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Abstract

A comparative study of tree-based models and their

applications in modern �nance

J.B. van Biljon

Supervisor:Prof. E. Maré

University of Pretoria

Pretoria

Thesis: MSc (Financial Engineering)

May 2014

The Binomial option pricing model plays an integral role in modern �nance
due to its simplicity to implement and pedagogical value. There are two ways
of extending the Binomial model on one source of underlying risk. The �rst
is to expand the number of possible states after each time step which results
in the multinomial model. The second is to increase the number of sources of
underlying risk. In this dissertation, the extension of the Binomial model in
both cases is discussed.

Numerical investigation is done to evaluate convergence patterns and com-
putational intensity of a number of non-vanilla options. These include rainbow,
basket and digital options, as well as convertible bonds. Theoretical and actual
convergence is discussed and compared.
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Chapter 1

Introduction

1.1 Objectives

The role of �nancial modeling in pricing complex �nancial derivatives has
played a pivotal role in expanding the �nancial industry over the past few
decades.

Many modern derivatives cannot be priced using closed-form solutions,
leaving lattice type models or simulations. Lattice models are e�ective in their
simplicity and o�er a viable alternative to running time consuming simula-
tions [50]. Changes in computing power in more recent times has seen the
time taken by the simulations decrease substantially.

Due to the popularity of these complex products, a large amount of in-
vestigation and research has gone into these pricing methods. In Cox, Ross
and Rubinstein (CRR) [17] the Binomial tree method to price European and
American type options is introduced. The simplicity of the method, as well as
the fact that the method had the ability to accurately price path dependent
options, made it one of the cornerstones of modern quantitative �nance.

Most introductions to quantitative �nance start with the binomial option
pricing model on one source of underlying risk. This dissertation will provide
a view on tree-based models, expanding the Binomial model on one underlying
source of risk into higher dimensions and also increasing the number of states
into multinomial modeling. The aim of this dissertation is to investigate lattice
models in multiple dimensions. The investigation will attempt to add to the
pedagogy of the lattice literature by visually representing multidimensional
lattice problems.

The bulk of research available has been focussed on either the expansion of
the Binomial model into higher states, or looking at using the Binomial model

1



CHAPTER 1. INTRODUCTION 2

to price derivatives with multiple sources of underlying risk. This dissertation
covers both these topics, and looks at the implications of combining higher
order lattice models, with derivatives with multiple sources of underlying risk.

The second chapter will focus on explaining and deriving the Binomial
model in its most basic CRR [17] form for one source of underlying risk. This
Binomial model will then be expanded into the multinomial world of k states.
The multinomial model will be derived, and in particular, focus will be given to
deriving and implementing these models for 2,3,4,5,6 and 7 states. Particular
focus will be placed on examining the convergence patterns of the multino-
mial models, as well as comparing theoretical and actual convergence. A large
amount of work has been done on investigating convergence patterns of tree
based models. Work from Easton [19], Andricopoulos, Duck, Newton and
Widdicks [4], Chen, Chen and Chung [15], Tian [58] and Omberg [50] is used.

Proofs showing that the Black-Scholes [8] partial di�erential equation can
be derived from tree based models will then be described for the Binomial
model. The chapter will conclude by brie�y looking at other combinatorial
lattice models, mainly by studying the implementation and convergence of the
adaptive mesh model.

Chapter three looks at some of the options that depend on multiple sources
of underlying risk. The analytical results for these will be used in later chap-
ters when implementing the models discussed in the dissertation. Focus will be
placed on Basket and Rainbow type options, where the derivative is dependent
on more than one underlying share. Min and Max options, as well as Product
options and Digital options will be some of those discussed.

This chapter will also investigate how tree based models are used when
looking at convertible bonds. Convertible bonds are dependent on interest
rates, credit and equity. This makes these types of options ideal for an in-
vestigation in multiple sources of risk. A number of lattice models will be
investigated and implemented. The �rst model that will be discussed is the
quadrinomial model [20], followed by the Tsiverotis and Fernandes[59] model.
The Ayache, Forsyth and Vetzal [5] model; the Hung and Wang [29] model;
and the Chambers Lu Model [14] models will be compared. Finally the k-
factor spread model [3] will be discussed.

Chapter four will commence by investigating how trees can be used when
problems exist that depend on more than one source of risk. We introduce the
Product of Trees concept from Luenberger [43] and discuss the positives and
negatives. In Luenberger's paper, he examines the binomial product of trees
approach on two sources of underlying risk. This method will be investigated
in depth, and extended into higher dimensions. This method can be extended
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in two ways: increasing the underlying trees' dimensions or increasing the
sources of risk. The chapter will conclude by showing how the product of trees
can be seen as the basis of the novel approach of looking at higher dimension
option pricing.

Chapter �ve will expand on the work done by Luenberger, by looking at
the work done by Boyle et al. [11], Kamrad and Ritchken [37] and Korn and
Muller [40]. The main focus is increasing the number of underlying sources of
risk. The models will be implemented, and again convergence and e�ciency
will be examined. The computational intensity will be a very important dis-
cussion point, as increasing the number of states and the number of sources of
risk concurrently, causes a dramatic increase in computational e�ort.

Chapter six concludes the investigation with a summary of results obtained.
The results of the dissertation will be discussed in detail, and whether the
objectives of the dissertation were met will be discussed. Ideas for further
investigation and analysis will be provided.

To conclude the introduction, this dissertation aims to provide a compre-
hensive overview of lattice models by covering the following main objectives:

1. Survey existing literature surrounding the derivation of Binomial trees.

2. Explore the expansion of the Binomial tree, both in terms of expanding
the number of states and the number of sources of risk.

3. Investigate some options that are dependent on multiple sources of risk.

4. Provide an in-depth analysis on the Product of Trees approach [43].

5. Introduce three other methods that can value options on multiple sources
of risk: the BEG model [11], the Kamrad and Ritchken approach [37]
and the Decoupled approach [40].

6. Compare the accuracy and e�ciency of the models when implemented
on the options discussed using Matlab.

7. Investigate the convergence patterns and rates of these models.

8. Increase the amount of literature available on the topic of expanding the
Binomial Tree.

In the conclusion of this dissertation, reference will be made back to the
objectives outlined above.



CHAPTER 1. INTRODUCTION 4

The following �ow diagram provides a view of the layout and interactions
of the dissertation:

Figure 1.1: Flow of Disseration



Chapter 2

Multinomial Lattice Models

In this chapter the seminal work of Cox, Ross and Rubinstein (CRR) [17] is
expanded into the k states of a multinomial lattice. Section 2.1 derives the
Binomial lattice and looks at the di�erences between the CRR, Rendleman
Bartter(RB) [54] and the Jarrow-Rudd [31] formulations as well as discussing
the properties and assumptions of the model. Section 2.2 looks at expand-
ing the Binomial lattice by increasing the number of states. The multinomial
model is derived, and implemented on European options. Theoretical conver-
gence is investigated along the lines of Zhou [23], and these are compared to
actual convergence in Section 2.3. Section 2.4 investigates the Black-Scholes
model as the limiting case for the Binomial model. Section 2.5 expands on the
multinomial model by looking at combinatorial models, and in particular the
adaptive mesh model by Ahn, Figlewski and Gao[1].

2.1 The Binomial Lattice

2.1.1 The One Period Binomial Model

If we consider a share that is currently worth S(0), then after one time period,
the share can be worth either uS(0) or dS(0) where u is the magnitude of the
up movement (u > 1) and d is the magnitude of the down movement (d < 1).
The probability of the share moving to uS(0) is p and the probability of going
to dS(0) is (1 − p). The nature of the variable p will be discussed in this
section. This one step binomial tree can be seen in Fig. 2.1.

Hull [27] de�nes a derivative as "An instrument whose price depends on, or
is derived from, the price of another asset". In the case of the one step tree,
the underlying asset is the share.

Suppose there is a derivative on this share and we denote the value of this
derivative as f . If the share price moves to uS(0) the value of the derivative

5
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Figure 2.1: One step Binomial Tree

will be fu and if the share price moves to dS(0) the value of the derivative will
be fd.

Suppose also that there is a risk free interest rate r (this can be assumed to
be cash).

We would like to replicate the payo� of the derivative by using only the un-
derlying share and the risk free asset. Due to the no arbitrage property, if we
can replicate the derivative, a unique price for the derivative will exist.

In order to replicate the payo�, we construct a portfolio Π, consisting of a long
position in δ shares and one option. We need to calculate δ if the portfolio is
riskless.

Π = δS(0)− f

Πu = δS(0)u− fu

Πd = δS(0)d− fd.

For the portfolio to be riskless, we have that

Πu = Πd.

This gives us the following:

δ =
fu − fd

S(0)u− S(0)d
. (2.1.1)

If we look at the present value of the portfolio we �nd it to be

(δS(0)u− fu)e
−rT ,

and since this is equal to the cost of setting up the portfolio, we �nd after
some algebra that:

f = e−rT [pfu + (1− p)fd], (2.1.2)
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where

p =
erT − d

u− d
. (2.1.3)

This can be generalised to the following when the time step is of length ∆t:

f = e−r∆t[pfu + (1− p)fd], (2.1.4)

where

p =
er∆t − d

u− d
. (2.1.5)

Eq. (2.1.4) is the backward induction equation. This equation is incredibly
important, and can be interpreted as follows: The price of the derivative is
equal to the expected value of the function of the derivative using the under-
lying share, discounted back using the risk free rate.

The only assumption that is required to hold is that no arbitrage oppor-
tunities exists [27]. If one sees the variable p as the probability of an up
movement in the share price, the concept of the risk neutral world becomes
important.

Hull [27] de�nes the risk neutral world as the world where "all individuals
are indi�erent to risk". This means that the expected return on any secu-
rity is the risk free rate. This concept translates into risk neutral valuation,
where the world can be assumed to be risk neutral, but where prices that are
derived in the risk neutral world can be translated directly into the risky world.

2.1.2 Finding u and d

If we wish to specify the magnitude of the movements, i.e. u and d, we can do
so by matching the volatility of the underlying share to the two parameters.
From the previous section, we know that the expected value after one time
step is the following:

pS(0)u+ (1− p)S(0)d. (2.1.6)

This must be equal to the expected return after one time period of the share,
so we �nd:

pS(0)u+ (1− p)S(0)d = eµ∆tS(0). (2.1.7)

We can then solve for p as:

p =
er∆t − d

u− d
. (2.1.8)
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The second moment is the variance σ2. If we match the variance as well we
�nd:

pu2 + (1− p)d2 − [pu+ (1− p)d]2 = σ2∆t. (2.1.9)

Substituting Eq. (2.1.8) into the equation above, we �nd:

eµ∆t(u+ d)− ud− e2µ∆t = σ2∆t. (2.1.10)

If we use the Taylor expansion of e∆t:

e∆t = 1 +∆t+
∆t2

2!
+ ..., (2.1.11)

and we ignore the terms of order ∆t2 or higher, we �nd:

(1 + µ∆t)(u+ d)− ud− (2µ∆t) = σ2∆t. (2.1.12)

A solution to Eq. (2.1.10) is:

u = eσ
√
∆t (2.1.13)

d = e−σ
√
∆t. (2.1.14)

2.1.3 The Rendleman Bartter Binomial Lattice

Throughout this dissertation, models are introduced that o�er extensions of
both the CRR model, as well as models that extend the Rendleman Bartter
(RB) model. This section will derive the RB model and highlight the di�er-
ences between the RB and the CRR model.

In the RB case, instead of �xing the magnitude of the up and down movements
the probabilities of the up and down movements are �xed to 1

1+k2
where k ≥ 0.

The di�erence in the �nal trees will be that the CRR tree will be symmetric,
and due to the equal weight, the RB tree will not be symmetric.

The magnitude of the up and down movements in the RB tree becomes:

u = e(r−0.5σ2)∆t+kσ
√
∆t (2.1.15)

d = e(r−0.5σ2)∆t−k−1σ
√
∆t. (2.1.16)

Another formulation is the Jarrow-Rudd formulation. This is a speci�c case
of the RB model, where k = 1.

During the next few sections, all three formulations will be used. The table
above shows the di�erences between the models:
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Model CRR RB JR

Probability er∆t−d
u−d

1
1+k2

0.5

Magnitude of up movement eσ
√
∆t e(r−0.5σ2)∆t+kσ

√
∆t e(r−0.5σ2)∆t+σ

√
∆t

Magnitude of down movement e−σ
√
∆t e(r−0.5σ2)∆t−k−1σ

√
∆t e(r−0.5σ2)∆t−σ

√
∆t

Table 2.1: CRR, RB and JR comparison

2.1.4 Pricing an option using the Binomial Model

If we wish to use the Binomial model to derive the value of derivatives as
de�ned in section we need to de�ne a few equations. These will be used
throughout the dissertation. Benninga and Wiener [7] show that one can see
the value of an option as follows:

PO(n, j) = Max(sujdn−j −X, 0), (2.1.17)

where n is the step and j is the state, u the magnitude of an up movement
and d of a down movement. X is the strike and PO is short for Pay O�.

We can now de�ne the price of a call option as follows:

C(X) =
n∑

j=0

pj(1− p)j−n

(
n

j

)
Max[sujdn−j −X, 0], (2.1.18)

where (
n

j

)
=

n!

j!(n− j)!

denotes the number of j up movements in n steps.

Finally we can write this as [7]:

C = e−r(T−t)

n∑
i=j

n!

i!(n− i)!
pi(1− p)n−i(Suidn−i −X). (2.1.19)

2.2 Multinomial Model

The previous section dealt with lattices where there were two possible move-
ments, either up or down. These movements can be described as the di�erent
states of the world.

The method of expanding the Binomial model of two states into models
of higher states is analogous to that of Boyle et al [11]. Boyle uses a moment
matching approach that boils down to matching the moments of the discrete
distribution to the continuous distribution we are trying to replicate. The next
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section aims to look at a general description of k state multinomial lattices us-
ing a moment matching technique. These include higher order trees, and we
focus on the Binomial, Trinomial, Pentanomial, Hexanomial and Heptanomial
lattices. The extension of a Binomial lattice to k-state variables and the con-
vergence of the multinomial model has been looked at in detail by Zhou [23],
and we draw from these texts to understand the model.

We will start o� by looking at the derivation of the model using Jabbour
et al. [30], and then in the subsequent sections we will look at di�erent im-
plementations of the model. For each implementation we will look at how the
model performs by using it to price a simple European Put option described
in Jabbour et al. with the following characteristics from Table 2.2:

Parameter OTM ATM ITM
S 100 100 100
K 90 100 110
σ 0.3 0.3 0.3
r 0.05 0.05 0.05
T 1 1 1
Black Scholes Price Put 5.3081 9.3542 14.6553

Table 2.2: Vanilla Put Parameters

The problem is taken from Jabbour et al. in order for the results to be
compared. The results will be scrutinised in the �nal convergence section.

2.2.1 Error

The concept of error is very important to understand in general, and especially
when dealing with discrete type models modeling continuously distributed
share prices, errors will creep in. In this section, we shall brie�y look at
the di�erent types of error that can be encountered drawing from the work
done by Shea [55].

