusted to be proportional to the mesh size. If the time step is not small enough, the solver 

becomes unstable. Decreasing the time step size increases the computational time. It is therefore 

beneficial to evaluate the discretized equation implicitly as far as possible (Versteeg & Malalasekera 

2007). 

The energy equation is much simpler to deal with as far as implicit and explicit evaluation of terms is 

concerned. The source term is the only term that is evaluated explicitly in OpenFOAM. The conduction 

term, which reduces to the Laplacian of the temperature field, along with the convection terms are all 

treated implicitly. The only remaining issue that might be of concern is whether viscous dissipation is 

a surface or a body source. When the energy equation is discretized by the finite volume method each 

of the terms is integrated over the surface or volume of the CV (control volume). The evaluation of 

viscous dissipation as a surface or volume source is therefore an important matter to consider. 

The first law of thermodynamics is used in order to describe the change in the internal energy due to 

work done by or on the system and heat transferred to or from the system. This law can be rewritten 

in integral from as follows: 

𝑑

𝑑𝑡
∫ 𝜌 (

1

2
𝑣2 + 𝑒)𝑑𝑉 =  ∫ 𝜌𝑏̅ ∙ 𝑣̅ + ∇ ∙ (𝜎 ∙ 𝑣̅) + ∇ ∙ 𝑞̅ 𝑑𝑉

  

𝑉(𝑡)

  

𝑉(𝑡)

 

 

 
(3.4) 

Expanding the second term inside the integration operator on the right results in: 

∇ ∙ (𝜎 ∙ 𝑣̅) = 𝜎: ∇𝑣̅ + 𝑣̅  ∙ (∇ ∙ 𝜎) 
 

(3.5) 

The dot product between the velocity and the momentum equation is taken to find an expression for 

the kinetic energy. Applying the Reynolds transport theorem to the resultant expression results in: 

𝑑

𝑑𝑡
∫

1

2
𝜌𝑣2 𝑑𝑉

 

𝑉(𝑡)

= ∫ 𝑣̅ ∙ (∇ ∙ 𝜎) + 𝜌𝑏̅ ∙ 𝑣̅ 𝑑𝑉 
 

𝑉(𝑡)

 

 

 
(3.6) 

Subtracting equation (3.6) from (3.4) while using the expression (3.5) and applying the assumption 

that the flow is incompressible yields: 

∫ 𝜌𝐶𝑝

𝐷𝑇

𝐷𝑡
 𝑑𝑉 =  ∫ 𝜎: ∇𝑣̅ + 𝑘∇2𝑇 𝑑𝑉

 

𝑉(𝑡)

 
   

𝑉(𝑡)

 

 

 
(3.7) 

This clearly shows that the viscous dissipation term in the energy equation must be integrated over 

the volume and not over the surface of the CV. 
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3.1.2 “ThermOldBFoam” and “ThermGiesFoam” viscoelastic fluid solvers 
 

The “ThermOldBFoam” and “ThermGiesFoam” are viscoelastic fluid solvers and are more 

sophisticated than the viscous fluid solvers. The viscoelastic fluid solvers take into account the 

elasticity of the fluid due to the polymer additives added to the viscous solvent. The formulation yields 

a strong coupling between the momentum, energy and stress fields. The complexity introduced 

through the additional coupled field requires a different numerical approach.  

A segregated approach is used to deal with these couplings. This is done by linearising the nonlinear 

equation by assuming the coefficients of the partial differential equation remains constant.  Once the 

linear problem is solved the results obtained from the linearised problem are used to solve the other 

equations (for instance the momentum equation is linearised and the constitutive relation and energy 

equation are solved for). At the end of the time step the coefficients that were assumed to be constant 

are updated using the newly computed results. This approach therefore solves two sets of equations: 

the linearised and the nonlinear forms of the governing equations. The solving of the linearised and 

nonlinear equations can be called the inner and outer iterations respectively. The outer iteration 

solves the nonlinear problem based on the solution of the linearised problem. The linear solution 

therefore serves as an approximation for the nonlinear problem in the temporal domain. In the 

OpenFOAM environment, the PISO loop will serve as the inner loop (where the equations are explicitly 

linearised) and the time steps will serve as the outer loop. Only when the solution has converged in 

the temporal domain will the nonlinear problem be sufficiently approximated (Ferziger et al. 2008).  

 In OpenFOAM there is a built-in function called “.relax()”. This function fixes the coefficients of the 

set of discretised equations during the time step. Since pressure is the first field that is to be solved, 

this algorithm requires the pressure field from the previous outer iteration to be stored such that the 

momentum equation can be explicitly relaxed.  

The algorithm therefore executes as follows: 

 The shift factor is applied to both the viscosity and relaxation time. 

 The nonlinear momentum equation is updated and linearised (relaxed). 

 The linearised momentum equation is solved. 

 The pressure correction equation is solved and the pressure field is corrected accordingly. 

 The pressure equation is linearised (relaxed) in order to correct the momentum equation. 

 The differential constitutive relation is updated and linearised (relaxed). 

 The linearised constitutive relation is solved. 

 The energy equation is solved for the temperature field using all the latest computed fields. 

Dealing with the momentum equation is more complex than before, specifically in terms of stability 

due to diagonal dominance of the discrete set of equations weakening. This would require much 

smaller time step sizes compared to the viscous solver in order to obtain a converged solution. These 

difficulties arise since the divergence of the polymer stress tensor has to be evaluated explicitly in the 

momentum equation. In general the divergence operator can only be applied implicitly if the variable 

on which it is applied is being solved for. Since the velocity is solved for when evaluating the 

momentum equation it follows that the polymer stress tensor can only be evaluated explicitly when 

operators are applied to it. The stability can be improved therefore by strengthening the diagonal 
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dominance of the discrete set of equations. This is accomplished by applying the DEVSS (Discrete 

Elastic Viscous Split Stress) decomposition (Habla et al. 2012). With this technique an elliptic term is 

added to the momentum equation and is to be evaluated implicitly. The same term is then subtracted 

from the source term and is then evaluated explicitly. The momentum equation, originally given in 

equation (2.10) as presented in section 2.1.3 is repeated here for clarity after the term containing the 

solvent stress contribution is transferred to the left hand side: 

𝜌 (
𝜕𝑣𝑖

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

3

𝑗=1

) −
𝜕

𝜕𝑥𝑗
(𝜂𝑠𝛾̇𝑖𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕τp,ij

𝜕𝑥𝑗
 

 

 
(3.8) 

The solvent viscosity is a function of temperature and pressure. Therefore the divergence of the 

solvent viscosity multiplied with the rate of deformation tensor is treated the same as it was treated 

in the generalized Newtonian formulation: 

𝜌 (
𝜕𝑣𝑖

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

3

𝑗=1

) − 𝜂𝑠

𝜕2𝑣𝑗

𝜕𝑥𝑗
2 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕τp,ij

𝜕𝑥𝑗
+ 𝛾̇𝑖𝑗

𝜕𝜂𝑠

𝜕𝑥𝑗
 

 

 
(3.9) 

The DEVSS decomposition is now applied by adding and subtracting the Laplacian of the velocity field 

multiplied by the polymer viscosity to (3.9): 

𝜌 (
𝜕𝑣𝑖

𝜕𝑡
+ ∑𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

3

𝑗=1

) − 𝜂𝑡

𝜕2𝑣𝑗

𝜕𝑥𝑗
2 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕τp,ij

𝜕𝑥𝑗
+ 𝛾̇𝑖𝑗

𝜕𝜂𝑠

𝜕𝑥𝑗
− (1 − 𝛽)𝜂𝑡

𝜕2𝑣𝑗

𝜕𝑥𝑗
2  

 

 
(3.10) 

Where the viscosity appearing in this equation is the total viscosity of the fluid, which is the sum of 

the solvent and polymer viscosities. The Laplacian term on the left hand side of the equation is 

evaluated implicitly, which can be done since the velocity field is being solved for, and the Laplacian 

on the right hand side of the equation is evaluated explicitly. 

 

3.2 Validations 
 

3.2.1 Simulating long bearings with “genStokesFoam” 
 

In order to establish the validity of the simulated results, results from the “genStokesFoam” solver 

were compared to the long bearing solution of the classical Reynolds equation. In this benchmark the 

pressure distribution predicted by the numerical solution was compared to the analytical solution. The 

Reynolds equation is essentially a two dimensional Stokes formulation of the fluid in two dimensions, 

since the thickness of the film is neglected. It therefore follows that the solution predicted by the 

“genStokesFoam” solver, being a Stokes formulation of the fluid flow, should closely resemble the 

analytical solution of the Reynolds equation (see section 2.1.8). As the clearance of the bearing is 

reduced in the numerical solution it is expected that it will tend towards the analytical solution. The 

reduction of the bearing clearance simulates the numerical solution tending towards that of a two 

dimensional flow similar to that described by the Reynolds equation.     
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The reason for using the long bearing solution as a benchmark is that: since the bearing is assumed to 

be of infinite length, a two dimensional model can be used to model the bearing, this significantly 

reduces the amount of CVs (and therefore computational time needed) in the computational domain 

to achieve a converged solution. This is not the case with the short bearing solution where the bearing 

must be simulated in three dimensions and since the bearing cannot be made to have no length one 

would have to reduce the bearing length and see if the results tend to that of the short bearing theory. 

This implies that the individual cases need more computational power and the number of cases that 

must be run in order to show that the solver is correct is more.  

The analytical result for the short bearing problem, given in equation (2.26), does contain a term that 

describes the length of the bearing. One might remark that this would therefore not require one to 

run numerous numerical cases where the length of the bearing is decreased in order to show validity 

of the numerical results. It is important to note that when this analytical solution is derived the 

Reynolds equation is reduced on the premise that the length of the bearing is negligible (Owens & 

Phillips 2002). Therefore one is left with the problem: what is negligible length of the bearing? Again 

one arrives at the problem that in order to definitively show the validity of the results multiple 

numerical solutions needs to be computed at various lengths of the bearing. These difficulties are 

circumvented by selecting the long bearing solution as a benchmark.   

Phillips et al. (1999) showed that the long bearing theory gives good results in predicting the load 

bearing capacity of the bearing, which implies that it is able to correctly predict the pressure 

distribution.  

To show that the “genStokesFoam” solver is indeed able to correctly predict the pressure distribution 

in the bearing the solver was used for two separate cases: Firstly the maximum pressure in the bearing 

predicted by the Reynolds equation for the long bearing case is compared to the computed value from 

“genStokesFoam”. Secondly the pressure distributions for the aforementioned models were 

compared for three different eccentricity ratios. It can be seen, by looking at the long bearing solution 

given by equation (2.25) that the nonlinear terms dominate at higher eccentricity ratio’s causing the 

pressure distribution to depart from the sinusoidal profile obtained at low eccentricity ratios. This 

benchmark exercise was therefore aimed at comparing the maximum pressure and the pressure 

distribution in the converging part of the bearing as the pressure profile tends away from the 

sinusoidal profile found at low eccentricity ratios.  

The numerical solver becomes unstable when the control volumes used are much longer in one 

direction than the other. This is typically the case when the number of elements in the circumferential 

direction is not enough, the CV is then elongated in the direction of the flow. This causes the solution 

to diverge rapidly.  When the bearing diameter is increased the number of circumferential elements 

must also be increased. When the mesh is refined in the radial direction, which could also happen 

when the bearing clearance is reduced but the number of elements in the radial direction is kept 

constant, a refinement in the circumferential direction must be made. For high eccentricity geometries 

the mesh skewness in the diverging and converging sections of the bearing becomes very high, and 

either mesh refinement or the number of pressure correctors must be increased. Both of these 

adjustments imply an increase in computational time. It was found that if the number of pressure 

corrections were increased from 2 to 3 for the 𝜖 = 0.4, and 3 to 4 for the 𝜖 = 0.6 , the solution was 

stable and converged to below the specified residual.   



48 | P a g e  
 

The first comparison was done for a bearing with an eccentricity ratio of 0.2, radius of 0.1m, journal 

velocity of 10m/s and variable bearing clearance. Since the bearing simulated is assumed to be of 

infinite length the simulation was done in two dimensions. For all the cases in this section the fluid 

used was SAE 50W oil, specifications for this oil are found in White (2006). The only fluid property 

used was viscosity which is 95.34 mm2/s. The meshes used to establish mesh independence are 

presented in Table 1: 

Table 1: Mesh specifications for bearings with 𝝐 = 0.2 having different bearing clearances. 

c = 1mm  

 Number of Control Volumes in:  

 Radial direction Circumferential direction Total Difference2  

Mesh1 20 750 56 924  

Mesh2 20 1000 75 924 2.45% 

Mesh3 25 1500 143 904 1.66% 

c = 0. 5mm  

 Number of Control Volumes in:  

 Radial direction Circumferential direction Total  

Mesh1 20 1500 113 924  

Mesh2 25 2000 191 904 1.95% 

Mesh3 25 2500 239 904 1.08% 

c = 0. 1mm  

 Number of Control Volumes in:  

 Radial direction Circumferential direction Total  

Mesh1 20 7500 569 924  

Mesh2 20 10000 759 924 1.43% 

Mesh3 25 12500 1 199 904 0.682% 

 

Table 1 shows the number of CVs required to reach a converged solution. It is seen that the number 

of CVs had to be increased as the clearance decreased, in order to reach a converged solution. The 

number of CVs in the radial direction is the same for the various clearances. The increase in the 

number of circumferential CVs is needed to decrease the aspect ratios of the CVs. Circumferential 

refinement is needed in order to assure stability of the solver.  

