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Abstract:

Some validations of and extensions to the Parametric-Historic procedure as developed in a

two-paper sequel by Andrzej Kijko and Gerhard Graham in 1998 and 1999 are presented.

The source-free distribution they derive is validated through a somewhat more rigorous
mathematical derivation. The approach is also extended in two ways. The first extension
involves direct application of the estimators, which they used to determine maximum
regional magnitude, now to directly determine the maximum possible peak ground
acceleration at a specific site. The second extension is a generalization of the distribution of
peak ground acceleration in a semi-closed form solution to incorporate a wider range of
ground motion prediction equations. The first extension is straightforward and is
simultaneously developed and validated by example application to actual ground motion
data. The second extension is derived and then applied to a specific ground motion

prediction equation as example to illustrate its performance.
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KG — reference to the two-paper sequel in which Kijko and Graham (1998 and 1999) developed their

Parametric-Historic approach

log-PGA — logarithm of peak ground acceleration

m — magnitude

Mmax, Mmax — Maximum possible magnitude

Mmin — Minimum magnitude in range under consideration

NGA equations — new generation attenuation equations

PGA — peak ground acceleration

PGV — peak ground velocity
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SA — spectral acceleration

PGA hax — maximum possible peak ground acceleration

PGA i — minimum peak ground acceleration in range under consideration

pdf — probability density function

PSHA — probabilistric seismic hazard analysis
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SHA — seismic hazard analysis
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T-P estimator — Tate-Pisarenko estimator of maximum magnitude
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distribution
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Definitions

Crossover value — value in the tail of a distribution from which it starts to deviate significantly from
the assumed model.

Extreme value distribution — distribution of the maxima of groups of a certain number of events. For
a seismic catalogue data this may be considered as equivalent to the distribution of the largest
magnitudes during time intervals of the same size.

Frequency of exceedance — expected frequency with which a certain value is expected to be
exceeded, typically per annum.

Ground motion prediction equation — equation that predicts the central trend of a ground motion
parameter. Ground motion prediction equations are generalizations of what is called attenuation
relations that predict, in addition to magnitude and distance scaling, the ground motion parameter
as a function of all source, path and site effects that can be sufficiently characterized.

Hard bound/hard cutoff — sharp truncation to a pdf.

Parametric-Historic approach — a parametric, data-driven probabilistic seismic hazard analysis, as
opposed to deductive procedures that require subjective input. (See McGuire, 1993)

Point estimator — estimator giving an exact value (typically central trend) as opposed to e.g.
confidence intervals.

Poisson process — stochastic process for which each event is independent of all previous events.

Probabilistic seismic hazard analysis — defined by Kijko (2011) as “quantification of the probability
that a specified level of ground motion will be exceeded at least once at a site or in a region during a
specified exposure time”.

Seismic Hazard — defined by Kijko (2011) as “any physical phenomena associated with an
earthquake... and their effects on land, man-made structure, and socio-economic systems that have
the potential to produce a loss. It is also used without regard to a loss to indicate the probable level
of ground shaking occurring at a given point within a certain period of time.”

Soft bound/ soft cutoff — point on a pdf where probability starts to decrease more rapidly.

© University of Pretoria
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1. Introduction

The classic paper by Cornell (1968), based on his doctoral thesis (McGuire 2007) marked the
beginning of what is known today as probabilistic seismic hazard analysis. Esteva (e.g. 1963; in
McGuire, 2007) developed a similar methodology almost simultaneously, but independently. In
years to come Cornell and Esteva would interact and exchange ideas to fully develop the formalisms.

(McGuire 2007)

The approach they developed is what is described by McGuire (1993) as a deductive
approach, because it relies heavily on interpretation; the whole hazard analysis can be carried out
without data. Later on Veneziano et al. (1984; in McGuire 1993) developed a method that requires
only data and makes use of the empirical distribution of the data. It is therefore completely non-
parametric. McGuire (1993) uses the term historic approach for this latter non-parametric, data-

driven approach.

The advantage of the deductive approach is that it accommodates the inclusion of possible
seismic gaps, migration of seismicity, and other hypotheses or interpreted effects. The advantage of
the historic approach is that it has no need of models or parameters and has no need of
interpretative input. The disadvantage of the historic approach is that it cannot make predictions
about values that have low probabilities of occurring; that is, it is not suitable for values with longer

return periods than the time span of the catalogue. (McGuire, 1993)

Kijko and Graham (1998 and 1999; hereafter referred to as KG1998 and KG1999,
respectively, or KG for the two-paper sequel) derived a very elaborate approach which in McGuire’s
(1993) scheme would be classified as a parametric-historic approach (hereafter “the Parametric-
Historic procedure” will refer specifically to the procedure developed in KG). KG1998 also notes that
a drawback of the historic approach is that it cannot accommodate catalogues with different levels
of completeness, but that one of the largest drawbacks of the deductive approach is that it requires
proper delineation of sources, which in many cases is not possible (Southern Africa is an example of

such a case).

The aim of KG is to develop an approach with the advantages of both the deductive and the
historic approaches, eliminating their weaknesses. KG1998 deals to a large extent only with the
development of an estimate of the maximum possible magnitude from historical data, which is an

essential parameter both in their Parametric-Historic procedure and in seismology in general.

© University of Pretoria
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KG1999 develops the rest of the details of this original approach. It draws from the work of Kijko and
Sellevoll (1989 and 1992) the ability to utilise catalogues with different levels of completeness and
with considerable uncertainty; it uses maximum likelihood estimates to estimate parameters from
catalogue data; it derives a source-free distribution of peak ground acceleration under certain
assumptions of ground motion attenuation; and it derives a method to estimate PGA . from my,.,
while taking the uncertainty the GMPE into account. It turns out that the distribution of the
logarithm of PGA is of the same form as that of magnitude. It is important to note that the

parametric nature of KG’s whole approach allows Bayesian incorporation of a priori information.

© University of Pretoria
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2. Aim of this project

In Kijko and Graham’s (1999) development of their Parametric-Historic approach, they stated

and justified briefly that the cdf of the distribution of log-PGA data is a truncated exponential

distribution:

P[In(PGA) < y]

0, y <In(PGAp;n) -
1 —exp[—y(y — In(PGApin)] 2.1
In(PGA...;.) < vy <In(PGA
1 — exp[—y(In(PGAax) — IN(PGAmin)]’ N(PGAmin) <y <In(PGAmay)
1, ¥ >In(PGAmay)

where y is the mean value in the case of an untruncated exponential distribution.

The aims of this research project are:

1) To validate the distribution model stated in equation (2.1)

2) To extend the Parametric-Historic approach by direct application of the maximum

estimators discussed in Kijko and Singh (2011).
3) To extend the Parametric-Historic approach to incorporate GMPE’s of a more general form

in an analytical or semi-analytical representation of the cdf of log-PGA.

© University of Pretoria
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3. Background

The goal of most SHAs is to make statements about, or to quantify the strong ground motion
to be expected in future at a site of interest (Budnitz et al., 1997). This information is then typically
used for risk assessments and engineering design purposes. It is common practice to express ground
motion in terms of PGV, PGA, SA, SV, SD, etc. (Bommer and Abrahamson, 2006; Gupta, 2002;
Campbell, 2003). Currently methodology relies upon two conceptual approaches (Kijko, 2011; Gupta,
2002; Kramer, 1996): deterministic seismic hazard analysis (DSHA), which uses deterministic,
physically certain principles to analyse seismic hazard and usually focuses on a specific (often worst
case) scenario; and probabilistic seismic hazard analysis (PSHA), which determines the hazard by
probabilistic means and provides return periods of a whole spectrum of values of strong ground
motion. The results of PSHA is thus not certain, but rather is expressed in terms of the probability of
a certain value of ground motion being exceeded (commonly referred to in seismology as the
frequency of exceedance of that value) or the return period ground motion exceeding that value.
Contrary to past popular views, PSHA and DSHA are not dogmatically mutually exclusive, but rather
constitute the ends of a continuous spectrum (Bommer, 2002; Kijko, 2011; McGuire, 2001).
Paraphrasing McGuire, deterministic (physical) concepts and data can — or should — be used to
benchmark probabilistic results (probabilistic results should be consistent with deterministic results).
Determinism may also be incorporated into PSHA as far as feasible by use of the Bayesian formalism

(Kijko and Sellevoll, 1989; Kijko and Sellevoll and 1992).

3.1. Basic theoretical aspects pertaining to earthquake physics

One of the mechanical models in fault mechanics that is very pervasive in the literature (eg.
Kawamur et al., 2012; Erickson et al., 2011; Ben-Zion, 2008; Carlson et al., 1994) is known as the
Burridge-Knopoff slider block model. It is used as starting point here; it is not the only widely used
model, but is sufficient to introduce the basic concepts. This model involves an array of blocks
connected to a surface on one side, by leaf springs and to each other by harmonic springs, and
scratches (i.e. contact involving friction) a surface that is opposite the surface the blocks are
connected to (Carlson et al., 1994). The one surface is then moved relative to the other, and the
behaviour of this model as a simulated fault model is then analysed. Figure 3.1 is a depiction of a one
dimensional slider-block model. Parameters and behaviour of this model investigated by
seismologists range from mere energy release, propagation pattern (Figure 3.2.), rupture velocity, to
the characteristics of slip pulses within the fault (Erickson et al., 2011; Carlson et al., 1994). Workers

such as Carlson et al. (1994) have shown that energy release of this model behaves as predicted by

© University of Pretoria
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the Gutenberg-Richter frequency-magnitude relation. The Gutenberg-Richter relation for
earthquake magnitude implies a Pareto (or power law) distribution of earthquake energy release per
event, which, in turn is consistent with the theory of self-organized criticality in many chaotic
systems (Sornette, 2006; Sornette and Sornette, 1989; Bak and Tang, 1989; Bak, 1999). ). Erickson et

al. (2011) have shown that the model possess nonlinear, chaotic behaviour.

P 7 PP 27 777227777 77777777777 77777777

Figure 3.1. One dimensional version of Burridge-Knopoff slider-block model. (Adapted from Carlson et al., 1994)

Figure 3.2. Slip distribution of a slider-block model simulation (Carlson et al., 1994)

Another aspect of earthquake physics which is of interest here is the propagation of seismic
waves, and for a hazard analysis specifically wave propagation to a site of interest. It is not hard to
comprehend how complex travel paths of waves may become in heterogeneous geological media.
Seismologists are not yet at a point where complex geological models can be used to accurately
determine ray paths for earthquake-seismological purposes. Ground motion prediction equations
only capture the central tendencies of wave attenuation, energy dissipation, and group wave effects
(Bommer and Abrahamson, 2006). Some pervasive geological ray path effect has in fact been

introduced into the newest ground motion prediction equations such as the scattering effects of the

© University of Pretoria
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Moho discontinuity (e.g. Atkinson and Boore, 2006). Figure 3.3 (Atkinson and Boore, 2006) illustrates
this effect — note the discontinuous slope in the curves (each solid line represents the GMPE at a
different earthquake magnitude) — this is representative of the scattering effects of the Moho

discontinuity.

log PGA

10 100 1000
Fdist(km)

Figure 3.3 lllustration of GMPE curves with discontinuous slopes (grey dots represent data and black curves are GMPE’s

fitted to the data through regression analysis) (Atkinson and Boore, 2006).

3.2.Probabilistic Seismic Hazard Analysis

Kijko (2011) defines seismic hazard as “any physical phenomena associated with an
earthquake... and their effects on land, man-made structure, and socio-economic systems that have
the potential to produce a loss. It is also used without regard to a loss to indicate the probable level
of ground shaking occurring at a given point within a certain period of time.” Probabilistic seismic
hazard analysis Kijko (2011) defines as “quantification of the probability that a specified level of
ground motion will be exceeded at least once at a site or in a region during a specified exposure
time”. Cornell (1968) introduced what forms the basic formalism of today’s PSHA in a paper titled
Engineering Seismic Risk Analysis. Development and refinement followed in series of articles by
numerous experts, causing PSHA to develop into an applied field of science (Bommer and

Abrahamson, 2006; McGuire, 2008). In current practice the basic method, known as the Cornell-

© University of Pretoria
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Mcguire procedure (Kijko, 2011), includes four steps (Reiter, 1990 in Kramer, 1996; Reiter, 1990 in

Kijko, 2011):

1)

2)

3)

4)

Identify sources (faults or areas) and assign a spatial probability distribution to each source
(in practice a uniform distribution is usually assigned).

Specify the temporal distribution of earthquake occurrence (referred to as a recurrence law)
for each of these sources. This is usually done by assuming earthquakes are generated
according to a Poisson process with recurrence period A (a Poisson process is just a process
for which no event in time depends on previous events — a memoryless process). The most
common recurrence law is the Gutenberg-Richter relationship, or modifications thereof (see
e.g. Kijko, 2011; Gupta, 2002; Utsu, 1999; Kramer, 1996). According to the Gutenberg-
Richter relation the logarithm of the frequency of exceedance, 4,,, of a given magnitude m

is linearly related to magnitude, m:

log(4,;,)) =a—bm (3.1)

where a and b are constants dependent on the source.

Determine the ground motion prediction equation (GMPE) applicable to the area along with
the uncertainty on the GMPE (Kijko, 2011). Traditionally a GMPE incorporates the decrease
in ground motion as seismic waves travel from the source to the site of interest. Recently
scientists and engineers started to incorporate many factors that have an effect on the
ground motion that an earthquake of a given magnitude causes at a site (Gupta, 2008).

The previous steps’ information is incorporated by probabilistic formalisms into a single

cumulative probability distribution of ground motion for a specified site.

Delineating seismic sources and assigning a spatial probability distribution to them is

usually a very uncertain exercise. Some researchers (Wald and Heaton, 1994; Kagan and

Knopoff, 1980; Kagan, 1981; Kagan, 2006; Ben-Zion and Sammis, 2003; McGuire, 2001) have

done extensive research on determination of spatial probability distributions of earthquake

sources, but common practice is to delineate a seismogenic zone (2 dimensional feature) or a

fault (1 dimensional feature) and assume a uniform distribution of earthquakes over it (Kramer,

1996). The details of these spatial distributions are very complex indeed (Kagan, 2006; Ben-Zion
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and Sammis, 2003). McGuire (2001) describes a recursive technique whereby only the main

faults or zones are investigated in detail.

The Gutenber-Richter frequency-magnitude relationship can also be written as

0, m<mg
P[M <m] = F(m) =11 —exp[-B(m — my)], My =M = Mypgy (3.2)
1, m>mpyy

where m is the lowest magnitude value of interest and § =2.303b (see Kramer, 1996 for more
details on the derivation of equation (3.2)). If plotted on a graph with a logarithmically scaled
ordinate, the result is a line with slope —f. For small to intermediate magnitudes relation (3.2)
suffices, but it is commonly accepted that arbitrarily large earthquakes are not possible (eg. Kijko
and Graham, 1998; Gupta, 2002; Kramer, 1996). It has also been verified empirically that some
large earthquakes with very low recurrence frequencies possibly do not follow equation (3.2)
(Pisarenko and Sornette, 2004). If it is assumed that relation (3.2) stops abruptly at some

magnitude (referred to a sharp cutoff), the relation changes to

0, m < mg
max 0
k 1, m> My,

where m,,,, is the upper bound of magnitude values an earthquake may take on; it is merely

rescaled by the factor (1 — exp[—f(Myqx — Mo)]) ™! so that the value of the cdf is 1 at 7,4,

Another common modification of the G-R law is the so-called characteristic earthquake
model (Youngs and Coppersmith, 1985). This model assumes the exponential distribution (the
distribution in eq. (3.2)) over most of the range of magnitudes, but an anomalously high
recurrence rate for an interval of the largest earthquakes (these are the characteristic
earthquakes). Figure 3.4 shows a theoretical characteristic earthquake distribution, and Figure
3.5 some real life examples of data suspected to follow a characteristic earthquake distribution

from Youngs and Coppersmith (1985).
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Figure 3.5 Magnitude data suspected to follow a characteristic earthquake distribution (Youngs and Coppersmith,
1985)

In general the assumption that events follow a Poisson process in time (i.e. a memory-
less process, as discussed previously) may not strictly be correct. It is a simplified assumption,
but applies more or less when foreshocks and aftershocks are not considered (Kramer, 1996),
and may even be a good approximation in most cases for the catalogue as a whole, as discussed

later in this section.