2.2.1.1 Distribution Error

When using a lattice to �nd the option price, the lattice approximates the
continuous log normal distribution with only a �nite set of probabilities. Dis-
tribution error results from the di�erence between the discrete and continuous
distributions [55]. Even though in our lattice examples, the discrete and con-
tinuous distributions' moments match, we still get distribution error.
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2.2.1.2 Non-Linearity Error

The aim of a lattice is to �nd an approximation for the average price of an
option over a certain period, by using a �nite number of nodes. If the pay-
o� function is non-linear, and we try to approximate this by a few number
of nodes, the discrepancy that arises, is called the non-linearity error [55].
Initially we are only implementing the models on vanilla options, where the
payo� functions are linear, we do not encounter this type of error with the
multinomial models, but we will touch on the subject again when pricing the
barrier options with the Adaptive Mesh Model.

In the next section where the models on multiple sources of risk are in-
troduced and implemented on the non-linear payo� of a digital option, the
non-linearity error will be apparent.

2.2.2 Derivation

We start by looking at the process followed by a stock price S :

dS = rSdt+ σSdW, (2.2.1)

where S is the share price, σ is the volatility and r is the risk free interest rate.
Using Ito, we let X = ln(S) under the risk neutral measure and from here we
know that X(t) follows the following process:

dX(t) = αdt+ σdW,

where α = r − 0.5σ2 and W is standard Brownian motion. (See Appendix A
for Ito Calculus and how the process is derived).

We introduce the variable �X = Xt − X0 = ln(St/S(0)) with mean αt and
variance σ2t. We know that in a time period S(0) can move to ujS(0) for
j = 1, 2...n

Thus, the discrete distribution of the share price process looks like this :



U1 with probability p1
U2 with probability p2

.

.

.
Un with probability pn

, (2.2.2)
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where Uj = ln(uj). uj is the magnitude of a movement.

In order to �nd u and d in Section 2.1.2, we matched the expected value and
variance of the lattice and the log normal distribution. These are the �rst two
fo the so called moments. Appendix B gives greater insight into the Moment
Generating function and Moments.

To specify the multinomial lattice we need to set the �rst k central moments of
the discrete distribution equal to the �rst k central moments of the continuous
log normal distribution. We start our derivation by looking at how to obtain
the central moments.

Taking a look at the �rst moment, we �nd:

M1 = Σn
j=1pjUj = m.

The k'th order central moment for the variable �X can be found using:

mk = Σn
j=1pj(Uj −m)k = Σn

j=1pjw
k
j for k = 1,2... L.

where wj = Uj −m. and L the number of moments to be matched.

Since we are working with the symmetrical normal distribution, all odd central
moments will be equal to 0.

Thus, m1 = 0 and the �rst moment, m1 = E[X̃] = α∆t, and the second,
m2 = V ar[X̃] = σ2∆t.

The other central moments can be obtained by applying the Taylor series
expansion to the Moment Generating Function (MGF) as follows. (Again, see
Appendix B for the mathematics behind the MGF).

M(t) = Σ∞
j=0M

(j)(0)
tj

(j!)
.

If we look at the standard normal distribution, W ∼ N(0, 1), we �nd a MGF
that looks like this:

M(t) = e0.5t
2

,

which we can write in the form:

M(t) = Σ∞
j=0

t2j

(j!)2j
. (2.2.3)

M (j)(0) represents the j-order central moment
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We know that the kth central moment represents the coe�cient before tk in
Eq. (2.2.3) multiplied by k!. Thus we have that:

mW
k =

{
0 if k is odd

k!
2(k/2)(k/2)!

if k is even.
(2.2.4)

To specify the multinomial model we need to solve the following set on non-
linear equations with respect to pj and wj:

mk = Σn
j=1pjw

k
j = mX̃

k for k = 1,2... L. (2.2.5)

In other words, our aim is to solve the following system of equations

[P ]T [W k] = mW
k for k = 1,2...L,

where [W k] = [wk
j ]

n
j=1 and [W 0] = [1]nj=1 .

To generalise, the procedure of specifying the n-order multinomial model
is to set up n+1 non-linear equations, i.e. where L=n. The �rst equations
will be that the sum of the probabilities add up to one and the other n will
be found by matching the moments of the discrete distribution to the under-
lying continuous distribution. We will then end up with two solution vectors
[P ] = [pj]

n
j=1 and [W ] = [wj]

n
j=1. One can see that this will not have a unique

solution since we have 2n unknown and only n+1 equations. One should thus
introduce additional constraints to �nd a unique solution.

A way to make the tree recombine, is to impose the additional constraint of

∆j+1 = ∆j for j = 1,2,3...n-2,

where ∆i = wi+1 − wi.

One way of solving the system is by optimizing the following:

min[W ],[P ]|[P T ][WK ]−mW
K |,

subject to

[P ]T [W k] = mW
k for k = 1,2,3...L and

∆j+1 = ∆j for j = 1,2,3...n-2

and where K is �rst even number greater than n.

Once the system is solved, the usual backward induction procedure can be
followed to obtain the option price:

f = e−r∆tΣn
j=1pjfj = e−r∆t[P ]T [W ], (2.2.6)
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where

fj = f(Se(r−0.5σ2)∆t+wjσ
√
∆t, t).

This equation is just a slightly di�erent formulation to Eq. (2.1.4).

2.2.3 Properties of Multinomial Lattices

This section discusses two important properties of multinomial lattices, draw-
ing from the work done by Yamada and Primbs [52]. Yamada and Primbs
propose and prove the following two conditions:

1. If the skewness and kurtosis are �xed over each time period T/N , where
N is the total time, then the multinomial lattice converges to a Gaussian
distribution as T/N tends to 0.

2. If the annualised skewness and kurtosis are �xed then the multinomial
lattice converges to a Poisson distribution with the same skewness and
kurtosis.

Yamada and Primbs prove this for the case of the Pentanomial model.

2.2.4 The Binomial Model

We derived the speci�cations for the binomial model in the Section 2.1, but we
can now write the equations in the Multinomial Form shown earlier like this:

p1 + p2 = 1

p1w1 + p2w2 = 0

p1w
2
1 + p2w

2
2 = 1,

(2.2.7)

where w1 = ( lnu1−α∆t

σ
√
∆t

), w2 = ( lnu2−α∆t

σ
√
∆t

), p1 = p and p2 = 1− p.

Including the constraint:

p1w
3
1 + p2w

3
2 = 0

gives us four equations and four variables, and solving for this by using the
minimisation procedure outlined in the Multinomial derivation, we �nd the
parameters in Table 2.3.
This is the Jarrow-Rudd speci�cation of the Binomial model. From Fig. 2.2,
Fig. 2.3 and Fig. 2.4 we can see that the model converges to the Black Scholes
price as the number of iterations is increased. The Matlab code can be seen
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p1 0.5
p2 0.5
w1 -1
w2 1

Table 2.3: Binomial Speci�cation - Jarrow-Rudd

in Appendix C.1.

The convergence patterns are exactly the same for the ITM and OTM options.
The ATM option has a slightly di�erent pattern, but seems to converge at the
same rate.
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2.2.5 The Trinomial Model

Trinomial Trees provide another way of looking at discrete representation of
share price movements, and another way to price options. In this model we
have three probabilities of share price movements, and three possible moves.

Figure 2.5: Two step Trinomial Tree

There are a number of ways of deriving the Trinomial model, but we will
be looking at the most natural way of seeing it as being a two step Binomial
model. Then we will use the moment matching technique to obtain the model.
From the Binomial model Eq. (2.1.4) we had that:

f = e−r∆t[pfu1 + (1− p)fu2 ].

If we look at two steps of the Binomial model as one step, we �nd that the
following must hold:

fu1 = e−r∆t[pfu1u1 + (1− p)fu1u2 ]

fu2 = e−r∆t[pfu1u2 + (1− p)fu2u2 ].

Substituting these equations into f , we �nd the following:

f = e−r∆t[pe−r∆t[pfu1u1 + (1− p)fu1u2 ] + (1− p)e−r∆t[pfu1u2 + (1− p)fu2u2 ]]

f = e−2r∆t[p2fu1u1 + 2p(1− p)fu1u2 + (1− p)2fu2u2 ].

Since we are looking at two time steps, f simpli�es to the following:

f = e−r∆t[p2fu1u1 + 2p(1− p)fu1u2 + (1− p)2fu2u2 ].
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We know from the Binomial model and from the fact that we are using two
time steps that

p =
er∆t/2 − d

u1 − u2

,

or

p =
er∆t/2 − e−σ

√
∆t/2

eσ
√

∆t/2 − e−σ
√

∆t/2
.

Now, if we substitute p into f , we have our solution. We de�ne the following:

pu1 = p2 =

(
er∆t/2 − e−σ

√
∆t/2

eσ
√

∆t/2 − e−σ
√

∆t/2

)2

pu3 = (1− p)2 =

(
−er∆t/2 + eσ

√
∆t/2

eσ
√

∆t/2 − e−σ
√

∆t/2

)2

pm = 1− pu1 − pu3 , (2.2.8)

This is the �nal speci�cation for the Trinomial model.

Next we show that we can look at the model in terms of moment matching
and get a similar answer. In one time period, we have the following situation:

S(0) =


u1S(0)
u2S(0)
u3S(0)

(2.2.9)

From the condition that the probabilities sum to one, and using moment
matching, we can �nd the following set of equations:

p1 + p2 + p3 = 1

p1w1 + p2w2 + p3w3 = 0

p1w
2
1 + p2w

2
2 + p3w

2
3 = 1

p1w
3
1 + p2w

3
2 + p3w

3
3 = 0

p1w
4
1 + p2w

4
2 + p3w

4
3 = k

p1w
5
1 + p2w

5
2 + p3w

5
3 = 0.

(2.2.10)
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We now have 6 equations and 6 variables. We know that the fourth moment is
the kurtosis and thus from our assumption that the share follows a log-normal
distribution, we know that the kurtosis is 3.

Solving the set of equations gives us the parameters in Table 2.4.

p1
1
6

p2
2
3

p3
1
6

w1 −
√
3

w2 0

w3

√
3

Table 2.4: Trinomial Speci�cation

The probabilities and jump parameters obtained in Table 2.4 match those
found by Jabbour et al. [30], Heston and Zhou [23] and Alford and Webber
[2].

From Fig. 2.6, Fig. 2.7 and Fig. 2.8 we see that the convergence of the Trino-
mial model looks quite di�erent to the Binomial model. The Matlab code can
be seen in Appendix C.1.

As with the Binomial model, the convergence patterns are exactly the same for
the ITM and OTM options. The ATM option has a slightly di�erent pattern,
but seems to converge at the same rate.

A certain amount of smoothing in the size of the oscillations has taken place
when comparing to the Binomial model. This is particularly evident for the
ATM option.

In the next three sections we show how the Pentanomial, Hexanomial and
Heptanomial models are derived. The Quadnomial model is not investigated
as, when using the moment matching technique explored above, it simpli�es
to exactly the trinomial model.

2.2.6 The Pentanomial Model

For the Pentanomial model, we continue exactly as with the Binomial and
Trinomial models.



CHAPTER 2. MULTINOMIAL LATTICE MODELS 19

0 20 40 60 80 100
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time Steps

E
rr

or

Plot of Error of OTM European Put using Trinomial Lattice

Figure 2.6: Convergence of OTM
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Figure 2.8: Convergence of ITM Tri-
nomial Model

In one time period, we have the following situation:

S(0) =


u1S(0)
u2S(0)
u3S(0)
u4S(0)
u5S(0)

(2.2.11)

From the condition that the probabilities sum to one, and using moment
matching, we can �nd the following set of equations:
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p1 + p2 + p3 + p4 + p5 = 1

p1w1 + p2w2 + p3w3 + p4w4 + p5w5 = 0

p1w
2
1 + p2w

2
2 + p3w

2
3 + p4w

2
4 + p5w

2
5 = 1

p1w
3
1 + p2w

3
2 + p3w

3
3 + p4w

3
4 + p5w

3
5 = 0

p1w
4
1 + p2w

4
2 + p3w

4
3 + p4w

4
4 + p5w

4
5 = 3

p1w
5
1 + p2w

5
2 + p3w

5
3 + p4w

5
4 + p5w

5
5 = 0

p1w
6
1 + p2w

6
2 + p3w

6
3 + p4w

6
4 + p5w

6
5 = 15

p1w
7
1 + p2w

7
2 + p3w

7
3 + p4w

7
4 + p5w

7
5 = 0

p1w
8
1 + p2w

8
2 + p3w

8
3 + p4w

8
4 + p5w

8
5 = 105

p1w
9
1 + p2w

9
2 + p3w

9
3 + p4w

9
4 + p5w

9
5 = 0.

Now we have 10 equations in 10 unknowns.

Solving the set of equations gives us the parameters in Table 2.5.

p1 0.013333
p2 0.213334
p3 0.546666
p4 0.213334
p5 0.013333
w1 -2.738608
w2 -1.369304
w3 0
w4 1.369304
w5 2.738608

Table 2.5: Pentanomial Speci�cation
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The probabilities and jump parameters obtained in Table 2.5 match those
found by Jabbour et al [30], but not Heston and Zhou [23] and Alford and
Webber [2]. This is due to the solution of the underlying system not being
unique. Further investigation can be done regarding the sensitivities and sta-
bility of these weights.

We can �nd the value of the option using backward induction. Fig. 2.9, Fig.
2.10 and Fig. 2.11 depict the convergence of the Pentanomial model. The
Matlab code can be seen in Appendix C.1.

As with the Binomial and Trinomial models, the convergence patterns are ex-
actly the same for the ITM and OTM options. The ATM option has a slightly
di�erent pattern, but seems to converge at the same rate.

The convergence pattern of the Pentanomial model seems closer to the Trino-
mial model than to the Binomial model.
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2.2.7 The Hexanomial Model

For the Hexanomial model, we continue exactly as with the Pentanomial
model.

In one time period, we have the following situation:

S(0) =



u1S(0)
u2S(0)
u3S(0)
u4S(0)
u5S(0)
u6S(0)

(2.2.12)

From the condition that the probabilities sum to one, and using moment
matching, we can �nd the following set of equations:

p1 + p2 + p3 + p4 + p5 + p6 = 1

p1w1 + p2w2 + p3w3 + p4w4 + p5w5 + p6w6 = 0

p1w
2
1 + p2w

2
2 + p3w

2
3 + p4w

2
4 + p5w

2
5 + p6w

2
6 = 1

p1w
3
1 + p2w

3
2 + p3w

3
3 + p4w

3
4 + p5w

3
5 + p6w

3
6 = 0

p1w
4
1 + p2w

4
2 + p3w

4
3 + p4w

4
4 + p5w

4
5 + p6w

4
6 = 3

p1w
5
1 + p2w

5
2 + p3w

5
3 + p4w

5
4 + p5w

5
5 + p6w

5
6 = 0

p1w
6
1 + p2w

6
2 + p3w

6
3 + p4w

6
4 + p5w

6
5 + p6w

6
6 = 15

p1w
7
1 + p2w

7
2 + p3w

7
3 + p4w

7
4 + p5w

7
5 + p6w

7
6 = 0

p1w
8
1 + p2w

8
2 + p3w

8
3 + p4w

8
4 + p5w

8
5 + p6w

8
6 = 105

p1w
9
1 + p2w

9
2 + p3w

9
3 + p4w

9
4 + p5w

9
5 + p6w

9
6 = 0

p1w
10
1 + p2w

10
2 + p3w

10
3 + p4w

1
40 + p5w

1
50 + p6w
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Now we have 12 equations in 12 unknowns.
Solving the set of equations gives us the parameters in Table 2.6.
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p1 0.003316
p2 0.081193
p3 0.415492
p4 0.415492
p5 0.081193
p6 0.003316
w1 -3.189031
w2 -1.913419
w3 -0.637806
w4 0.637806
w5 1.913419
w6 3.189031

Table 2.6: Hexanomial Speci�cation

The probabilities and jump parameters obtained in Table 2.6 match those
found by Jabbour et al. [30].