The numerical result followed the expected trend, comparing the difference between the maximum 

and minimum predicted pressure, without accounting for cavitation. The results obtained are 

summarised in Table 2. (The error reported is a percentage error between the numerical and analytical 

solutions. The analytical solution is used as the reference value). The results presented are only those 

computed from the finest mesh for which mesh independence was established. 

From Table 2 it is clearly seen that the numerical results tended towards the analytical result when 

the bearing clearance tended to zero. This implies that the numerical solution tends to the analytical 

solution as the approximation of no clearance between the journal and the bearing, made in deriving 

the analytical solution, is more closely resembled by the numerical case.  

                                                           
2 The Percentage difference between the current mesh and the previous mesh. 
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Table 2: Comparison between numerical an analytical solution for various bearing clearances, 𝝐 = 0.2. 

c [mm] Analytical Numerical Error [%] 

1 258 254 1.66 

0.5 1033 1022 1.08 

0.4 1614 1599 0.920 

0.3 2869 2845 0.844 

0.1 25829 25653 0.682 

 

The long bearing theory, when cavitation is not accounted for, produced a negative minimum pressure 

that has the same magnitude as the maximum pressure within the converging region of the bearing. 

The “genStokesFoam” solver is for incompressible cases only and therefore the pressure is only 

meaningful if a gauge pressure is specified. By looking at the differences in the pressure field the 

benchmark becomes independent of the specified gauge pressure. The gauge pressure is set by 

selecting a control volume in the mesh that is at the pressure that is to be selected as the gauge 

pressure and setting this control volume as the reference for the pressure field. This can become quite 

tedious in the case where numerous meshes are used and finding the right control volume can be 

quite time consuming as well as introduce errors. Given the above considerations it was therefore 

concluded that looking at the pressure differences rather than the minimum and maximum pressures 

separately would be quicker and more accurate. In order to confirm the above, the gauge pressure 

was specified to be zero at 900 (along the circumference of the bearing). This was done each time the 

eccentricity was changed. In each case it was found that the pressure difference was independent of 

the gauge pressure set. The results for the pressure difference in a bearing for various clearances are 

shown in Figure 3.  

Figure 3 shows that the numerical and analytical solutions for a long bearing are extremely close in 

predicting the pressure difference between the minimum and maximum pressures in the bearing. The 

data was plotted on a logarithmic graph simply because of the wide range in the magnitudes of the 

pressure difference.  

To look at the shape of the pressure distribution the highest bearing clearance ratio (c = 0.001 m) was 

taken, because it is known (see Table 2) that the computed pressure at the minimum and maximum 

have the greatest error for this bearing clearance. Refer to Figure 4 giving the pressure distribution 

over the first half of the bearing.  Only this half is reported on because of two reasons: Firstly by looking 

at the analytical solutions (the numerical solutions also show this) it is seen that the negative part of 

the pressure distribution has the same shape as the positive pressure distribution (this happens due 

to cavitation not being accounted for). Secondly due to cavitation occurring in practice we are not 

concerned with the accuracy of the negative pressure distribution. Since the governing equations 

describing the flow in the oil film resembles that of parabolic type, in this case, it follows that when 

the pressure distribution is integrated to give the force acting on the journal, the negative part of the 

pressure distribution can be disregarded (Owens & Phillips 2002).  
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Figure 3: Comparison between the numerical and analytical solution of maximum pressures in bearings with varied 
clearances, 𝝐 = 0.2. 

The pressure distributions are plotted against the angle (see Figure 4), theta, measured along the 

circumference of the bearing, see Figure 1 for range of 𝜃 (whether this is the pressure on the bearing 

casing or on the journal does not matter since the pressure difference across the oil film is negligibly 

small). 

It is shown in Figure 4 that the pressure distribution changes as the eccentricity changes. This is due 

to the nonlinearity in the system becoming more dominant at higher eccentricity ratios. It can, 

however, be seen from all the pressure distributions that the greatest error in the numerical results is 

as the maximum pressure. The pressure difference, between the maximum and minimum pressures 

in the bearing, therefore gives a good indication to the accuracy of the overall pressure distribution 

for these eccentricity ratios. Figure 4 also shows that the pressure distribution predicted by the 

numerical solution is in good agreement with the analytical solution. 

 

Figure 4: Pressure distributions for various eccentricities, c = 0.001 m. The graph is a plot of Pressure with respect to 𝜽. 

100

1000

10000

100000

0 0,0002 0,0004 0,0006 0,0008 0,001 0,0012

∆𝑃
[Pa]

c [m]

Analytical result

Numerical result

0

50

100

150

200

250

300

0 50 100 150 200

P
[Pa]

𝜃 [o]

Epsilon = 0.1, Numerical

Epsilon = 0.1, Analytical

Epsilon = 0.2, Numerical

Epsilon = 0.2, Analystical

Epsilon = 0.6, Numerical

Epsilon = 0.6, Analytical



51 | P a g e  
 

This section thus shows that the “genStokesFoam” solver, being a Stokes formulation of the flow, 

closely resembles the Reynolds equation in predicting the pressure distribution in the bearing. Care 

however must be taken to ensure that the numerical case resembles the assumptions made when 

deriving the Reynolds equation. The “genStokesFoam” solver, with an uncoupled formulation is 

therefore used in this study as a representative of the classical formulation.  

 

3.2.2 Rotating concentric cylinders 
 

The fluid flow between two concentric rotating cylinders is presented as a benchmark in the book of 

Owens et al. (2002). The benefit, highlighted in their book, of this benchmark is that the geometry is 

easy to construct. Furthermore no compensation is needed in terms of flow or thermal development. 

This implies that less computational resources are spent on the development of the flow conditions. 

The additional reasons for selecting this benchmark for this study is that there is a similarity between 

the benchmark and journal bearings and an analytical solution is known for this problem.   

The flow can be solved analytically if the momentum and the energy equation are uncoupled (White 

2006). The fluid properties are therefore modelled as having no dependence on pressure, 

temperature or shear rate.  

In the previous section the long bearing solution was used to show that the “genStokesFoam” solver 

can predict the same pressure distribution as the classical Reynolds equation when the fluid is 

Newtonian.  In the following benchmark two things are to be shown: Firstly it needs to be verified that 

the other solvers give the same result as the “genStokesFoam” solver when operating at low velocities 

and the fluid is approximately Newtonian. This shows that all the fluid models will reduce to the 

classical formulation if the same assumptions are made with regards to the flow characteristics and 

fluid properties. Secondly, to determine the accuracy of the temperature fields computed by the 

evaluation of the energy equations of each solver respectively. The computed results are in both cases 

compared to the analytical solutions.  

The concentric cylinders are assumed to be of infinite length, heat transfer is therefore due to radial 

conduction. Heat is generated within the fluid domain due to viscous dissipation. This benchmark 

therefore checks the accuracy of the solvers in predicting the heat transferred, as well as heat 

generated due to viscous dissipation. Convection is also checked in this case since it is still being solved 

for, implying that although convection does not influence the amount of heat transferred for this case 

specifically, it must still be computed and the computed result must show that heat transferred by 

means of convection is negligible.  

Assuming that the cylinders have infinite length implies that the geometry is two dimensional. Flow in 

the axial direction is therefore neglected. Since there is no pressure gradient in the radial direction 

and the boundaries of the cylinders are impermeable the flow can only be in the circumferential 

direction. For a fully developed Newtonian fluid the velocity profile is described by (White 2006): 

𝑣𝜃 = 𝑟0𝜔0

(
𝑅1
𝑅 −

𝑅
𝑅1

)

(
𝑅1
𝑅0

−
𝑅0
𝑅1

)
 + 𝑟1𝜔1

(
𝑅
𝑅0

−
𝑅0
𝑅 )

(
𝑅1
𝑅0

−
𝑅0
𝑅1

)
 

 
(3.11) 
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where subscripts 0 and 1 refer to the inner and outer cylinder respectively. Since the velocity profile 

is known, it is used together with the assumptions mentioned earlier to find the analytical solution for 

the temperature profile in the fluid (White 2006): 

𝑇 − 𝑇0

𝑇1 − 𝑇0
= 𝑃𝑟𝐸𝑐

𝑅1
4

𝑅1
2 − 𝑅0

2 [(1 −
𝑅0

2

𝑅2) − (1 −
𝑅0

2

𝑅1
2)

ln (
𝑅
𝑅0

)

ln (
𝑅1
𝑅0

)
] +

ln (
𝑅
𝑅0

)

ln (
𝑅1
𝑅0

)
   

 

 
(3.12) 

The two non-dimensional constants that are used in the solution of the temperature field, the Prandtl 

number and the Eckert number, are defined as: 

Pr =
𝜇0𝑐𝑝

𝑘0
  ;  𝐸𝑐 =

𝑈2

𝑐𝑝𝑇0
 

 

 
(3.13) 

The Prandtl number is usually used for single or multiphase convective heat transfer calculations and 

is the ratio of the rate of diffusion of viscous effects to the rate of diffusion of heat. The Eckert number 

on the other hand is usually used in high speed flows and describes the ratio of the kinetic energy of 

the flow to the enthalpy change (Faghri et al. 2010). 

In this case these constants are used to describe the viscous dissipation in the system. The first term 

on the right hand side of the temperature solution, equation (3.12), describes the heat generated due 

to viscous dissipation. The second term on the right hand side describes conduction heat transfer in 

the radial direction.  

In order to have a well-posed problem, boundary conditions have to be set at the inner and outer 

cylinders. The inner boundary was chosen to be at T0= 373.15K and the outer boundary was chosen at 

T1= 273.15K. The inner cylinder’s radius was 0.1m and the thickness of the domain in the radial 

direction was 0.01m. The fluid properties used for the fluid between the two cylinders was engine oil. 

Fluid properties were taken to be at 320K and were found in the book Faghri et al. (2010). 

Table 3: Fluid properties used in this section. 

Fluid property Value 

Cp 1.99 KJ/kgK 

mu 0.141 Ns/m2 

k 0.141 W/mK 

 Non-slip boundary conditions were set for the momentum equation. The outer cylinder was chosen 

to be stationary and the angular velocity of the inner cylinder is varied. This was done to vary the 

prominence of the viscous dissipation term. 

For this benchmark the same three meshes (mesh 1, 2 and 3, described in Table3) were used for all 

the test cases. In all the cases mesh independence was established. The meshes were hexahedral 

which means that the orthogonally of the meshes was high and therefore computational time was 

reduced since a single pressure correction was sufficient for the solution to converge. The refinement 

in each direction is given in terms of the amount of control volumes in that direction. 
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Table 4: Mesh specifications for concentric rotating cylinders. 

 Refinement 

Mesh Circumferential Radial 

1 75 15 

2 100 20 

3 150 30 

 

For the pure conduction case the two cylinders were chosen to be stationary. The system of equations 

derived from the discretised domain was symmetric and therefore converged rapidly. The system was 

treated as being under steady state conditions. When the velocity field goes to zero the energy 

equations reduces to the pure conduction case: 

𝑘∇2𝑇 = 0  (3.14) 

The computed temperature profiles for each of the solvers were exactly the same, therefore only one 

set of data is presented in Table 5. The results presented in this section are only for those computed 

inside the fluid domain since the boundary conditions are held constant. No computation is performed 

at the boundary with regards to the temperature or velocity, since these values remained the same: 

Table 5: Comparison of temperature profiles predicted numerically and analytically. 

R [m] Analytical 

[K] 

Mesh1 [K] Mesh2 [K] Mesh3 [K] 

0.101 362.710 362.696 362.697 362.704 

0.103 342.136 342.121 342.123 342.131 

0.105 321.960 321.943 321.942 321.951 

0.107 302.162 302.137 302.148 302.151 

0.109 282.732 282.717 282.719 282.724 

     

Average Error3 [%]  0.00542 0.00444 0.00248 

 

In Table 5 the computed temperature values at different radial positions are presented for each of the 

meshes. This shows that for all three of the meshes the energy equation reduces to exactly the same 

form. This is a very good result as it indicates that all three energy equations reduce to give the same 

result if the solution is simple enough (since all the solvers gave exactly the same results).  Mesh 

convergence is also clearly seen in this result as the error decreases with greater refinement of the 

mesh.  