Ground motion prediction equations will be discussed in detail in section 3.2; suffices it
to say that theoretical models have been developed based on simplified assumptions such as a
spherically symmetrical seismic source process and homogeneous propagation media that do
not capture the full complexity of the problem (Hong and Goda, 2007). Because of the extreme
complexity of theoretical considerations beyond the simple model just mentioned, empiricism

has become the norm (see e.g. Power et al. 2008; Douglas, 2011; Campbell, 2003).

Reiter’s step 4 is the combination of the data from the previous steps to determine the
probability of exceeding a ground motion parameter at least once. The results are usually
presented as a hazard curve, which is the complement of the cdf, also known as a survivor curve.

Figure 3.6 (Kijko, 2011) shows an example of a hazard curve. The result is for a specific site, but
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analyses may be done for a grid of points to produce a seismic hazard map (Figure 3.7, Giardini

et al., 1999) at a given probability of exceedance, or recurrence period.
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Figure 3.7 Global seismic hazard map of PGA expected at 10% probability of exceedance in 50 years (Giardini et al.,

1999).

The procedure by which all contributing probability factors are combined, also known as the
theorem of total probability (McGuire, 2008) states that if the probability of an event A varies with
the outcome x; of some process X, then the actual probability P[A] of A happening is calculated by

the sum
P[A] = Y (PIAIX = x] x P[X = x,]) (3.4)
2

where P[A|X = x;] is the probability that A happens if the outcome of X is x;, and P[X = x;] is the
probability that the outcome of the process X is x;. If the collection of all possible outcomes of X is

an interval on the real line, the continuous (integral) version is used
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P[A] =f maxP[Alx]f(x)dx (3.5)

Xmin

wheref (x) is the differential probability that x is the outcome of X. For more details on this topic
see Soong (2004), especially Chapters 2 and 3, or any other book on the mathematical fundamentals

of probability theory.

This formalism is applied to PGA by the integral

Mmax (Tmax
Plpga > a] = j j Plpga > alm,r]fy,(m,r)dmdr (3.6)
T

Mmin min

where f;,,(m) is the differential probability (or probability density function - pdf) of magnitude, and
fr(r) is the differential probability of distance. Although the integrand in equation (3.6) may vary
with measure of distance (e.g. epicentral distance, hypocentral distance, closest distance to
ruptured surface), the general form holds for all of these. If one needs to incorporate different

source zones with different rates of seismicity A4, the total probability is calculated as:

Plpga > a] ZZ 1@)] maxf maxP[pga > alm, r]fp,(m, r)dmdr (3.7)

Mmin “Tmin

Uncertainty in the calculation of the total probability

A word on the philosophy of uncertainty of primary importance in earthquake seismology is
in order. Uncertainties are divided into those of truly stochastic nature (at least in the current
paradigm and model frame of reference), called aleatory uncertainty; and those that are caused by
scientists’ lack of knowledge, called epistemic uncertainty (Strasser et al., 2009). Aleatory
uncertainty cannot be improved by including more data. An interesting example of this would be the
b value in the G-R recurrence law. Many scientists consider that it varies with time (e.g. Kijko and

Graham, 1998; Cao and Gao, 2002; Latchman et al., 2008), which is a stochastic process and belongs
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to the category of aleatory variability (uncertainty). As an example of epistemic uncertainty, consider
Figure 3.5. The slope (which is characterised by the b-value) clearly varies with magnitude, but if
insufficient data is available one cannot distinguish subtle variations in the slope. The variation in the
b-value for different values is there, but cannot be specified due to a lack of knowledge. This lack of
knowledge may be decreased by the accumulation of more data. The aleatory uncertainty is
incorporated into (3.7) by integration over the uncertainty in the same way as the other variables.
Equation (3.7) is usually assumed to represent the central trend. Kijko and Sellevoll (1989 and 1992)
give a detailed approach for the incorporation of Gaussian uncertainties in the magnitude
distribution, as discussed in Section 5.1. Strasser et al. (2009) characterise in detail the incorporation
of aleatory uncertainties in ground motion, but is in this work it will be assumed that the
uncertainties in log-PGA data is normally distributed (or, less strictly, that it follows a symmetrical

distribution).

In essence, epistemic uncertainties are also incorporated by the use of theorem of total
probability by considering different possible models and assigning a probability weighting to each
model. The logic tree formalism which is used to accomplish this incorporation of epistemic
uncertainties is a popular method in the practical application of PSHA. This formalism assigns
probability weights (relating to plausibility based on expert judgement) to given starting point
assumptions relating to the seismic source distribution. Alternative GMPE’s are given weights
considering each of the alternative sets of assumptions relating to the seismic sources. The weights
of the alternative GMPE’s when considering one set of source assumptions to be true should add up
to one. All the different cases of GMPE and source assumptions are considered individually, and
weights are assigned to different models of the response of the local ground material for each
scenario such that the weights of the respective ground response models add up to one. The process
is repeated for alternative models of aleatory uncertainty. The result of this exercise may be
summarised in a figure called a logic tree. Figure 3.8 depicts a hypothetical logic tree. (Kramer, 2006;

Gupta, 2008; Kijko, 2011)
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Figure 3.8 Hypothetical Logic tree

A short note on the applicability of the Poisson process to seismic hazard

The Poisson process may be shown to maximize information entropy when only the time
rate (rate of seismicity in the case of PSHA) is specified (Kapur and Kesavan, 1992). Cornell and
Winterstein (1988) investigated how conservative the assumption of a Poisson process is.
Specifically, they investigated the performance of the Poisson process compared to semi-Markov
processes where the following dependencies apply respectively and/or in combinations:

(1) the marginal probability of the time lapse from the present to the next event depends on
the time lapse since the previous event to the present

(2) the marginal probability of the time lapse between the previous event and the next event
depends on the magnitude of the previous earthquake

(3) the marginal probability of the magnitude of the next event depends on the time lapse since
the previous event to the next event

(4) the marginal probability of the magnitude of the next event depends on the magnitude of

the previous event

Cornell and Winterstein (1988) concluded that for single or a small amount of seismogenic entities
(features such as faults or fault segments that display the dependencies in points 1-4 above) the
Poisson process models the hazard conservatively for time lapses between successive events that
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are not too long relative to the expected time between successive events (i.e. when no large seismic
gaps occur). They also concluded that, for an increasing amount of seismogenic entities, the Poisson
process approximation becomes increasingly conservative.

The Pareto distribution as a statistical model for seismic energy release

It is shown here that seismic energy release follows a Pareto (also referred to as a power law)
distribution under the assumption of the Gutenberg Richter relation.

Seismic energy E is related to magnitude by a relateion of the form

m =dlog(E) +c (3.8)

m-—c

where ¢ and d are constants. Let e := 10" a . Throughout the rest of this section it should be
understood that only me[m,,in, Mmax] is considered here; it is implicitly assumed to avoid cluttered
equations and relations. Substituting equation (3.8) in equation (3.2) as the random variable in
equation (3.2) (that is, m in 3.8 corresponds to m in equation (3.2)), we get the following sequence
of implications

Pldlog(E) + ¢ <m] = 1 — exp[—f(m —m,)]

P[E <107 d | =1—exp[-B(m —my)]

P[E < 10%] =1—exp[—B(m —my)]
P[E < e] =1 — exp[—B(dlog(e) + ¢ —my)]

=1 — exp[—p(dlog(e) + ¢ — my)]

__pd
=1 — ke In@o

(3.9)

__Bd_
where k = exp[—B(c — my)]. Theresult P[E < e] = 1 — ke n(10) is a Pareto distribution. Given

the expression my = d - log(xin) + C itis easily verified that the result in the set of implications
3.9 may be written in the form
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__Pd_
e
PIE <e] = ( ) inGo) (3.10)
€min
where, e,,in is the level of completeness in terms of energy. The truncated version of equation
(3.10), where energy is considered to have a maximum possible value it may take on, may be
expressed as:
__Ba_ __Pd_
(e , ) In(10) — (e) In(10)
P[E < e] = — s (3.11)

(emin)_ln(lo) - (emax)_ln(lo)

Ground motion

At a given site an earthquake manifests in ground motion, which is the focus of most of
engineering seismology and the goal of most seismic hazard analyses. Energy propagates as elastic
waves from the source to a site under consideration where ground shaking is experienced. In a
simplified continuum regime the value of a measure of ground motion is determined by two
parameters: (1) the earthquake magnitude, related to the amount of energy released at the source;
and (2) the distance from the source, as energy spreads out over a wider surface as the wave front
moves further away from its source. The energy is not only reduced by this spreading out over a
greater surface area with distance; energy is also dissipated, or absorbed, as heat energy by the
medium (the medium is not completely elastic). All these effects are quantified by a ground motion

prediction equation (GMPE) is typically to be of the form (Cornel, 1969; Boore and Joyner, 1982;

Kijko and Graham, 1999 etc.):

In(Y) =c; + ;M + ¢p(r) + ¢ (3.12)

where Y is a ground motion parameter such as PGA, PGV or PGD, r denotes distance from source to
site, ¢(r) is some function of r, € denotes the uncertainty (or residual) and the ¢;’s are positive

constants which are to be determined empirically. ¢(r) is often assumed to take the form
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—c317 — ¢4In(r) and the residual term € to follow a normal distribution (Kjko and Graham, 1998;
Campbell, 2002; Lay and Wallace, 1995). Such a functional form is typical for a spherically
symmetrical explosion or implosion in a homogeneous propagation medium (Lay and Wallace,

1995).

Because of the deviation of different focal mechanisms from a spherically symmetry,
equation (3.8) does not hold exactly — or, in the least, the constants will vary with the azimuth
relative to the fault strike. In addition, the radiation pattern of compressional waves and shear
waves also differ (Convertito and Herrero., 2006). The so-called double couple mechanism gives rise
to a four leaf pattern where, if the fault trace is put on one axis, a leaf falls in each quadrant for P
waves, and a leaf falls on each axis for S-waves. In addition, the double couple mechanism gives rise
to a compressional P wave in two opposite quadrants, and a dilational wave in the remaining two

opposite quadrants (Lay and Wallace, 1995) (see Figure 3.9).

P-wave

Point
source

Figure 3.9 Radiation pattern of an infinitesimally small double couple mechanism (adapted from Robinson et al., 2001)

Effects of ground motion on engineering structures are complex; structures respond to
different frequencies by resonating to or damping the motions of these different frequencies to
different degrees. Housner (1941), Biot (1932), and Biot et al. (1943) did pioneering work on these
effects. Seed et al. (1976) and Trifuncac and Lee (Trifunac and Lee, 1985a and 1985b, In Trifunac,
1991; Trifunac 1976a and 1976b; Trifunac and Lee 1989; Trifunac, 1991) did extensive research on
the response of local soil material on different frequency spectra. The ground motion parameter
PGA fundamentally relates to the force a seismic motion exerts on a unit mass in contact with
ground surface, but because of the complexity of oscillatory behaviour of engineering structures
PGA does by no means adequately describe the effects on engineering structures, so PGV and PGD

are commonly used measures as well (e.g. Bommer and Abrahamson, 2006; Gupta, 2002; Campbell,
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2003; Trifunac, 1991). Furthermore the SD, SV, and/or SA (which are displacement, velocity, and
acceleration amplitudes of different frequencies, respectively) are often reported in seismic records
to account for effects that Trifuncac and Lee (eg. Trifunac, 1991) addressed concerning the

frequency response of different soil material.

Authors such as Sommerville (2003) and Hong and Goda (2007) emphasise that much of the
variability in ground motion is due to fault orientation relative to a specific location as well as the
fault mechanism. Bommer et al. (2004) also point out that all the complicated details of rupture
propagation affect the nature of the radiation pattern. Fault movement does not take place
simultaneously across a whole fault surface; movement only proceeds along a rupture front, where
failure through irregularities and coalesced discontinuities takes place (Bommeret al., 2004; Aki,
1984; Ben-Zion, 2008). Local areas (referred to as asperities by Aki, 1984) of very high rupture
velocity create an effect much like a sonic boom that concentrates a large amount of energy a single
pulse. Burridge (1973) concluded that it is possible for fault rupture to proceed at super-shear wave
velocity. Such rupture, or even rupture slightly below shear wave velocity, causes energy to be
‘bunched up’ in a single pulse in the direction of rupture propagation (Sommerville, 2003). This leads
to what is referred to as rupture directivity effects, which is usually perceived in the near field in the
direction in line with the fault and in the direction which rupture takes place (Sommerville, 2003).
Note that earthquake magnitude measures do not take such energy concentrating effects into
account. Effects such as the fault mechanism, rupture pattern and directivity effects may, to a large
extent be the cause of intra-event variability in light of works such as those of Sommerville (2003),
Convertito and Herrero (2004), Strasser and Bommer (2009) and Spagnuolo et al. (2012). Figure 3.10
illustrates directivity effects; note how different rupture propagation directions distort the pattern
of the point source model in Figure 3.9. The most extreme motion caused by directivity effects only
tend to play a role at sites located close to the source, which is largely due to nonlinear dissipation of

energy with large movements in soil (Beresnev and Wen, 1996).
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Figure 3.10 Directivity effects. Note how the pattern distorts compared to the point source pattern in Figure 3.9

(Robinson et al., 2001)

It was recognised as early Anderson and Luco (1983) that the focal mechanism (dip angle and
rake of rupture process) also affects peak ground motion attenuation (or scaling). However, it was
only in 2004 (Convertito and Herrero, 2004) that a method was put forth to take the dip and rake
angles into account theoretically. The method is only stated very generally and exact results are
presented as graphs for the generic mechanisms (normal, strikeslip, and thrust) suggesting that
closed form solutions are not even available for these. The general method, however, is simple: it is
a weighting factor as the radiation pattern averaged over all possible strikes (in the sense of a priori
information), divided by the average of all possible (in the sense of minimal information) focal
mechanisms, radiation patterns, and distances. This is not included in GMPE’s, but rather the
predicted value of ground motion resulting from a GMPE not accounting for these effects is
considered to be the average, and the value predicted by a particular GMPE is multiplied by the

weighting factor. The authors note that the general concept of fault style is not taken into account
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by this, and that the overall tectonic stress regime may still have an influence on the peak ground

motion parameters (Convertito and Herrero, 2006).

As in optics, curved interfaces between media with different wave propagation velocities can
scatter and focus waves both by reflection and refraction — phenomena known as caustics. Rial
(1984) proposed that this might be applicable in seismology, and its effects are well recognized at
present, although usually not stated as simply as Rial (1984) did by using ray theoretical concepts. At
present continuum mechanical methods seem to be preferred over ray theoretical methods
(compare Chen et al., 2012; Tsaur and Chang, 2008; Tsaur and Chang, 2009; Boore, 1973). These
effects are the well-known topographical effects that are caused by basin boundaries, valleys and

ridges that are commonly taken into account in seismic hazard analyses and earthquake engineering.