Fig. 2.12, Fig. 2.13 and Fig. 2.14 depict the convergence of the Hexanomial
model. The Matlab code can be seen in Appendix C.1.

Once again, as with the previous models, the convergence patterns are exactly
the same for the ITM and OTM options. The ATM option has a slightly dif-
ferent pattern, but seems to converge at the same rate.

The convergence pattern of the Hexanomial model seems to match that of the
Binomial model.

2.2.8 The Heptanomial Model

For the Heptanomial Model, we continue as earlier.

In one time period, we have the following situation:

S(0) =



u1S(0)
u2S(0)
u3S(0)
u4S(0)
u5S(0)
u6S(0)
u7S(0)

(2.2.13)
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Figure 2.12: Convergence of OTM
Hexanomial Model
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Figure 2.13: Convergence of ATM
Hexanomial Model
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Figure 2.14: Convergence of ITM
Hexanomial Model

From the condition that the probabilities sum to one, and using moment
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matching, we can �nd the following set of equations:

p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1

p1w1 + p2w2 + p3w3 + p4w4 + p5w5 + p6w6 + p7w7 = 0
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4 + p5w
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5 + p6w
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6 + p7w
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7 = 0.

Now we have 14 equations and 14 unknowns. Solving the set of equations gives
us the parameters in Table 2.7:

p1 0.000802
p2 0.026810
p3 0.233813
p4 0.477150
p5 0.233813
p6 0.026810
p7 0.000802
w1 -3.594559
w2 -2.396373
w3 -1.198186
w4 0.000000
w5 1.198186
w6 2.396373
w7 3.594559

Table 2.7: Heptanomial Speci�cation
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The probabilities and jump parameters obtained in Table 2.7 match those
found by Jabbour et al. [30], but not Heston and Zhou [23] and Alford and
Webber [2]. This is due to the solution of the underlying system not being
unique. Further investigation can be done regarding the sensitivities and sta-
bility of these weights.
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Figure 2.15: Convergence of OTM
Heptanomial Model
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Figure 2.16: Convergence of ATM
Heptanomial Model
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Figure 2.17: Convergence of ITM
Heptanomial Model

We can �nd the value of the option using backward induction. Fig. 2.15,
Fig. 2.16 and Fig. 2.17 depict the convergence of the Heptanomial model.
The Matlab code is given in Appendix C.1.

The convergence patterns are exactly the same for the ITM and OTM options.
The ATM option has a slightly di�erent pattern, but seems to converge at the
same rate. The convergence pattern of the Heptanomial model seems to match
that of the Trinomial and Pentanomial models.



CHAPTER 2. MULTINOMIAL LATTICE MODELS 27

2.3 Convergence

In this section we will look at the simple illustrative example of the Multino-
mial model and scrutinise its convergence to the Black-Scholes price. Using
a program written in Matlab (see Appendix C for code), we �nd the follow-
ing results, which agree with the results from Jabbour et al. [30]. The graphs
depicting convergence have already been shown in each of the previous sections.

Steps Lattice: 2 3 5 6 7 BS
25 Value 5.39427 5.33274 5.32799 5.27405 5.32470 5.3081

Error 0.08612 0.02464 0.01989 -0.03405 -0.01660
Time(seconds) 0.03662 0.19728 0.25742 0.23716 0.24198

100 Value 5.30984 5.40859 5.31259 5.30433 5.29833 5.3081
Error 0.00174 0.10049 0.00449 -0.00377 -0.00977
Time(seconds) 0.73475 1.93549 4.08907 5.66867 6.47078

250 Value 5.30471 5.43184 5.30873 5.31327 5.30533 5.3081
Error -0.00338 0.12374 0.00063 0.00518 -0.00277
Time(seconds) 8.91598 21.17442 57.65794 85.77526 87.8444

Table 2.8: Multinomial Lattice Convergence

We can observe a number of trends from the Figures and Table 2.8. It is
interesting to note the convergence of the models from the �gures. The mod-
els with an odd number of nodes (Trinomial, Pentanomial and Heptanomial)
all converge with a steady tendency to the Black-Scholes price, whereas the
even numbered nodes (Binomial and Hexanomial) converge with more frequent
jumps from the positive to the negative side.

From Table 2.8 one can conclude that with a simple problem such as the
European put, it is quite di�cult to say if any of the models is superior to the
others. It is clear that the greater the number of nodes, the longer the pro-
grams takes to run, but in most cases the greater the order of the lattice model,
the faster the convergence. It thus makes sense to investigate the theoretical
convergence, and compare that to the actual convergence by the multinomial
model.

2.3.1 Theoretical Convergence

Zhou [23] investigates the theoretical convergence of multinomial models. The
following proof stems from their work.
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Before we state the formal theorem, we can de�ne our model as we did in
the Section 2.2.2 by matching the �rst q moments of the normal distribution.
The theorem is then as follows:

Convergence Theorem
If a payo� function is 2q times continuously di�erentiable, then the multi-
nomial approximation of the discrete solution f̃ , converges to the continuous
solution f at a rate of O(∆t(q+1)/2−1). In mathematical terms this becomes:

f̃ = f +O(∆t(q+1)/2−1). (2.3.1)

This implies that we will have a local error of O(∆t(q+1)/(2)).

Proof:
We start by making a change of variables

U(h, t) = e−rtf(S, t), (2.3.2)

where

h = (ln(S)− (r − σ2/2)t)/σ.

Our multinomial expression for Eq. (2.2.6) then becomes:

U(h, t) = Σn
j=1pjU(h+ wj

√
∆t, t+∆t). (2.3.3)

If we assume that we have a smooth payo� function, we known that U is 2q
+ 2 times di�erentiable [23]. We wish to show that the local error is ∆t(q+1)/2

and we can do this by showing :

U(h, t−∆t) = Σn
j=1pjU(h+ wj

√
∆t, t) +O(∆t(q+1)/2). (2.3.4)

If we write the left-hand side into its Taylor expansion, we �nd :

U(h, t−∆t) = U(h, t) + Σ
q/2
k=1∆tk

∂k

∂tk
U(h, t)

k!
+O(∆t(q+1)/2).

Denoting the �rst term of Eq. (2.3.4) by F and writing it as a Taylor expan-
sion, we �nd:

F = Σn
j=1pjU(h+ wj

√
∆t, t). (2.3.5)
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F = U(h, t) + Σn
j=1Σ

q
k=1pjw

k
j∆tk/2

∂k

∂hk

U(h, t)

k!
+O(∆t(q+1)/2). (2.3.6)

Substituting Eq. (2.2.5) into Eq. (2.3.6) we �nd :

F = U(h, t) + Σ
q/2
k=1∆tk

1

2k
∂2k

∂h2k

U(h, t)

k!
+O(∆t(q+1)/2). (2.3.7)

From the heat equation we know that

Uhh(h, t)/2 = −Ut(h, t).

If we di�erentiate this w.r.t t once and w.r.t h twice we �nd

Uhht(h, t)/2 = −Utt(h, t)

Uhhhh(h, t)/2 = −Uhht(h, t)

Utt(h, t) = (
−1

2
)(
−1

2
)Uhhhh(h, t).

In general we can conclude that di�erentiating k times w.r.t t and di�erenti-
ating 2k times w.r.t h we have

∂k

∂tk
U(h, t) = (

1

2k
)(

∂2k

∂h2k
)U(h, t).

Substituting this expression into Eq. (2.3.7) gives us

F = U(h, t) + Σ
q/2
k=1∆tk

∂k

∂tk
U(h, t)

k!
+O(∆t(q+1)/2).

This is equal to the expression we found for Eq. (2.3.4) , thus proving that
our approximation U(h, t) has a local error of O(∆t(q+1)/2).

2.3.2 Comparing Theoretical and Actual Convergence

In this section we will now look at how the theoretical convergence theorem
that we proved holds up in practice. Theoretically, we can see from Table 2.9
the convergence rates.
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Lattice q Convergence
Binomial 3 O(∆)
Trinomial 5 O(∆2)
Pentanomial 7 O(∆3)
Heptanomial 9 O(∆4)
Hexanomial 11 O(∆5)

Table 2.9: Theoretical Convergence

We now implement our European put example once again and compare
the practical and theoretical convergence for each of the Lattice Models. For
each model, we look at convergence when the number of time steps is doubled.
We de�ne the error ratio as the result when the absolute error for the "double
time step run" is divided by the previous run. From Table 2.9 we know that
for the Binomial model, our error ratio should be 2 , for the Trinomial 4, for
the Pentanomial 8, for the Hexanomial 16 and for the Heptanomial 32. From
Tables 2.10 to 2.14 we can clearly see that the models do not live up to the
theoretical convergence we expected. In some cases the convergence is much
larger, and in others much smaller, but no clear convergence exists. The main
reason for this might be that the payo� functions are not smooth enough for
the theorem to hold. It makes sense to try and introduce a way of smoothing
the payo� functions in order to reach the expected convergence.

Steps Binomial Value Error Error Ratio
10 5.53768786472352 0.22958786472352
20 5.33144996543878 0.02334996543878 9.83247128675564
40 5.30945742124915 0.00135742124916 17.20170908869366
80 5.33268196832785 0.02458196832785 0.05522020169627
160 5.31874527073696 0.01064527073696 2.30919146494733
320 5.31260826800110 0.00450826800110 2.36127726532069

Table 2.10: Binomial Convergence
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Steps Trinomial Value Error Error Ratio
10 5.51199292644306 0.20389292644306
20 5.36128475261777 0.05318475261777 3.83367255477145
40 5.43596220121732 0.12786220121732 0.41595367599979
80 5.42529706660100 0.11719706660100 1.09100171980105
160 5.43764598630592 0.12954598630592 0.90467539707664
320 5.43601413041785 0.12791413041785 1.01275743252712

Table 2.11: Trinomial Convergence

Steps Pentanomial Value Error Error Ratio
10 5.27846667670083 0.02963332329917
20 5.30302162631378 0.00507837368622 5.83519944181748
40 5.31858232100833 0.01048232100833 0.48447034604110
80 5.31622986910020 0.00812986910020 1.28935913716847
160 5.31211339253374 0.00401339253374 2.02568501133647
320 5.30781739316973 0.00028260683027 14.20132885665680

Table 2.12: Pentanomial Convergence

Steps Hexanomial Value Error Error Ratio
10 5.24397859378882 0.06412140621118
20 5.32194195361391 0.01384195361391 4.63239568631014
40 5.30496532962900 0.00313467037100 4.415760502911860
80 5.31657650221880 0.00847650221880 0.36980706075309
160 5.31287458717324 0.00477458717324 1.77533719905738
320 5.31068679917161 0.00258679917161 1.84575100596899

Table 2.13: Hexanomial Convergence
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Steps Heptanomial Value Error Error Ratio
10 5.20223307063900 0.06412140621118
20 5.32313251784773 0.01503251784773 7.04252810030782
40 5.28444861357936 0.02365138642064 0.63558717363855
80 5.30714899448915 0.00095100551085 24.86987315089002
160 5.30332582207298 0.00477417792702 0.19919775202942
320 5.30845465303084 0.00035465303084 13.46154554427224

Table 2.14: Heptanomial Convergence

2.4 The Black-Scholes PDE as limiting case

For any study on option pricing to be complete, it needs to explore the seminal
work of Black and Scholes [8]. This section will discuss the derivation of the
Black Scholes PDE, as well as the underlying assumptions. Emphasis will be
placed on seeing the Black Scholes equation as a limiting case for the Binomial
method explored earlier.

2.4.1 The Black-Scholes Equation and Assumptions

If we look at the derivation of the Binomial Method in Section 2.1.1 once again,
one can highlight the corresponding assumptions of the Black Scholes model.

When the portfolio of shares and options is constructed, there are two
assumptions:

Π = δS(0)− f. (2.4.1)

1. Assumption of liquidity, i.e. one can buy and sell shares/options.

2. Assume that there is no preference to buying or selling.

Once we look at the portfolio when time has passed, i.e. at the portfolio
after an up or down movement, there is another assumption that there have
not been any transaction costs.

dΠ = δdS(0)− df.

If we then look at the driving process for the shares given in Eq. (2.2.1), we
assume that the share returns are log normally distributed.

dS = rSdt+ σSdW.
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Thus, using Ito again with δ = ∂f
∂S

we �nd:

dΠ = (−∂f

∂t
− 0.5

∂2f

∂S2
σ2S2)dt. (2.4.2)

(2.4.3)

Since we assume that no arbitrage is possible we know that the portfolio must
earn the same return as the risk free rate:

dΠ = rΠdt. (2.4.4)

If we substitute Eq. (2.4.3) and Eq. (2.4.1) into Eq. (2.4.4) and if we assume
that trading is continuous we �nd:

rf = r
∂f

∂S
S ++0.5

∂2f

∂S2
Sσ2 +

∂f

∂t
.

This is the familiar Black-Scholes PDE [8].

The assumptions mentioned in the derivation are summarised as follows:

1. Assumption of liquidity, i.e. one can buy and sell shares/options

2. There are no transaction costs or taxes

3. The share returns are log normally distributed

4. There are no dividends during the life of the option

5. There are no arbitrage opportunities

6. Trading is contiguous

7. The risk free rate is constant

This method of deriving the Black-Scholes PDE is called the Arbitrage free of
hedging approach. There are three other ways of deriving the equation:

1. The Probability of Default or CAPM Approach.

2. The Present Value Approach.

3. The Limiting case of the Binomial Approach.

It is interesting to see how the Black-Scholes equation can be seen as the
limiting case in continuous time of the Binomial method. In this section the
Black-Scholes PDE will be derived from both the Cox, Ross and Rubinstein
Binomial method, as well as the k-state multinomial model.
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2.4.2 The limiting case of the Binomial approach

As in the derivation of the Cox, Ross and Rubinstein tree, we have that
the magnitude of up and down movements are de�ned as u = eσ

√
∆t and

d = e−σ
√
∆t = 1

u
. The share price at time t is de�ned as S(t), and after

one time period S(t + ∆t). Also S(t + ∆t) = uS(t) with probability p and
S(t+∆t) = dS(t) with probability (1− p), where

p =
er∆t − d

u− d
. (2.4.5)

From the valuation equation derived earlier, we know that a derivative V (t, S(t))
can be valued as follows:

V (t, S(t)) = e−r∆t[pV (t+∆t, uS(t)) + (1− p)V (t+∆t, dS(t))]

= e−r∆t[p(V (t+∆t, uS(t))− V (t+∆t, dS(t))) + V (t+∆t, dS(t))].
(2.4.6)

Using the Taylor expansion, we can expand the expressions in Eq. (2.4.6), as
follows:

V (t+∆t, uS(t)) = V (t, S(t)) +
∂V (t, S(t))

∂S(t)
(uS(t)− S(t))

+ 0.5
∂2V (t, S(t))

∂S(t)2
(uS(t)− S(t))2 +

∂V (t, S(t))

∂t
∆t

= V (t, S(t)) +
∂V (t, S(t))

∂S(t)
S(t)(u− 1)

+ 0.5
∂2V (t, S(t))

∂S(t)2
S(t)(u− 1)2 +

∂V (t, S(t))

∂t
∆t.