Relative motion of the cylinders generates heat in the fluid. This is due to friction between the layers 

because of this relative motion. The viscous dissipation would therefore increase as the velocity of the 

relative motion is increased. Due to the nonlinearity introduced through the inertia terms of the 

momentum equation the discrete system of equations are no longer symmetric and therefore the 

solution requires more computational time. 

                                                           
3 The average error is that of the numerical result compared to the analytical result. 
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 Next the angular velocity of the inner cylinder is set to be 10rad/s .At these speeds the viscous 

dissipation would be moderate; therefore the temperature profile would only be slightly affected by 

this term. Due to the velocity being low the results obtained from the Stokes formulation should be 

very similar to that obtained with the formulations that include the inertia terms. Mesh independence 

was established for each of the solvers. The results for mesh 3, the finest mesh, are presented Tables 

6 and 7 for the different solvers respectively, first for the generalized flow solvers and then for the 

viscoelastic solvers. 

Table 6: Comparison of velocity and temperature profiles, predicted by viscous solvers. Vmax = 1m/s 

 genStokesFoam ViscFOAM Analytical 

R [m] V [m/s] T [K] V [m/s] T [K] V [m/s] T [K] 

0.101 0.8952 362.723 0.895242 362.685 0.8955 362.710 

0.102 0.7917 352.379 0.791668 352.31 0.7918 352.373 

0.103 0.6892 342.134 0.68924 342.046 0.6893 342.138 

0.104 0.5878 331.983 0.58777 331.891 0.5879 331.999 

0.105 0.4874 321.949 0.487426 321.864 0.4875 321.959 

0.106 0.3880 312.014 0.38803 311.944 0.3881 312.014 

0.107 0.2896 302.174 0.2896 302.124 0.2897 302.162 

0.108 0.1922 292.427 0.192164 292.395 0.1922 292.402 

0.109 0.0956 282.752 0.0956058 282.736 0.0957 282.731 

Table 7: Comparison of velocity and temperature profiles, predicted by viscoelastic solvers. Vmax = 1m/s 

 ThemOldBFoam ThermGiesFoam Analytical 

Radial 

Direction 

V [m/s] T[K] V [m/s] T [K] V [m/s] T [K]  

0.101 0.8952 362.991 0.8955 362.710 0.8950 362.867  

0.102 0.7916 352.889 0.7918 352.373 0.7914 352.656  

0.103 0.6892 342.814 0.6893 342.138 0.6890 342.511  

0.104 0.5877 332.699 0.5879 331.999 0.5876 332.423  

0.105 0.4874 322.581 0.4875 321.959 0.4872 322.392  

0.106 0.3880 312.512 0.3881 312.014 0.3879 312.424  

0.107 0.2896 302.55 0.2897 302.162 0.2894 302.505  

0.108 0.1921 292.698 0.1922 292.402 0.1920 292.659  

0.109 0.0956 282.906 0.0957 282.731 0.0954 282.868  

 

The number of points at which the temperature and velocity were compared to the analytical solution 

is double to that of the pure conduction case. This is due to the temperature profile deviating from a 

linear form. Therefore more points are needed to capture the form of the temperature profile. The 

velocity profile is seen to change very slightly between the various solvers. Due to these small 

variations more points are also needed to compare these variations. The results presented in Tables 

6 and 7 were compared to the analytical solution. For each solver the average error was calculated, 

these errors are presented in Table 8. 
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Table 8: Error between the analytical and numerical velocity and temperature profiles respectively. Vmax = 1m/s 

Solver [%]Error of V [%]Error of T 

genStokesFoam 0.0292 0.104 

ViscFoam 0.0292 0.122 

ThermOldBFoam 0.0408 0.0362 

ThermGiesFoam 0.261 0.0874 

 

When the relaxation time of the Oldroyd-B constitutive models are small the constitutive relation 

describing the polymer stress reduces to a linear constitutive relationship:  

𝜏𝑝,𝑖𝑗  ≈ 𝜂𝑝𝛾̇𝑖𝑗   

 

(3.15) 

This implies that the constitutive relation is reduced to the generalised Newtonian formulation when 

the relaxation time of the fluid is negligible. This argument especially holds for the Giesekus model 

when the angular velocity of the inner cylinder is small. It becomes less simple in the next case where 

the velocity is increased. For this reason the Giesekus formulation was treated separately and these 

results are presented later in the section. 

The angular velocity of the inner cylinder was then further increased to 100rad/s. The viscous 

dissipation term is much more dominant at this speed and therefore the temperature profile would 

be significantly affected by the heat generated in the film (referring to the more general case where 

the governing equation is coupled and therefore viscosity would be dependent on temperature). The 

results for the first three solvers on the finest mesh are presented in Table 9. 

Table 9: Comparison of numerical and analytical velocity profiles. 

 

It is seen from the results presented in Table 10 that viscous dissipation increased the maximum 

temperature in the fluid with almost 100C as compared with the results in Table 7. Comparing the 

velocity profiles of the 10rad/s case and the 100rad/s case it is seen that the velocity profile predicted 

by the “genStokesFoam” solver was just one order of magnitude larger. 

 

 genStokesFoam ViscFoam ThermOldBFoam Analytical 

R [m] V [m/s] V [m/s] V [m/s] V [m/s] 

0.101 8.952 8.952 8.955 8.953 

0.102 7.917 7.917 7.920 7.918 

0.103 6.892 6.892 6.895 6.893 

0.104 5.878 5.878 5.880 5.879 

0.105 4.874 4.874 4.876 4.875 

0.106 3.880 3.880 3.882 3.881 

0.107 2.896 2.896 2.898 2.897 

0.108 1.922 1.922 1.922 1.922 

0.109 0.956 0.956 0.956 0.957 
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Table 10: Comparison of numerical and analytical temperature profiles. 

 genStokesFoam ViscFoam ThermOldBFoam Analytical 

R [m] T[K] T[K] T[K] T[K] 

0.101 380.414 380.411 380.415 380.484 

0.102 383.532 383.346 383.32 383.420 

0.103 382.156 382.151 382.039 382.224 

0.104 377.01 377.009 376.769 377.081 

0.105 368.111 368.115 367.738 368.186 

0.106 355.629 355.638 355.17 355.706 

0.107 339.752 339.764 339.307 339.829 

0.108 320.595 320.606 320.272 320.668 

0.109 298.301 298.308 298.145 298.365 

 

This is however not the case with the other two solvers. This shows the loss of linearity in the solution 

through the inclusion of the inertia terms. The results presented in table 8 were again compared to 

the analytical solution and an average error for each of the results was determined. These errors are 

presented in Table 11. 

Table 11: Average errors of velocity and temperature profiles, compared with analytical solution. 

Solver [%]Error of V [%]Error of T 

genStokesFoam 0.0292 0.0208 

ViscFoam 0.0307 0.0192 

ThermOldBFoam 0.0201 0.0888 

The temperature profiles for the three cases: the conduction case, the 10rad/s and 100rad/s angular 

velocity cases are presented in Figure 5.  

 

Figure 5: Temperature profiles with respect to radial position at three different angular velocity of the inner journal. 
Results presented was computed with “genStokesFoam”. 

The results presented in Figure 5 is for only the “genStokesFoam” solver since the differences of these 

solvers are so small one would not be able to see the differences between them on this kind of graph.   
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The temperature profiles of the conduction and 10rad/s angular velocity flow are very close to each 

other. For the 100rad/s angular velocity flow case temperature is higher than the previous two cases. 

The higher velocity increases the heat generated through viscous dissipation and therefore the 

temperature for the latter case is higher. Viscous dissipation would increase further if the angular 

velocity was increased further. For the operating condition of large steam turbine journal bearings 

viscous dissipation would therefore be much more dominant than in the cases presented here. The 

angular velocity of the journal is held constant between speeds of 300 - 400rad/s. This does not include 

the additional shear due to eccentricities of the journal. Therefore when considering the eccentricities 

of the journal in the bearing it is expected that viscous dissipation would play a greater role in heat 

generated in the bearing.  

The results from the “ThermGiesFoam” solver were not as easily benchmarked as the previous solvers. 

The reason for this is due to the additional term in the constitutive relation, equation (2.13) of the 

form:  

𝛼𝜆

𝜂𝑝
 𝜏𝑝

2 

 

 
(3.16) 

The square in this term implies an outer product of the polymer stress tensor with itself. Considering 

just the shear entries of the tensor equation for the Giesekus model it follows that this product 

introduces a constant,𝛼 , times the square of the shear stress. It the context of this benchmark this 

implies that for shear stress less than unity this term will disappear much quicker than the other terms. 

On the other hand this term will dominate at high shear stresses since it grows much quicker than the 

other terms. Since this term models the shear thinning behaviour of the fluid the shear stress must be 

kept small in order to minimise shear thinning behaviour in the flow. The flow is solved when 𝛼 is set 

to zero. This reduces the Giesekus model to the Oldroyd-B model. Since the Oldroyd-B model has been 

shown to be accurate it can be used to determine the validity of the Giesekus model.  Thus a 

perturbation type approach is taken: The value of 𝛼 was selected such that the added term in equation 

(3.16), the only term that distinguished the Giesekus model from the Oldroyd-B model, goes from 

being negligible to significant in the constitutive relation. The velocity profiles for these varied values 

of 𝛼 are presented in Table 12.  

Table 12: Velocity profiles as computed with the "ThermGiesFoam" solver at varied values of 𝜶. 

𝜶 0.15 0.01 0.001 0 

R [m] V [m/s] V [m/s] V [m/s] V [m/s] 

0.101 8.95301 8.96399 8.96537 8.96554 

0.102 7.91534 7.9212 7.92222 7.92235 

0.103 6.89589 6.89811 6.89859 6.89865 

0.104 5.8865 5.88405 5.88368 5.88364 

0.105 4.88699 4.88008 4.87887 4.87873 

0.106 3.89622 3.88601 3.88413 3.8839 

0.107 2.91183 2.90006 2.89782 2.89754 

0.108 1.935011 1.92456 1.92251 1.92225 

0.109 0.963578 0.95721 0.955934 0.955772 
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For the velocity profile slight shear thinning was observed close to the inner cylinder where velocity 

was the highest. The effect of the shear thinning is more drastically seen in the temperature profiles 

where shear thinning caused a decrease in viscous dissipation and therefore a lower maximum 

temperature. Figure 6 shows this as a graph of the temperature profiles plotted against radial 

direction.  

 

Figure 6: Temperature with respect to radial direction at 𝜶 = 0, 0.001, 0.01, 0.15. 

The temperature profiles predicted by the Giesekus model were compared to the Oldroyd-B model. 

The average difference between these profiles was determined and is presented in Table 13. 

Table 13: Percentage difference between the results predicted by the Oldroyd-B model and different results from the 
Giesekus model. 

𝜶 [%] Difference 

0.15 2.04 

0.01 0.241 

0.001 0.0147 

 

From Table 12 and 13 it is clear that the Giesekus model’s predicted results tend towards the Oldroyd-

B model’s results as 𝛼 tends to zero. 

Through the above cases it is seen that all four of the solvers were able to correctly predict the velocity 

and temperature profiles at various angular velocities. This benchmark therefore confirms that all four 

solvers are able to correctly reduce to the Newtonian fluid model when the material properties are 

chosen correctly. It furthermore shows that accurate evaluation of the energy equation. 
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3.2.3 Non-Newtonian flow benchmark with channel flows 
 

In this section, the shear thinning behaviour of the viscous fluid formulations are validated. This is 

done by comparing the computed results of channel flows with known analytical solutions. 

Channel flows, in this context, are flows between two stationary walls with a pressure gradient applied 

in one direction. The flow domain is assumed to be infinitely wide (the width of the channel is the 

direction perpendicular to the walls of the channel as well as the direction of the applied pressure 

gradient) and therefore the problem is reduced to a two dimensional case. The reason for choosing 

this benchmark is because analytical solutions for the power law model are easy to find. The use of 

Cartesian coordinates further simplifies the matter. Finally computationally this kind of problem is not 

very demanding as one is solving a two dimensional flow problem with a pressure gradient as its 

driving force.  

The shear thinning behaviour in the bearing models was described by the Carreau model (see section 

2.1.10). Finding an analytical solution for this particular model however was quite troublesome due 

to the integral that is to be evaluated when solving for the velocity profile from the momentum 

equation. Therefore in order to simplify the mathematics the following observation regarding the 

Carreau fluid model will help (the Carreau model is presented here again for the sake of clarity in the 

discussion): 

𝜂(𝛾̇) =
𝜂0

(1 + (𝑘𝑠𝛾̇)𝑎)𝑏
 

 

 
(3.17) 

If the shear rate is high (𝛾̇ = 10 would be an example of this), then the denominator can be 

approximated as: 

(1 + (𝑘𝑠𝛾̇)
𝑎)𝑏  ≈ (𝑘𝑠𝛾̇)

𝑎𝑏 
 

(3.18) 

This is the same form as the viscosity relation of a Power Law fluid. Therefore if the shear rate is high 

the fluid will tend towards the behaviour of a Power Law fluid.  