Because fault mechanisms are often more complex than a spherically symmetric explosion source,
and because travel path and ground response effects are not yet well understood, ground motion
prediction equations have been extended by empirical means. The Pacific Earthquake Engineering
Research Center (PEER) undertook an ambitious and eventually prolific project in which groups of
researchers developed empirical GMPE’s from a large database of strong motion records (specifically
for shallow earthquakes in active tectonic regions of North America and areas with similar tectonic
regimes). The equations that have been developed cover PGA as well as SA (peak acceleration at
different spectral intervals). In spite of the fact that development of these GMPE’s were empirically
driven, they were not entirely neglectful of current advances in earthquake physics: regression
analyses on data took place with parameters and functional forms reflecting knowledge of
earthquake physics, yet keeping the equations simple enough to ensure practical applicability.
Factors they took into consideration to a greater or lesser extent were the special consideration of
earthquakes at close distances, attenuation at close and far distances, directivity effects, wave
trapping effects of the hanging wall (top wedge of a dipping fault), the style of faulting, depth to the
fault if it does not intercept ground surface, rupture area, site effects, and basin trapping resonance

effects. (Power et al., 2008)
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4. Literature review part 1: boundedness of peak ground acceleration

4.1.Boundedness of peak ground acceleration in the traditional PSHA Procedure

The problem of assessing PGA,.x is something of a controversial subject at present in
engineering seismology and has been identified as the missing piece in SHA (Bommer, 2002). In a
comprehensive article, Strasser and Bommer (2009) record what an enigma the question has caused
during a period of a few decades while more data was accumulating and the formalisms of seismic
hazard analysis were being developed. As the maximum observed value of PGA increased, so did the
estimated upper bound PGA... In the course of the past few decades the prior estimates were
exceeded in due course (but at least the estimates seemed to keep ahead; Bommer et al., 2004). A
solution to this enigma is not just of theoretical scientific interest, but also necessary for design
values of facilities such as nuclear power plants, nuclear storage facilities and other structures that
are hazardous when damaged (Strasser and Bommer, 2009). At Yucca Mountain Nuclear Storage
Facility researchers attempted in effect to bypass the problem in the Cornell McGuire procedure by
extrapolating the observed distribution to an arbitrary but extremely low annual return frequency.
This, however, led to values considered physically impossible (Andrews et al., 2007) (values as high
as 20g is mentioned by Corrandi, 2003). This spurred a new wave of research on the subject, with
much emphasis on physical, deterministic bounds (Hanks et al., 2006; Bommer et al., 2004; Andrews
et al., 2007; Strasser et al., 2009). Andrews et al. (2007), for instance, have shown that a given fault
can only release a certain amount of energy determined by the current stress state, and that the
medium through which waves propagate can only support limited amplitudes of spectral ground
motion determined by the strength of the medium material. They identified and investigated three
controlling physical factors contributing to PGA,. at a specific site, viz. the maximum seismic energy
and the radiation that can emanate from a given source, the effects of the source-to-site path, and
the maximum ground motion the geological material at the site can sustain given their shear

strength.

Despite the certainty that PGA,,.x exists, the great scatter of data makes determination and
verification of PGA.,,, daunting and controversial. In fact, Strasser and Bommer (2009) consider that
it is mainly this scatter that the Cornell-Mcguire procedure has failed to bind. Strasser et al. (2009)
devote a paper to the discussion of the uncertainty in the ground motion prediction equations.
Uncertainty is divided into an epistemic component and an aleatory component (Atkinson, 2011).
The aleatory component, in turn, is divided into one component of inter-event uncertainty and

another of intra-event uncertainty (Strasser and Bommer, 2009). The inter-event uncertainty is
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caused by a variation from one event to another and is present even at a single location. Intra-event
uncertainty is caused by the variation from one site to another and is present even for a single
earthquake. Inter-event uncertainty is interpreted to be due to the details of the rupture process not
reflected by the magnitude or other measures in use, and the intra-event uncertainty due to

differences in the travel path and site specific conditions.

Much of the intra-event variability is caused by the damping effects of the paths seismic
waves travel along to the site (Kramer, 1996), as well as both the damping and resonation effects
caused by the unconsolidated geological material at the site (Ambraseys, 1970). A layer of loose soil
over hard bedrock constitutes a large impedance contrast in acoustic terms, which allows for
resonance of the soil layer (energy effectively becomes trapped within the soil layer). If soil is
contained within a basin-shaped structure, this energy-trapping effect is even more pronounced

(Stewart et al., 2002).

Site specific conditions that have an effect on the amount of ground motion are due to
impedance difference (reflected by the difference in stiffness) of the bedrock and the overlying soil,
the geometry of the soil deposit-bedrock interface (Ambraseys, 1970; Steward et al. 2002), and the

surface topography (Rial, 1984).

A sedimentary layer of low shear wave velocity is analogous to an oscillator fixed at one end;
it can be modelled by an elastic continuum of finite thickness that is fixed at the bottom and free at
the top (Gazetas, 1982). It has harmonic frequencies at which it resonates and thus amplifies
motions of specific frequency content. This effect is well known in seismology and is known as
seismic site effect. At very high amplitudes of ground motion soils start to behave as a visco-elastic
continuum, so that energy is dissipated and the amplification effect is reduced (Beresnev and Wen,
1996). Ambraseys (1970) explains that soil responds in an elastic fashion if the soil is stiff and/or at
small SA amplitudes are small. However, for looser soils and/or larger SA the soil starts to dissipate
energy and amplification is less pronounced than expected. Figure 4.1 shows this in a qualitative way
(stiffness, as here referred to, is related to the undrained shear strength of the soil divided by the
overburden pressure). Concerning the effects of topography, Rial (1984) explains that concave
bedrock topography acts in analogous way to optical lenses, focussing rays onto so-called caustic
surfaces. These caustic surfaces intersect ground surface to form patterns such as those illustrated in
Figure 4.2 (Figure 4.2 displays the results of simulations done by Rial, 1984). In the extreme case, the
intersection with the caustic surface with the ground is theoretically a point (analogous to the focal
point of an optical lens). Steward et al. (2002) explains that, from a ray theoretical perspective, a

layer of soil over bedrock in effect traps the rays inside the layer of soil because of the much lower
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impedance of the soil layer. If the bedrock forms a basin this effect is much more pronounced,

because wave energy becomes trapped in the soil in the basin structure.

Amplification

elastic

elastoplastic

Acceleration/stifness

Figure 4.1 Nonelastic, energy dissipative effect of soil on amplification of seismic energy. (Adapted from Ambraseys,

1970)

0/0I0

Figure 4.2 Intersection of caustic surfaces with ground surface of a sediment basin. In this simulation the source is

located directly beneath the basin, and the depth of the source increases from left to right. (adapted from Rial, 1984)
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4.2. Boundedness of magnitude

The common assumption of the boundedness of magnitude itself implies that PGA has to be
bounded. According to Brune (1970) the maximum near-field acceleration in a frequency interval

[0, w] may be estimated by

sin(u)

”: (4.1)

lo
i(t) =——pw- (
O ==2F
where o is the effective shear stress across a fault plane, i is the shear modulus of the rock in which
the fault is situated, § is shear wave velocity, and t is time. Consider the worst case scenario where
the stress drop, Ao, is equal to the effective shear stress on the fault plane. Kanamori and Anderson

(1975) give the relation
3
log(M,) = Elog(A) +log(16A0/7m3/2) (4.2)

where M, is the moment magnitude and A is the fault rupture area. Kanaromi and Hanks (1979)
defined the seismic moment magnitude as a linear function of log(M,). Given that the rupture area
must be finite and the assumption that 0 = Ag, equations (4.1) and (4.2) makes it clear that finite

magnitude necessarily gives rise to finite PGA, at least for finite frequencies.

Deterministic methods used to estimate an upper limit on magnitude (m,,,) often make use
of empirical relationships with rupture parameters such as length, area, etc. (Gupta, 2002). One of
these is particularly elegant in that it uses slip rate, which relates to the rate of seismic energy
release. This relationship, derived by Anderson (1979; in Youngs and Coppersmith, 1985), also serves
as an argument of the boundedness of magnitude from a theoretical perspective, so its derivation

may be considered instructive; an adaption of this argument given in Gupta (2002) is followed here.

Let A(M) be the average rate of occurrence of earthquakes exceeding magnitude M. dA(M)
may be viewed as the average recurrence rate of earthquakes within a small magnitude increment
containing M. Let My, denote moment magnitude (seismic moment can be seen as shear strain
energy release, and moment magnitude is related to the logarithm of seismic moment as in equation
(3.8)). The average frequency with which shear strain energy is released per unit time by events of
magnitude larger than M is obtained by integrating over the rate of occurrence of events, which for
this purpose is not A(M), but A(Mp,.x) — A(M), the reason being that we are interested in the rate

of exceedance involving the complementary cdf.
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Mmax < d)_(M)

. A(Mmax)
o= | L MDA ) ~ 20} = | mon) —d—M)dM (43)

dA(M
where - (M)
aM

. Constitutes the density of events in a small magnitude increment. The reason for the

minus sign follows from the fact that we used A(My,,x) — A(M) as integrator instead of A(M). If
the use of A(Mp.x) — A(M) instead of A(M) still seems strange, think of the fact that A(Mp,,4) <
A(—) in the integral bounds. (For the reader who finds the use of integrals of the form
f;g(x)dF(x) in the following paragraphs unfamiliar, Appendix A provides an explanation in terms

of the Riemann-Stieltjies definition of the integral). Substituting the relationship
log(My) =1+ kM (4.4)

along with the Gutenberg-Richter law (equation (3.1)) we obtain
. Mmax
M, = f bIn(10) - 108++Kk=bIMgpg (4.5)

It is assumed that the constant k exceeds the constant b which Knopoff and Kagan (1977) note is
usually the case. In this case the integral is does not converge as M,,,, approaches infinity,
emphasizing the need of a finite bound (if it so happens that b exceeds k there is still the
straightforward constraint that the finite geometrical dimensions and finite strength of rock places

on the strain energy that may be accumulated on a single fault).

From this consideration a theoretical estimate of M,,,, may be obtained. Evaluating the

integral in equation (3.5) we obtain

M. = . 102+ (k=b)Mmax 4.6

Noting that the recurrence period Tymax Of Mpay is the inverse of the recurrence rate (or
frequency) 104~PMmax iy accordance with equation (3.1), we solve for M, 4,
lOg ((k_b)TMmaxMo) —1

b

4.7
Mipax = & (4.7)
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M, may be determined by (Gupta, 2002)

M, = pAu (4.8)

where p is the shear modulus of the rock, A is the fault area (or the seismogenic, seismically active
part of it), and &t is the slip rate along the fault plane. Tymax, Gupta (2002) notes, is typically

estimated from paleoseismic investigations.

Other deterministic, or physical estimates of m,, are based on empirically determined
relationships between magnitude and fault parameters such as its length or area, and fault
displacement (Gupta, 2002). It is easy to comprehend the validity of such relations from equation
(4.8) and its related relation without the time derivative My = pAu, in which the fault dimensions,
displacement and slip rate feature. Thus the finiteness of these parameters guarantees the finitude

of magnitude.

Probabilistic estimators of m,,,, provide good prospects, but in their comprehensive review
of these estimators, Kijko and Singh (2011) note that very little work has been done in this respect.
In the paper just mentioned the authors discuss twelve methods to estimate m,,q. In the following
section this compilation and review by Kijko and Singh (2011) of methods to estimate the maximum
possible earthquake magnitude from historical records is discussed. These methods they discuss
assume a truncated distribution, or hard cutoff, as opposed to methods assuming a tapering, or soft
cutoff. Other methods, some of which do consider a distribution with a soft cutoff, are discussed in

section 4.2.2.

4.2.1. Twelve Methods for estimation of maximum possible magnitude

Kijko and Singh (2011) published a review of twelve methods (hereafter TM) to estimate

Mmax from historical data, all of which assume that

Mmax = m?r?dgx +A (4.9)

where m35s, is the maximum observed magnitude amongst the historical data and A is a positive

correction term. Most of the procedures discussed in TM are based on an adaption of Cooke’s (1979)
method to the maximum earthquake magnitude problem, which they refer to as the generic

equation. It assumes that the largest observed magnitude is close to m,,; otherwise stated, it
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requires that the largest observed magnitude would have been exceeded had the distribution been
unbounded. It does assume the frequency-magnitude distribution is known, but does not specify it,
so magnitude size distributions other than the Gutenberg-Richter distribution may also be used. The

derivation of the generic equation follows:

Suppose magnitude is distributed according to some cumulative distribution function (cdf)
F(m). Consider a sequence of n random observations (m;, m,, ms,...,m,) rank ordered in

increasing order. The cdf of the largest magnitude, m,, is [F (m)]™. The expected value of m,, is

Mmax
E[m,] = f m d[F(m)]" (4.10)
Mmin
Integrating by parts we obtain
Mmax
Blim] = s = [ [FOm)]"dm @11)
Mmin

Now, given an actual catalogue with n entries, the best estimate for E[m,] is just the maximum

observed magnitude, m92s,.. Substituting this and rearranging we obtain the relation

Mmax
Momas = MELS, + f [Fm)]" dm (4.12)

Mmin

which is the generic equation. In the context of equation (4.9) we have

A= f max[F(m)]n dm (4.13)

Mmin
A brief discussion of the methods presented in the TM follows.

The first method in the TM is due to Gibowicz and Kijko (1994), which they call the Tate-

Pisarenko (T-P) estimator. The expected value of the CDF at m,,, that is identified as

n
E|F = 4.14
[F(mp)] = —— (4.14)
Taking F(m25s,) as the best estimate of E[F (m,,)], one obtains the estimator
F (828, M) = — (4.15)
n+1
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(F(m9Ps.) is replaced by F(m255.|m,,.4,) just to make clear the interest in m,,,, as a parameter).
The root of equation 4.13 is then an estimate for m,,4,. As the first method they assume the G-R
law. The method is, of course, open to different magnitude distributions in the same way as the

generic equation.

In the second and third methods, called the Kijko-Sellevoll (K-S) procedure in the TM, the generic

equation is merely iterated, assuming it converges to a fixed point:

b ﬁlmax,pn’or 4.16
Mmax,current = Myax +f d[F(m)]" (4.16)

Mmin

where My ayx current is the current estimate of My, qx, and My prior the previous. Although this is a
very simple procedure, Kijko and Graham (1998) and Lasocki and Urban (2011) have found that it
performs very well, although the latter authors recommend only a single iteration. The inherent

variance of such estimator is approximately (Kijko and Graham, 1998):

Var(M,g,) = A? (4.17)

i.e. the square of the integral term of equation 4.15. Each iteration requires integration, but an

approximation is given by

_ Ei(ny) — E;(ng)
Bexp(—n)

+ myi,exp(—n) (4.18)

where n; = n/{1 — exp[—B(Mmax — Mmin)1} , 12 = n1{1 — exp[—L(Mypax — Mmin)1} , and
E\(z) = fzw%(r)dr. Using this approximation constitutes the second method. The third uses an

exact solution which is only valid for integer values of n in equation (4.18):
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1 Dt /m .
A Mpmax — Mmin T EZ?=1 : (l) a- exp[_lﬁ(mmax - mmin)]) (4.19)

(1 — exp[—B(Mmax — Mmin) D™

The fourth and fifth methods in the TM are Bayesian adaptations of T-P and the K-S
estimators where the b value in the Gutenberg-Richter relation is assumed to vary. For the K-S

procedure this results in a probability distribution of which the cdf is given by

0, X 2 Mgy

D q
F(m) = C[l—(—)], n S X < 4.20
(m) B P+ m—mp, Mpin = X = Mpax ( )
1, X 2 Mpax
where
q1-1
6 =1-( P ) (4.21)
P+ Mpax — Mppin
and p and q are related to the variance of 3:
p= B (4.22)
var(f)

=i

2
q= <—\/W> (4.23)

where f3 is the mean value of the varying parameter . For the T-P estimate the root of the equation

using this Bayesian version of the G-R law is
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obs

1 p _(q+1)
Mmax = MBS, + — (4.24)
e max n.BCB <p + m?r?(fx - mmin)

For the Bayesian variation of the G-R law in the K-S procedure no exact solution has been found, but

an approximation is

Ao 53exp[nr;/(1 —rd)] [r (_%; 5rq> _r (_3; 5)] (4.25)

where 7 =p/(p + Mpyax — Mmin) , €1 = exp[—n(l - CB)] , 6=nCg , and T(;.) is the

complementary incomplete gamma function.