(2.4.7)

Similarly we can write:

V (t+∆t, dS(t)) = V (t, S(t)) +
∂V (t, S(t))

∂S(t)
S(t)(d− 1)

+ 0.5
∂2V (t, S(t))

∂S(t)2
S(t)(d− 1)2 +

∂V (t, S(t))

∂t
∆t. (2.4.8)

The exponential functions can also be expanded:

er∆t = 1 + r∆t

u = 1 + σ
√
∆t+ 0.5σ2∆t

d = 1− σ
√
∆t+ 0.5σ2∆t.
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It is clear that (u− 1)2 = (d− 1)2 = σ2∆t to O(∆t). Thus if we subtract Eq.
(2.4.8) from Eq. (2.4.7) we �nd:

V (t+∆t, uS(t))− V (t+∆t, dS(t)) = (u− d)
∂V (t, S(t))

∂S(t)
S(t) (2.4.9)

Substituting back into Eq. (2.4.6), we �nd:

V (t, S(t))er∆t = p((u− d)
∂V (t, S(t))

∂S(t)
S(t)) + V (t+∆t, dS(t))

=
1 + r∆t− (1− σ

√
∆t+ 0.5σ2∆t)

u− d
(u− d)

∂V (t, S(t))

∂S(t)
S(t)) + V (t+∆t, dS(t))

= (r∆t+ σ
√
∆t− 0.5σ2∆t)

∂V (t, S(t))

∂S(t)
S(t)) + V (t, S(t))

+
∂V (t, S(t))

∂S(t)
S(t)(d− 1) + 0.5

∂2V (t, S(t))

∂S(t)2
S(t)(d− 1)2 +

∂V (t, S(t))

∂t
∆t

= (r∆t+ σ
√
∆t− 0.5σ2∆t)

∂V (t, S(t))

∂S(t)
S(t)) + V (t, S(t))

+
∂V (t, S(t))

∂S(t)
S(t)(−σ

√
∆t+ 0.5σ2∆t) + 0.5

∂2V (t, S(t))

∂S(t)2
S(t)σ2∆t

+
∂V (t, S(t))

∂t
∆t

= (r∆t)
∂V (t, S(t))

∂S(t)
S(t)) + V (t, S(t)) + 0.5

∂2V (t, S(t))

∂S(t)2
S(t)σ2∆t+

∂V (t, S(t))

∂t
∆t.

Thus we can write:

V (t, S(t))(1 + r∆t) = (r∆t)
∂V (t, S(t))

∂S(t)
S(t)) + V (t, S(t)) + 0.5

∂2V (t, S(t))

∂S(t)2
S(t)σ2∆t

+
∂V (t, S(t))

∂t
∆t

V (t, S(t))(r∆t) = (r∆t)
∂V (t, S(t))

∂S(t)
S(t)) + +0.5

∂2V (t, S(t))

∂S(t)2
S(t)σ2∆t

+
∂V (t, S(t))

∂t
∆t.

If we divide by ∆t on both sides we get:

rV (t, S(t)) = (r)
∂V (t, S(t))

∂S(t)
S(t)) + +0.5

∂2V (t, S(t))

∂S(t)2
S(t)σ2 +

∂V (t, S(t))

∂t
.

This is the familiar Black-Scholes PDE [8].
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2.5 Combinatorial Trees

2.5.1 Adaptive Mesh Model

The adaptive mesh model (AMM) was introduced by Ahn, Figlewski and
Gao[1] to improve e�ciency and accuracy of a trinomial tree. The main idea
behind the AMM is that we use a �ner tree structure in the neighbourhood of
some critical region (this �ner mesh can be seen in Fig. 2.18. In most cases
this will be the barrier of a Barrier Option. The reason for this is that prob-
lems occur when the initial asset price lies close to the barrier. The �ner tree
helps to alleviate this problem. In other words, the AMM tries to decrease the
Non-Linearity error described earlier.

Figure 2.18: Adaptive Mesh Grafted to Trinomial Model

2.5.2 Derivation

Let X = ln(S) under the risk neutral measure. We know that X(t) follows the
following process:

dX(t) = αdt+ σdW, (2.5.1)

where α = r − 0.5σ2 and W is standard Brownian Motion.

The �rst step in deriving the Adaptive Mesh Model, is to derive the coarse
trinomial tree as a base. It is necessary to de�ne the tree slightly di�erently
than in the multinomial section, because it then makes implementing the �ner
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tree easier to understand. If we let ∆t be the discrete time step ( i.e. T/N)
and h the price jump, we get the following:

Xt+∆t =


X + h with probability pu1

X with probability pu2

X − h with probability pu3

(2.5.2)

To simplify the derivation we look at the mean adjusted value of the log of the
asset price. In other words, introduce X ′ = X−αt. This helps the derivation,
because X ′ will be symmetric. If we look at the mean, variance, and by using
the fact that the probabilities sum to one, we can deduce values for pu1 , pu2

and pu3 .

pu1 + pu2 + pu3 = 1

E[X ′(t+∆t)−X ′(t)] = 0 = pu1h+ pu20 + pu3(−h)]

E[(X ′(t+∆t)−X ′(t))2] = σ∆t = pu1h
2 + pu20 + pu3(−h)2.

If we solve this set of three equations, we �nd that
pu1 = σ2h

2h2

pu2 = 1− σ2h
h2

pu3 = σ2h
2h2 .

(2.5.3)

Since X ′ is symmetrical as in the multinomial derivation, we can set its
fourth moment equal to the kurtosis of the Normal Distribution. Another im-
portant aspect is that all the odd moments will be 0.

E[(X ′(t+∆t)−X ′(t))4] = 3σ4∆t2 = pu1h
4 + pu20 + pu3(−h)4

Applying this to the solutions we found for the probabilities, we �nd:

h = σ
√
3∆t

pu1 = 1/6
pu2 = 2/3
pu3 = 1/6.

From this we can write out the process:

X ′
t+∆t −X ′

t =


h pu1 = 1/6
0 pu2 = 2/3

−h pu3 = 1/6
(2.5.4)
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From which we can write the process of X :

Xt+∆t −Xt =


∆t+ h pu1 = 1/6

∆t pu2 = 2/3
∆t− h pu3 = 1/6

(2.5.5)

Finally we can write the solution of the option price as follows:

f = exp(−r∆t)[pu1f(X + α∆t+ h, t+∆t)+

pu2f(X + α∆t, t+∆t) + pu3f(X + α∆t− h, t+∆t)].

(2.5.6)

This result agrees with the trinomial model we found using the moment
matching technique and using two time steps of a binomial lattice illustrated
earlier. We now need to generate the �ner lattice onto the coarse lattice. We
do this by grafting the �ne lattice in the region of the barrier by implementing
the �ne lattice with each price step being half of the previous step. One should
then also have time steps that are a quarter of the next step so as to keep the
relationship between price and time steps constant. So, if we have mesh at a
level called M, and the coarse lattice is called level 0, we have that hM = h/2M

and ∆tM = ∆t/4M .

Once the mesh is grafted onto the coarse lattice, it should also be con-
nected back to the coarse lattice. One can also add more levels of mesh as
required. As an example, we look at Fig. 2.19 by Rebib [53]. We can see
that a two level mesh has been implemented. The �rst one starts at half
the price step (h1 = h/2) and a time step of a quarter of the original time
step (∆t1 = ∆t/4). This is repeated for the second level, where we �nd that
h2 = h/4 and ∆t2 = ∆t/16. The �gure makes it clear that the initial price is
then the middle node of the last level.

From Figlewski and Gao [1], we see as an example the adaptive mesh model
being implemented on a European Down and Out Call option. The results are
very favourable and looking at a comparison between a trinomial, a two level
mesh, a four level and a eight level mesh, we �nd that the mesh model handles
the Barrier option extremely well. Fig. 2.19 represents a two level mesh down
and out barrier option.

Figlewski and Gao �nd that the error rate for the AMM model after 60
steps is equivalent to a Trinomial model after 5000 steps, proving that at least
for a Barrier option, the AMM approach is superior.
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Figure 2.19: Adaptive Mesh Grafted to Trinomial Tree from Rebib [53]



Chapter 3

Options on multiple sources of risk

This chapter focuses on some of the most prevalent derivatives involving mul-
tiple sources of underlying risk. Some examples of options that depend on
multiple sources of risk are: Basket options, Rainbow options and Convertible
Bonds.

Basket and Rainbow options both depend on multiple source of underlying
risk. Rainbow options can be de�ned as "all options whose payo� depends on
more than one underlying risky asset; each asset is referred to as a colour of
the rainbow" [51]. A multitude of call and put options on the maximum or
minimum of a number of assets can be constructed. Basket options are similar
to rainbow options, but where the payo� is a function of the underlying assets
that are weighted. A common example of a rainbow option is an exchange
option, where one asset can be exchanged for another, and an example of a
basket option is a spread option. A Basket option can thus be seen as a vanilla
option on several assets, whereas a rainbow option is an option with a more
complex payo� structure.

Another type of security that involves multiple sources of underlying risk
is the Convertible bond. Convertible bonds depend on three main sources of
underlying risk: credit risk (probability of default), equity risk (share price
movements) and interest rate risk (movements in the short rate). This makes
these types of derivatives ideal to look at for this dissertation.

In the next sections we will discuss the work on multinomial modelling
done by Boyle. Boyle applies the multinomial approach to valuing derivatives
that depend on the minimum/maximum of several risky assets. These deriva-
tives are an ideal example to illustrate the application of the product of trees
in higher dimensions. This chapter starts with a discussion of the work done
by Stulz [57]. Stulz derived analytical solutions for options on the minimum-
maximum of two underlying assets, and thus we can use these exact results to
compare convergence of our method. Magrabe [45] provided closed from solu-

40
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tions for European options with n underlying assets. Both Stulz and the other
authors focus on European options, whereas the lattice model developed by
Boyle can also accommodate the early exercise property of American options.

The di�erent methods for valuing convertible bonds will be explored. Focus
is given to the tree-based models. The Hung and Wang model [29] will be
implemented using the product of tree approach in the next chapter.

3.1 Basket and Rainbow Options

The work done by Magrabe [45], and extensions by Stulz [57] make it possible
to de�ne analytical solutions for options on the maximum of several underlying
assets. Heynen and Kat [24] derived analytical solutions for 2 asset Cash or
Nothing or Digital options.

Magrabe was the �rst to value a so-called exchange option with the follow-
ing payo�:

P (S, T ) = max(S1 − S2, 0).

This can be seen as a call on share 1 with a stochastic strike. The value of
this option is given by:

f(S, t) = S1e
−q1(T−t)N(d1)− S2e

−q2(T−t)N(d2),

where

d1 =

S1e(r−q1)(T−t)

S2e(r−q2)(T−t) + 0.5(σ2
1 + σ2

2 + 2ρσ1σ2)
2(T − t)

(σ2
1 + σ2

2 + 2ρσ1σ2(T − t))
√
(T − t)

d2 =

S1e(r−q1)(T−t)

S2e(r−q2)(T−t) − 0.5(σ2
1 + σ2

2 + 2ρσ1σ2)(T − t)2

(σ2
1 + σ2

2 + 2ρσ1σ2(T − t))
√
(T − t)

.

Stulz consequently extended the work to two underlying assets, and Johnson
[33] extended the work to any number of underlying assets.

The dissertation will focus on the following three Rainbow/Basket type
options:

1. European Max Option

P (S, T ) = max(Si −X, 0) for i = 1 to n. (3.1.1)



CHAPTER 3. OPTIONS ON MULTIPLE SOURCES OF RISK 42

2. European Product Option

P (S, T ) = max(
n∏

i=1

(Si)
1
n −X, 0) for i = 1 to n.

3. European Digital Option

P (S, T ) =

{
G if Si −Xi ≥ 0
0 if Si −Xi < 0

. (3.1.2)

3.2 Convertible Bonds

A convertible bond can be de�ned as "hybrid securities that confer upon the
owner the right to receive a �xed income stream during the life of the convert-
ible with the embedded right to forego the �xed income stream and irrevocably
convert at the holder's option into a prescribed amount of the issuer's equity
any time during the life of the instrument" [60].

The fact that the income generated from the convertible is uncertain, and
that the bond is in fact both an interest and an equity option at the same
time, makes this a very di�cult instrument to price. There are a number of
methods that can be used to model convertible bonds, and much research has
been done on the topic, including papers by: Hariparsad [20], Tsiverotis and
Fernandes [59], Ayache, Forsyth and Vetzal [5], Hung and Wang [29], Cham-
bers Lu Model [14] and Barclays [3].

We will focus on the so-called equity valuation methods, as opposed to the
�rm valuation methods [20]. A few di�erent models will be discussed in the
next sections, as well as some practical results in the next chapter. The focus
will be on tree based approaches. The product of trees approach will then be
used to model the credit and market risk, and the results will be compared to
the other approaches.

3.2.1 Quadrinomial Model

The Quadrinomial model explained in Hariparsad [20], splits the Convertible
into separate components, but instead of modeling them separately, they are
modelled together. This section will show that this approach is analogous to
the product of trees approach introduced in the next chapter, where instead of
having two underlying shares as risky assets, we have a share and interest rate.

Hariparsad assumes that the probabilities of up and down movements in
both the underlying share price and interest rate trees are 0.5. We will show
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that the results he obtains are the same as obtained in Chapter 4, if the prob-
abilities are taken to be 0.5.

We can derive the expected values and variances of both the share price
and the interest rate over one time period:

E[S] = 0.5(S1 + S2)

E[r] = 0.5(r1 + r2)

σS = 0.25(S1 − S2)
2

σr = 0.25(r1 − r2)
2

Once again we know that σSr = ρSrσSσr, thus we �nd:

σSr = 0.25ρSr(S1 − S2)(r1 − r2). (3.2.1)

If we shu�e around the de�nition for covariance, we can substitute and reach
the result:

E[Sr] = σSr + E[S]E[r]

E[Sr] = 0.25ρSr(S1 − S2)(r1 − r2) + 0.25(S1 + S2)(r1 − r2

E[Sr] = 0.25(1 + ρSr)S1r1 + 0.25(1− ρSr)S1r2

+ 0.25(1− ρSr)S2r1 + 0.25(1 + ρSr)S2r2.

From this equation we can see the joint probabilities in Table 3.1:

p11
(1+ρSr)

4

p12
(1−ρSr)

4

p21
(1−ρSr)

4

p22
(1+ρSr)

4

Table 3.1: Joint Probabilities For Quadrinomial Tree

We can now use this to calculate the so called Rollback value:

RB = e−r0∆t[E[Sr]]. (3.2.2)

This Rollback value is analogous to the backward induction formula from Sec-
tion 2.1 (Eq. (2.1.4)).

In order to determine the value of the convertible bond, we need to look at
the structure of the derivative. Once the bond matures, the investor must de-
cide whether to covert the bond into shares, or to receive the redemption value
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of the bond. The number of shares that the investor can receive is determined
by the conversion ratio (c) and the value of the bond by the redemption value
F . We can thus write the value of the derivative at each node as follows:

V alue = Max[Min(RB,Ct), αSt, Pt], (3.2.3)

where Ct is the Call Price and Pt is the put value at time t.