In the case where the shear rate is low (𝑘𝑠𝛾̇ ≪ 1 would be an example of this) then the denominator 

can be approximated as: 

(1 + (𝑘𝑠𝛾̇)𝑎)𝑏  ≈ 1 
 

(3.19) 

Therefore the fluid would behave as a Newtonian fluid. Using a simple shear flow example will not 

work, although one can very easily control the magnitude of the shear rate. Specifics for this are 

presented in the next section.  

To derive the analytical solution a Power Law fluid is assumed. A steady flow as well as low velocity 

flow such that the inertia terms can be neglected is assumed. Under these conditions the momentum 

equation reduces to: 

𝑑𝑝

𝑑𝑥
=

𝑑

𝑑𝑦
(𝑚(

𝑑𝑢

𝑑𝑦
)
𝑛−1

) 

 

 
(3.20) 
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This is an ordinary differential equation and since the velocity field is assumed to be only in one 

direction the velocity in the equation above is a scalar quantity. Solving this equation is simple and 

yields the solution to the velocity profile: 

𝑢(𝑦) = (
𝑛

𝑛 + 1
) (−

1

𝑚

𝑑𝑝

𝑑𝑥
)

1
𝑛
((

ℎ

2
)

𝑛+1
𝑛

− 𝑦
𝑛+1
𝑛 )  

 

 
(3.21) 

In order to simplify the analytical solution to be used to benchmark this aspect of the solver, a Power 

Law fluid is assumed. For a Power law fluid the analytical solution for the above case is simple. From 

the observations above we can conclude that a Carreau fluid will tend towards the behaviour of the 

power law fluid (for this specific case) when both of these models are tending towards the Newtonian 

case.  

Both the “genStokesFoam” and the “ViscFoam” solvers were used for this benchmark. The fluid was 

modelled as being a shear thinning fluid. In order to show that the numerical solutions tend to the 

analytical solution of a Power Law fluid, the following powers for the Power Law fluid was selected: 

n= 0.6, 0.8 and 0.9. For the Carreau fluid it follows that: 1 − 𝑎𝑏 = 𝑛. The value for 𝑘𝑠 was chosen to 

be close to unity: 1.04. For this benchmark a was set to 2 for all cases and b was changed between 

0.3, 0.2 and 0.1. 

For the two solvers different domains were needed. The “ViscFoam” solver requires a much larger 

domain for the flow to fully develop. The reason for this is simply due to the addition of the inertia 

terms to the flow formulation. For the two solvers the domains used are presented in Table 14.  

Table 14: Geometric specifications for domain used. 

Solver Length [m] Height [m] 

genStokesFoam 0.5 0.1 

ViscFoam 12 0.1 

The mesh specifications for the different domains are presented in Table 15. 

Table 15: Mesh specifications for channel flow simulation. 

genStokesFoam 

 Number of Control Volumes in: 

 x direction y direction 

Mesh 1 40 20 

Mesh 2 60 30 

Mesh 3 80 40 

ViscFoam 

 Number of Control Volumes in: 

 x direction y direction 

Mesh 1 240 20 

Mesh 2 320 30 

Mesh 3 320 40 
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Mesh independence for each of the cases were established. The results for the finest mesh are 

presented and compared to the analytical solution. According to the discussion above the difference 

between the numerical and analytical solution should become smaller as n tends to unity. The 

percentage difference between the power law (analytical) and Carreau model (numerical) solutions 

are presented in Table 16. 

Table 16: Percentage error between the velocity profiles predicted from the power law fluid and the Carreau fluid. 

 Error [%] 

 n=0.6 n=0.8 n=0.9 

genStokesFoam 5.28 0.104 0.0412 

ViscFoam 5.17 0.297 0.118 

 

The results presented in Table 16 show that the computed results from both solvers tended towards 

the analytical solution (3.21) as n tends to 1. It is therefore concluded that the shear thinning 

behaviour described by the Carreau model as implemented in these solvers is correct. This benchmark 

therefore shows the ability of the viscous solvers to describe shear thinning behaviour. 

 

3.2.4 Viscoelastic flow benchmark with Couette flows  
 

In this final section of chapter three the validity of the viscoelastic solvers to predict the stress field in 

the fluid is validated. In this benchmark the two viscoelastic solvers are validated against the analytical 

solution of a Couette flow. 

The Couette flow problem is a simple shear problem, where (in this case), a rectangular domain is 

selected for the flow. The important boundary condition is set at the top wall, since this wall is moving 

at a fixed velocity. The bottom wall is stationary and the other boundaries in the domain are treated 

as zero gradient pressure and velocity boundary conditions. 

 The reason why Couette flow was chosen is twofold: firstly this flow is still in the context of journal 

bearings since the shearing of the fluid is one of the primary factors that influence the flow condition 

in a bearing (see introduction of chapter 4). Also, it is selected because analytical solutions can be 

found for these flows. Analytical solutions for these general flow models are quite rare compared to 

Newtonian flow models.  

For the velocity profile we note that although the constitutive relation enters the set of governing 

equations the momentum equation reduces to:  

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗) = 0 

 

 
(3.22) 

Due to the geometry of the problem the above reduces to a single equation:  

𝜕

𝜕𝑦
(𝜏𝑥𝑦) = 0 

 

 
(3.23) 
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this is the component in the stress tensor that describes the shear stress. From this it follows that the 

shear stress is constant for the flow. The velocity profile will also look the same as for that of a 

Newtonian fluid: linear, hence a straight line. In order to evaluate the validity of the solvers the velocity 

profile is compared with the analytical result. Furthermore although the stress components in the 

tensor are constant for this case it is still possible to find it analytically. It thus gives a checking 

mechanism with which to validate the solved stress field.  

For the Oldroyd-B model, the constitutive relation gives the following equation for the Couette 

problem (Owens & Phillips 2002): 

𝜏𝑥𝑥 = 2𝜂0(𝜆1 − 𝜆2)𝛾̇
2 (3.24) 

𝜏𝑥𝑦 = 𝜂0𝛾̇𝑥𝑦 (3.25) 

where the viscosity in the above equations refers to the zero shear viscosity. The 𝛾̇ in the first equation 

represents the magnitude of the rate of shear tensor, where as in the second equation it refers to the 

second component of the rate of shear tensor.  

The same mesh specifications were used for both the solvers. Mesh independence was established 

for each of the cases. The mesh specifications are presented in Table 17. 

Table 17: Mesh specifications for viscoelastic Couette flow simulation. 

 Number of Control Volumes 

 x direction y direction 

Mesh 1 200 20 

Mesh 2 300 30 

Mesh 3 400 40 

Mesh independence for each of the cases was established. 

The viscosity was kept at 𝜂 = 0.00104878 mm2/s, the first relaxation time was chosen to be 0.01 s 

and the second was neglected. The shear rate was kept constant at 𝛾̇𝑥𝑦 = 10 1/s by setting the top 

wall to move at a constant velocity of 1 m/s. For the Oldroyd-B fluid the stress components were 

compared to equations (3.24) and (3.25). The results of this comparison are presented in Table 18. 

Table 18: Comparison between analytical and numerical solutions of tensor components. Oldroyd-B fluid model used. 

 𝝉𝒙𝒚 𝝉𝒙𝒙 

ThermOldBFoam 0.010487 0.00020975 

Analytical 0.0104878 0.000209756 

Error [%] 0.0076285 0.002860548 

For the Giesekus model the analytical expression of each stress component was not derived. The 

equations obtained from the constitutive relation are used directly. Three equations are derived from 

the constitutive relations. Since all the various components of the polymer stress tensor feature in 

these equations it implies that the error of each term will contribute to the overall error. The 

aforementioned equations are: 

𝜏𝑥𝑥 − 2𝜆1(𝜏𝑥𝑦𝛾̇𝑥𝑦) +
𝛼𝜆1

𝜂
 (𝜏𝑥𝑥

2 + 𝜏𝑥𝑦
2 ) = 0 

(3.26) 
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𝜏𝑥𝑦 − 𝜆1𝜏𝑦𝑦𝛾̇𝑥𝑦 +
𝛼𝜆1

𝜂
𝜏𝑥𝑦(𝜏𝑥𝑥 + 𝜏𝑦𝑦) = 𝜂𝛾̇𝑥𝑦 

(3.27) 

𝜏𝑦𝑦 +
𝛼𝜆1

𝜂
(𝜏𝑦𝑦

2 + 𝜏𝑥𝑦
2 ) = 0  

(3.28) 

These equations are derived from the first, second (and fourth since the tensor is symmetric) and fifth 

tensor components.   

When the mobility constant in the Giesekus model is small the fluid will behave like an Oldroyd-B fluid. 

For this reason the Couette flow problem for the Giesekus model was investigated for different values 

of the mobility constant. The term that introduces the shear thinning of the fluid will become more 

dominant and therefore the stress field will move away from that predicted with the Oldroyd-B model. 

The fluid properties and problem set up is the same as before, however, the relaxation time is 

increased to 0.1 s in this case.   

Three values of the mobility constants are chosen for the Giesekus model that would change the 

significance of the shear thinning behaviour of the model. These constants are 𝛼 = 0.001, 0.01, 0.15. 

The results computed are compared to the three equations obtained from the Giesekus model and 

presented in Table 19. 

Table 19: Numerical solution of tensor component for Giesekus fluid model. Solution of equation 3.26-3.28 presented as 
computed from numerical solution. 

 

 

 

 

The reported tensor components, columns two to four, in Table 19 were computed by the 

“ThermGiesFoam” solver. Columns five to the end of the same table show the result when these 

computed components are substituted into the left hand side of equations (3.26) to (3.28). For 

equations (3.26) and (3.28) the values were shown to be close to zero and therefore these equations 

are satisfied, given the numerical error. For equation (3.27) the result were shown to be very close to 

the right hand side of this equation, where the analytical result is 0.0104878. From the above it is 

concluded that the results predicted by the “ThermGiesFoam” solver are in good agreement with the 

analytical values. As the value of the mobility constant decreases the significance of shear thinning 

decreases and the fluid behaviour tends to that predicted by the Oldroyd-B model (this is seen by 

comparing the results form Table 18 and Table 19).  

In sections 3.1.1-3.12 a brief overview of the models developed were given. Since these models were 

newly developed in the OpenFOAM environment the validity of these models had to be established. 

This was done systematically through the remainder of the chapter. In sections 3.2.1 and 3.2.2 both 

the validity of the flow and temperature field predicted by all the solvers were established. It was 

shown in section 3.1.1 that the most basic fluid solver “genStokesFoam” was able to accurately predict 

the pressure distribution in the bearing if the simulated bearing was similar to the one assumed when 

the long bearing solution is derived. The uncoupled Stokes formulation of the flow can be used as a 

representative of the classical Reynolds formulation of the problem. In section 3.2.2 the error of the 

𝜶 𝝉𝒙𝒙 𝝉𝒙𝒚 𝝉𝒚𝒚 Eq (3.26) Eq (3.27) Eq (3.28) 

0.15 0.012933 0.008135 -0.00096 1.04E-06 0.010488 7.57E-10 

0.01 0.019917 0.010196 -9.91E-05 1.17E-06 0.010488 4.26E-10 

0.001 0.020864 0.010457 -1.04E-05 1.93E-06 0.010488 -2.99E-10 
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flow field and the temperature field of all the solvers were shown to be less than 0.3% off from the 

analytical solution. After this it was still necessary to show that the shear thinning behaviour predicted 

by the “genStokesFoam” and “ViscFoam” solvers respectively were accurate when compared to an 

analytical result. This validity of the latter solvers was established in this regard in section 3.2.3. Finally 

for the two more sophisticated models the predicted stress field had to be validated. The accuracy of 

the stress field implies the ability of these solvers to predict viscoelastic behaviour. The tensor 

components that describe the stress field are computed by solving the differential constitutive relation 

for either the Oldroyd-B model or the Giesekus model. The results predicted by these solvers showed 

very good agreement with the analytical solution. Therefore the ability of the solvers to correctly 

predict the fluid behaviour was established.  
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Chapter 4: Application 
 

In the previous chapter the fluid models were developed and validated. In this chapter these models 

are applied in order to study the non-linearity introduced through the various dependencies. The 

dependencies themselves are not the focal point of these applications; rather the applications show 

how these dependencies translate from one fluid model to another and how a coupled formulation 

affects the results predicted by each fluid formulation. The influence of these dependencies has been 

stated repeatedly in literature as well as their influence on the operating condition on bearing models 

(see section 1.2.2). An application that captures the operating condition within the bearing is 

developed and the different fluid formulations are compared in order to access the extent of the 

influence a coupled formulation would have.  