The remaining eight procedures are all non-parametric procedures, not assuming any

distribution.

The sixth method may be seen as the non-parametric counterpart of the Kijko-Sellevoll
procedure developed by Kijko et al. (2001): instead of assuming a distribution, it uses a Gaussian
kernel approximation to the magnitude distribution; that is, it fits a sum of Gaussian functions to the

distribution. Accordingly, A takes the form

n

dm (4.26)

Mg [ TIL [Erf (o) — Erf (=) |
A= f n Mmax—Mm; Mmin—Mi
Mmin | Nj=1 [Erf (T) - Erf( n )]

where m; is the magnitude of the i"" event in the catalogue, Erf(.) is the cumulative distribution of
the Gaussian pdf, and h is a smoothing factor. With substitution of equation (4.26) generic equation

(4.12) is again solved by iteration.
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The seventh method is due to Cooke (1979). Here the empirical distribution function F(m)
is used as the cumulative distribution function for the magnitude in the correction term A. For any

sample of size n, the empirical distribution function is defined as

=0, m<my

A i

F(m) =3= ;, m; <m< mijgq (4.27)
=1, m>m,

where m; is the i largest magnitude in the catalogue. (Note how the values are used in order of
ascending magnitude. Statistical methods which reorders observations in such ways are also known

as order statistics). Thus, delta becomes

A= f mmax[ﬁ(m)]"dm = zn: [%]n (Myyq — M) (4.28)

Mmin

No iteration is required: note that m,,,, does not appear in the sum in equation (4.28). The sum is

simplified by noting some applicable manipulations and the approximation (1 — %)” = e:

i [%]n (Mg —my) = (1—e') 1121 etm,_; (4.29)
i=0

i

The eighth method is based on a statement by Gnedenko (1943; in Kijko and Singh, 2011)
which suggests that for a broad class of cumulative distributions which are linear close to their upper

end point, an estimate of the upper end point may take the form
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Mmax = Z AiMp—i+1 (4.30)

Where {mn_no,mn_n0+1,...,mn} are the ng largest order statistics. This is a useful form of an

estimate if only the very largest events were recorded. Cooke (1980) uses the coefficients

ap =1+1/ny, ay =a, =+ =ay,_1=9, and a,, = —1/ny. Kijko and Singh (2011) suggest

1
G2 =02 = =ny =~ G
The ninth method is due to Robson and Whitlock (1964). Kijko and Singh (2011) note that

this procedure is asymptotically mean unbiased, but has a large mean squared error. This estimate is

given by

Mmax = m?r?cfx + (m?rf,cfx - mn—l) (4.31)

In this case A= (m9%5, — m,_,).

The tenth method is an improvement of the eighth, and is due to Cooke (1979). The mean
squared error of Robertson and Whitlock’s estimate is multiplied by a factor that is a function to the

exponent in the asymptotic shape of the tail. For the Gutenberg-Richter distribution

A= 0.5(m3b5, — mp_1) (4.32)

The last two procedures in TM are the least squares regression and a least absolute value
regression (referred to in the TM as L,-norm regression and L;-norm regression for least squares and
least absolute value regression, respectively), used to fit an analytic function to the cdf. It is noted in
TM that least squares regression is not recommended for data that is not reliable; nor should it be

used if residuals are not known to be normally distributed. Least absolute values regression does not
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possess these drawbacks. Regression does, however, require a predetermined shape of the

distribution.

4.2.2. Other approaches to estimating or characterizing m,,,,

Kagan and Schoenberg (2001) and Pisarenko and co-workers (Pisarenko et al., 2003;
Pisarenko and Sornette 2004; Pisarenko and Sornette, 2006; Pisarenko et al., 2008a) did extensive
work on the previously mentioned soft cutoff models of m,,. They assume that at some value,
called the corner value by Kagan (2002) and crossover magnityde by Pisarenko et al. (2003), the
probability decreases much more rapidly than the G-R law predicts. Figure 4.3 illustrates the concept
of a corner or crossover magnitude. It should be made clear that soft cutoff values are not the

maximum possible values.

Kagan and Schoenberg (2001) introduce a model that they call a tapered Pareto law for the

probability distribution of seismic moment. The cdf that characterises this law is given by

a — mom
), mom = a (4.33)

F(mom) =1— (ﬁ)ﬁ exp( 5

B is the traditional G-R parameter as it appears in equation (3.2), a is the level of completeness
under the transformation in equation (3.8), and 8 is the corner moment. Note that in this case the
corner magnitude is not associated with a discontinuity in the slope, but marks the point above
which considerable deviation from the traditional G-R law commences (Kagan and Schoenberg,

2001).

Kagan and Schoenberg (2001) provide the relation

mom = 10%"1+6 (4.34)
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between seismic moment mom and moment magnitude m. So by substitution of relation (4.34) into

equation (4.33) one obtains the corresponding frequency relation for moment magnitude.

corner magnitude

probability density

magnitude

Figure 4.3 lllustration of the concept of a corner magnitude. (Take care to note that the probability density is NOT log

scaled in this figure)

Pisarenko and Sornette (2004) constructed a statistical test for detection deviation from a
given parametric model and a method for detection of the crossover value to a different distribution
from the proposed distribution. To obtain the statistic the observations are first rank ordered to
obtainy, =2y, =22y, 12 ¥ 2 Yiy1 = - = u, where uis some threshold value. The rank
ordered are transformed to a uniform distribution through the cdf function F(.) to obtain
x; == F(y;), under the hypothesis that the observations {y;} follow the distribution F(.). The mean
and standard deviation of x; are given, respectively, by (Hajek and Sidak, 1967 in Pisarenko and

Sornette, 2004):
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i
1o 435
E[x;] NT1 (4.35)
iN—i+ D +2
stD[x] = Vi( L 1)( ) (4.36)

The set is standardized to the set {p;} by deducting the expected value and dividing by the standard

deviation:

x; — Ex;]
;= — 4.37
P T srdx] (4.37)
According to the authors the statistic
N T, p?
ey =T = — 4.38
EN (2 2 ( )

is a dimensionless statistic that would give the probability of exceeding Zli":lpz in N observations
under the assumption that {p;} is normally distributed. This is then plotted on a graph against the

threshold value u, analogous to how the Hill-plot for extreme values is done.

The statistic €y is used to test if the hypothesis that the assumed distribution is followed
throughout, or if it is to be rejected from some value and higher. &y is not used to place exactly the
cross-over value from which deviation takes place, but rather to detect the existence thereof. If
there is some value from which the assumed model is rejected, Pisarenko and Sornette (2004)
propose the use of a maximum likelihood estimate for some continuous distribution where the
function crosses over to a different, tapering distribution. The authors propose two different

possible distributions to append at the crossover value: a Pareto distribution and an exponential
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distribution. In case studies on data from different tectonic regimes the authors found that the
parameter estimates of the function above the truncation point indicate some continuation beyond
the crossover, whereas in other cases it approaches a step function as is the case with a truncated
distribution. They also conclude that whether the appended distribution is exponential or Pareto is

immaterial for the estimation of the crossover value if the extreme tail is not densely populated.

Pisarenko et al. (2003) and Pisarenko and Sornette (2006) developed, as a continuation on
the rationale in (Pisarenko and Sornette, 2004), a nonparametric statistic to detect deviation of
earthquake energy recurrence from a Pareto distribution (nonparametric in the sense that does not
require a parametric form of the function where it deviates from a Pareto distribution). This
statistic, which they call the TP statistic (not to be confused with the T-P estimate in Section 4.2.1), is

a linear combination of the first two ‘log moments’ that is equal to zero for a power law distribution:
TP = (E;)? - 05E, =0 (4.39)

where

© 2

E; = foolog( )dF(x) and E, = f (log (g)) dF (x) (4.40)

u u

and u is the lower threshold value. In empirical form it is given by

()Zlog xk] _05( )ibg (4.41)

k=1

The authors give an estimate of the standard deviation:
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STD[TP] = n~°5 [2E; log (’;—") ~ 0.5(10gCx /)] (4.42)

where E; is estimated from the sample according to:

£, = (%)Zlog (2 (4.43)

The estimate is plotted against the threshold value and compared to confidence bounds determined

by Monte Carlo simulation.

Pisarenko et al. (2008a) have developed a method that makes use of extreme value theory,
dividing a catalogue into time windows and works with the collection of maximum observed
magnitude values from all the time windows. The approach they discuss uses the Generalized
Extreme Value (GEV) distribution which describes the distribution of maxima as the extent of the
time windows approach infinity, if such a distribution exists. To estimate m,,. for a given length of

time intervals, quantile estimates on the GEV distribution is used.

Another approach which they develop (Pisarenko et al., 2008b) also propose the use of the
asymptotic (i.e. “limiting”) distribution of the actual number of events (or, more accurately, the
expected number of events) for large events, and not the asymptotic distribution for maxima in time
windows. The asymptotic distribution of large events, without the use of time windows, is termed
the Generalized Pareto Distribution (GPD). The GPD itself behaves asymptotically the same as the
Pareto distribution (Pisarenko and Sornette, 2004). In Pisarenko et al. (2008b) quantile estimates are
for time windows using what they call the Lomnitz Formula from the estimated GPD parameters. The
reason for their use of extreme value theory is, for instance, the fact that the algorithms for the
removal of fore- and aftershocks may not be efficient enough. They also claim that all attempts of
point estimates of mp,in the past failed to produce satisfactory accuracy because of the scatter
involved in all of these estimates. Raschke (2011) noted that the use of time windows or so-called
block estimates which are required for the use of the GEV distribution make estimates relatively

ineffective when the largest values in a block is not close enough to the m,,,,.
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Raschke (2011) developed an estimate based on fiducial intervals. The fiducial distribution
was introduced by Pisarenko (1991) but was found inadequate by Kijko (2004). For his method,
Raschke improved Pisarenko’s form of the distribution. The fiducial distribution of Pisarenko (1991),

(in Rashcke, 2011), is

P(Mpay < 2) =1 — FY(m8%,|2) (4.44)

where F(.|z) is the conditional cdf, given my,,, = z, and the assumed form — in this case the
truncated exponential distribution of the Gutenberg-Richter law — of the cdf. Raschke scaled this

distribution:

B [F(m%%’smo)]"

F(z|)
P(m <z)=
(nimas < 7) 1 — Fr(mfisy|o0)

(4.45)

on [mg2s , ). Here F(.|o) denotes the untruncated exponential distribution. Raschke then

continues to use this distribution for obtaining an estimate of m,,,,, rather than just using it for
confidence intervals. He does this by computing the expected value of the pdf corresponding to
(4.45), and he notes that this estimate is asymptotically unbiased. It should be noted that this is not

a point estimate, but yields a quantile-based estimate.

5. Literature review part Il: the Parametric-Historic Procedure

5.1.The main aspects of the Parametric-Historic procedure for Probabilistic Seismic Hazard

Analysis (Kijko and Graham, 1998 and 1999)

Kijko and Graham (1999) state that the Parametric-Historic approach addresses the
problems of subjective judgement (especially relating to definition of seismic sources) and
incompleteness and/or the different levels of completeness (i.e. magnitude above which the

catalogue is complete) as well as inaccuracy of different parts of seismic catalogues. The problem of
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overly subjective judgement and deduction is eliminated by directly using data to derive parameters
of theoretical distribution models used in the analysis. The problem of incompleteness, different
levels of completeness and inaccuracies are dealt with by in-depth procedures developed in Kijko
and Sellevoll (1989 and 1992), developed specifically for this purpose. Figure (4.4) schematically

illustrates the condition of completeness and uncertainty of a typical catalogue.

The historic part of the catalogue generally contains only very large events, so it is incorporated by
considering these events to be the largest events in a time window. These events can then be

assumed to follow an extreme value distribution derived in Kijko and Sellevolll (1989 and 1992):

exp{—7Aot[1 — Ep(mlmg, mpay)]} — exp(—4ot)
Fn™ (mimo, Mumaz, £) = = exp(AoD) — (5.1)

Mmin =m< Mmax

where 4, is the mean activity rate of earthquakes larger than m,, and m, is the lower limit of the
extreme part of the entire catalogue. Note that exp(—Ayt) becomes negligibly small for large t, as

is the case in most practical situations according to KG1999, so it is ignored.
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For an assumed normal distribution for magnitude uncertainty with standard deviation g,,, the
convolution the assumed distribution of magnitude and the normal distribution yields the following
functions for the pdf and cdf of magnitude, respectively (Gibowicz and Kijko, 1994)

x - - )
fm(mlmmiw Mmax, O-m) = fm(mlmmiw mmax) {67 [erf<% + 1) + erf<m\/—27::1m - X>]} (52)
Fm(mlmmint Mmax, Um)
m —m m —m
= Fm(mlmminrmmax) {A(mmin) [erf (%) + 1] + [A(mmax) <%> - 1] (5.3)

fm (mlmmin' Mmax, Um)

fm (mlmmin' mmax)

-2 A(m)} /2[A; — A(m)]

where A(m) = exp(—fm), erf(.) is the cdf of the normal distribution (or the error function), and

X = B0om/V2. The cdf has to be renormalized to include only values above m,y,;,, (KG1999):

Fm (mlmmin' Mmax, Um) - Fm (mmin |mmin' Mmax, Um)

1 = En(Mppin [Mmin, Mmax, 0m)

Fm(mlmmax' Gm) = (5.4)

According to Tinti and Mulgaria (1985a and 1985b, in Kijko and Graham, 1999) the mean activity rate
has to be replaced by the apparent mean activity rate A(m) = A(m)exp(x?). fin (M|Mpax) Om) is
obtained by differentiating equation (4.3). To account for magnitude uncertainty in the extreme

value distribution (5.1) the F,, (m|m,,q5, 0m) is thus substituted instead of E,,(m|mg, M,,4,). The
resulting pdf is given by (KG1999):

frﬁnax (m|m0' Mmax, t)

_ Xotfm (mlmo: Mpax L O'm)exp{_iot[l - Fm(mlmol Mpmax G Um)]}

, (5.5)
1 —exp(—44t)
Mmin =m=< Mmax
The unknown pair of parameters (8, 1,) is estimated by maximising the likelihood function
n
: Fmax (5.6)
Lo(B,20) = Ko fm (mOjImOrmmaxr tOj'UmOj)
j=1
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where my; is the apparent magnitude of the strongest earthquake during the time interval ty;, oy
is the standard deviation on m,;, and n, is the number of entries in the extreme part of the
catalogue. K|, is a normalization constant. Thus the whole of the extreme part of the catalogue may
be utilized to determine the parameters (8, 1) on the extreme part of the catalogue where data is
sparse because of the low activity rate.