3.2.2 Alternative Model Approaches

There are a multitude of di�erent approaches to value the convertible bond
available in modern literature. The following are some of the possible options:

1. Tsiverotis and Fernandes [59]

In order to discuss the k-factor spread model in a later section, a quick
introduction to the Tsiverotis and Fernandes models is provided here.

Tsiverotis and Fernandes use the Black-Scholes model and introduce
credit risk into the model by incorporating a credit spread. Tsivero-
tis and Fernandes argue that only the cash component of the derivative
is exposed to credit risk, and the equity part is not. Their solution is to
split the derivative into a cash part and an equity part.

If we de�ne the Cash part as CP and the Equity part as EP , then
we know that the convertible bond f has the value f = CP + EP .
Tsiverotis and Fernandes then use the Black-Scholes equation to value
all the components.

2. Ayache, Forsyth and Vetzal [5]

The Ayache, Forsyth and Vetzal (AFV) [5] approach, extends the TF
model by allowing for some recovery on the share price if default occurs.

3. Hung and Wang [29]

The Hung andWang model incorporates a probability of default by build-
ing binomial trees for both risky and risk free interest rates. The risk
free interest rates are used for the share price modeling whereas the risky
interest rates are used in the bond modeling. Hung and Wang's model
does not allow for correlation between the share price and interest rates.
Hung and Wang's tree has 6 nodes:
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Probability Description
p011 Default, S = 0, r goes up
p021 Default, S = 0, r goes down
p112 No Default, S goes up, r goes up
p122 No Default, S goes up, r goes down
p212 No Default, S goes down, r goes up
p222 No Default, S goes down, r goes down

Table 3.2: Joint Probabilities For Hung Wang Model

The Hung and Wang model does not allow for correlation between the
interest rate and equity. This hurdle is overcome by the Chambers and
Lu model.

4. Chambers and Lu Model [14]

Chambers and Lu [14] also incorporate credit risk into their model, but
provide for correlation between interest rates and equity.

The Chambers and Lu model calculates the Interest Rate tree using the
Ho-Lee [25] model. The output is single period risk free interest rates.

The magnitude of the up movement is given by e2σ
√
∆t. By transforming

the treasury term structure, and using a probability of an up movement
as 0.5, the tree can be derived.

The second step is to de�ne the equity risk tree. The tree is derived as
with the binomial share price tree in Section 2.1.

The probabilities for the movements between the shares and interest
rates are given in Table 3.3.

Description Probability

S goes up, r goes up 0.5(p̂+
√
p̂(1− p̂)ρ)

S goes up, r goes down 0.5(p̂−
√
p̂(1− p̂)ρ)

S goes down, r goes up 0.5(1− p̂−
√

p̂(1− p̂)ρ)

S goes down, r goes down 0.5(1− p̂+
√

p̂(1− p̂)ρ)

Table 3.3: Joint Probabilities For Chambers and Lu Model

p̂ is de�ned as the risk adjusted probability:
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p̂ =
er∆t/(1− δ)− d

u− d
, (3.2.4)

where u and d are the up and down magnitudes and δ is the probability
of default.

Once default occurs,the recovery rate λ is constant, but the probability
of default can di�er across each time period. To calculate the δ over the
�rst time period, Chambers and Lu solve the following equation:

e−r̂0 = [1(1− δ1) + λδ1]e
−r0 , (3.2.5)

where r̂0 is the risky interest rate over the �rst time period, and r0 is the
riskless interest rate. If we solve for δ1, we �nd the following:

δ1 = (1− r0 − r̂0)/(1− λ) (3.2.6)

If the recovery is 0, the default rate is just the spread between the risky
and riskless bond yields.

This process can be expanded to the two year bonds and further, and
thus the risky interest rate tree can be determined. The value of the
convertible bond can be determined using Eq. (3.2.3). The Rollback
value is now given by:

RB = (1− δi)E[Sr] + δiλF, (3.2.7)

for i = 1 to T, and where δi is the probability of default for period i.

5. K Factor Spread [3]

The K Factor credit spread model introduces a spread function that can
be incorporated into the Tsiverotis and Fernandes model. The model,
originally named the Barclays model, uses a function of the form:

CreditSpread = h× S−k, (3.2.8)

where h is a function of the credit spread and k represents the relationship
between the credit spread and the share price.

It is clear that there are a number of methods that can be used to value
a convertible bond. Using a tree based approach helps with the visualisation
of the problem, and can incorporate correlation between the risk factors, as
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well as the default rates. The K-Factor spread model would be the preferred
approach as this takes all of the improvements from the previous models into
account, but also includes a non constant credit spread. In the next chapter
we will implement the Chambers and Lu model basing it on the product of
trees visual method.



Chapter 4

Product of Trees

This chapter explores the product of trees concept by Luenberger [43]. His
method can be seen as an alternative to Boyle's moment matching approach
introduced in the previous section. Boyle's model will be discussed in detail
in the next section. If more than one underlying risky asset needs to be con-
sidered at once, Luenberger models each separately using a simple Binomial
tree, and then combines these to form the so-called product of trees. The main
problem Luenberger states is that when the trees are presented together the
number of nodes at each step is more than the number of underlying sources of
risk, and thus the traditional replication arguments are invalid and the prob-
abilities cannot be uniquely de�ned.

This hurdle is overcome by introducing an additional parameter using the
marginal utility function and its properties. Section 1 of this chapter will
step by step introduce Luenberger's solution to the problem, and Section 2
will expand the research by looking at the use of higher order trees instead of
Binomial trees.

4.1 Luenberger's Product of Trees

4.1.1 One step Binomial Product of Trees Derivation

We start o� by looking at two assets over a single time period. Suppose we
have assets X and Y, and we can represent these assets on two binomial trees
as discussed in Section 2.1. This is depicted in Fig. (4.1). The probability
of an up movement (pX1 p

Y
1 ) and the probability of a down movement (pX2 p

Y
2 )

between the two assets may be correlated. These are shown in Table 4.1. We
can then combine these two lattices to form the product lattice as in Fig. 4.2.
We can combine the individual probabilities to form the joint probabilities.

We can now also de�ne the magnitude of the up and down movements. As in

48
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p11 X moves up and Y moves up
p12 X moves up and Y moves down
p21 X moves down and Y moves up
p22 X moves down and Y moves down

Table 4.1: De�ning the probabilities

Figure 4.1: X and Y Trees

Figure 4.2: Product of X and Y

Section 2.1, we notate an up movement with u and a down movement with d.
Thus we have the notation in Table 4.2.

uX Up movement for X
dX Down movement for X
uY Up movement for Y
dY Down movement for Y

Table 4.2: De�ning the magnitudes

We also de�ne the correlation between X and Y as ρ and the covariance of the
log of the returns of X and Y as σXY . We can de�ne the probabilities in terms
of the probabilities of the individual lattices as follows:
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p11 + p12 = pX1
p21 + p22 = pX2
p11 + p21 = pY1
p12 + p22 = pY2

p11 + p12 + p21 + p22 = 1.

If we investigate the covariance of the log of the return, we can add an addi-
tional equation. We know that the covariance can be written as [27]:

σXY = E[XY ]− E[X]E[Y ]. (4.1.1)

We then just need to calculate E[XY ] and E[X]E[Y ].

If we de�ne UX , DX , UY , DY as the natural logarithms of the respective
movements we can derive the formula for the covariance as follows:

E[X] = pX1 U
X + pX2 D

X

E[Y ] = pY1 U
Y + pY2 D

Y .

We can then multiply these to form

E[X]E[Y ] = pX1 p
Y
1 U

XUY + pX1 p
Y
1 U

XUY

+ pX1 p
Y
2 U

XDY + pX2 p
Y
1 D

XUY + pX2 p
Y
2 D

XDY .

We also know that:

E[XY ] = p11U
XUY + p12U

XDY + p21D
XUY + p22D

XDY . (4.1.2)

Thus we can write

σXY = (p11 − pX1 p
Y
1 )U

XUY + (p12 − pX1 p
Y
2 )U

XDY

+ (p21 − pX2 p
Y
1 )D

XUY + (p22 − pX2 p
Y
2 )D

XDY .

When the two underlying assets are independent, the probabilities can be writ-
ten as:

pij = pXi p
Y
j (4.1.3)

for i = 1, 2 and j = 1, 2.

We know from Section 2.1 that unique risk neutral probabilities can be
determined for both X and Y using the risk free asset and the underlying as-
set. If we add a risk free asset to the product of trees, we do not have unique
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probabilities, as there are only three assets (X, Y and the risk free) and we
have four nodes to specify the probabilities uniquely.

Luenberger solves this problem by incorporating a utility portfolio problem.
The �rst question that stems from adding a utility function is how this uniquely
determines a fourth equation, when the utility function can be a multitude
of di�erent functions. This question is answered by the fact that there are a
number of conditions, that when occur, the probabilities are independent of the
utility function. The next section will focus on determining these conditions.

4.1.2 Utility Functions

Suppose we have a portfolio with an initial wealth of W0 and we can invest in
assets X, Y and the risk free asset. If we invest xX in asset X and xY in asset
Y, we will have 1 - xX - xY to invest in the risk free asset.We can de�ne the
returns over a single time period as RX , RY and R0. If we want to maximise
our expected utility we can de�ne the function we wish to maximise as follows
[49], [42]:

maxE[U((xXR
X + xYR

Y + (1− xX − xY )R
0)W0)]. (4.1.4)

The risk neutral probabilities can then be calculated using the following for-
mula:

qij =
pijU

′ij

Σ2
k,l=1pklU

′
kl

. (4.1.5)

Having derived the formula for determining the risk neutral probabilities, we
can now discuss the conditions when this will introduce the additional rela-
tionship to make the probabilities unique.

Theorem 1 [42]
Suppose the risk neutral probabilities qij are determined using Eq. (4.1.5).
Then the relation

q11q22
q12q21

=
p11p22
p12p21

, (4.1.6)

can be used if the following properties are satis�ed:

1. The utility function is part of the exponential family of functions, i.e.
U(f(x)) = e(cf(x)).

2. The time step (∆t) is small.

3. Either xX or xY is 0.
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Eq. (4.1.6) is called the invariance equality.

Proof:
In order to prove the theorem, we �st need to de�ne optimal independence.
Marginal Utilities are optimally independent if:

U ′
11U

′
22 = U ′

12U
′
21. (4.1.7)

Using this as our outcome, we can now prove the theorem.

1. Suppose U is an exponential function, and we know that our Wealth Wij

after the �rst time period is (R0 + RX
i + RY

j )W0. If we substitute this
into our Utility function we �nd:

U(Wij) = e−aWij

= e−a(R0+RX
1 +RX

2 +RY
1 +RY

2 )W0 .

Thus if we di�erentiate we �nd:

U ′
11U

′
22 = (−ae(R

0+RX
1 +RY

1 ))(−ae(R
0+RX

2 +RY
2 ))U ′

11U
′
22

= a2e(R
0+RX

1 +RY
1 +RX

2 +RY
2 ).

This is equal to U ′
12U

′
21.

2. For small ∆t the return over one period must be close to one [42]. Thus
we can write:

RX
i +RY

j +R0 = 1 + rXi + rYj + r0,

where rX , rY and r0 are small.

This is approximately equal to:

1 + rX + rY + r0 ≈ (1 + rX)(1 + rY )(1 + r0). (4.1.8)

We can now write our Utility function using the approximation in Eq.
(4.1.8):

U ′(Wij) = U ′[(1 + rXi + rYj + r0)W (0)]

≈ U ′[Wij] + U ′′[Wij](r
X
i + rYj + r0)W (0)

≈ U ′[Wij](1 +
U ′′[Wij]

U ′[Wij]
W (0)(rXi + rYj + r0). (4.1.9)

It is clear from the Eq. (4.1.9) that U ′
11U

′
22 = U ′

12U
′
21.
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3. If either xX is 0 Eq. (4.1.4) becomes:

maxE[U((xYR
Y + (1− xY )R

0)W0)]. (4.1.10)

Thus any changes in X do not a�ect the utility function, and thus U ′
11 =

U ′
21 and U ′

22 = U ′
12. From this it is clear that U ′

11U
′
22 = U ′

12U
′
21. Similarly

if xY is 0, we have the same result.

We now have the additional equation we need to de�ne the risk neutral
probabilities uniquely. The next section will derive the product of trees from
the standard representation of an Ito process.

4.1.3 Ito's Process

Deriving the product of trees using Ito's Process as a starting point follows a
process very similar to that we used when matching moments in Chapter 2.
Again suppose we have two assets that have log transformed processes X and
Y. Using the share price process presented in Section 2.2 we can write:

dX = αXdt+ σXdWX(t)

dY = αY dt+ σY dWY (t),

where Wi(t) are the standard Wiener processes and αX = (µX − 0.5σ2
X) and

αY = (µY − 0.5σ2
Y ).

We can discretise the process over a time period T, with n intervals of
length ∆t = T/n. We will do this for the asset X, as the process is analogous
for both X and Y. The distribution of the log returns is log normal, with an
expected value of (µX − 0.5σ2

X)∆t and a variance of σ2
X∆t.

To build the two binomial trees for X and Y, we need to �nd the prob-
abilities of up and down movements. We match the expected values to the
continuous distribution's mean:

pX1 U
X + pX2 D

X = αX∆t. (4.1.11)

Since u = eσX

√
∆t, we know that UX = lnu = σX

√
∆t = −DX . If we substi-

tute this into Eq. (4.1.11), we �nd the following:

pX1 U
X − pX2 U

X = αX∆t

pX1 σX

√
∆t− pX2 σX

√
∆t = αX∆t

pX1 σX − pX2 σX = αX

√
∆t.
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Since pX2 = 1− pX1 we �nd that:

2pX1 σX − σX = αX

√
∆t (4.1.12)

pX1 =
αX

√
∆t

2σX

+ 0.5. (4.1.13)

We now look at the covariance of the two assets.

σXY = E[XY ]− E[X]E[Y ]. (4.1.14)

We know that E[X] = αX∆t and E[Y ] = αY∆t. Thus E[X]E[Y ] is of the
order ∆t2 and we can approximate the covariance using the following equation:

σXY = E[XY ].

We now only need to calculate E[XY ]:

E[XY ] = (p11U
XUY + p12U

XDY + p21D
XUY + p22D

XDY ).

Writing this in terms of up movements only we �nd:

E[XY ] = (p11U
XUY − p12U

XUY − p21U
XUY + p22U

XUY )

= (p11σXσY − p12σXσY − p21σXσY + p22σXσY )∆t

= (p11 − p12 − p21 + p22)σXσY∆t.

Thus we have
σXY = (p11 − p12 − p21 + p22)σXσY∆t.

Since we know from [27] that

ρ =
σXY√
σ2
Xσ

2
Y

,

(4.1.15)

and using the relationships between the probabilities in the underlying trees
and the probabilities in the product tree, we �nd the equations we require:

p11p12 − p21 + p22 = ρ

p11 + p12 =
αX

√
∆t

2σX

+ 0.5

p11 + p21 =
αY

√
∆t

2σY

+ 0.5

p11 + p12 + p21 + p22 = 1.
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We can now write the set of equations in terms of the probabilities we require
for our product tree:

p11 =
1 + ρ

4
+ 0.25(

αX

σX

+
αY

σY

)
√
∆t

p12 =
1− ρ

4
+ 0.25(

αX

σX

− αY

σY

)
√
∆t

p21 =
1− ρ

4
+ 0.25(

αY

σY

+
αX

σX

)
√
∆t

p22 =
1 + ρ

4
− 0.25(

αX

σX

+
αY

σY

)
√
∆t.