Since the focus of the applications is not to predict the operating condition of a bearing accurately, a 

less sophisticated application can be used to show the effect of the coupling of the various fields. A 

realistic fluid model predicting the flow condition in a steam turbine journal bearing is extremely 

resource intensive, this is another reason an alternative application is sought. The issue with large 

scale bearing is the journal and bearing diameter compared with the film thickness. Compared to the 

scale of the bearing the fluid film is extremely thin, however the circumference of the bearing is of the 

same order of magnitude as the bearing’s axial length. This implies a very large but thin computational 

domain. The large circumferential length implies that a large number of CVs are needed to gain a 

stable solution (this problem was also encountered in section 3.2.1 when the clearance of the bearing 

was decreased an increase of CVs in the circumferential direction was required). The dimension of the 

large steam turbine bearings considered in this study has a diameter of 0.9 m and a length to diameter 

ratio of 1. This translates to about 4.3x109 CV’s in order to achieve a converged solution. This is a rough 

estimate based on the same aspect ratios of the CV’s used in section 3.2.1, Table 1 for the coarsest 

mesh for a bearing with film thickness of 1 mm. This estimate assumes that the control volumes would 

have equal length and width. However the simulation conducted in 3.2.1 had a journal rotating at a 

much lower angular velocity. The eccentricity ratio was 0.2. For more severe operating condition more 

CVs would be required.    

On the other hand the nonlinearity of the problem needs to be recognised: one needs to look at 

operating conditions that are similar to that found in a bearing. The nonlinearities of the problem 

make the system very complicated and therefore one cannot, with confidence, say whether effects 

observed in a particular case would hold in general.  

In order to better understand the flow conditions in a bearing, one that can neither be regarded as 

being short nor long, the classical Reynolds equation was considered (see section 2.1.8):  

𝜕

𝜕𝜃
[ 𝑏1(𝜃)

𝜕𝑝 

𝜕𝜃
] + (

𝑅

2𝐿
)
2 𝜕

𝜕𝑧
 [𝑏2(𝜃)

𝜕𝑝 

𝜕𝑧
] =  𝑏3(𝜃) 

 
(4.1) 

This equation shows three primary factors that influence the flow of the oil in a bearing: the axial 

pressure gradient, the circumferential pressure gradient and the shearing of the oil due to the rotating 

journal (see Figure 7). The first two are effects due to the geometry of the bearing and the last is due 

to the rotation of the journal. It is known that the position of the journal, and therefore the axial and 

circumferential pressure gradients, depend on the motion of the journal. The motion of the journal ,in 
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turn, determines the position of the journal (Li, Davies, et al. 2000). The interaction between the 

journal and the film is therefore a complicated nonlinear dynamics problem. 

An application that has each of these factors: axial pressure gradient, circumferential pressure 

gradient and shear, in the correct measure will be a suitable representation of the problem (see Figure 

8: Section of Film taken out of the converging section of bearing.). This assumes that the journal 

position has reached steady state conditions such that its position and therefore the axial and 

circumferential pressure gradients do not change significantly. This assumption is made only for the 

purpose at hand: to look at the translation of dependencies from one fluid model to another. The 

validity of this application to predict accurate results as far as general operating conditions of the 

bearing are concerned is not endorsed.  

 

Figure 7: Bearing with terms from Reynolds equation that influence the flow indicated. 

 In section 3.2.1 (see Figure 4) it is seen that the maximum pressure in the bearing changes in both 

magnitude and position according to the eccentricity of the journal (the position of the maximum 

pressure shifts towards 𝜃= 1800 as the eccentricity of the bearing increases). It is in this region, of the 

maximum pressure, where the viscosity dependencies are the most influential. This is simply because 

both the pressure and temperature is a maximum in this region (Davies & Li 1994). (This assumes that 

the system has reached steady state conditions)  

It is therefore reasonable to look at the converging region of the bearing (see Figure 7) since this is 

where the dependencies are the most severe. Hence it follows that if the dependencies in this area 

do not vary between the models, it will not differ anywhere else in the bearing. On the other hand, if 

the models do differ in this region this implies that one would carefully have to consider the model 

used when modelling these kinds of journal bearings. The pressure distribution in this section 

 𝑏3(𝜃) 

Rotating Journal 
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determines the load carrying capacity of the bearing. The forces acting on the journal due to the 

pressure distribution is intricately related to the dynamics of the journal. Therefore, if the models 

predict different fluid behaviour in this region it will influence the behaviour of the entire system.  

This chapter will proceed as follows: in section 4.1 the numerical case is developed and the fluid 

properties needed to accurately predict the fluid behaviour in this section are determined. In sections 

4.2 and 4.3 the weak and strong coupled formulation of the problem is compared with an uncoupled 

formulation. After this, the results obtained are discussed. 

Finally in chapter 5 conclusions are drawn on the influence of a coupled formulation opposed to an 

uncoupled formulation of the various fluid models.  Recommendations for further research are also 

made.  

 

4.1 The test case 
 

In the previous section the reason for considering a region close to the maximum pressure was 

highlighted. A prismatic section of the film (see Figure 8) in this region is therefore considered and the 

test case was developed with the view of simulating the fluid dynamical behaviour in this region. The 

case presented in this section is only an approximation to the actual flow conditions. By taking out a 

piece of the oil film one loses a huge part of the bearing and therefore also part of the physics that 

would be present in a full scale bearing simulation. In order to compare the coupling of the various 

fluid models, the operating condition in the selected region needs to only be approximated. The 

approximation was developed with two particular aspects of the problem in mind: (1) The 

computational resources and time needed to simulated a large scale journal bearing accurately, taking 

all the dependencies highlighted thus far into account, would not be feasible. Particularly if one wants 

to look at the behaviour of the oil film without specifically computing the operating conditions of the 

bearing.  (2) The approximation needs to capture the important factors that determine the fluid 

dynamics in the bearing credibly.  

Figure 8: Section of Film taken out of the converging section of bearing. 
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In order for this to be the case each of the three factors, highlighted in the previous section (also see 

Figure 8 which indicates this), need to appear in the approximation to the same degree as it would in 

the corresponding section of the oil film. This presents another problem: how would one determine 

accurate boundary condition for the computational domain. This issue is resolved at the end of this 

section by employing the Finite Difference Method (FDM) to solve the Reynolds equation and thereby 

obtaining an approximation of the boundary conditions for the computational domain.   

On the other hand it is noted that a ‘broad based’ analysis in this case will be an inefficient way of 

studying the fluid behaviour. The operating conditions in the turbo machinery considered here remain 

fairly steady. Great care is taken in order to ensure this through proper control. If the operating 

conditions in these machines fluctuate the electricity generation and line frequency would vary. This 

sets this study apart from those done on automotive journal bearings, where sudden changes in the 

journal velocity and position are to be expected. This is not to say that a research in the transient 

dynamics of the fluid in this region would be fruitless. Rather it affirms the approximation’s ability to 

capture the flow conditions in this region accurately enough to determine the influence of the coupled 

formulation.    

The geometry used to approximate this section of the bearing is prismatic. The reasons for this choice 

are: 

 A hexahedral mesh is much easier and quicker to generate in the OpenFOAM environment.  

 The number of pressure correctors needed for a hexahedral mesh that is orthogonal is very 

low, thus computationally it is less resource intensive.  

 The accuracy of the finite volume method is generally better when orthogonal meshes are 

used (Juretić & Gosman 2010). 

Since the curvature of the bearing is therefore neglected, it is important to determine the dimensions 

of computational domain that would be a reasonable approximation. Note that when the dimensions 

of the section of the oil film considered is small, then the curvature of the journal and bearing is well 

approximated geometrically by the computational domain (see Figure 9).   
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Figure 9: Geometry of computational domain approximating a section of the oil film. 
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If the angle is small (i.e. 𝜃 ≪ 1rad) then the following approximation applies: 

sin(𝜃) ≈ 𝜃 
 

(4.2) 

By looking at equation (4.2) for different values of 𝜃 it was found that if 𝜃 < 0.15 then the error in the 

approximation is less than 0.5%. This implies that the difference between a straight line and a circle is 

less than 0.5% when the angle is smaller than 0.15. Using (4.2) this translates to a volume with a length 

of 3.75cm. Therefore if the volume has a length of less than 3.75cm the curvature of the bearing and 

journal can be neglected. Before the length of the volume is fixed the thickness of the fluid film is to 

be determined.  

The thickness of the oil film in large bearings is difficult to determine, there is not a large body of 

literature available on the topic either. ESKOM indicated that the thickness should be about 1mm. In 

one article it was reported that the film thickness usually varies between 6-9.5mm (Lisyanskii et al. 

2006). Turning to literature on automotive journal bearings it is seen that the ratio of the journal radius 

to the bearing radius is 0.9987. Applying this ratio to steam turbines it is seen that the corresponding 

film thickness is about 0.325mm. This is much smaller than the results reported by the above cited 

sources. The film thickness in the converging section is therefore selected to be 0.4mm. From the 

above cases in is evident that the film will not be thinner than this. This film thickness also allows the 

bearings to carry the typical weight of the rotors at the operating condition that were indicated by 

ESKOM (this conclusion is based on results obtained by Finite Difference solution of the Reynolds 

equation, this discretization is presented later in the section).  

The remaining dimensions were set, based on the aforementioned discussion, as: a film thickness (R-

direction) of c =0.4mm, the length (𝜃-direction) 5c (2 mm), and width (z-direction) 5c (2 mm). The 

aforementioned length and width was chosen since it was determined that this is the minimum length 

for which boundary effect can be neglect if the field variables are measured in the centre of the 

computational domain. The volume therefore had dimensions much smaller than that presented 

earlier in the section. The volume was therefore chosen sufficiently small to neglect the curvature of 

the bearing.  

Next the fluid properties of the oil were determined. For the temperature dependence, the constants 

for the WLF-equation for the turbine oil are not known. ESKOM provided the fluid properties of the 

oil at three distinct temperatures.  In order to determine the constants for the WLF-equation, (2.35) 

is cast in the form:  

𝐶1 =
 (𝐶2 + 𝑇 − 𝑇0)

𝑇 − 𝑇0
ln (

𝜂(𝑇)

𝜂0
) 

 
(4.3) 

Using the known viscosity data, two equations are found and can be solved simultaneously to find the 

constants of the WLF-equation for the oil in question.  The constants for the oil were found to be       C1 

= -5.898 and C2 = -266.967. In order to confirm the validity of these constants, the shift factor (2.35) is 

applied to the zero shear viscosity:  

𝜂(𝑇) = 𝑎𝑇𝜂0 (4.4) 

The results predicted by equation (4.4) are presented in table 18.  
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Table 20: Values predicted by equation (4.4) 

T [K] 𝜼(𝑻) mm2/s Status of results 

293.15 1.05E-02 Corresponds with given value 

303.15 8.33E-03 Predicted by (4.4) 

313.15 6.50E-03 Corresponds with given value 

323.15 4.97E-03 Predicted by (4.4) 

333.15 3.71E-03 Predicted by (4.4) 

343.15 2.69E-03 Predicted by (4.4) 

353.15 1.90E-03 Predicted by (4.4) 

363.15 1.29E-03 Predicted by (4.4) 

373.15 8.40E-04 Corresponds with given value 

383.15 5.22E-04 Predicted by (4.4) 

393.15 3.06E-04 Predicted by (4.4) 

 

Comparing the viscosity predicted by the WLF-equation in table 20 to the know viscosity values at the 

various temperature, it is concluded that the values predicted by the WLF-equation using the 

calculated constants are accurate.  

For the pressure dependence data form Li et al. (2000) is used. In their work they reported two 

constants that govern the pressure dependence. One constant applies to the viscosity directly and the 

other to the shear rate. The geometric mean of these two constants was taken in order to find a single 

constant (this can be done since the magnitude of the constants are not too far apart). The model 

used in this work applies the same shifting factor to the viscosity and the shear rate and therefore the 

aforementioned distinction made by Li et al. (2000) is neglected. This approach is followed by Wachs 

et al. (2002) and was adopted here. The constant used for the pressure dependence was calculated to 

be 𝜓 = 1.82 × 10−8 Pa-1. This constant is valid for dynamic pressures. OpenFOAM, however works 

with kinematic pressure, therefore the constant has to be divided by the density of the fluid in order 

to arrive at the kinematic pressure equivalent: 𝜓 = 1.4924 × 10−5s2/m2. The density of the oil is 

chosen to be 𝜌 = 820kg/m3 as referenced in the aforementioned article by Li et al. (2000).  

The constants used for the shear dependence was determined by using the constants for oil reported 

in an article by Li et al. (2000). In this article the model for shear dependence was different to the 

Carreau model used in the current work. The corresponding constants for the Careau model was 

determined by adjusting the constants a and b until the shearing of the fluid between the viscosity 

dependence models were less than 1% apart. The determined constants were 𝑎 = 0.3 and 𝑏 = 0.25 

respectively.  