Now for the i complete subcatalogue define I;; (8) and I;,(1;, B) as follows:
n;
lil(,g) = KB ’ nfm(mijlm;'nin' Mmax, O-mij) (5.7)
j=1

where m;; is the jth entry in the it subcatalogue, mim-n is the level of completeness of the it
subcatalogue, and oy, is the standard deviation on m;;. Kp is a constant.

liz(A B) = Ky - (it;) " exp(—Aity) (5.8)
where
A1 = Aiexp(x?) (5.9)
and
Ai = /1(1 - F(mfninlmminr mmax)) (5.10)

and K is again some constant. For the it complete subcatalogue the joint likelihood of the pair
(B, A) can be expressed a:
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Li(B, ) = Li(B) Lix (A, B) (5.11)
Equations (5.6) and (5.11) define the joint likelihood function of the whole catalogue:
ns
L(B,A) = 1_[ Li(B, 1) (5.12)
i=0

where ng is the total number of subcatalogues in the combined complete parts of the catalogue. An
estimate of (B, 1) is obtained by maximizing the likelihood function (5.12). Note that, because of the
incorporation of historical catalogues, neither the estimator

1
B =— _ (5.13)
m mmm
given by Aki (1965), nor the estimator
l (Mpax — Mmin) exp[—BM — Mpy;)]

(5.14)

e 1- exp[_B(mmax - mmin)]

given by Page (1968) can be used in this case.

After arriving at the MLE for (3, 1), the authors justify the use of the doubly truncated
exponential distribution for log-transformed PGA data (discussed further in sections 4.4 and 5.2).
Also assuming the occurrence of ground motion at a site as a Poisson process, an analogous
approach is followed for direct application to log-transformed PGA data. They do not, however,
explicitly include uncertainty in this case. The resulting equations for the MLE of the parameters
(y, Aln(pga)), analogous to (B, 1) for magnitude distribution, they give as

1 _ (t)A1 — (tA) _ texp(_/lln(pga)t)
J Aln(pga) - Ay — Ay 1- exp(_ﬂln(pga)t) (5.15)
1y BB ()4 = (tA))(B; — By) _(t)B, — (tB)
ly Ay — Ay npge) (4; — Ay)? Ay —4Ay
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where A; = exp(—¥Xmin), Az = eXp(—VXmax), B1 = XminA1, Bz = XmaxAa,

texp(_l]n(pga)t) 1 teXp(_Aln(pga)ti) t; X tiA(x;)
(b Tneewty _ Lym | PG (4 =y (%), () = Tk, (), () = B, (D),
1-exp(—An@pga)t) n 1-exp(=An(pga)ti) n n n

tiB(x;)
n

(tB) = ?:1( ), A(x) = exp(—yx), and B(x) = xA(x).

In an example application KG1999 estimates the maximum possible PGA by substituting m,qx
and the closest possible distance into the GMPE and calculating a large upper confidence limit in the
uncertainty distribution of the GMPE. They do suggest the use of the maximum estimators
developed in KG1998 directly on log-transformed PGA data (not necessarily single station data, but
also data derived through GMPEs) — one of the aims of this research project is to develop this
suggestion more fully as an extension to the Parametric-Historic procedure.

5.2.Theoretical Distribution of peak ground acceleration: The Pareto distribution

Kijko and Graham (1999) very briefly derived a site specific distribution of peak ground
acceleration and noted that it is in fact source-free. The distribution they give is in terms of the

logarithm of PGA is

Pr[In(pga) < x]
0, x <In(PGAnin) ( )
exp[—y In(PGA;,in)] — exp[—yx] 5.16
: < <
expl—y M(PGAL)] — expl—y In(PGAng]” " CAmin) < 2 < In(PGAnax)
1, x> In(PGAnmax)

which, when transformed to give the cdf of PGA, results in a truncated Pareto distribution:

0, x <In(PGAnin)

1- (PG:min)_y
1— (PGAmax)_y !

PGAmin
1, x> In(PGAnmax)

Pr[PGA < x] =

IN(PGApin) < % < IN(PGApgy) (5.17)
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wherey = CE, and ¢, corresponds to the constant in equation (3.11).
2

The Pareto distribution is a distribution in which the frequency of observation of a value is

related to some negative power of that value (Newman, 2005):

fy=Cx7? (5.18)

Here, and in the rest of the section, it will be taken for granted that x = x,,;,,, for some minimum
value x,,;,, that x may take on. Many natural disasters also follow a Pareto distribution (in some
cases considered to be a product of Self Organized Criticality; Bak, 1996), thus it is often
encountered in hazard analysis and the reinsurance industry. Newman (2005) gives several examples
of phenomena that follow (at least in part) Pareto distributions: populations of cities, moon crater
diameters, intensity of solar flares, and intensity of wars - just to name a few. In extreme value
theory, many distributions are considered to approximately follow a Pareto distribution for large
values (i.e. in the upper tail part) (Caserta and De Vries, 2003). Such distributions are often referred
to as heavy tailed distributions, and the Pareto distribution is the classic example of a heavy tailed
distribution (Resnick, 2007). The exponent b in equation (5.18) is the value that determines how

‘heavy’ the tail of the distribution is, and is technically referred to as the tail index.

Heavy tailed distributions derive their name from the fact that their tails largely affect the
location of the mean of the distribution (the mean may be infinite if the tail is too ‘heavy’). The
technical definition implies that a heavy tailed distribution has the property that very large values
are almost equally likely (Sigman, 1999). This property causes a very counter-intuitive stochastic
behaviour and is one of the reasons why risk may be misjudged on the basis of one’s intuitive
judgement (Naylor et al., 2009). For this reason the Pareto distribution is much better characterised
by a recurrence period of events larger than a certain size and by the mean excess over a certain
threshold value, rather than by a single central trend. The mean excess of a distribution f(x) over a
given threshold is merely the mean (or expected value) of the part of the distribution that is larger
than the threshold value. The precise definition of the mean excess function (also known as the

mean residual lifetime, depending on the context) is (Smith, 2003; Nieboer, 2011):
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M(t) = E[f(x]x > t)] = J-OO xf(x|x >t)dx (5.19)

Xmin

where M(t) denotes the mean excess over threshold t. The integral’s upper limit is at infinity, but in

many cases distribution is truncated at some value.

Another property which characterises the Pareto distribution is what is known as self-
similarity (Nieboer, 2011) or the property of being scale free (Newman, 2005). This means that the
scale (or units) by which one measures does not affect the shape of the distribution (it is only

rescaled by a multiplicative constant) (Newman, 2005). Mathematically it is stated as

f(cx) = h(c)f(x) (5.20)

Related to the property in equation (5.20) is a convenient formulation of the conditional Pareto

distribution p(x|x > t):

p(x|lx >t) = k(t)p (%) (5.21)

where k(t) = hzi%,and s(t) is a scaling factor rescaling the distribution to satisfy the criterion

ftoop(xlx > t)dx = 1. To be specific, a Pareto distribution with any minimum cutoff value x,,;, is

given by

(b—l)( x

Xmin

-b
p(x) = ) (5.22)

Xmin

and the conditional Pareto distribution by
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-b
X
-b—1 - —
X a—1 b—1) x\"b
plx|x > t) = & X ( ) (t) = u(—) (5.23)
t Xmin Xmin t t
Substituting (5.23) in (5.19) and evaluating the improper integral one obtains
1-b
M) = ——t 5.24
® =73 (5:24)

This implies that M(t) is linear in t. Moreover, coming back to the property of self-similarity
(equation (5.20)), the slope depends only on b, no matter what scale or units one measures in. Two
very useful heuristics (rules of thumb) follow from this (Nieboer, 2011): first, a plot of the empirical
mean excess function M(t) of Pareto distributed data against the threshold value, t, theoretically
follows a linear trend; second, if one aggregates data by summing together groups of data where
each group contains the same amount of data points, the resulting empirical mean excess function
looks similar to that of the original data — specifically, the linear trend followed by the aggregated
data has the same slope. These properties for IVI(t) only strictly hold when the mean is finite, that is

when b < 1.

Now, because equations (5.22) and (5.23) are essentially the same, we see from (5.24) that a

Pareto distributed population has mean

1-b

Elp(x)] = 5 Ymin (5.25)

which is the mean (or mean excess) over the chosen threshold x,,,;,, .The variance of the pareto

distribution is (Johnson and Kotz, 1994)
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b —1)?
Vip(x)] = C —(Z)Z(b)— 3)x"”'”2 (5.26)

and the mean becomes infinite when b < 1, and the variance when b < 2. The cdf of the Pareto

distribution is

(5.27)

?(x)zl—( a )_(H)

Xmin

Note that the truncated Pareto distribution (compare with equations (3.11) and (5.22)) differs in its
1

?(xmax).

functional form only by a scale parameter, which is Applying this to ground motion, the cdf

of PGA is given by

P(x) (5.28)

Pr[PGA < x] = [m ) X < Xmax
max
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6. Theoretical validation of use of the Pareto distribution to model the distribution of peak

ground acceleration and transformation to an exponential distribution

In this chapter the Pareto distribution is validated as a model for the distribution of PGA data
(and other peak ground motion parameters following an assumed attenuation law). As a synopsis,
this validation draws together the Gutenberg-Richter law and the ground motion prediction
equation in equation (3.12), resulting in a Pareto distribution. After the validation, the logarithmic
transformation to an exponential distribution is introduced. The logarithmic transformation results
in an exponential distribution, identical in form to what the Gutenberg-Richter law gives rise to. This
transformation therefore has the advantage that statistical methods familiar in seismology, as
applied to magnitude data under the assumption of the G-R recurrence law, may be applied to log-
transformed PGA data. Finally, parameters of the exponential distribution and estimation of these

parameters is discussed.

6.1. Combination of the Gutenberg-Richter law and the ground motion prediction equation

It will be taken for granted here that defined cdf’'s are 0 whenm < m,;,;, and 1 when
m = Mpyq,. As mentioned in Section 3.2, the Gutenberg-Richter law gives rise to the exponential

distribution of magnitude with cdf:

F(m) =1- e_ﬁ(m_mmin) (61)

If a truncation point, that is m,, 4, is imposed, then equation (6.1) is normalised as

1-— e‘ﬁ(m_mmin)
F(m) = T (6.2)

— e~ B(Mmax—mmin)
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Combining ground motion prediction equation (3.12) and the truncated G-R relation in equation
(3.3), but considering the error term € in (3.12) to be zero for the present, one obtains a cumulative

distribution for the expected PGA:

[In(PGA) < x|r] = Plcy + c;M + ¢(r) < x|r]

=P [M S Sk S Clcz_ °0) |r]

(6.3)

1—exp [_,B(mmax - mmax)]

~ 1—exp [—,8 (L_(p(r) - mmin)]

If € is a symmetrical distribution (such as the normal distribution) we are considering in effect the

mean (and median) by assuming € = 0. Integration over all possible source distances gives

P[In(PGA) < x]

. 1 ) x—c,—In(a(x £
men{rmax,¢ (x—c1—caMmin)} fR(T)dT' —exp [—,3 ( In(a( ))/(cz) _ mmin)] (6.4)

max{rmin, ¢~ (X—c1—C2Mmax)} c2

1- exXp [_ﬁ (mmax - mmin)]
where

min{rmazx¢ 1 (x—c1—c2Mmin)}
Bop()
a(x) = f e ¢z fp(r)dr (6:5)

max{rmin, ¢~ (x—c1—C2Mmax)}

fr(r) being the pdf of the source being at distance r.
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_ In(PGApin) — ¢1 — ®(Tmax)
Mpin = cy

_ ln(PGAmaX) - Cl - ¢(rmin)
mmax - CZ

One obtains

P[In(PGA) < x]
1- exp{—y[x - (ln(PGAmin) — ((p(rmax) - ln(a)/y))]}

- 1- eXp[_y(ln(PGAmax) - (d)(rmin) - ln(a)/y) - (ln(PGAmin) - (¢(Tmax) - ln(a)/y)))]

E

wherey = o
2

If it is assumed that

O (Tmin) — d(Tmax) K c2(Mypgx — Mpin)

it is justified to approximate

min{rmgx. ¢~ (x—c1—c2Mmin)} Tmax
a(x) = f e¥® ™) fr(r)dr = j e¥®™) fr(r)dr
max{rmin,¢ "1 (x—c1—C2Mmax)} Tmin
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(6.6)

(6.7)

(6.8)

(6.9)

(6.10)
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Tmax
= VP (rmax) _ j yo'(r)er® () Fr(r)dr
Tmin
Now
Tmax Tmax
Tomin Tmin (6.11)

< Yo min) — (e

because ¢ is negative on [Tyqy, Tminl, and y is a Lipschitz constant for the function e?? for ¢ < 0.
The final term in the inequalities (6.11) is negligible compared to the range of values PGA takes on

(see inequality (6.9)), so it is ignored. Furthermore, because of (6.9), the approximation

min{Tmax'¢_1(x—C1_szmin)} Tmax
fr(m)dr = f fr@dr =1 (6.12)
max{rmin,$~1(x—c1—C2Mmax)} Tmin

may be made. If ¢p(Tyin) — P (hnax) is approximated to be zero in the denominator as well (because

of its negligible effect compared to magnitude), the result is the exponential distribution:

1 —exp{—y[x — In(PGA )]}

1 — exp[—y(In(PGApay) — In(PGAppin))] (6.13)

P[In(PGA) < x] =
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This result was originally derived in a very briefly by Kijko and Graham (1999), and will form
the basis of the proposed extension to the Parametric-Historic procedure in Chapter 5. It also follows

that the PGA is distributed according to

PGApin - Y
PlPed <y] = (PG(Amin)-V)— (Pa(jiax)-y (644

This is the truncated Pareto distribution as given by Johnson et al. (1994).

6.2.Transformation to an exponential distribution

As was seen in equation (6.13), the logarithm of PGA is readily described as an exponential
distribution under the stated assumptions. Practical methods developed by authors such as Aki
(1965), Page (1968) and Kijko and Graham (1998 and 1999) are applicable to the exponential
distribution, so the application of these methods to ground motion data makes the logarithmic
transformation attractive in the sense of its familiarity. Pisarenko and Rodkin (2013) also state “The
treatment of heavy-tailed data is often facilitated by using logarithms of original values. Switching to
logarithms (which can be done only when the original numerical values are positive) ensures almost
always that all the statistical
moments exist, and hence the Law of Large Numbers and the Central Limit
Theorem are applicable to the sums of logarithms.” The common assumption that the residual term
€ in equation (3.12) for the logarithm of PGA follows a normal distribution also favours the use of
such transformation. Furthermore, the exponential distribution is in a sense “better behaved” in
that it does not possess the heavy tailed properties that give rise to rather counter-intuitive
behaviour of observations from the Pareto distribution and the problem of nonexistence of the
mean and variance in some cases is eliminated. Johnson et al. (1996) mention that such a
transformation is common for handling power-law distributed data, although they caution that an
understanding of the process giving rise to a Pareto distribution cannot be explained by
characterizations in terms of the exponential distribution. It is best, they say, to analyse the raw data
to determine the fitness of the Pareto model per se. It may be noted, however, that goodness of fit
statistics of the Kolmagorov-Smirnov type are independent of data transformations, a fact that will
be used later on. The transformation also does not affect maximum likelihood estimates of

parameters.
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6.3.Parameters and their estimation

Equation 5.16 has 3 parameters that have to be estimated — that isy, In(PGA,,;) and

In(PGAqx) — if we mean to interpret it as a doubly truncated exponential distribution.