In order to determine the risk neutral probabilities, we can either use the
four equations derived but replacing the expected value with the risk free ex-
pected value, i.e:

r − 0.5σ2
X .

This results in the following set of equations that can be solved:

q11 − q12 − q21 + q22 = ρ

q11 + q12 =
(r − 0.5σ2

X)
√
∆t

2σX

+ 0.5

q11 + q21 =
(r − 0.5σ2

Y )
√
∆t

2σY

+ 0.5

q11 + q12 + q21 + q22 = 1.

After solving for this set of equations, we can calculate the invariance ratio
using Eq. (4.1.6) to calculate the additional equation required:

q11q22
q12q21

=
(1+ρ

4
)2 − 1

16
(
r−0.5σ2

X

σX
+

r−0.5σ2
Y

σY
)2∆t

(1−ρ
4
)2 − 1

16
(
r−0.5σ2

X

σX
− r−0.5σ2

Y

σY
)2∆t

. (4.1.16)

4.2 Increasing the number of states

The natural extension of the product of trees is to investigate whether one can
increase the number of states in the underlying trees. Luenberger notes in his
paper that the results derived using binomial underlying trees, can be applied
to higher state trees. We will still focus on only two assets, X and Y. If each
asset's underlying tree has two successor nodes as with the binomial product
tree, the required number of risk neutral probabilities is 2 × 2 = 4. Thus we
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need 4 equations to be able to specify unique risk neutral probabilities. Since
we have two underlying assets, we have two equations, and the sum of proba-
bilities equal one relationship provides another.

In general, if asset X and asset Y have k and l successor nodes respec-
tively, we require k × l probabilities and we have 3 so we need an additional
k × l − 3 equations. If we can show that the invariance ratio holds for higher
order states, and that the invariance ratio provides k × l − 3 equations, the
additional equations can be found. The invariance Eq. (4.1.6) can be written
as:

qiiqjj
qijqji

=
piipjj
pijpji

(4.2.1)

for all i ̸= j.

These equations are not independent, but they have rank of k × l − 3,
and thus will de�ne the necessary equations to extend the Product of trees
approach to higher state trees.

4.3 Implementation

To illustrate how the product of trees approach works, we will implement the
model on a derivative with two underlying assets, and a derivative with three
underlying sources of risk. A convertible bond will also be valued using the
Hung and Wang approach. For ease of illustration, the implementation will
only be done on trees with three steps. The two asset example is a max option
on two underlying shares. For this example, we assume that the shares are not
independent. For the option on three sources of risk, we have a max option on
three shares. Once again the log returns of the shares are correlated. Fig. 4.3
and Fig. 4.4 depict the underlying binomial trees and the backward induction
process for the two derivatives.
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Figure 4.3: 2 State Product of Trees Layout for two underlying assets

Figure 4.4: 2 State Product of Trees Layout for three underlying assets

4.3.1 Two Dimensional Max Option

Table 4.3 depicts the speci�cations of the option to be considered. This prob-
lem comes from the paper by Boyle [9]. This assists with comparison purposes.
Fig. 4.5 depicts the binomial trees for each asset. The max option payo� was
given by Eq. 3.1.1 in Section 3.1.

Using the probability equations from the previous section, we can calculate
q11, q22, q12 and q21 as in Table 4.4.

Fig. 4.6 shows that the Invariance quantity converges to its actual value.
Using the probabilities de�ned, we can calculate backwards to get the �nal
option value. Fig. 4.7 depicts the process. If we de�ne the �rst matrix as
A where A(1, 2) indicates matrix A, row 1 column 2. The numbers on the
outside of the matrix correspond to Fig. 4.5. Matrix A is calculated by us-
ing the �nal nodes of the Binomial trees and the payo�. In other words,
A(1, 1) = max(S1(T )−X,S2(T )−X) = max(19.49, 12.12) = 19.49.
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S1 40
S2 40
X 40
σ1 0.2
σ2 0.3
ρ 0.5
r 0.04879
T 0.58333

Table 4.3: Two Dimensional Max Option Speci�cations

Figure 4.5: Underlying Binomial Trees for 2D Max Option

Probability Movement Value
q11 uu 0.392261641
q12 ud 0.13947626
q21 du 0.357738359
q22 dd 0.11052374

Table 4.4: 2D Risk neutral probabilities

Once matrix A is populated, the others can be de�ned using backward in-
duction. For example B(1, 1) = e(−rt)(q11A(1, 1) + q12A(1, 2) + q21A(2, 1) +
q22A(2, 2)). The �nal value of 9.06. This approach will converge to the true
price of 5.488 and this will be shown in the next chapter.

4.3.2 Three Dimensional Max Option

Table 4.5 depicts the speci�cations of the option to be considered. This prob-
lem comes from the paper by Boyle et al [11]. Fig. 4.8 depicts the binomial
trees for each asset. The max option payo� was given by Eq. (3.1.1) in Section
3.1.
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Figure 4.6: Convergence to limiting value of invariance quantity

Figure 4.7: Backward Induction using product of trees approach

Using the approach from Section 4.2, we can calculate q1, q2, q3, q4, q5, q6,
q7 and q8.
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S1 100
S2 100
S2 100
X 100
σ1 0.2
σ2 0.2
σ3 0.2
ρ12 0.5
ρ13 0.5
ρ23 0.5
r 0.1
T 1

Table 4.5: Three Dimensional Max Option Speci�cations

Probability Movement Value
q1 uuu 0.39910254
q2 uud 0.091367513
q3 udu 0.091367513
q4 duu 0.091367513
q5 udd 0.033632487
q6 dud 0.033632487
q7 ddu 0.033632487
q8 ddd 0.22589746

Table 4.6: 3D Risk neutral probabilities

Figure 4.8: Underlying Binomial Trees for 3D Max Option

Fig. 4.9 shows that the Invariance quantity converges to its actual value.

Once again,as in the case of the 2 dimensional problem, once we have the
terminal nodes we can calculate backwards to get the �nal option value. Fig.
4.10 depicts the process. Instead of having matrices that decrease in size, we
have cubes. These cubes can be seen as n × n × n matrices as in Fig. 4.10. The
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Figure 4.9: Convergence to limiting value of invariance quantity for 3D option

�rst 4 matrices should be seen as a cube. If we de�ne the �rst cube as A where
A(1, 2, 1) indicates cube A, matrix 1, row 2 column 1. Cube A is calculated by
using the �nal nodes of the binomial trees and the payo�. Thus A(1, 2, 3) =
max(S1(T )−X,S2(T )−X,S3(T )−X) = max(141.40, 112.24, 89.09) = 141.40.

Once cube A is populated, the others can be de�ned using backward induc-
tion. For example B(1, 1, 1) = e(−rt)(q1A(1, 1, 1) + q2A(1, 1, 2) + q3A(1, 2, 1) +
q4A(1, 2, 2) + q5A(2, 1, 1) + q6A(2, 1, 2) + q7A(2, 2, 1) + q8A(2, 2, 2))

The �nal price is then given as 19.84. This approach will converge to the true
price of 22.672 and this will be shown in the next chapter.
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4.3.3 Three Dimensional Convertible Bond

The table below depicts the speci�cations of the convertible bond to be con-
sidered. The problem comes from the paper by Hung and Wang [29].

S0 30
Call 105
F 100
δ 0.32
σS 0.23
σ2 0.2
σ2 0.2
ρ12 0.5
ρ13 0.5
ρ23 0.5
r0 0.1
T 3
w 3

Table 4.7: Convertible Bond Speci�cations

As noted in the previous chapter, Convertible Bonds are dependent on Eq-
uity, Interest rate and Credit risk. The Chambers and Lu model was explained
in the previous chapter. Fig. 4.11 depicts the share price and the riskless in-
terest rate trees.

Using Eq. (3.2.6) we can calculate the default probabilities for each of the
three time periods:

δ1 0.0717
δ2 0.0774
δ3 0.0844

Table 4.8: CB Default Probabilities

Since the convertible bond is dependent on the interest rate, probability
measures will be di�erent for each period. The probability is calculated using
the following equation:

p̂ =
er∆t/(1− δt)− d

u− d
, (4.3.1)

p̂ can then be used to calculate the joint probabilities using the equations from
Table 3.3. This equation was �rst given in Eq. (3.2.4).
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Fig. 4.12 depicts the process of valuing the option. The �rst two matrices
depicts the value of the option at maturity. The left-hand side matrix if no
default occurs, and the right-hand side matrix if default occurs. Each cell in
the left-hand side matrix is the following function:

max(cS3, F ), (4.3.2)

where the c is the conversion factor. The right-hand side matrix is the recovery
rate δ times the face value F .

In order to do backward induction, the probabilities for each time period
need to be calculated. These are given in Fig. 4.13. First of all the p̂ are
calculated for each time period. Then the individual probabilities can be cal-
culated using the Table 3.3. As an example, the �rst cell (p11) for Time 2 can
be calculated using the equation:

0.5(p̂+
√

p̂(1− p̂)ρ) (4.3.3)

Once the probabilities are calculated the backward induction can be done.
We can calculate the �rst cell of the second time period matrix as an example.
The value of the cell is as follows:

Max[Min(RB,Call), ConversionV alue, Put], (4.3.4)

where the RB (Roll Back Value) can be calculated as follows:

RB = (1−λ3)[p11∗A(1, 1)+p12∗A(1, 2)+p21∗A(2, 1)+p22∗A(2, 2)]+λ3B(1, 1),

where A is the �rst-right hand side matrix, and B is the �rst left hand side
matrix. In this case p11 − p22 are the �rst row of probabilities from Fig. 4.13.
Once the backward induction process is complete, the �nal value of the Bond
is 93.15. This corresponds to the value found by Chambers and Lu [14].

We can thus conclude that the product of trees approach can be seen as a
way to visualise problems on multiple sources of underlying risk.
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Figure 4.10: Backward Induction using product of trees approach for 3 dimensions
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Figure 4.11: Underlying Binomial Trees for 3D Max Convertible Bond

Figure 4.12: Backward Induction using product of trees approach for Convertible
Bond

Figure 4.13: Probabilities for Convertible Bond



Chapter 5

Increasing the Sources of

Underlying Risk

Chapter 2 focused on expanding the CRR binomial lattice into the multinomial
space, but looking at only one underlying source of risk. Chapter 4 looked at
expanding the number of underlying risk sources with the use of the product
of trees approach. In this chapter, we will look at increasing the sources of un-
derlying risk using the methods of Boyle. An investigation will also be done on
simultaneously increasing the number of nodes in the lattice. It is not di�cult
to see that there will be a certain level of computational intensity associated
with such an experiment. This section will investigate both the convergence
and intensity of three models: The Boyle, Evnine and Gibbs (BEG) model
[11]; the Kamrad and Ritchken (KR) model [37] and �nally the Decoupled
approach [40].

5.1 The BEG Model

This section will look at the BEG model [11]. We will see that the BEG model
in two dimensions gives results analogous to those derived for the product of
tree approach. This is then extended into a lattice model for n sources of
underlying risk.

5.1.1 Derivation

We will derive the probabilities for the n-sources of risk model, by starting
o� with three sources and then using the pattern that emerges to infer the n-
source equations. The method used by BEG di�ers slightly from the approach
we used for the product of trees derivation, in that the moment generating
function is expanded using a Taylor expansion, and then through matching of
coe�cients, the probability equations are found. The derivation will be shown

66
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here for completeness:

We start by showing the general valuation equation for a security f , which
is dependent on n assets Si, for 1 ≤ i ≤ n. We can represent each of the shares
Si by the share price process discussed in Section 2.2.2:

dSi = µiSdt+ σidWi. (5.1.1)

where Wi is the standard Wiener process. From the Section 2.4 know that the
standard representation of a derivative that depends on these n underlying
shares can be written as:

∂f

∂t
+

n∑
i=1

∂f

∂Si

(µi − λiσi) + 0.5
n∑

i=1

n∑
j=1

ρijσiσjSiSj
∂2F

∂Si∂Sj

= rf, (5.1.2)

where µi − λiσi = r

If we look at a derivative with two underlying shares, and again we let the
magnitude of the up and down movements be equal to eσi

√
∆t and e−σi

√
∆t re-

spectively we can use moment matching to �nd the probabilities of the joint
process.

We de�ne the characteristic function of the discrete distribution as:

ϕ(x1, x2) = E[eix1S1+ix2S2 ]. (5.1.3)

Using the probabilities as de�ned in Section 4.1, this can be expanded to:

ϕ(x1, x2) = p11e
i
√
∆t(x1σ1+x2σ2)

+p12e
i
√
∆t(x1σ1−x2σ2)

+p21e
i
√
∆t(−x1σ1+x2σ2)

+p22e
i
√
∆t(−x1σ1−x2σ2).

This can be expanded using a Taylor series as follows:

ϕ(x1, x2) = p11(1 + i
√
∆t(x1σ1 + x2σ2)−

∆t

2
(x1σ1 + x2σ2))+

p12(1 + i
√
∆t(x1σ1 − x2σ2)−

∆t

2
(x1σ1 − x2σ2))+

p21(1 + i
√
∆t(−x1σ1 + x2σ2)−

∆t

2
(−x1σ1 + x2σ2))+

p22(1 + i
√
∆t(−x1σ1 − x2σ2)−

∆t

2
(−x1σ1 − x2σ2)) + ...

(5.1.4)



CHAPTER 5. INCREASING THE SOURCES OF UNDERLYING RISK 68

We can now equate the discrete distribution to the continuous bivariate
normal distribution. The characteristic function for the bivariate normal is
given by:

ϕ2(x1, x2) = 1+i
√
∆t(x1µ1+x2µ2)−

∆t

2
(x2

1σ
2
1+x1x22σ1σ2ρ+x2

2σ
2
2)+... (5.1.5)

If we shu�e around the terms from Eq. (5.1.4) in order of match those of Eq.
(5.1.5), Eq. (5.1.4) becomes:

ϕ(x1, x2) = (p11 + p12 + p21 + p22)+

i
√
∆t[x1µ1(p11 + p12 − p21 − p22)+

x2µ2(p11 + p12 − p21 − p22)]−
∆t

2
(x2

1σ
2
1+

x1x22σ1σ2(p11 − p12 − p21 + p22) + x2
2σ

2
2) + ...

If we match the coe�cients, we �nd the following set of equations:

(p11 + p12 + p21 + p22) = 1

(p11 − p12 + p21 − p22) = ρ

(p11 + p12 − p21 − p22) =
µ1

√
∆t

σ1

(p11 − p12 + p21 − p22) =
µ2

√
∆t

σ2

.

This can be solved to obtain the result:

p11 =
1 + ρ

4λ2
+ 0.25(

µ1 − 0.5σ2
1

σ1

+
µ2 − 0.5σ2

2

σ2

)

√
∆t

λ

p12 =
1− ρ

4λ2
+ 0.25(

µ1 − 0.5σ2
1

σ1

− µ2 − 0.5σ2
2

σ2

)

√
∆t

λ

p21 =
1− ρ

4λ2
+ 0.25(

µ1 − 0.5σ2
1

σ1

+
µ2 − 0.5σ2

2

σ2

)

√
∆t

λ

p22 =
1 + ρ

4λ2
− 0.25(

µ1 − 0.5σ2
1

σ1

+
µ2 − 0.5σ2

2

σ2

)

√
∆t

λ
.