The Giesekus model accounts for the shear thinning of the fluid. To this end the empirical constants 

of the viscoelastic model need to be chosen in order to give the same amount of shear thinning as the 

Carreau fluid. Using the equation (4.5), (Bird et al. 1977), which gives the viscosity of the fluid at a 

specific shear rate to the zero shear rate viscosity, the values of 𝛼,𝛽 and 𝜆1 were determined to be 

0.5, 0.77 and 0.012 respectively.  
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𝜂

𝜂0
=

1 − 𝛽

𝛽
+

𝛽(1 − 𝑓)2

1 + (1 − 2𝛼)𝑓
 

 

 
(4.5) 

where 

𝜆2 =
𝜆1𝜂𝑠

𝜂𝑝
 

 

 
(4.6) 

𝛽 =
𝜂𝑠

𝜂𝑠 + 𝜂𝑝
 

 

 
(4.7) 

𝑓 =
1 − 𝜒

1 + (1 − 2𝛼)𝜒
 

 

 
(4.8) 

𝜒2 =
(1 + 16𝛼(1 − 𝛼)(𝜆1𝛾̇)

2)

8𝛼(1 − 𝛼)(𝜆1𝛾̇)
 

 

 
(4.9) 

Finally the boundary conditions need to be determined. In order to determine the pressure boundary 

conditions the FDM was employed to discretize the classic Reynolds equation. Figure 10 shows an 

example of a FVM mesh where the nodes are indicated at the intersections of the lines. 

 

Figure 10: Finite difference mesh for solving the pressure distribution from Reynolds equation. 

The pressure is computed at the nodes. This allows one to determine the values of the pressure at 

each boundary of the computational domain (see Figure 11). The nodes used to determine the 

boundary condition for the computational domain was determined by setting 𝑃(𝜃𝑖, 𝑍𝑖) in Figure 11 

equal to the node with the maximum pressure. The computational domain is therefore situated in the 

section of the bearing which is at the maximum pressure (both circumferentially and axially).    
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Figure 11: Top view of computational domain with nodes from finite difference domain indicated at the boundaries. 

The pressure computed at the nodes is used as the average pressure on the boundaries of the 

computational domain. The discretized equations are presented as equation (4.10) to (4.14) below, 

(the functions 𝑏𝑘(𝜃𝑖) are renamed from equation (4.1)): 

𝑏1(𝜃𝑖)
𝜕𝑝

𝜕𝜃
+ 𝑏2(𝜃𝑖)

𝜕2𝑝

𝜕𝜃2
+ 𝑏3(𝜃𝑖)

𝜕2𝑝

𝜕𝑧2
= 𝑏4(𝜃𝑖) 

 
(4.10) 

𝑏1(𝜃𝑖) =  −3(1 + 𝜖 cos(𝜃𝑖))
2(𝜖 sin(𝜃𝑖)) (4.11) 

𝑏2(𝜃𝑖) = (1 + 𝜖 cos(𝜃𝑖))
3 (4.12) 

𝑏3(𝜃𝑖) = (
𝑅

2𝐿
) (1 + 𝜖 cos(𝜃𝑖))

3 
(4.13) 

𝑏4(𝜃𝑖) =  −
6𝜂Ω𝑅2𝜖

𝑐2
𝑠𝑖𝑛 (𝜃𝑖) 

 
(4.14) 

  

Computing the pressure field from equation (4.10) and converting it to kinematic pressure, the 

pressures at the boundaries of the computational domain was found to be: 

Table 21: Pressure computed by the FDM at the boundaries of the computational domain. 

Boundary Pressure computed at boundary 

𝒑(𝜽𝟏) 2.5350 × 104 m2/s2 

𝒑(𝜽𝟐) 2.5334 × 104 m2/s2 
𝒑(𝒛𝟏) 2.5355 × 104 m2/s2 
𝒑(𝒛𝟐) 2.5334 × 104 m2/s2 

The discretised equations were solved by starting at an initial pressure field which is updated as the 

discretized equation is solved at each of the points in the domain. This process was iterated until the 

pressure field converged. Mesh independence was also established.  

Since this case is only an approximation a constant pressure boundary condition was used at three of 

the four side walls. The 𝑧2 boundary condition (see Figure 11) was set to be a zero gradient condition 

however. This was chosen in order to avoid large pressure gradients in the corners where the walls 
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meet. Although this does happen in the 𝑧1 − 𝜃2 corner, its effect on the flow is minimal. If another 

large gradient was also present in the opposite corner these effects start to affect the flow 

significantly. Another benefit of the zero gradient boundary condition is that a linear pressure 

distribution is computed on this boundary. This is closer to the actual flow conditions since the 

pressures at the faces will not remain constant in reality but should drop almost linearly from the high 

point to the low point.  

Computed results from thermal profiles within the bearing have shown that the temperature in this 

region is almost entirely at the maximum temperature (Li, Davies, et al. 2000). The thermal boundary 

conditions at 𝑧1 and 𝜃1  are set to be constant at 350 K. ESKOM indicated that the oil in the bearings 

is never allowed to go above 340 K. This value is measured after the fluid has left the bearing.  The 

maximum value is therefore just an estimation of what is expected to be the maximum temperature 

in this region.  

The top wall of the volume was set to move at 80 m/s as this corresponds to an angular velocity of 

3000 rpm for the bearing in question. For the thermal boundary conditions the bottom wall was set 

to remain constant at the maximum temperature and the moving wall was set to remain constant at 

300 K, slightly above room temperature. See section 2.2.2 for further details regarding thermal 

boundary conditions.  

Finally the mesh density for both the strong and the weak coupling were seen to be the same. The 

coupling therefore did not seem to have an influence on the mesh density. The time step sizes were 

seen to be affected quite dramatically as the viscoelastic coupling was changed. This was however due 

to the instability of the Oldroyd-B model (see section 4.4 for more details on the time step sizes). The 

Meshes used are presented in table 22 below, mesh convergence was established for the last mesh. 

Table 22: Mesh specifications for computational domain 

 Number of Control Volumes 

 𝜃-direction z-direction R-direction 

Mesh 1 20 20 10 

Mesh 2 30 30 15 

Mesh 3 40 40 20 

 

4.2 Pressure dependencies a weak coupled formulation 
 

In this section the fluid models are considered in the light of the pressure and shear rate dependence 

of the fluid. The pressure and shear rate dependencies of the viscosity introduces an additional non-

linearity to the fluid problem. Describing a coupling as strong or weak is a rather subjective matter 

(Markert 2010). In the current study the pressure and shear rate dependencies are considered to 

introduce a weak coupling: the viscosity is determined by the field variables computed from the 

governing equations. The governing equation is then updated according to the newly calculated 

viscosity from its constitutive relation. The viscosity relation does not add an additional governing 

equation; rather it is added in order to complete the set of governing equations.  

Two set of results are compared in this section as well as the next section: the viscous formulation and 

the viscoelastic formulation are compared separately. The comparison in both cases however is the 
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same: the difference between the different coupled or uncoupled formulations. The velocity profiles 

presented in sections 4.2 and 4.3 were measured at the centre of the computational domain. The 

magnitude of the velocity was presented. The velocity profiles however closely resemble the flow in 

the circumferential direction since the velocity of the flow in the axial direction is much smaller. The 

average velocity of the flow in the axial direction was 0.4 m/s.   

For the comparison of the viscous formulations the uncoupled equation was solved using the average 

viscosity as computed when taking the pressure and shear rate dependencies into account. It 

therefore is a representative of models where one would adjust only the viscosity in order to account 

for the various dependencies.   

The velocity profiles computed by the various viscous formulations are presented in Figure 12. The 

velocity profiles are plotted against the radial position (R) divided by the thickness of the fluid film (c). 

 

Figure 12: Velocity profiles computed using the viscous fluid and classical formulations. 

The velocity profiles form the coupled Stokes and viscous formulations are almost identical. For this 

reason the velocity profile computed by the coupled Viscous formulation is plotted as discrete points 

on the velocity profile computed by the coupled Stokes formulation.  

As a reference the problem was solved without adjusting the viscosity. This is representative of the 

result obtained with the classic formulation. Using the classical formulation as a reference, the 

differences between the uncoupled and coupled formulations are determined with respect to the 

classic formulation.  
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Figure 13: Difference between the velocity profiles computed by the viscous fluid and classical formulations. 

Before the difference between the velocity profiles was taken the velocity profiles were divided by 

the velocity of the journal (the top moving wall of the domain). The absolute value of the differences 

was taken in order to eliminate the sign. The difference functions, equation (4.15), are computed and 

shown in Figure 13. 

‖𝑉(𝑦) − 𝑉𝑐𝑙𝑎𝑠𝑠𝑖𝑐(𝑦)‖

𝑉𝑗𝑜𝑢𝑟𝑛𝑎𝑙
= ∆ 

 
(4.15) 

From Figures 12 and 13 it is very clear that there was a significant difference between the coupled and 

uncoupled viscous formulations results. Although the difference between the coupled and uncoupled 

formulations is apparent from both of the mentioned figures, the different fluid models with a coupled 

formulation seem to be very similar.  

The viscoelastic formulation was compared in the same way, although in this case the term weak 

coupling would not bear the same significance as in the viscous models cases. This is due to the stress 

field being strongly coupled with the momentum equation. The dependencies of the fluid were only 

allowed to influence the fluid properties; these are the viscosity and the relaxation time of the fluid. 

This means that the Oldroyd-B fluid formulation has a weaker coupling than the Giesekus fluid 

formulation when set up in this way. For this case the Oldroyd-B constitutive model was used as the 

simpler model and the fluid properties were assumed to be constant. The fluid properties were 

determined by averaging the values determined from the fully coupled case. Figure 14 shows the 

velocity profiles computed by the viscoelastic formulation. The classic formulation was included for 

the sake of comparing the results to that of the viscous formulation.  
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Figure 14: Velocity profiles computed using the viscoelastic fluid and classical formulations. 

From Figure 14 it is firstly seen that the Oldroyd-B model gave almost identical results to the Giesekus 

model for this case. The difference between these two formulation in this case is, however, slightly 

larger than the two coupled viscous models. It is also seen from this figure that the viscoelastic fluid 

models predict results that were closer to the classic formulation of the problem than the viscous 

models in the case of a weak coupling. The comparison of the differences to the classical formulation 

is presented in Figure 15. 

 

Figure 15 : Difference between the velocity profiles computed by the viscoelastic fluid and classical formulations. 

Comparing Figures 14 and 15 with one another it is seen that the difference between the two 

viscoelastic formulations were greater than that of the viscous formulations. The viscoelastic 
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formulations, however, were much closer to the classical formulation than the viscous formulations. 

The difference function for the viscoelastic models had a different shape, as seen in Figure 15. This 

implies that the changes in fluid behaviour from the classical formulation to the two viscoelastic fluid 

models were not the same and that the change in the flow was not homogeneous. The difference 

function of the coupled Oldroyd-B formulation has a similar shape to the difference function of the 

viscous formulation (Figure 13). The coupled Giesekus did not follow this trend. This implies that the 

departure from the classical formulation when employing a coupled viscoelastic formulation was not 

analogous among the viscoelastic fluid formulations. This implies that the two viscoelastic 

formulations behaved differently in the presence multiple dependencies.  

 

4.3 Thermal dependencies 
 

In this section non-isothermal fluid models are considered. The fluid models are consequently 

considered as being strongly coupled. The strong coupling is introduced: firstly through additional 

governing equations, the energy equation and the stress constitutive relation for the viscoelastic 

formulation, and secondly through cross terms appearing in the different governing equations. Cross 

terms in this context include the viscous dissipation term (equation (2.32)), the viscosity dependence 

on temperature in the momentum equation (equation (2.39)), and the cross terms found in the 

governing equation of the stress field for the viscoelastic formulation (equations (2.13) and (2.17)). 

The velocity profiles for the viscous formulation are presented in Figure 16. The uncoupled equations 

were computed similarly to those in the previous section: the values of the fluid properties were held 

constant. These values were determined by averaging the values determined form the fully coupled 

formulation.  

 

Figure 16: Velocity profiles computed using the viscous fluid formulations. 
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Using the same result for the classical formulation from the previous section, the differences between 

the velocity profiles were computed as before and are presented in Figure 17.  

 

Figure 17: Difference between the velocity profiles computed by the viscous fluid formulations and classical 
formulations. 

From Figures 16 and 17 it is clearly seen, as was the case for the weak coupling, that the coupling had 

a significant influence on the computed velocity profiles. By comparing Figures 13 and 17, specifically 

the magnitude of the differences, it is clear that the difference between the models were augmented 

through the stronger coupling. Another interesting result arises when comparing these two figures: 

the velocity profiles in the presence of the strong coupling are no longer alike as in the previous 

section. This implies that the strong coupling did not only introduce nonlinearities in itself, but also 

influenced the nonlinearities present. The different fluid models therefore behaved differently when 

the governing equations were coupled.  