PGA, is the threshold of completeness, i.e. the lower limit above which all PGA values were
recorded during the recording time. The data below the threshold is incomplete due to insensitivity
of instrumentation, in the case of catalogues consisting of data from different stations and the
cumulative effects of different cut-offs where values are considered to be too low to be of interest
(Woessner and Wiemer, 2005). It will be assumed that PGA,. = PGA,in, Where PGA iy, is the value
from which equation (6.14) holds. Thus, if PGA,,;, is placed below this level the shape of the
distribution is not correctly represented by the data, if above, useful data is lost. Wiemer and
Woessner (2005) and Mignan et al. (2011) give a comprehensive list of techniques to estimate the
level of completeness of magnitude catalogues. Because of equation (6.14), estimates on a log-log
histogram or survivor curve of PGA data of the point where “data loss curvature” starts may be used
to estimate In(PGA,,;,) (e.g. Woessner and Wiemer, 2005; Amoréese, 2007). Figures 6.1 and 6.2
provide illustrations (these figures were done graphically, merely to illustrate the concept). Two
methods of note that do not depend on the assumption of equation (6.14) are: a method that
identifies the threshold where signal-to-noise-ratio variations can be detected diurnally (Rydelek and
Sacks, 1989); and the intricate yet robust method of Schrolemer and Woessner (2008) that
computes detection probabilities as a function of distance and magnitude. Techniques that are
based on analysis of station specific data and probability of detection may be particularly useful for

the use of PGA data.
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Figure 6.1 Estimation of level of completeness of data with similar site effect from the PEER NGA database from a log-log

histogram.
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Figure 6.2 Estimation of level of completeness of data with similar site effect from the PEER NGA database (Pacific
Earthquake Engineering Research Center, 2005) from a survivor curve (deviations from linearity for high values are not
due to incompleteness, but possibly rather due to boundedness, or statistical noise in the tail — the tail is always very

scantly populated - see Naylor et al., 2009; Newman, 2005).
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PGA,, 4, is understood to be a physical limit as discussed in Chapter 2. In(PGA,,,4,) may be
estimated with methods discussed in Sections 4.2.1 and 4.2.2, again from the log-transformed data

in the cases where the exponential distribution is applicable.

The parameter y is equivalent to the f§ parameter of the G-R distribution (equation 5.2).
Following KG, the maximum likelihood method, of which the result is referred to as the maximum
likelihood estimate (MLE) of the parameter, will be used to estimate this parameter. It is determined
by maximizing the value of the likelihood function, which is proportional to the joint probability of
observing all the individual observed values from the assumed distribution. The likelihood function,

expressed as a function of the parameter to be estimated is

Lol = faly) = | [Feuln (6.15)
i=1

where x (boldface) denotes the vector containing all the observed values and x; the i observed
value (note that in our case x and x; would refer to the log-transformed data). The MLE of f§ is the
value that maximises likelihood function L(.). Page (1968) has shown that the MLE for y uniquely

satisfies

1 x4 (Xmax — Xmin) €Xp [_Y(xmax - xmin)]
mn 1 —exp[—Y(Xmax — Xmin)]

(6.16)

where X is the sample mean, and, in the case under consideration, xX,,,;, = In(PGA,;;,), and
Xmax = IN(PGA,4x). Although the solution cannot be obtained explicitly, it can be estimated

numerically by fixed point iteration.

Some of the estimators of x,,,, require that the value of y should be specified, and in
equation (6.16) x,, 4, has to be specified. As recommended by Kijko and Graham (1998) a fixed point

iteration is done on the pair < x;,,4, ¥ > to overcome this difficulty, and the estimator
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(6.17)

for the untruncated exponential distribution or the estimator given by Aki (1965) for a distribution
only truncated from below

Y =z

X = Xmin

(6.18)

is used to obtain an initial approximation. The initial approximation is used to estimate In(PGA;,4x)

with the K-S or K-S-B estimators discussed in Section 4.2.1. The estimate of y is refined by equation

4.22, and In(PGA,q4x) again estimated with the new value of y. The iteration is continued until a
satisfactory close approximation is obtained.

© University of Pretoria

71



72

7. Direct estimation of PGA,,.. by application of the methods previously used to estimate m,,,

In this chapter an extension to the Parametric-Historic procedure by direct application of
maximum estimators discussed in Section 4.2.1 to PGA data is introduced. This extension follows
naturally, so the bulk of this chapter is devoted to an example application to single-station PGA data.

This application is both validative and illustrative.

7.1.Estimating PGA .«

Pareto distributed data is often analysed in log-transformed form (Johnson et al., 1994); the
log-transformed data is exponentially distributed and standard methods for exponential
distributions apply. This is also why, as discussed in the previously, the Pareto distribution of
earthquake energy translates to the exponential distribution of earthquake magnitude (see Section
3.1). In the same way Pareto distributed PGA data implies that log-PGA is exponentially distributed.
Advantage is taken of some decades’ work on the statistical and probabilistic properties of the
Gutenberg-Richter relation, which translates to that of an exponential distribution, which was shown
to also to be applicable to log-PGA data. Specifically, methods discussed in Section 4.2 allows one to
estimate PGA,.x in terms of In(PGA ...,). Pisarenko and Lyubushin (1997) published a paper that used
ideas along this line, but, according the author’s knowledge, no one has further worked on the idea
till present. It is essential to draw attention to the openness of the idea: methods (of which there are
many) used to estimate the upper limit of magnitude may also be used to estimate the upper limit of
PGA from log-transformed data. Only one assumption is made: the ground motion data under
consideration is Pareto distributed by and large, so as safeguard against using it inappropriately one
has to test if the data conforms to the Pareto distribution. If data is not distributed according to a
Pareto distribution, one of the non-parametric methods in Section 4.2.1 may be used, preferably on

log-transformed data.

The methodology proposed above is conceptually straightforward. The rest of this section is
devoted to the specific case where a Pareto distribution is assumed, but note that the condition (6.9)
is actually not met in the case study in subsequent sections, for which the Pareto distribution was

found to hold in section 6.1.
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7.2.Remarks on when it is justified to assume a Pareto distribution and variations thereof as a

distribution model of peak ground acceleration

The K-S procedure is expected to be effective in cases where ground motion clearly follows a
Pareto distribution. As noted previously, the existence of such cases is both well established and
explainable. One also has to keep in mind that it is often a good idea to ‘let the data speak for itself’,
as many scientists have often admonished, even though something might not be readily explainable.
But in cases where data clearly deviates from a Pareto distribution, yet shows close resemblance,
the K-S-B estimator may be a good choice as an estimator. It was developed for a stochastically
varying b-value in the Gutenberg-Richter law (equation (3.1)), which (b-value) many scientists
consider to have a direct physical connotation; but note that it also determines the slope of the
graph at a specific point (in fact, it determines all the derivatives of the relation). One of the main
results used in extreme value theory is that extreme values follow the so-called Generalized Pareto
Distribution (see also Section 4.2.2) (Embrechts et al., 1997; De Haan and Ferreira, 2006; Pisarenko

et al., 2008b).

Deviation from the Pareto distribution this may well be approximated by a variation in the b-
value with a distribution with a Gamma distribution. In a rigorous sense, a function may be
expressed a mixture (i.e. a weighted sum or integral) of exponentials if it is completely monotonic

(Miller and Samko, 2001), that is, if it possesses derivatives of all orders and satisfies

DM @) =0 (7.2)

The only considerable limitation of completely monotonic functions is that they cannot have
inflection points, which is evident from the fact mentioned by Miller and Samko (2001) that, firstly, a
completely monotonic function is either identically zero or never zero, and secondly that f(Z") (%)

and —f @~ (x) are also completely monotonic.

If ground motion data clearly does not even approximately follow a Pareto distribution such
as when it has several modes are observed (Kijko et al., 2001) (which might well be the case,
especially in mine induced seismicity; Gibowicz and Kijko, 1994; Kijko et al., 2001), then the non-

parametric estimation with Gaussian kernels is recommended. If data is sparse so that no good
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estimates of the distribution shape and/or parameters can be made, the R-W procedure may be
considered because of the fact that, although it has large scatter, it is mean unbiased (e.g. Kijko and

Singh, 2011).

7.3.Data

As an illustration of the above formalism, it is applied to catalogues of PGA values records in
the region of the Zelazny Most slimes dam in the Legnica-Gtogdw Copper District, Poland. The
records of six stations, named Grodowiec, Guzice, Komorniki, Trzebcz, ZM2WP, and ZM8WP here for
convenience, were used. The longest of these catalogues span a 10 year period (2001-2011) and are
all located in a relatively small area — no two stations are more than 6 km apart, though the stations
were not installed simultaneously. Figure 7.1 shows the locations of the stations relative to the

slimes dam, along with the seismogenic mining region.
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Figure 7.1 Locations of recording stations relative to slimes dam (derived from Lasocki, 2005; and Orlecka-Sikora et al.,

2012).

In this district, copper is extracted from very hard, competent rock which is prone to violent
brittle failure manifesting in rock bursts and seismicity, and the safety and stability of the large
Zelazny Most slimes dam is a concern (Orlecka-Sikora et al., 2012). This spurred detailed
investigations and careful monitoring of the seismicity in the area (e.g. Orlecka-Sikora et al., 2012;
Lasocki, 2005). Figure 7.2 shows histograms of the PGA data from each station. The deviation from
the power law trend in small values are considered to be due to incompleteness, which is typical also
in magnitude catalogues, and arises because of insensitivity of instrumentation and subsequent
increasing loss of data below a certain threshold, called the level of completeness (Woesner and
Wiemer, 2005). For purposes of this work the level of completeness was simply estimated

graphically.

7.4.Estimation of parameters and goodness of fit
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Only the total PGA was used for the analysis of the data (not vertical, horizontal, etc.
components). For each station’s data a suitable minimum cutoff vale was determined visually by
inspecting histograms of the data (see Section 6.3). The log-transformed data was used to calculate
In(PGA,,,.x) with utilization of a software package called HA2 (Hazard Area 2) version 2.05 developed
by Kijko (2006), using an option implementing the so-called Kijko-Sellevoll-Bayes procedure (see
equation (4.20)). The software uses an iterative procedure whereby estimates of y and In(PGA,;,4x)
of equation 6.13 are subsequently refined in by iteration in the way discussed in Section 5.1. The
transformed data was scaled and shifted by a constant to fit in an interval required by the software,
so the actual transformation is of the form aln(PGA) + b, where a and b are constants (the reason
for this transformation is that the software is designed to handle earthquake catalogues, and some
subroutines assume typical values taken on by magnitude). Note that, in the case of such
transformation, if the data is Pareto distributed with tail index y, the parameter in the resulting

exponential distribution is y/a
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Figure 7.2 Histograms of PGA values from each catalogue

The Cramer-von Mises Goodness of Fit statistic was calculated for the fitted exponential
distribution obtained, as recommended by Stephens (1974). Stephens recommends the Cramer-von

Mises statistic for the case where the value of the exponent (y/a in this case) was estimated from
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the sample. Table 7.2 gives the resulting figures for the goodness of fit test (adapted confidence
levels were obtained from Stephens, 1974). It should be noted that the Cramer-von Mises statistic
itself is not affected by the transformation of the data, so the figures indicate the fitness of the
Pareto model to the original data. The constants a and b used in the transformation are shown in

Table 7.1.

Table 7.1 Constants for logarithmic transformation aln(PGA)+b

Grodowiec Guzice Komorniki Trzebcz ZM2WP ZM8WP
1.5369 1.296 1.0445 1.1267 1.4779 1.4162
7.1014 5.2479 5.4386 5.0943 8.0432 7.6152

Table 7.2 presents all the resulting values for the evaluation or application excercise with the
transformed data, and Table 7.3 presents the resulting PGA.« values and distribution tail index after
reversing the transformation. Note that the tail index is the power of the probability density
function, not that of the cumulative distribution; so it is obtained it by multiplying the beta value by
the transformation constant and adding one. Figures 7.3 (a) through (f) show survivor plots of the
complete parts of each station’s catalogue along with that of the fitted exponential-gamma model.
As an aside, the exponential-gamma model gives rise to distribution of the class of Pareto

distribution (Johnson et al., 2004).
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Table 7.2 Resulting values for application of exponential-gamma model and direct estimation of PGA,,,, to mining data

Grodowiec Guzice Komorniki | Trzebcz | ZM2WP | ZM8WP
v/a 0.92 0.69 1.17 0.46 0.69 0.73
o(y/a) t 0.1 0.07 0.09 0 0.09 0.08
aln(PGA.)+b 6.79 6.61 6.9 6.59 6.65 6.65
W2 * 0.2920 0.0898 | 0.2072 0.0604 | 0.1468 | 0.0859
Level of
confidence 0.01<a<0.025 | a>0.15 | 0.05<a<0.1 | a>0.15 | a>0.15 | a>0.15

*Cramer-von Mises statistic

Note: aln(PGAnin)*+5=2.5 in each case

* Note that this is specifically the standard deviation used in the mixed exponential distribution

Table 7.3 Resulting figures after reversing the transformation

Grodowiec Guzice Komorniki Trzebcz ZM2WP ZM8WP
PGAmax 0.82 2.9 4.1 3.8 0.39 0.51
y+1 2.4 1.89 2.2 1.52 2.0 2.0
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Figure 7.3 (a) Survivor plot for complete part of data from Grodowiec. Red line indicates the survivor function fitted

model, the blue line that of the actual data.
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2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

transformed pga

Figure 7.3 (b) Survivor plot for complete part of data from Guzice. Red line indicates the survivor function fitted model,

the blue line that of the actual data.
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transformed pga

Figure 7.3 (c) Survivor plot for complete part of data from Komorniki. Red line indicates the survivor function fitted

model, the blue line that of the actual data.
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transformed pga

Figure 7.3 (d) Survivor plot for complete part of data from Trzebcz. Red line indicates the survivor function fitted model,

the blue line that of the actual data.
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Figure 7.3 (e) Survivor plot for complete part of data from ZM2WP. Red line indicates the survivor function fitted model,

the blue line that of the actual data.
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Figure 7.3 (f) Survivor plot for complete part of data from ZM8WP. Red line indicates the survivor function fitted model,

the blue line that of the actual data.
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7.5. Test for possible deviation from Pareto distribution using the TP statistic

To test for possible deviation from the Pareto distribution for large values, the TP statistic
discussed in Section 4.2.2 is used. The estimate is plotted against the threshold value. The estimate
was applied to each station’s data, the results of which are shown in Figures 7.4 (a) through (f).
Monte Carlo confidence bounds at 99% confidence are also displayed. These bounds seem to
indicate a bias, which is indeed so because of the boundedness of the samples (that is, because
random samples were draw from an upper truncated distribution). Figure 7.5 (a) through (f) show
plots of the TP statistic of data with confidence bounds determined for exponential-gamma mixture.
Note that, in both Figures 7.4 and 7.5, the parameters used are those of the fitted exponential-
gamma mixture (K-S-B method, section 4.2.2), but the resulting values do not differ much from

those obtained by the K-S estimator (K-S method, 4.2.2).
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Figure 7.4 (a) TP statistic for Grodowiec; confidence bounds generated from an exponential distribution. Blue

line indicates the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.4 (b) TP statistic for Guzice; confidence bounds generated from an exponential distribution. Blue line

indicates the statistic value of the data, dotted lines the 99% conficence bounds.

TP estimator

threshold

Figure 7.4 (c) TP statistic for Komorniki; confidence bounds generated from an exponential distribution. Blue

line indicates the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.4 (d) TP statistic for Trzebcz; confidence bounds generated from an exponential distribution. Blue line

indicates the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.4 (e) TP statistic for ZM2WP; confidence bounds generated from an exponential distribution. Blue line indicates

the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.4 (f) TP statistic for ZM8WP; confidence bounds generated from an exponential distribution. Blue line indicates

the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.5 (a) TP statistic for Grodowiec; confidence bounds generated from an exponential-gamma mixture. Blue line
indicates the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.5 (b) TP statistic for Guzice; confidence bounds generated from an exponential-gamma mixture. Blue line

0.5

1

|
1.5 2 2.5
threshold

3

indicates the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.5 (c) TP statistic for Komorniki; confidence bounds generated from an exponential-gamma mixture. Blue line

indicates the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.5 (d) TP statistic for Trebcz; confidence bounds generated from an exponential-gamma mixture. Blue line

indicates the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.5 (e) TP statistic for ZM2WP; confidence bounds generated from an exponential-gamma mixture. Blue line

indicates the statistic value of the data, dotted lines the 99% conficence bounds.
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Figure 7.5 (f) TP statistic for ZM8WP; confidence bounds generated from an exponential-gamma mixture. Blue line

indicates the statistic value of the data, dotted lines the 99% conficence bounds.
7.6.Discussion

The procedure followed in this chapter, applied to an example case, served to develop the
method of estimation of PGA,,., directly from PGA records. The illustration used only one of the
possible procedures discussed in section 4.2, but any of the procedures may be applied (depending
on the data). Using Stephens’ (1974) adapted confidence intervals of the Cramer-von Mises

goodness of fit statistic the procedure seems to indicate good overall fit.