From the pattern BEG derives the n underlying assets probability equations
as follows:

pm =
1

2n
[
√
∆t

n∑
i=1

xim(
µi

σi

) +
n−1∑
i=1

n∑
j=i+1

xm
ij (ρij)] (5.1.6)
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for m = 1, 2, ..., 2n, n ≥ 2, and

xim =

{
1 if asset i has an up movement in state m
−1 if asset i has a down movement in state m

xm
ij =

{
1 if assets i and j move in same direction in state m
−1 if assets i and j move in opposite direction in state m

5.2 The Kamrad and Ritchken Extension

Kamrad and Ritchken [37] use the same principles as BEG, but by adding a
horizontal jump, they increase the convergence rate. The additional horizon-
tal jump transforms the underlying binomial model into a trinomial model.
The additional horizontal jump is obtained by adding a constant in the jump
size formula. Thus, ui = eσi

√
∆t becomes ui = eλiσi

√
∆t. This adds an addi-

tional probability to the probability sets derived in the previous section, i.e.
the probability of no movement at all. If λi = 1 then the model reduces to
the BEG model. We will look at the log return process, and if we de�ne
U i = lnui = λiσi

√
∆t as the natural logarithms of the respective movements.

Table 5.1 depicts the probabilities used.

p11 X moves up and Y moves up
p12 X moves up and Y moves down
p21 X moves down and Y moves up
p22 X moves down and Y moves down
p0 no movement

Table 5.1: KR Probabilities for two underlying shares

If we follow the same process of matching the expected values, variance and
covariances of the underlying assets as in Chapter 3, we come to the following
set of equations:

Expected Value:

UX(p11 + p12 − p21 − p22) = µX∆t

UY (p11 − p12 + p21 − p22) = µY∆t.
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Variance:

UX2
(p11 + p12 + p21 + p22)− (uX∆t)2 = σ2

X∆t

UY 2
(p11 + p12 + p21 + p22)− (uY∆t)2 = σ2

Y∆t.

Covariance:

UXUY (p11 − p12 − p21 + p22)− µXµY∆t2 = σXσY ρ∆t.

If we substitute U i with λiσi

√
∆t we have the following set of equations:

(p11 + p12 − p21 − p22) =
µX

√
∆t

λXσ2
X

(p11 − p12 + p21 − p22) =
µY

√
∆t

λY σ2
Y

(p11 + p12 + p21 + p22) =
1

λ2
X

(5.2.1)

(p11 + p12 + p21 + p22) =
1

λ2
Y

(5.2.2)

(p11 − p12 − p21 + p22) =
ρ

λXλY

.

These equations are a result of ignoring terms of ∆t and higher. Eq. (5.2.1)
and Eq. (5.2.2) also results in λX = λY = λ. We can thus specify the �nal set
of equations to obtain the probabilities as:

p11 =
1 + ρ

4λ2
+ 0.25(

µX − 0.5σ2
X

σX

+
µY − 0.5σ2

Y

σY

)

√
∆t

λ

p12 =
1− ρ

4λ2
+ 0.25(

µX − 0.5σ2
X

σX

− µY − 0.5σ2
Y

σY

)

√
∆t

λ

p21 =
1− ρ

4λ2
+ 0.25(

µX − 0.5σ2
X

σX

+
µY − 0.5σ2

Y

σY

)

√
∆t

λ

p22 =
1 + ρ

4λ2
− 0.25(

µX − 0.5σ2
X

σX

+
µY − 0.5σ2

Y

σY

)

√
∆t

λ

p0 = 1− 1

λ2
. (5.2.3)

The n source set of probability equations is thus derived as:

pm =
1

2n
[
1

λ2
+

√
∆t

λ

n∑
i=1

xim(
µi

σi

) +
1

λ2

n−1∑
i=1

n∑
j=i+1

xm
ij (ρij)] (5.2.4)
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for m = 1, 2, ..., 2n, n ≥ 2, λ ≥ 1 and

xim =

{
1 if asset i has an up movement in state m
−1 if asset i has a down movement in state m

xm
ij =

{
1 if assets i and j move in same direction in state m
−1 if assets i and j move in opposite direction in state m

An important aspect of the KR model is the value of the λ parameter.
This additional degree of freedom needs to be speci�ed, and may vary from
problem to problem. Fig. 5.1 depicts the sensitivity when computing the price
of a max option to the choice of λ. It is clear that for any λ above 1.5, the
value of the option di�ers signi�cantly form the analytical value. This is a
de�nite drawback to the KR approach.
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Figure 5.1: Kamrad and Ritchken approach sensitivity to lambda

The next section deals in more detail with the choice of λ.
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5.2.1 The Modi�ed Kamrad and Ritchken Extension

In the Kamrad and Ritchken model, the terms of order ∆t and higher are
omitted form Eq. (5.1.5). Herath and Kumar [22] investigate the implications
of this omission. Kamrad and Ritchken also mention that their model yields
feasible probabilities for any value of λ where λ > 1, this is proved to be false
by Herath and Kumar, who provide examples where negative probabilities are
obtained. By developing bounds for the stretch parameter, as well as bounding
the correlation coe�cient, they are able to provide intervals where the proba-
bilities produced will always be feasible.

It is relatively simple to derive the level of error introduced into the Kam-
rad and Ritchken model, by leaving the higher order ∆t terms and comparing
the probabilities to the probabilities derived when the terms are dropped. By
ignoring this term for the two sources of underlying risk problem, only one λ
is required (λX = λY ). If the ∆t terms were not ignored, following equations
would replace Eq. (5.2.1) and Eq. (5.2.2):

(p11 + p12 + p21 + p22) =
1 + γ2

X∆t

λ2
X

(5.2.5)

(p11 + p12 + p21 + p22) =
1 + γ2

Y∆t

λ2
Y

, (5.2.6)

where we de�ne γi =
ui

σi
.

We thus have that:

λX

1 + γ2
X∆t

=
λY

1 + γ2
Y∆t

.

Thus λX = λY if γX = γY . It is clear that the error introduced into the KR
model will be small if γX and γY are close.

Furthermore, Herath and Kumar propose that both λ and the correlation be-
tween the assets should be bounded to ensure positive probabilities. These
bounds are as follows for the two dimensional case:

λX ≥
√

1 + γ2
X∆t

λY =

√
1 + γ2

Y∆t√
1 + γ2

X∆t
,

and the correlation should be bounded as follows:
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max[L1, L2] ≤ ρ ≤ min[U1, U2],

where

L1 = [−λX(λ̃γX + γY )− λ̃(1 + γX∆t)− γXγY∆t]

L2 = [λX(−λ̃γX + γY ) + λ̃(1 + γX∆t)− γXγY∆t]

U1 = [λX(λ̃γX − γY ) + λ̃(1 + γX∆t)− γXγY∆t]

U2 = [λX(λ̃γX + γY )− λ̃(1 + γX∆t)− γXγY∆t],

and where λ̃ = λX

λY

We can �nally conclude that the Herath and Kumar approach will provide
results that are analogous to Kamrad and Ritchken when the time step is very
small. The work done on providing bounds for the stretch parameter λ will be
important when dealing with instances where negative probabilities occur.

5.3 The Decoupling Approach

Korn and Muller [40] proposed an alternative to the methods used by BEG
and Kamrad and Ritchken. Korn and Muller note a number of drawbacks to
the BEG and Kamrad and Ritchken models, these include the di�culty in con-
structing the m-dimensional Markov chain to model the m-dimensional share
price process and the possibility of negative probabilities due to the correla-
tion parameter being present in the transition probabilities. The decoupling
approach hopes to provide a viable alternative to the moment matching ap-
proach by:

1. Separating the correlation from the tree, and thus ensuring positive prob-
abilities.

2. Simplifying the construction of the tree.

3. Improving numerical performance.

This section will investigate the claims made by Korn and Muller. The decou-
pling method will be derived, and the spectral and Cholesky decomposition
methods will be studied.

Suppose that once again we have two correlated assets, namely Y1 and Y2. If
we look at the assets' log return process i.e. at X1 and X2, we �nd:

dXi = µidt+ σidW
i(t) (5.3.1)
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for i = 1, 2, and where W i are two correlated Brownian motions and µi =
r − 0.5σi.

The idea behind decoupling would be two transform the two correlated
processes into independent processes, by decoupling the Variance-Covariance
matrix. For the two asset case presented above, Hull and White [28] suggest
the following decoupling procedure:

L =

(
σ2 σ1

σ2 −σ1

)
X

In the next section we will look at the general decoupling method for m sources
of underlying risk as described by Korn and Muller.

5.3.1 General Decoupling Approach

Suppose we have m correlated assets Yi. If we look at the assets' log return
process:

dXi = µidt+ σidW
i(t) (5.3.2)

for i = 1, ...,m and where µi = r − 0.5σi.

We can write the Variance Covariance matrix as:

Σ =

 σ2
1 . . . ρ1mσ1σm
...

. . .
...

ρ1mσ1σm . . . σ2
m

 = GDGT . (5.3.3)

Where G and D are m × m and D diagonal. Since we assume that Σ is
positive-de�nite, both G and D are invertible. We can now write the decom-
position elementwise as:

ρijσiσj =
m∑
k=1

(gijdkkgjk) (5.3.4)

for i, j = 1, ...m

Korn and Muller proceed to show that the transformation Z = G−1X results in
m independent Brownian motions. The process followed by Z can be given by:

dZi(t) = αidt+
√

diidW
i(t), (5.3.5)

where Z(0) = G−1X(0) and i goes from 1 to m, and α = G−1µi = G−1(r −
0.5σ2)
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The next step is to decide on the decomposition approach. We will discuss
two di�erent types: Spectral and Cholesky.

5.3.2 Decoupling with Spectral Decomposition

The Spectral theorem states that there is an orthogonal matrix G such that
when

Σ = GDGT , (5.3.6)

D is Diagonal and each element is an eigenvalue of Σ [40]. This means that
we can replace the dii diagonal elements in Eq. (5.3.5) with the eigenvalues.

5.3.3 Decoupling with Cholesky Decomposition

With Cholesky decomposition we can decompose the Variance-Covariance ma-
trix as follows:

Σ = GGT , (5.3.7)

where G is a lower triangular matrix. When using the Cholesky decomposi-
tion, all the di�usion elements (dii) are equal to 1.

5.3.4 Discretisation Process

In order to use the decoupling procedure, we need to discretise the process of
Z = G−1X. Korn and Muller propose the following setup:

ZN
k =

 ZN
k−1,1 + α1∆t+ qk,1

√
d11

√
∆t

...

ZN
k−1,m + αm∆t+ qk,m

√
dmm

√
∆t

 , (5.3.8)

where Z(0)
N = Z0 = G−1X0 and

qk,i =

{
1 With probability 0.5
−1 With probability 0.5

The one-step transition then has a probability of 0.5m.

In order to price a derivative, where the payments are traditionally given
in terms of the asset price, we need to transform the discrete process back so
that it is in terms of the initial asset. This transformation is given by:

Y N
N = (eG1Y , ..., eGmY )T . (5.3.9)
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The following Algorithm proposed by Korn and Muller is used to price a
derivative using the decoupling method introduced in this section:

Algorithm 1:

1. Decompose the Variance Covariance matrix into GDGT using either
spectral or Cholesky decomposition.

2. Transform the underlying asset X into the process Z such that the new
process has independent Brownian motions.

3. Discretise the process using Eq. (5.3.8).

4. Transform the discrete process using Eq. (5.3.9) so that it is in terms of
the underlying asset once more.

5. Calculate the payo� across all nodes using the transformation, and work
back through the tree using backward induction.

5.4 Numerical Results

This sections compares the convergence results of the BEG, Kamrad and
Ritchken and Decoupled approaches. These approaches are used to value three
di�erent derivatives:

1. European Max Option

2. European Product Option

3. European Digital Option.

Both two dimensional and three dimensional derivatives are valued. The
main point of discussion will be the convergence of the di�erent models to their
analytical values. Computational intensity is also discussed.

Before looking at the convergence results, we will investigate the computa-
tional intensity. Both Kamrad and Ritchken and Herath and Kumar consider
the number of nodes generated by each model, as well as the number of addi-
tions and multiplications required for each node. We will consider the number
of nodes required for one asset, two asset, three asset and n asset models, com-
paring the BEG model, the Kamrad and Ritchken model and the decoupling
approach. Table 5.2 shows the number of nodes required for each option:
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Number of Assets # Nodes: # Nodes: # Nodes:
BEG Kamrad and Ritchken Decoupled Approach

1
∑j

i=0(i+ 1)
∑j

i=0(2i+ 1)
∑j

i=1 i

2
∑j

i=0(i+ 1)2
∑j

i=0[(i+ 1)2 + i2]
∑j

i=1 i
2

3
∑j

i=0(i+ 1)3
∑j

i=0[(i+ 1)3 + i3]
∑j

i=1 i
3

n
∑j

i=0(i+ 1)n
∑j

p=0

∑p
i=0[(i+ 1)n]

∑j
i=1 i

n

Table 5.2: Number of nodes generated after j iterations

If we look at a simple example where we have 100 iterations, the following
table shows the number of nodes required for each model:

Number of Assets # Nodes: # Nodes: # Nodes:
BEG Kamrad and Ritchken Decoupled Approach

1 5151 10201 5050
2 348,551 686,901 338,350
3 26,532,801 55,195,1971 25,502,500

Table 5.3: Number of nodes generated after 100 iterations

The following three graphs show the nature of the increase in computational
intensity of the three models.

Figure 5.2: Number of Nodes Required for 1 Share

Fig. 5.2 shows that for one underlying share, the BEG and Decoupled ap-
proaches require a similar number of computations, whereas the KR approach
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is more intensive. After around 200 timesteps, the KR approach requires dou-
ble the amount of computations as the others.

Figure 5.3: Number of Nodes Required for 2 Shares

Fig. 5.3 paints a similar picture, but it is clear that the KR approach is
showing some computational strain when compared to the other two. After
200 timesteps, the KR approach requires double the amount of computations
as the others.

Figure 5.4: Number of Nodes Required for 3 Shares
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When a third share is introduced, the KR approach explodes as can be
seen in Fig. 5.4. It is not completely clear from the graph, but looking at
Table 5.3, the Decoupled approach starts outperforming the BEG approach
signi�cantly when the number of timesteps increases beyond 100.

The graphs and the table clearly show that in terms of computational in-
tensity, the decoupled approach is only slightly less intensive than the BEG
model when there are one or two underlying shares, but once the option con-
sists of three shares, there is a drastic di�erence. The Kamrad and Ritchken
approach "blows up" completely for more than two shares.

We know now that the Kamrad and Ritchken model is considerably more
computationally intensive than the BEG or the Decoupled approach. It thus
makes sense that it needs to converge to the analytical solution much faster
than the other two. We will now investigate the order of convergence of the
three models. We know that traditionally binomial models converge at a rate
of O( 1

n
) from [23]. We also proved the rates for the multinomial case in Section

2.3, and saw that the actual rate of convergence is closer to O( 1√
n
), and it was

thus clear that the actual convergence did not really live up to the theoretical
convergence. As in Section 2.3, we investigate the error ratio as we double
the number of iterations. If the convergence is of order O( 1

n
) we expect to see

error ratios of 2.