In Figure 13 the shape of the difference functions are similar to parabolas. In Figure 17 it is seen that 

in the presence of the stronger coupling the shape of the difference functions departed from the 

parabola-like shape. The change in shape of the difference functions from the weak coupling to the 

strong coupling is seen, however, to have changed in a similar fashion. Therefore, the departing from 

the parabola-like shape in Figure 13 and Figure 17 is unanimous among the models.  

As in the previous section, the coupling of the viscoelastic formulation is not a comparison between a 

coupled or uncoupled formulation. Rather the comparison is between a weak and a strong coupled 

formulation. The coupling term in the constitutive relation for coupling this equation with the energy 

equation was set to zero in the weak coupling case. The temperature and shear dependencies of the 

properties were determined beforehand and were not updated in the solution procedure. The 

computed velocity profiles form the viscoelastic models are presented in Figure 18. The difference 

between the computed velocity profiles are more easily seen for the viscoelastic models in this 

section, compared to the previous section (see Figures 18 and 14). The difference however is not as 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,2 0,4 0,6 0,8 1 1,2

∆

R/c

Coupled Stokes Formulation

Coupled Viscous Formulation

Uncoupled Viscous formulation



79 | P a g e  
 

dramatic as for the viscous models. The reason for this is that the coupling is weaker rather uncoupled 

formulation as mentioned before. 

 

Figure 18: Velocity profiles computed using the viscoelastic fluid formulations. 

The difference between the viscoelastic models and the classical formulation is presented in Figure 

19. By comparing Figures 15 and 19 it is seen that the difference between the couplings of the 

viscoelastic models were less than for those presented in the previous section.  The reason for the 

small change, in Figure 17, is due to the comparison between the two viscoelastic models being a 

comparison between a weakly coupled and strongly coupled formulation. For the viscous models the 

comparison is first between an uncoupled formulation and a weak coupled formulation and then to a 

strong coupled formulation.  

 

Figure 19: Difference between the velocity profiles computed by the viscoelastic fluid and classical formulations. 
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Comparing the viscous formulation and the viscoelastic formulation, results shown in Figures 16 and 

18, it is seen that the character of the viscoelastic flow is substantially distinct for the viscous 

formulation. Not only do the magnitudes of the velocities differ dramatically, but the position of the 

maximum velocity is closer to the journal in the viscoelastic formulation compared to the viscous 

formulation. 

The computed temperature profiles were compared and the percentage difference between the 

profiles is presented in Table 22.  

Table 23: Percentage difference between the temperature profiles. 

 Temperature 
difference [%] 

Stokes Formulation 0.0068 

Viscous Formulation 0.00079 

Viscoelastic Formulation 0.0015 

 

For this comparison the temperature profiles computed by the coupled formulations were compared 

to that computed by the uncoupled formulation.  

The differences between the temperature profiles were negligible. The greatest difference between 

these various models was therefore seen in the velocity profiles.  

 

4.4 Discussion 
 

The context of this study is the diagnostics of large scale turbo machinery. In order to simulate reliable 

responses of the system reliable bearing models should be used. To this end the coupling of the 

governing equation were studied to determine their influence on the flow behaviour in the bearing. It 

has been shown that a coupled formulation of the fluid model has a significant effect on the fluid 

dynamics in the bearing.  

The numerical case study considered the region in the bearing where the dependencies of the fluid 

model are the greatest. Comparison between the classical formulation and the various other 

formulations confirmed this. The influence of the dependencies themselves has been studied before, 

as was mention in section 1.2.2. The difference between the classical formulation and the various 

other models are therefore not surprising.  

In the weak (section 4.2) and the strong (section 4.3) coupled formulation of the fluid models, it was 

shown that the coupling had a significant influence on the fluid behaviour. Therefore this study 

showed that despite the need to take into account the various fluid dependencies that influence the 

flow behaviour, there is a further need to take the interaction of these fluid properties with one 

another into account.  

It was further shown therefore that when considering the influence of various dependencies that the 

superposition principle no longer holds: the influence of an isolated dependency in not the same as 

when it is in the presence of other dependencies. The most dramatic case of this is seen in section 4.3, 
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where the viscous models were compared to one another. The difference in the maximum velocity 

due to the coupling was up to 10%. 

The viscous fluid formulation included the inertia terms whereas the Stokes fluid formulation did not. 

The influence of these terms in the case of the weak coupling does not seem to make any difference 

to the fluid behaviour. Moving to the case of the strongly coupled formulation the matter changes 

quite substantially with regards to the computed velocity profiles. It was shown that the influence of 

the coupling of the fields depends on the fluid model itself. This is seen very clearly in section 4.3, 

where the two coupled viscous models differed in maximum velocity with almost 4%. 

This poses an interesting result: each case needs to be modelled individually. For large scale journal 

bearings one cannot simply adjust one model with say 20% since the viscosity changes that amount 

for the average temperatures encountered. The fluid model for the oil needs to be selected specifically 

to suit that oil. The governing equations would have to be coupled especially in the case of strong 

couplings where the coupled and uncoupled formulations showed significantly different results. These 

differences were not only in magnitude but in shape; implying a change in the characteristic of the 

flow. This change in the flow behaviour can only be accommodated by a coupled formulation. The 

extent of these changes also depends on the fluid model selected. This shows that selecting a fluid 

model to describe the oil film is not trivial as the coupled formulation of each of the models behaved 

differently.     

In both Figures 15 and 19 it is seen that the viscoelastic models reacted differently to the coupling of 

the equations. The coupling in the Giesekus formulation was stronger than for the Oldroyd-B model 

in each of the cases presented. However, this difference in the coupling did not produce a 

homogenous change. Rather, the differences between the two formulations with regards to the 

classical formulation are quite distinct.  

By comparing the results from the viscous and viscoelastic formulation it was showed that there is a 

dramatic difference. The shape of the velocity profiles as well as the magnitudes of the velocities is 

enormously different from one another. Going from the viscous to the viscoelastic formulation in the 

presented results were enormous, not only in terms of dependencies but also in general fluid 

behaviour. Neglecting the viscoelastic fluid behaviour can certainly not be rectified in a simple way. 

Not only is the velocity profiles dramatically changed but also the results show that the way in which 

the viscous and viscoelastic models respond to couplings is quite distinct. 

By comparing the magnitudes of the difference functions in section 4.2 (see Figures 13 and 15) it was 

found that there is a significant difference between the coupled and uncoupled viscous formulations. 

In Figure 13 the magnitude of the difference of the coupled formulations were almost double that of 

the uncoupled formulation. This implies that in the region considered, neglecting the weak coupling 

would result in the same error as neglecting pressure effects.  

This comparison for the strong coupling is much harder to make due to the dramatic difference 

between the viscous and viscoelastic formulations results. It is, however, seen that the differences for 

the coupled viscous formulations were less dramatic for the strong coupling. Although in this region 

the error of neglecting the coupling would result in 40% of the error when neglecting temperature 

and shear dependencies (although this is said in order to highlight the extent of the influence of the 

coupling, the author makes this statement not without some reservation. This is primarily due to the 
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dramatic change in flow conditions brought about when the dependencies are introduced. Although 

the influence is therefore highlighted it is done with the caution since it is a rough estimate). The 

departure from the classical formulation was not homogenous (Figure 17) as with the weak coupling 

(Figure 13). This implies a non-homogenous change in the fluid behaviour, the effects of which would 

have to be studied further as far as the impact on bearing operating conditions are concerned.  

During this study it was also found that the uncoupled and coupled formulations have a significant 

effect on the numerical stability of the solvers: the uncoupled formulation being the more stable of 

the two. In conjunction to this it was also seen that the time step sizes needed for the uncoupled 

formulation to be stable was at least double or up to five times more in the viscoelastic cases.   

For the viscoelastic case it was seen that the Giesekus model was much more stable than the Oldroyd-

B model. Simulations with the test case presented in section 4.1 with the fully coupled Oldroyd-B 

model could not be completed due to the model being too unstable. The reason for the added stability 

of the Giesekus model is the additional term. When 𝛼 is made small the instability of the Oldroyd-B 

model surfaces. The divergence of the model always originated from the constitutive models. The 

additional term in the Giesekus model adds a positive value to the diagonal of the system matrix. This 

improves the diagonal dominance of the system for the same reason the DEVSS (see section 3.1.2) 

improves the stability of the momentum equation.  

The influence of the additional term in the constitutive relation coupling the stress and temperature 

fields seems to be negligible (see section 2.14 and 2.15). This is seen by comparing Figures 15 and 19. 

In Figure 15 this term is negligible, however in Figure 19 it is not. The difference between these two 

figures being as similar as they are implies the insignificance of this term in this study. This is not to 

say that this term is insignificant in general, it might even be significant under transient conditions 

(see section 5.1).  

  



83 | P a g e  
 

Chapter 5: Conclusion  
 

In this study four distinct fluid models were implemented in the OpenFOAM environment. The fluid 

models have a coupled formulation and differ significantly in the degree of sophistication as far as the 

fluid behaviour each model can describe. The validity of each of the developed solvers was established 

by means of various analytical solutions.   

The importance of studying the fluid behaviour in the presence of a coupled formulation of the fluid 

models has been highlighted. The fluid models which were developed and validated were then used 

to study the fluid behaviour in a bearing. This was done by looking at a specific region of the oil film. 

This region was specifically selected for this study since it was determined that this region would have 

the greatest presence and interaction of the various dependencies modelled.  

In this region considered it was shown that the coupling of the fields has a significant effect on the 

fluid dynamics. The coupling itself introduces various complexities to the fluid behaviour which cannot 

be accounted for by merely adjusting the fluid properties. It was shown that in both the weak and 

strong coupled formulations a significant error is introduced when fluid properties are adjusted 

without regarding the interaction of the various dependencies.  

In this study it was therefore clearly demonstrated than in order to accurately model the fluid 

behaviour in large scale journal bearings the coupling of the fields must be considered and accounted 

for. To the authors knowledge this research has not been conducted before. The ability to simulate a 

rotor bearing system accurately depends vitally on the accuracy of the bearing models. This in turn 

depends on the accuracy of the fluid models used to describe the oil film. If the various factors that 

influence the fluid dynamics in the oil film is not accounted for one cannot with any certainty diagnose 

any fault mechanism in the rotor-bearing system.  

It is therefore concluded that the coupling, either weak or strong, of the fields, velocity, temperature 

and stress are essential to describe the fluid behaviour and characteristic in a large scale journal 

bearing accurately. 

 

5.1 Recommendations for further research 
  

The first matter to mention in regard to further research is experimental determination of the fluid 

properties. The fluid properties used in this study were merely estimations of the actual values, and 

greater accuracy is needed. Experimental data for large scale journal bearings are also needed in order 

to determine which fluid model is the best to predict the actual flow condition. These flow properties 

are not readily available in literature. This might even show the necessity of looking at more general 

viscoelastic models. As was shown in this study, the model used is very important in describing the 

fluid behaviour as each model could potentially behave differently in the presence of dependencies 

and couplings. 

As mentioned in section 4.4 the change in flow behaviour when going form the weak to the strong 

coupling needs to be further investigated in order to determine the extent to which this change 

influences the bearing operating conditions. 
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Since numerical stability issues have already been encountered further research is required in the 

stabilising of the solvers, specifically with respect to the part of the constitutive relation that is 

evaluated implicitly for the viscoelastic fluid formulations. The larger the portion of the divergence of 

the polymer stress that is evaluated implicitly the more stable the scheme. This would be particularly 

important when considering transient boundary conditions.  

The boundary conditions for the numerical case used in this study need to be improved. One of the 

first ways to do this is to use a linear pressure drop over all the boundary faces rather than constant 

values. Transient conditions can be included in various ways, but essentially one would want to change 

one of the three main driving forces of the flow: the axial pressure gradient, the circumferential 

pressure gradient and the rotation of the journal. The change could be oscillatory in nature, changing 

one of these three at frequencies in the order of the operating conditions of the system (this would 

typically be at 50Hz). However, it might also be interesting to look at how the models behaviour when 

very high frequency changes occur. The number of boundary conditions that are changed can then 

also be increased from one until all three of the aforementioned driving forces are changing at the 

same time. Another change that is worth looking into is sudden jump boundary conditions: where 

there is a sudden loss of pressure for instance. Studying the additional term coupling the stress and 

energy equation for the viscoelastic fluid formulation is important when the boundary conditions are 

transient. It is expected that this term will grow in it’s significant with the addition of more transient 

dynamics due to the term being a time derivate.  

The thermal boundary condition should also be improved. This was already noted in section 2.2.2. The 

implementation of a Robin’s boundary condition seem the most logical way forward considering the 

results presented by X.K. Li et al. (2000). 

The interpolation used at the boundaries also needs to be revised. In their work, Habla et al. (2012) 

showed the importance of this interpolation with regards to the stress field. This was not done in this 

study but this is surely necessary if one wants to improve the general accuracy of the results.  