The T-P statistic serves as an indicator of deviation from a Pareto distribution in the tail end
of the distribution. For all stations but Komorniki and Trzebcz do the values of the T-P statistic fall
within both the 99% confidence bounds of both the exponential and exponential-gamma
distributions. The data for Komorniki clearly shows an improvement from the exponential to the
exponential-gamma distribution; the statistic for Trzebcz falls further outside the confidence bounds
of the exponential-gamma than the exponential distribution. The author’s suspicion is that the
problem with this specific station might be the estimated maximum value: note the extreme bias of
the confidence bounds towards positive values, whereas an infinite distribution fluctuates about
zero. The statistic for Trzebcz station itself is close to zero, which suggests that its maximum value
may be higher than the estimated value used. To test the plausibility of this argument the data was
plotted with confidence bounds for the exponential distribution with a higher maximum (7.00 as

opposed to 6.52) — see Figure 7.6. Indeed it seems a plausible argument — the statistic is much closer
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to falling within the 99% confidence bound with a higher maximum. As an aside, such use of the T-P
statistic may be used as a guide to whether data is sufficient to use the generic gquation in Section

4.2.1.

As a concluding remark to this chapter, it should be noted that, at present, single station
observation catalogues are usually not large enough for application as directly as was done in this
chapter; the amount of single station observations in this case study is exceptionally large. Instead,
PGA data may be obtained from magnitude data through the use of a GMPE. Methods are also
available to remove variability (e.g. methods used by Morikawa et al., 2008) , so ground motion from
a region may be aggregated and the method applied exactly as described in this chapter with

variations from Section 4.2.

ANy
M\fmJMﬁM\NM*\\/J‘W o M R

oLy
v

exponential distribution
Xxmax=7

Figure 7.6 TP statistic for Trebcz; confidence bounds generated from and exponential-gamma mixture with x,,, at a
higher level than the estimated value. Blue line indicates the statistic value of the data, dotted lines the 99% conficence

bounds.
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8. Incorporation of nonlinear terms of Ground motion prediction equations: theoretical results

for future development

8.1.Motivation

Tsang et al. (2011) states that the problem with the seismogenically source-free methods is
that they are based on the simplest form of the GMPE’s (equation 3.11). There is thus the need to
incorporate more complex terms into the parametric-historic, data-driven ground motion
distribution. It is only natural to attempt to develop distributions for more complex GMPE’s to refine

this estimate.

8.2.Two methods that may be used to incorporate more complex functional forms of ground

motion prediction equations

In this section two methods that may be used to incorporate more complex functional forms
of GMPE'’s are proposed. The first, which will be called the re-substitution method, is based on a
simple approximation of magnitude in terms of a common parameter (or function) that is dependent
on distance and PGA. The second method, which will be called the inverse Taylor method, only
differs in that it uses a more advanced numerical method developed by lItsikov et al. (2012) to

compute the Taylor expansion of the inverse of a function.

A GMPE of the following general form is assumed:

In(pga) = q, + g;m + @ + @y (M) (8.1)

(@m (M) also (possibly) depends on r). From the comprehensive overview by Douglas (2011) this

functional form seems to incorporate most of the forms of GMPEs.

Now let
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x =x(In(pga),7) = In(pga) — q; — ¢»

and

So we also have

x =x(m,r) = qm + ¢y (M)

The idea is to obtain as close as possible to an explicit solution of the form

Qx) = m(x)

in order to obtain the distribution of PGA:

0, x < ln(PGAmin)
P[PGA > x] = { 1 — exp[—B(Q(x) — In(PGA )]

1- exp[— ﬁ(ln(PGAmax) - ln(PGAmin))] '
{ 1, x>In(PGA,)

In(PGApmin) < x < In(PGAmay)

Iterative re-substitution Method:

In many cases it is justified to assume (see the list of GMPES in Douglas, 2011) that
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qm > ¢m,r (m)

(8.7)

It is proposed that the sequence Q%F-(x) defined in the following way provides consecutively better

approximations to Q(x) (see Appendix B for a detailed motivation):

q
(8.8)
X — ¢m,r <x - ¢m,r (2))
Q5®(x) ~
q
| I |
Inverse Taylor Method:
Note that
Q(x) = inv[qm + ¢m,r](x) (8.9)

© University of Pretoria



95

where inv|[.] denotes the inverse function (or, more precisely, inverse functional). The Taylor

expansion to an arbitrary order n, withn = 2, is

n .~k
Qx) = T, [inv(qm + qu,r)](x) =mg + Z %Mm) (x0) (8.10)
k=1 )

where T, denotes the Taylor series expanded to n terms. The derivatives M (x,) are solved via an

algorithmic method developed by Itsikov et al. (2012) and is explained in Appendix B.

8.3.An example of the performance of the iterative re-substitution and inverse Taylor

methods

As an example case to evaluate the performance of these two methods they are applied to

Atkinson and Boore’s (2006) equation for the Eastern North America:

LogPGA = ¢; + c;m+ csm? + (¢cy + csm)fy + (cg + c;m)fy, + (cg + com)fy + ¢+ S (8.11)

where fo = max (log (%) , 0); fi = min(log(R),log(R,)); f, = max (log (R%) , 0), and R, =

10; Ry = 70; R, = 140

The constants ¢; are: ¢; = 0.907; ¢, =0.983; ¢3 =—0.066; c, = —2.7; ¢c5 = 0.159;
e = —2.8;c; = 0.212; cg = —0.301; ¢ = —0.0653; ¢;, = 0.000448 .
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Expand relation on intervals [Ryin, Rol, (Ro, R1], (R1, R2], (R2, Ripax] @and arrange the

resulting equations in the format

logPGA = ¢; +dm + Jp(m) + Iy (m, 1) + 7, (1) + S + K (8.12)

where J,,,(m) denotes a term depending on m alone, J,, -(m, ) denotes terms depending on both
m and r, and J,-(r) the combination of all terms depending on r alone. K denotes all the rest of the

terms constant in r and m. The resulting expressions are as follows:

On Ryin <R <R,

logPGA = ¢, + (c; + colog(Ry))m + czm? + (cs — co)mlog(R) + (¢4 — cg) log(R)

+CR +S (8.13.a)
OnRy <R <R,
logPGA = ¢, + c;m + czm? + csmlog(R) + ¢, log(R) + ¢;oR + S (8.13.b)
OnR, <R <R,
logPGA = ¢, + (c; + c5log(Ry))m + cgm? + ¢oR + S + ¢; log(R;) (8.14.c)
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OnR, < R < Rpgx

logPGA = ¢; + (cz + cslog(Ry) — ¢;10g(Ry))m + csm? + c;mlog(R) + cg 1og(R) (8.14.d)
+ ClOR +S+ Cy log(Rl) - CGIOg(RZ) o

Now let

¢m,r (m,r) = Pm (m) + Pm,r (m,7) (8.15)

for use in the iterative re-substitution method (see equation (8.8)).

To test the accuracy of the method a set of PGA values, say {PGA;} were computed that correspond
to a range of values of m, say {m;}, for different values of r. Because it is then known which PGA
corresponds to which value of m at a given value of r, the probability of exceedance of these values
of {PGA;} is known to be that corresponding values {m;}. In this way it is possible to test the
accuracy of the probability values given by the proposed values by comparison to the exact values.
Figure 8.1 displays the graph resulting from approximating Q(x)with Q5% (x), Figure 8.2 the result of
approximating with QI®-(x), and Figure 8.3 that of Q}*(x). Figure 8.4 displays the result of the
application of the inverse Taylor method with Taylor series expanded to 2 terms, Figure 8.5 to 3
terms, and Figure 8.6 expansion to 5 terms. Note that the different blue lines correspond to different

values of r.
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1.5

probability of non-exceedance

Figure 8.1 Iterative re-substitution method with no re-substitutions used to calculate probabilities of exceedance. Red

line denotes actual values, blue lines approximations at constant r.

1.5

probability of non-exceedance

Figure 8.2 Iterative re-substitution method with one re-substitution used to calculate probabilities of exceedance. Red

line denotes actual values, blue lines approximations at constant r.
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1.2

probability of non-exceedance

Figure 8.3 Iterative re-substitution method with ten re-substitutions used to calculate probabilities of exceedance. Red

line denotes actual values, blue lines approximations at constant r.

probability of non-exceedance

|
4 4.5 5 5.5 6 6.5 7
magnitude

Figure 8.4 Inverse Taylor method expanded to 5 terms used to calculate probabilities of exceedance. Red line denotes

actual values, blue lines approximations at constant r.
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Figure 8.5 Inverse Taylor method expanded to 5 terms used to calculate probabilities of exceedance. Red line denotes

actual values, blue lines approximations at constant r.

1.2

probability of non-exceedance

Figure 8.6 Inverse Taylor method expanded to 5 terms used to calculate probabilities of exceedance. Red line denotes

actual values, blue lines approximations at constant r.

8.4.Discussion of the outcomes of the two approximations
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The iterative re-substitution method is heuristically closer to a semi-closed form or analytical
method than the Inverse Taylor method because of its simplicity (although not necessarily
technically so). The Inverse Taylor method is robust and the general idea is straightforward, but
computationally complex with a large amount of iterative details (see Appendix B). It tends to be,
heuristically, more numerical in nature (referring to the detailed calculation of the derivatives if the
derivatives of the inverse function), whereas the iterative re-substitution method can more easily be
comprehended as an analytical approximation. The advantage of the first method is therefore that it
is easy to comprehend in its details and to implement, and is computationally less complex, whereas
the second is guaranteed to yield converging under the assumption that Q(x) is well defined. (For
analytic properties of the Taylor expansion of the inverse function implemented in the second

method, consult the paper by the authors of the method: Itsikov et al. (2012)).
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9. Final discussion:

KG1999 briefly derives an exponential distribution of the log-PGA values, which is equivalent
to a Pareto distribution for PGA values. The mathematical derivation of the distribution is validated
in Section 6.1 as a very good approximation under the assumption that the range of log-PGA values
for a fixed magnitude and varying distance is negligible compared to the range of values log-PGA
takes on for a fixed distance and varying magnitude with distance and magnitude within their
respective ranges of interest. This mathematical derivation will therefore hold for cases where data
from a limited range of distances have produced the earthquakes with PGA values of interest. This
makes it valid in cases where large values of PGA are caused by, say, the closest earthquakes as is
often the case. The effect of the error when the range of PGA values for a fixed magnitude and
varying distance is similar to that compared to the range of values PGA takes on for a fixed distance
and varying magnitude with distance is (theoretically) more pronounced; thus makes the nature of
the error comprehensible. Figure 9.1 shows the distribution of the logarithm of PGA for a site
located some distance along strike from a fault modelled as a linear source (take note that the lower
part and the upper part deviates significantly). This is, however, a theoretical model and does not
eliminate the applicability of the Pareto distribution to any real life data, but does serve as a caution
not to use the Pareto distribution without verification of the applicability (and, in general, as caution
against what Tsang et al. (2011) refer to as “black box syndrome”). The TP statistic used in Chapter 7
to test for possible deviation from the Pareto distribution is designed to be sensitive to tail artefacts

as seen in Figure 9.1.

Probability density

log(pga)

Figure 9.1 Shape of the distribution of log-PGA where the site is located some distance from a fault directly along strike.
The range of PGA values for a fixed magnitude and varying distance is similar to that compared to the range of values
PGA takes on, which causes large artefacts (here in the extreme) in the upper and lower tails.
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As Kijko (2012) noted, and Bommer and co-workers continually emphasise (e.g. Bommer,
2002; Bommer et al., 2004; Strasser and Bommer, 2009), one of the main problems in probabilistic
seismic hazard analysis is the determination of an upper bound on peak ground acceleration. PSHA
provides a means of predicting recurrence of ground motions over any range that is considered
plausible, but, especially because of the large uncertainty involved, is unable to estimate an
upperbound on PGA from integration over all of the influencing factors such as magnitude, distance,
etc. The method proposed in Chapter 7 is a data-driven approach based directly on the PGA data for
a specific site. It was shown in Chapter 6 that the distribution of the log-transformed data is (at least

roughly) of the same type as that of magnitude.

As an extension of the KG’s Parametric-Historic method, the methods discussed in Section
4.2 for estimation of m,. may be applied to the PGA data (in log-transformed form where
applicable for methods developed for application to magnitude, directly for methods developed for
seismic moment) to estimate PGA ... The methods from TM (see Section 4.2.1) accommodates both
parametric and non-parametric estimates from the data. Note that the generic equation (4.12) is
open to different parameterizations, even though the case of an exponential distribution has been

investigated in detail in KG1998.

In the specific application in Chapter 7 a Pareto distribution of PGA data (equivalently an
exponential distribution of the logarithmically transformed data) was assumed. For the sake of
clarity it should be emphasised again that the data was analysed in log-transformed form (although
both the Bayesian maximum likelihood estimates of parameters and Kolmogorov-Smirnov type
statistics are invariant under this transformation). K-S-B method described in TM was used to
estimate PGA .. The flexibility to incorporate many different cases using the K-S-B method, which
was used in the application, is evident from the combined flexibility of the Gamma distribution (used
as a weight distribution for the exponential mixture in the method) and the flexibility of exponential
mixtures. The flexibility of exponential mixtures does not, however, rule out the possibility of
existence of other types of distributions (the theoretical distribution in Figure 9.1., for example,
cannot be expressed as a mixture of exponential distributions due to the inflection in the lower part
and the discontinuity of the first derivative in the upper part). In such cases the non-parametric
methods of Section 4.2 may be applied. It should be noted that catalogues with few entries are
unlikely to capture the deviation in the tail and, due to the fast decrease in probability above

crossover value, and likely to result in an underestimation of the maximum.

Cases where deviations in the upper tail occur are discussed extensively by Kagan and

Schoenberg (2001), Kagan (2002), Pisarenko et al., (2003), Pisarenko and Sornette (2004), and
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Pisarenko and Sornette (2006). In Section 7.5 the T-P statistic of Pisarenko and co-workers
(Pisarenko et al., 2003; Pisarenko and Sornette, 2006) was used to test for such deviations from a
Pareto distribution. For 4 out of the 6 stations’ data one cannot reject the hypothesis of the PGA
data following the fitted Pareto distribution within a 99% confidence bound for large values (stations
Komorniki and Trzebcz were the ones raising concern). When the actual exponential-gamma mixture
was used to determine the 99% confidence bounds, Komorniki still raises concern, but doesn’t fall
that far outside of the bounds. Trzebcz still falls far outside the confidence bounds where the
exponential-gamma mixture is used. Noting that, theoretically, the T-P statistic is always zero — and
that the T-P statistic for Trzebcz falls toward zero from not too large values, it is natural to suspect
that the PGA,, is in fact underestimated for the PGA data of Trzebcz station. This hypothesis was
tested ad-hoc by using confidence intervals for an exponential distribution with a higher upper
bound (Figure 7.6). The T-P statistic falls better within these 99% confidence bounds. (As an aside,
the ad-hoc test may be developed into a heuristic for the validity of our PGA,,,, estimates.) The fact
that equation 4.10 (the generic equation) is amsymptotically unbiased (Kijko and Graham, 1998), so
that more data always increases the accuracy, leads to the conclusion that the data for Trzebcz

station was most probably insufficient.