The response of the bearings were not considered in this study, however in the general context of this 

project the following points are worth mentioning as far as the response and dynamics of the system 

is concerned:  

In order to study the response of the system the model must be extended to include dynamic motion 

of the journal. OpenFOAM can be used to do this without too much trouble as dynamics mesh libraries 

exist and incorporating them into solvers in not too complicated.  

In order to model the dynamics of the journal properly a good cavitation model is needed. In the 

context of predicting the response of the system, a full two phase formulation is necessary. Together 

with the two phase model a compressible fluid model is needed. This might seem drastic; however 

the reason for this is bubble collapse. When the cavitation bubbles collapse a shock wave is formed in 

the film. The propagation of such a shock wave would be dependent on the density of the fluid and 

therefore a compressible fluid is necessary to accurately model the propagation of the shock wave 

through the film.   In order to deal with the bubbles a Lagrangian formulation is also needed to track 

the bubbles as they move through the mesh and is able to predict the movement of a bubble from 

one control volume to another. Whether or not the Finite Volume Method (and therefore by 
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implication OpenFOAM) is the correct way to tackle this kind of problem is also matter that needs to 

be considered.  
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Appendix A: Notes on the finite volume method and OpenFOAM 
 

OpenFOAM is a finite volume based numerical solver, originally designed to solve partial differential 

equations.  

 

A.1 Finite Volume method 
 

The finite volume method refers to the discretization of a domain into a number of finite volumes. 

OpenFOAM uses a collocated finite volume method: all the variable’s values are stored at the centre 

of a cell, or at the node. This technique is usually adopted for unstructured grids. In this case the 

domain is described in generalized coordinates and contra-variant vectors and tensors are used. This 

greatly complicates the equations. Due to the unstructured nature of the mesh pressure oscillations 

are no longer a concern (Ferziger et al. 2008).  

The first step is to integrate the conservation equation over an arbitrary control volume; generally this 

is of the form (Versteeg & Malalasekera 2007): 

∫
𝜕

𝜕𝑡
(𝜌𝜙)𝑑𝑉 + ∫ ∇ ∙ (𝜌𝜙𝑢)𝑑𝑉 

 

𝐶𝑉

=
 

𝐶𝑉

 ∫ ∇ ∙ (Γ ∇(𝜙))𝑑𝑉 + ∫ 𝑆𝜙

 

𝐶𝑉

𝑑𝑉
 

𝐶𝑉

 

 

 
(A.1) 

 

the integrals are taken over the entire control volume as indicated by the subscript CV at the bottom 

of the integral. 𝜙 is the transported property. The diffusivity of a property is accompanied by a 

proportionality constant that relates the rate of transfer of the property to the gradient of that 

property. Finally 𝑆𝜙 is a source or sink of the transported property 𝜙. 

Using Gauss’ divergence theorem the governing equation can be transformed to flux integrals across 

the control surface rather than looking at the control volume as a whole: 

∫
𝜕

𝜕𝑡
(𝜌𝜙)𝑑𝑉

 

𝐶𝑉

+ ∫ (𝜌𝜑𝑢̅) ∙ 𝑛̅
 

𝐶𝑆

𝑑𝐴 = ∫ (Γ ∇(𝜙)) ∙ 𝑛̅
 

𝐶𝑆

𝑑𝐴 + ∫ 𝑆𝜙

 

𝐶𝑉

𝑑𝑉 

 

 
(A.2) 

 

The terms on the left hand side expresses the change in the scalar variable in the control volume with 

respect to time, and the convective flux across the control surface into and out of the control surface 

respectively. On the other side the terms represent the diffusion of the scalar property into and out 

of the control volume across the control surface, and the generation of the scalar property in the 

control volume respectively.  

In orthogonal meshes the convective and diffusion terms are easily discretize since the area vector 

will always be in the same direction as one of the base vectors of the domain. However in general 

meshes are not orthogonal and to resolve these terms require some effort, introducing additional 

terms in the discretized equation. 
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The equation is now discretized by summing the total flux across the surfaces due to convection and 

diffusion and approximating the two volume terms that remain. The integrals are replaces with finite 

summations and therefore the system is discretized. The finite volume method therefore recast the 

partial differential equations into a system of algebraic equations of the form: 

𝐴𝑥̅ = 𝑏̅ 
 

(A.3) 

 

This can then be solved by the numerical solvers discussed in section (A4). 

 

A.2 Piso Algorithim 
 

OpenFOAM uses the Pressure Implicit with Splitting of Operators (PISO) algorithm to solve the 

pressure and velocity fields. The PISO algorithm is a prediction and correction algorithm. Usually the 

PISO algorithm will comprise of one prediction step and two correction steps, however in OpenFOAM 

the amount of correction steps can be specified, usually ranging between 2 to 20 steps. 

Once discretized the linear momentum equation is of the form (Ferziger et al. 2008): 

𝐴𝑝
𝑢𝑖𝑢𝑖,𝑝

𝑚∗
+ ∑𝐴𝑙

𝑚∗
𝑢𝑖,𝑙

𝑚∗

𝑙

= 𝑄𝑢𝑖
𝑚−1 − (

𝛿𝑝𝑚

𝛿𝑥𝑖
)

𝑝

 
 
(A.4) 

The coefficients 𝐴𝑝
𝑢𝑖 , where p refers to an arbitrary node, are the coefficients of the matrix A in (A3). 

These coefficients are dependent on the velocity field, making the algebraic system of equations 

nonlinear. The index i in the summation refers to all neighbouring cells. 𝑄𝑢𝑖
𝑚−1 refers to the source 

terms of momentum other than pressure (pressure is treated in a conservative manner by evaluating 

pressure as a surface trace rather than a body force, this reduces numerical errors due to 

interpolations required when modelling pressure in as a body force) , which can also be nonlinear due 

to its possible dependence on the velocity field.  

The superscript m refers to the outer iteration time step: Two sets of iterations are performed, inner 

iterations, which solve the linearised equations and the outer iterations which update the coefficients 

of the matrix and linearise the equation again for the next inner iteration loop. The pressure is treated 

implicitly, meaning that the pressure used in the solving of the equation corresponds to the pressure 

at that time step; this is opposed to explicit evaluation which uses the pressure at the previous time 

step. The different from of the gradient operator acting on the pressure field used in this equation 

indicates that it is a discretized gradient.   

The superscript for the velocity field m* indicates that the velocity field is not yet divergence free: 

Since the problem being considered has incompressible flow it follows from the continuity equation 

(2.3) that the velocity field must be divergence free. This gives the criteria when evaluating the velocity 

field. In the inner iterations the equations is subjected to this condition and then iterated until 

conservation of mass is achieved.   

The PISO algorithm uses two correction terms, one for velocity and one for pressure, defined as: 
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𝑝𝑚 = 𝑝′ + 𝑝𝑚−1 (A.5) 
𝑢𝑝

𝑚 = 𝑢𝑝
′ + 𝑢𝑝

𝑚−1 (A.6) 

By using this corrector and making the assumption that the neighbouring cell’s corrections have no 

influence on the pressure correction (which is not easy to justify, the same assumption is made to 

derive the relation between the velocity and pressure correction terms in the SIMPLE algorithm) 

Poisson’s equation for pressure correction arises: 

𝛿

𝛿𝑥𝑖
[

𝜌

𝐴𝑝
𝑢𝑖

(
𝛿𝑝′

𝛿𝑥𝑖
)]

𝑝

= [
𝛿(𝜌𝑢𝑖

𝑚∗
)

𝛿𝑥𝑖
]
𝑝

 
 
(A.7) 

Solving this equation in the inner iteration loop gives a pressure correction which is then used to 

determine the pressure field implicitly. Since (A.7) follows from the continuity equation it follows that 

once the above equation is satisfied and the corrections is applied the velocity field will be divergence 

free.  

After this the velocity correction is determined the velocity field is corrected by using: 

𝑢𝑖,𝑃
′ = 𝑢̂𝑖,𝑃

′ −
1

𝐴𝑝
𝑢𝑖

(
𝛿𝑝′

𝛿𝑥𝑖
)

𝑝

 
 
(A.8) 

This equation follows from the momentum equation when substituting in the correction terms. The 

first term on the right hand side is the velocity sources excluding pressure as well as the influence of 

neighbouring cells.  

Once the continuity equation has been satisfied the pressure and the velocity field now obey the 

conservation of mass restriction imposed but does not satisfy the linear momentum equation. In order 

for the momentum equation to be solved the outer iteration loop (which iterates the nonlinear 

problem) must be solved. After each outer iteration the coefficients of the matrix are updated 

according to the available information and according to the constraint of conservation of linear 

momentum. Continuing the above procedure yields a velocity and pressure field that obeys all the 

necessary conservation laws within the convergence criteria.  

 

A.3 Preconditioners 
 

A preconditioner is any implicit or explicit modification of a linear system of equations which allows 

one to solve the system quicker and/or more accurately. Although this is the goal of preconditioners, 

this is not necessarily always the case and easier solutions cannot be guaranteed by just applying a 

preconditioner.   

The two preconditioners that are applied in this study is: DICPreconditioner (Simplified diagonal-based 

incomplete Cholesky preconditioner), which is applied to symmetric matrices, and the 

DILUPreconditioner (Simplified diagonal-based incomplete LU preconditioner), which is applied to 

asymmetric matrices.  

Although the word preconditioner is used in the OpenFOAM computational environment it is very 

closely related to the corresponding LU and Cholesky factorisations.  
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For LU factorization Gauss elimination is used to find the upper triangular matrix corresponding to the 

matrix A. For this process to be successful the matrix A must be an M-matrix (Saad 2003): 

1. 𝑎𝑖,𝑖 > 0 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 

2. 𝑎𝑖,𝑗 ≤ 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗;  𝑖, 𝑗 = 1,… , 𝑛 

3. A is non-singular 

4. 𝐴−1 ≥ 0, which means that every entry of the inverse of the matrix is nonnegative.  

If these conditions hold then the matrix A will be reduced into an upper triangular matrix through 

Gauss elimination.  The goal of LU factorization is therefore the factorization of the matrix A in the 

product of the matrices L and U. In the case of a preconditioner this is not done exactly, rather an 

approximation of L and U is found therefore yielding: 

𝐴 = 𝐿𝑈 − 𝑅 (A.9) 

where R is the matrix that contains all the terms that was dropped during Gauss elimination (this 

dropping of terms are done according to a specified zero pattern that is predefined and eases the 

computational time of the Gauss elimination). This matrix has the property of having only nonnegative 

entries. This is the incomplete factorization of A, it can be shown that this is a regular splitting of A; 

which means that LU is non-singular and the matrices (𝐿𝑈)−1 and R all have nonnegative entries (Saad 

2003).   

Since on the other the Choleshy factorization is applied to symmetric matrices this preconditioner 

tries to cast the matrix into the form: 

𝐴 = 𝐿𝐿𝑡 − 𝑅 
 

(A.10) 

In practice OpenFOAM would give a warning if a symmetric preconditioner was applied to an 

asymmetric matrix, therefore it is not necessary before hand to determine this property of the matrix. 

It is commonly seen that the matrices of scalar variables tend to be symmetric whereas the vector 

variable tend to have asymmetric matrices. 

 

A.4 Solvers 
 

The solvers implemented in OpenFOAM are listed in the manual. The ones of interest are: 

The PBiCG (Preconditioned Bi-Conjugate Gradient) and PCG (Preconditioned Conjugate Gradient) 

solvers.  

These solvers can be implemented as either direct or iterative solver, and are used to solve the linear 

system of equations (A.3). 

The dimensions of A correspond to the number of degrees of freedom in the computational domain. 

When there is therefore a large computational domain (which is most definitely the case with the 

current problem) direct solvers are no longer an option since they require an immense amount of 

memory and therefore altogether uneconomical.  



96 | P a g e  
 

Boundary value problems usually results in matrices that contain a large amount of zeroes, this makes 

iterative solvers the preferred choice if the matrix is converted to a sparse matrix (Burden & Faires 

2001). The implementation of these solvers in OpenFOAM is therefore iterative. 

The two solvers (PBiCG and PCG) are used to solve the velocity, pressure and stress fields respectively. 

The reason for using two solvers lies in the difference in nature of the solvers themselves. The PCG 

solver is used to solve systems such as (A.3) where A is a positive definite matrix. By definition A must 

therefore be a symmetric matrix (Burden & Faires 2001). The PBiCG on the other hand is a natural 

generalization of the PCG solver as this solver is applied to the same system however the matrix A 

need not be positive definite. In fact this solver reduces to the PCG solver if A is a positive definitive 

matrix (Bank & Chan 1994). 

Precondition has a significant effect on computational time as it generally reduces the number of 

iterations, if the preconditioning was selected well (a good preconditioning would be one that allow 

for faster more accurate computations). Suppose A is ill conditioned, merely applying the conjugate 

gradient method results in the solution being more susceptible to rounding errors, increasing the 

computational time required to meet convergence criteria (Burden & Faires 2001). 

 

 