In Chapter 8 a second extension is made to the parametric-historic procedure in the form of
two numerical estimators developed to incorporate the nonlinear magnitude terms in equation
(7.1). The incorporation of Atkinson and Boore’s (2006) equation was considered as an example. The
effect that the incorporation of non-linear terms might have on the distribution is left for future
research. These distributions are, unfortunately, not source-free as the distribution derived in
KG1999, but may be made so by including any solely distant dependant terms into the function
dependent on both distance and magnitude, but exact conditions of convergence of iterative re-
substitution method is not known and more uncertain if the approximation stated conditions in the

derivation are not met.
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10. Summary

Kijko and Graham (1998 and 1999) developed a procedure they call a Parametric-Historic
procedure for PSHA after Mcguire’s (1993) classification of PSHA procedures as deductive, historic,
and possibly parametric-historic. Kijko and Graham (1998) developed a robust method to estimate
the maximum regional magnitude of an area from seismic catalogues. Kijko and Graham (1999)
further developed their parametric-historic procedure where they included the description of
maximum likelihood estimators of parameters from catalogues, ways to deal with inaccurate and/or
incomplete catalogues, and, finally, a methodology for site-specific analysis using the catalogue data.
In Kijko and Graham (1999) an equation of the distribution of the distribution of log-PGA was also
briefly derived and turned out to be, independently of the source distribution, of the same form as
the distribution of magnitude, that is, an exponential distribution; equivalently, PGA data follows a
Pareto distribution. Other methods that preceded or followed from Kijko and Grahams’ (1998) work
on a point estimator of my,,, are described in Section 4.2.1. Methods mostly concerned with a soft

cutoff are discussed in Section 4.2.2.

In Chapter 6 the applicability of exponential distribution to the logarithm of PGA was
validated under the assumption that the range of log-PGA values for a fixed magnitude and varying
distance is negligible compared to the range of values log-PGA takes on for a fixed distance and
varying magnitude with distance and magnitude within their respective ranges of interest. A
theoretically justified use of the exponentially distribution would be cases where only the closest

sources are considered.

In Chapter 7 a simple extension to the Parametric-Historic procedure is introduced. This
involves direct application of the maximum estimators discussed in Section 4.2 directly to log-
transformed PGA data. It is applied to a specific instance of data from Legnica-Gtogéw Copper
District, Poland. The data is hypothesised to follow a Pareto distribution. The level of completeness
is estimated by identifying the point on the lower range of a log-log survivor curve where it starts to
deviate from linearity. The parameters In(PGA,,,,,) and y are determined from the log-transformed
PGA data by the use of maximum likelihood estimators to estimate ¥y, and the generic equation 4.10
applied to a gamma mixture of exponential distributions (an exponential distribution where y is
allowed to vary according to a gamma distribution) is used to estimate In(PGA,,,4x)- A fixed point
iteration is carried out, iteratively refining the pair < y,In(PGA,,4x) > by the aforementioned
procedures. The Cramer-von Mises Goodness of Fit statistic was applied to individual station’s data
from the Legnica-Gtogéw Copper District and the estimated models, of which the level of confidence

figures are reported in Table 7.3. Since the Cramer-von Mises Goodness of Fit statistic is
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representative of the central trend for the whole set of data, the T-P statistic introduced by
Pisarenko et al. (2003) and Pisarenko and Sornette (2006) was employed to test for possible
deviation especially in the upper tail of the distribution. The statistic is biased for a truncated
distribution, but Monte-Carlo confidence bounds can still be plotted. Only for two stations was there
deviation at 99% confidence level. One of these falls better into the confidence bounds ify is
allowed to vary (confidence bounds are plotted for an exponential-gamma mixture). For the other it
does not, but the statistic falls to zero as the unlimited Pareto distribution does theoretically. The
suspicion is that In(pgamq,) Was underestimated because of an insufficient number of

observations.

In Chapter 8 another extension of the Parametric-Historic procedure: two methods of
incorporating a more general form of GMPE into the distribution of PGA in a semi-closed form, one
is named the re-substitution method, the other the inverse Taylor method. In both methods
magnitude is solved for, which turns out not to be possible in a fully closed form explicitly. The same
method of substitution may then be used that Kijko and Graham (1999) used to obtain a distribution
of PGA, given the distance. In the iterative re-substitution method an approximation of magnitude
(m) in terms of PGA and distance (r) is substituted after an arbitrary amount of re-substitutions of an
implicit solution for m into itself. The inverse Taylor method involves the use of Taylor series of an
inverse function, involving iterative procedures developed by Itsikov et al. (2012) for which each of
the derivatives may be solved exactly. The iterative re-substitution method and the inverse Taylor
method were applied to Atkinson and Boore’s (2006) GMPE for Eastern North America. Iterative re-
substitution can refine the accuracy indefinitely in this case. The inverse Taylor method is
guaranteed to converge for an invertible (and ‘well behaved’) function, but is computationally more

intensive than the iterative re-substitution method.
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Under typical assumptions in PSHA, the doubly truncated exponential probability
distribution is applicable to log-transformed peak ground motion — as suggested by
Kijko and Graham (1999) — is valid under mild additional assumptions.

For the investigated case using data from the Legnica-Gtogéw Copper District, the
above-mentioned theoretical form turns out to be plausible even outside the
additional theoretical restrictions.

If the doubly truncated exponential distribution of log-transformed peak ground
motion data is plausible, statistics developed for estimating m,,,, may also be used
to estimate In(pgamayx)-

As a corollary, hard cutoff models and soft cutoff models may be used in a
complimentary way, as was done in section 7.5. This is opposed to the idea that
hard cutoff estimations and soft cutoff estimations belong to mutually exclusive
schools of thought.

The iterative re-substitution and inverse Taylor methods, introduced in Chapter 8,
may be used to incorporate more general GMPE’s into a distribution for peak
ground motion data than the doubly truncated exponential distribution, albeit in a
semi-closed form.
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12. Future research
The Pareto distribution as a model of PGA at a given site has only been validated for a
relatively limited case. It has been observed in Chapters 5 and 6, and previously by other authors
(e.g. Pisarenko et al., 1996; Newman, 2005), that ground motion at a specific site seems to
follow a Pareto distribution. Further verification of the extent of this hypothesis is still necessary,
both empirically as larger single station data becomes available, and theoretically in terms of

physical factors or mathematical derivations.

The method that was proposed for estimation of PGA,. is straightforward given the
variety of methods discussed in Section 4.2.1, but applicability of the methods gives more reason
for further development on the generic equation, both further work on the particular functional
forms already developed to some extent (these were not exhaustively developed), and
development of closed forms and approximations for functional forms not yet considered. For
example: (1) it would be beneficial to have some quantification of the amount of data necessary
to make a reliable estimate of the maximum value in the case of an exponential or exponential-
gamma distribution (as in the case in Section 7.5 and 7.6 of station Trzebcz for which it was
suspected that the number of observations are not enough); (2) the ad-hoc test used in section
7.6 may be developed as a qualitative heuristic to determine if the number of observations is
enough to make a reliable estimate of the maximum value; (3) if deviations from the exponential
distribution does occur at some crossover value it is expedient to know what is the effect of a
subtle crossover value on the estimate of the maximum value; (4) determine what other
distributions could be used to model the distribution ground motion data, and develop an
estimator along the same lines as KG1998; (5) determine the applicability and limitations of

exponential mixtures as models for log-transformed PGA.

The extension of the parametric-historic procedure by incorporation of more general
GMPEs in Chapter 8 was not developed exhaustively: (1) rigorous conditions for the convergence
of the iterative re-substitution method needs to be determined; (2) some quantitative or
gualitative measure for the amount of iterative substitutions in the iterative re-substitution and
the number of terms in the expansion in the inverse Taylor method to obtain satisfactory

convergence may be useful.

Thus far hard cutoffs (or point estimators) and soft cutoff-based statistics were

developed as two competing schools of thought. In Sections 7.4 through 7.6 methods from both
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schools were used in a complementary way. More detailed investigation into the trade-offs and

complements between the two schools should be made.
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Appendix A: The Riemann-Stieltjes integral

This appendix has been added for the convenience of the reader not familiar with integrals

of the form

b
[ seare (A4.1)

a

This explanation is adapted from Bartle (1964) to be brief, informal and intuitive.

An informal analytical definition of the Riemann-Steltjies Integral: Divide the interval (a,b)
into sub-intervals and denote the collection of sub-intervals by P, and denote the endpoints of the

intervals by x;. We construct what we call a Riemann-Stieltjes sum:

SCP.9.0) = ) gt DD — i) (4.2)
k=2

where t; is some arbitrary point in the interval (x;_4, x;). Figure Al illustrates this idea of partitioning

graphically.
t1 t2 €] ta ts ts t tz 1o
1 | A LA | Al A | Al a4 | A | A |
] [ | | I | [ | | |
X1=a X X3 Xa Xs Xs X7 Xs Xa X10=b

Figure A1: lllustration of partitioning in a Riemann-Stieltjes sum

If we refine P consecutively, and S(P, g, f) converges, the value to which it converges is what we call

the Riemann-Stieltjes integral and is denoted by

b
[RELE

a

The idea is by no means far removed from the usual Riemann integral; in fact, it is exactly
equivalent to rescaling the abscissa (horizontal axis) to F(x) and evaluating the resulting integral.
The following characteristic allows one to evaluate the Riemann-Stieltjes integral (at least for well-
behaved functions):

b b dF (x)
[C9eaare = [ g[S 2] ax a.3)

a a
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Appendix B: Derivation of the iterative re-substitution method and the inverse Taylor method
A GMPE of the following general form is assumed:

In(pga) = q1 + @M + ¢y + Q- (M) (B.1)
Now let
x = x(In(pga),r) == In(pga) — q; — ¢, (B.2)
and
q9=49:z (B.3)
So we also have
x =x(m,r) = qm+ ¢, (M) (B.4)

The idea is to obtain an explicit solution

Q(x) = m(x) (B.5)
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Development of the iterative re-substitution Method:
In many cases it is justified to assume (see the list of GMPES in Douglas, 2011) that
qm > ¢y, (M) (B.6)
It follows that
X =~ qm (B.7)
From equation (B.4) we have
X — m
_ X~ $m(m) 63
q
Then, rearranging and substituting approximation (B.7) in (B.8) we have
X
X — ¢m,r -
m~ (q) (B.9)

which is a better approximation than (B.7) alone, under the assumption that the second derivative of
@ is not too large (that is so that the first derivative does not increase too rapidly; a motivation is
given in the appendix to this chapter). Substitution of (B.9) into (3.3) (which is the cdf form of the

Gutenberg-Richter relation) yields

© University of Pretoria



125

_ﬁ< g _mmin> (BlO)
1—e

Fx(x) =

1 — e~ B(Mmax—mmin)

Further improvement may be made by re-substitution of equation (B.8) into itself, and afterward

substituting x = ;—C. The result of 3 such re-substitutions results in the expression

(o 0 ]

x_¢m,r Kf}
B

q — Mmin (B.ll)

\ J

1—exp[— ﬁ(mmax - mmin)]

1—exp|—

F(x) =

B
)

X=Pmr

In equation (B.11) we have approximated Q(x) ~
In this way we obtain a sequence of approximations which is expected to converge to Q(x):

X
Q5® () ~ =
q

i )
q
(B.12)
X = ¢m,r <x - ¢m,r (2))
04 (x) =
q
HE E =

Development of the Inverse Taylor Method:

© University of Pretoria



A A T
126
Let
Q(x) = inv[gm + ¢ (x) (B.13)

Where inv|[.] denotes the map of a function to its invese.The Taylor expansion to an arbitrary order

n, withn = 2, is

_ n vk
Q0x) ~ T [inv(gm + )] () = mg + WM'@CO) + Z %M(n)(xo) (8.14)
! VI

where T, denotes the Taylor series expanded to n terms.

We have that

1 1
' (xo) = —
0 % (qm + ¢m,r(m))| q+ ﬁ(pmm(mo) (B.15)

X=Xg

Now one still has to solve Q™ forn > 1, which we would like to express explicitly if

possible. Itsikov et al. (2012) derived the following algorithmic formulae:

Denote the inverse of Q(.) by ¥(.) (so in our case Yp(m) = gqm + ¢, -(m)). Then

QM = — n,! — z ——Pin =23, .. (B.16)
@) jror
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Where

W', j=k
(+1) (B.17)
Z(l}—k+}+l)(l+1)| e k= 41

k—j
Py =

(k -

which renders a solution to equation (B.14).
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Appendix C: Analytical motivation for validity of iterative re-substitution method

The following is an analytical motivation (in some cases more intuitive than mathematically
rigorous) of the proposal that the approximation Q% (x) is better than QLR(x) (see equation (8.8))
when the second derivative of ¢ is sufficiently small, but may be invalid if the condition is not met.
Convergence of subsequent terms of the sequence (Q%R'(x)) by induction is not proven, but the

improvement made by the first two terms provides a basis for such an argument.

Assume d is positive and that there exists constant m,,,, such that ¢ (m,.,,) = 0. The error

due to the approximation is
m~s ————= (C.1)

o 20 C)| _frmoim _x=0@)_e@-ve]

Equivalently

e @) e (=27

C.3
€1 d (C.3)
The error duetom = galone is
_ x| |x—em) x| lp(m)|
52—|m d|_ 7 il= 72 (C.4)

So & < &, exactly when |qo (g) — go(m)| < |p(m)]|.

In short: Assuming |@"'| is not very large, we have that

1) For most values of m we have ¢; < &,.
2) For very small values it might be the case that &; > ¢,, but by this time we know that g; is

negligible.

Figure 1 illustrates the need of the assumption that |¢'’| should not be very large.
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)
-

(x-(m))/c

x/c

Figure A8.1. lllustrative motivation of the need for |@"’| to not be very large

More elaborately: By the mean value theorem there exist constants a and b in the intervals

[min(m, %), max(m, %)] and [min(m, Mgy ), max(m, M., )], respectively, such that

'@l |5-m| =|o (5) - om)| (c.5)
lo" (D)|Imzero —m| = l@(m)| (C.6)
Note, in relation (C.4), that
“—m|= lel €.7)
d d
by the definition of x.
Now assume that
5= m| =% < Imyero = mi (c.8)

which, because of (C.6), is equivalent to assumption that m is not very close to m,,,,. Then, to have
g > & (€.9)

(which is the opposite of what we want) we need

o (@)= ¢ (=22 _ tom)
d d

(C.10)

which, dividing both sides by d and substituting equation (C.6) gives
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[0 (5) - 0@m)| > lpm| (€.11)

which leads to

14 x !
o' @I |5 =m| > ' B)lImyer, —m (€.12)
and, substituting equation (C.6) again, shows that we need

ol ,
|(,0 (a)|7 > Iq) (b)”mzero —-—m (C- 13)

which requires that |@’(a)| > |¢'(b)| because of relations (C.8) and (C.13). This, of course, requires

that |¢"’| should be large. Turning the argument around, this shows that if |¢"'| is not large, then
& S & (C.14)

When % = |Mmyer, —m|, itis reasonable to assume that &; will be negligible, since dm >> ¢,,(m)

implies that % is very small compared to m,,,, in a region close to to m,,,,, given that it does not

“blow up” too quickly — this we assure again by requiring that |¢"’| is not too large.
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