The following three options are valued using the approaches outlined above.
The Matlab code used in each case can be found in Appendix C.2

1. European Max Option:

These problems come from the papers by Boyle [9] and Boyle et al [11].
This assists with comparison purposes.
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S1 40
S2 40
X 40
σ1 0.2
σ2 0.3
ρ 0.5
r 0.04879
T 0.58333
Analytical Price 5.488

Table 5.4: Two Dimensional Max Option Speci�cations

S1 100
S2 100
S3 100
X 100
σ1 0.2
σ2 0.2
σ3 0.2
ρ12 0.5
ρ13 0.5
ρ23 0.5
r 0.1
T 1
Analytical Price 22.672

Table 5.5: Three Dimensional Max Option Speci�cations

2. European Product Option:

These problems come from the paper by Korn and Muller [40]. This
assists with comparison purposes.
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S1 20
S2 22
X 10
σ1 0.2
σ2 0.25
ρ 0.5
r 0.1
T 1
Analytical Price 3.26214

Table 5.6: Two Dimensional Product Option Speci�cations

S1 20
S2 20
X 10
σ1 0.2
σ2 0.25
ρ 0.5
r 0.1
T 1
Analytical Price 10.8208

Table 5.7: Two Dimensional ITM Product Option Speci�cations

S1 20
S2 20
X 20
σ1 0.2
σ2 0.25
ρ 0.5
r 0.1
T 1
Analytical Price 2.5294

Table 5.8: Two Dimensional ATM Product Option Speci�cations

3. European Digital Option:

These problems come from the paper by Korn and Muller [40]. This
assists with comparison purposes.
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S1 20
S2 20
X 30
σ1 0.2
σ2 0.25
ρ 0.5
r 0.1
T 1
Analytical Price 0.1042

Table 5.9: Two Dimensional OTM Product Option Speci�cations

S1 22
S2 20
S3 25
X 20
σ1 0.2
σ2 0.25
σ3 0.15
ρ12 0.5
ρ13 -0.2
ρ23 -0.4
r 0.1
T 1
Analytical Price 3.90427

Table 5.10: Three Dimensional Product Option Speci�cations

5.4.1 Convergence Results

Comparing Tables 5.12 and 5.13 one can see that the computational intensity
of the KR approach results in it taking much longer than the BEG approach.
The error ratio does seem to be around the 2 mark, indicating that both these
approaches have a order of convergence of approximately O(1/N). From Fig.
5.5 and Fig. 5.6 the convergence of both these approaches to the analytical
results is clear.

Both Fig. 5.7 and Fig. 5.8 show that the BEG and KR models seem to
have similar convergence patterns.
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S1 12
S2 12
X1 17
X2 20
σ1 0.2
σ2 0.25
Cash 100
ρ 0.5
r 0.1
T 1
Analytical Price 1.35

Table 5.11: Two Dimensional Digital Option Speci�cations

N BEG Absolute Error Error Ratio Time(seconds)
5 5.623 0.135 0.014
10 5.401 0.087 1.557 0.006
20 5.444 0.044 1.969 0.041
40 5.470 0.018 2.471 0.316
80 5.479 0.009 1.979 2.356
160 5.482 0.006 1.486 18.400
250 5.484 0.004 1.638 78.456

Table 5.12: Two Dimensional Max Option Convergence - BEG

N KR Absolute Error Error Ratio Time(seconds)
5 5.444 0.044 0.970
10 5.462 0.026 1.721 0.101
20 5.475 0.013 1.961 0.569
40 5.483 0.005 2.423 4.701
80 5.485 0.003 1.937 42.980
160 5.486 0.002 1.458 320.521

Table 5.13: Two Dimensional Max Option Convergence - KR

If we compare Tables 5.15, 5.15 and 5.16 one can see that when the number
of time steps reaches more than 160, the Decoupled approach is less computa-
tionally intensive, which proves our postulation in Table 5.3.

The error ratio also seems to be around the 2 mark, indicating all these ap-
proaches have a order of convergence of approximately O(1/N) for the Product
option. From Fig. 5.9, Fig. 5.10 and Fig. 5.11 we can see the convergence.

The impact of the strike level of the option is investigated for the Decou-
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Plot of Convergence of European Call Max Option using BEG approach

Figure 5.5: 2D Max Option - BEG
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Plot of Convergence of European Call Max Option using Kamrad and Ritchken approach

Figure 5.6: 2D Max Option - Kamrad and Ritchken

pled approach in Fig. 5.12, Fig. 5.13 and Fig. 5.14. The strike level does not
seem to impact the convergence of the Decoupled approach. Looking at the er-
ror ratios, all three methods provide a rate of convergence that is quite similar.
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Plot of Convergence of 3D European Call Max Option using Decoupling Approach

Figure 5.7: 3D Max Option - BEG
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Plot of Convergence of 3D European Call Max Option using Kamrad Ritchken Approach

Figure 5.8: 3D Max Option - Kamrad and Ritchken

N BEG Absolute Error Error Ratio Time(seconds)
5 3.265 0.003 0.004
10 3.261 0.001 3.768 0.006
20 3.260 0.003 0.275 0.037
40 3.261 0.001 2.586 0.616
80 3.262 0.000 2.407 4.774
160 3.262 0.000 1.633 16.728
250 3.262 0.000 1.573 69.976

Table 5.14: Two Dimensional Product Option Convergence - BEG
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N KR Absolute Error Error Ratio Time(seconds)
5 3.262 0.000 0.016
10 3.262 0.000 2.555 0.089
20 3.259 0.003 0.047 0.723
40 3.261 0.002 2.035 4.597
80 3.261 0.001 2.397 39.444
160 3.262 0.000 1.963 261.982

Table 5.15: Two Dimensional Prod Option Convergence - KR

N Decoupled Absolute Error Error Ratio Time(seconds)
5 3.260 0.002 0.008
10 3.267 0.005 0.319 0.010
20 3.263 0.001 7.379 0.052
40 3.262 0.000 2.676 0.628
80 3.263 0.000 0.640 4.431
160 3.262 0.000 1.747 17.824
250 3.262 0.000 2.623 66.595

Table 5.16: Two Dimensional Prod Option Convergence - Decoupled
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Figure 5.9: 2D Product Option - BEG
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Plot of Convergence of European Call Product Option using Kamrad Ritchken Approach

Figure 5.10: 2D Product Option - KR
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Plot of Convergence of European Call Product Option using Decoupling Approach

Figure 5.11: 2D Product Option - Decoupled

N BEG Absolute Error Error Ratio Time(seconds)
5 1.678 0.338 0.004
10 1.078 0.262 1.294 0.008
20 1.743 0.403 0.650 0.059
40 1.348 0.008 52.434 0.396
80 1.323 0.017 0.463 3.355
160 1.395 0.055 0.301 25.622
250 1.493 0.153 0.360 191.237

Table 5.17: Two Dimensional Digital Option Convergence - BEG
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Plot of Convergence of ITM Call Product Option using Decoupling Approach

Figure 5.12: 2D ITM Product Option - Decoupled
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Plot of Convergence of ATM Call Product Option using Decoupling Approach

Figure 5.13: 2D ATM Product Option - Decoupled

N KR Absolute Error Error Ratio Time(seconds)
5 0.607 0.733 0.011
10 1.674 0.334 2.198 0.0812
20 1.318 0.022 15.107 0.896
40 1.469 0.129 0.171 6.563
80 1.356 0.016 8.091 70.234
160 1.293 0.047 0.338 639.868

Table 5.18: Two Dimensional Digital Option Convergence - KR
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Plot of Convergence of OTM Call Product Option using Decoupling Approach

Figure 5.14: 2D OTM Product Option - Decoupled
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Comparing Tables 5.17 and 5.18 one can see that the computational in-
tensity of the KR approach results in it taking much longer than the BEG
approach. The error ratio seems to be very volatile, and no clear pattern
emerges. From Fig. 5.15 and Fig. 5.16 the convergence of both these ap-
proaches to the analytical results is clear.

It is interesting to note that the convergence pattern for the Digital option
di�ers signi�cantly form the previous options. This is due to the non-linearity
of the payo� function.
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Plot of Convergence of European Call Digital Option using BEG

Figure 5.15: 2D Digital Option - BEG
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Figure 5.16: 2D Digital Option - KR



CHAPTER 5. INCREASING THE SOURCES OF UNDERLYING RISK 91

5.4.2 Sensitivity Analysis

This next section investigates the sensitivity of options with two underlying
assets to changes in their parameters. Correlation, Strike Values and Volatility
sensitivity are tested. For each instance a European Product Call Option is
used, with speci�cations as in Table 5.6.
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Figure 5.17: BEG - Sensitivity to Correlation

Fig. 5.17 depicts the sensitivity of the option value to changes in the corre-
lation between the two assets. If the correlation between the assets increases,
the value of the option also increases. The option value does seem to be rel-
atively sensitive to movements in the correlation as the range of the option
value is from 2.4 to 3.6.

Fig. 5.18 depicts the sensitivity of the option value to changes in the strike
of the option. The greater the strike, the lower the value of the option. This
makes sense as it is a call option that is being valued. The sensitivity is quite
pronounced when the strike moves lower into the in the money range.

Fig. 5.19 depicts the sensitivity of the option value to changes in the volatil-
ity of each of the shares. The Vega surface can be seen. The sensitivity is not
as pronounced as with the strike, but greater than with the correlation. The
greater the volatility of both shares, the greater the value of the option.



CHAPTER 5. INCREASING THE SOURCES OF UNDERLYING RISK 92

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

18

20

Strike

O
pt

io
n 

V
al

ue

Plot of BEG sensitivity to strike level

Figure 5.18: BEG - Sensitivity to Strike
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Figure 5.19: BEG - Sensitivity to Volatility

5.4.3 Decoupling Approach in higher dimensions

The previous section investigated the Decoupling approach up to two dimen-
sions. Korn and Muller mention that their approach will continue to be an
improvement over alternate methods as the dimension of the problem increases.
This section will look at the e�ciency of the Decoupling approach for up to
�ve dimensions. Convergence and e�ciency will be examined and compared
against a Monte Carlo approach.

Product options with the speci�cations as in Table 5.19 are valued using
the approach. The �gures clearly show that the decoupled approach is much
less intensive than the Monte Carlo. The convergence to the exact price takes
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less and less steps as the dimension increases.

Parameter 2D 3D 4D 5D
X 20 20 20 20
T 1 1 1 1
S1 22 22 22 100
S2 20 20 20 20
S3 25 25 25
S4 25 25
S5 22
σ1 0.2 0.2 0.2 0.2
σ2 0.25 0.25 0.25 0.25
σ3 0.15 0.15 0.15
σ4 0.15 0.15
σ5 0.1
ρ12 0.5 0.5 0.2 0.5
ρ13 -0.2 -0.2 -0.2
ρ23 -0.4 -0.4 -0.4
ρ14 0.4 0.4
ρ24 0.3 0.3
ρ34 0.3 0.3
ρ15 0.4
ρ25 -0.3
ρ35 -0.3
ρ45 0.1
r 0.1 0.1 0.1 0.1

Table 5.19: Higher Dimensional Product Option Speci�cations
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Figure 5.20: Convergence of 2D De-
coupled - In this case time steps refer
to number of discretisations

Figure 5.21: Convergence of 2D
Monte Carlo - In this case time steps
refer to number of iterations

Figure 5.22: Convergence of 3D De-
coupled - In this case time steps refer
to number of discretisations

Figure 5.23: Convergence of 3D
Monte Carlo - In this case time steps
refer to number of iterations

Figure 5.24: Convergence of 4D De-
coupled - In this case time steps refer
to number of discretisations

Figure 5.25: Convergence of 4D
Monte Carlo - In this case time steps
refer to number of iterations
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Figure 5.26: Convergence of 5D De-
coupled - In this case time steps refer
to number of discretisations

Figure 5.27: Convergence of 5D
Monte Carlo - In this case time steps
refer to number of iterations

Figure 5.28: E�ciency of Decou-
pling vs MC in 2 Dimensions

Figure 5.29: E�ciency of Decou-
pling vs MC in 3 Dimensions

Figure 5.30: E�ciency of Decou-
pling vs MC in 4 Dimensions

Figure 5.31: E�ciency of Decou-
pling vs MC in 5 Dimensions



Chapter 6

Conclusion

Tree-based models are pedagogically speaking incredibly important in mod-
ern �nance [35]. The ability to examine the option structure visually provides
a deeper understanding of both the payo� and the backward induction process.

There is a large amount of literature discussing the valuation of options
using tree-based models. Most of these articles investigate simple options on
one underlying share using a binomial approach. A few authors such as Jab-
bour et al. [30], Kamrad and Ritchken [37], Heston and Zhou [23] expand the
binomial model into higher-state trees, and fewer still investigate the impact
of introducing multiple source of underlying risk. This type of expansion is
mainly covered by Boyle [11] and Kamrad and Ritchken. This dissertation
aimed to do all of the above.

The main objective of the dissertation was to investigate tree-based mod-
els and their applications in modern �nance. A comprehensive exploration of
lattice models, starting with the binomial lattice on one underlying share was
desired.

Chapter 2 investigated the CRR model, and expanded the binomial lattice
to higher order trees. By increasing the number of possible nodes after each
time step, the multinomial model was introduced. The theoretical convergence
as well as the actual convergence of the models was depicted and compared.
From the analysis it can be seen that theoretically the increase of the number
of possible states should lead to an increase in the rate of convergence, but
this is not always the case. This might be due to the nature of the put option
considered. Further research can be done on investigating the convergence
rates for exotic options with payo�s that are not smooth or continuous.

The chapter ended with a discussion surrounding the properties of multi-
nomial models and the limiting case of the multinomial model. It is shown
that the multinomial model converges to either a Gaussian Normal or Poisson
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distribution depending on the assumptions surrounding skewness and kurtosis.

It is interesting to note the relationship between the tree model and the
�nite di�erence methods. These are compared for a binomial lattice. It is
well documented that the trinomial model is equivalent to the Explicit Finite
Di�erence method [13]. This analysis can be expanded by investigating the
higher order lattice models and their relationships to �nite di�erence nets.

The one way of expanding the binomial method is to increase the number
of possible states after each time step. This was investigated in Chapter 2. The
second means of expansion, is to increase the number of sources of underlying
risk. Chapter 3 discusses some of the popular options that are dependent on
multiple sources of risk.

Convertible Bonds, Basket Options and Rainbow Options are discussed in
detail. Basket and Rainbow options are dependent on more than one under-
lying share. These include Min and Max options, Product options and Cash
or Nothing options. The analytical solutions to these options are discussed, as
they are used for comparison purposes in later chapters.

Convertible Bonds are very interesting as they are dependent on equity, in-
terest rate and credit risk. This combination makes them particularly di�cult
to price. It makes sense that due to these complexities, lattice methods are
favoured when determining the prices of these options.

Chapter 4 introduces the Luenberger's method of pricing options that are
dependent on multiple source of risk. The product of trees approach investi-
gates whether an option on multiple sources of risk can be reduced to the trees
of the underlying risky assets, and then combined. The problem arises when
the underlying risk sources are correlated. The resulting joint return process
is then used to price the option.

The �rst hurdle that Luenberger attempts to overcome is the fact that due
to the product representation, the number of underlying risky assets is less
than the number of nodes at each step. Replication arguments can thus not
apply, and the risk neutral probabilities are not uniquely de�ned. Using utility
functions, Luenberger is able to overcome this shortcoming, as the additional
arguments are derived from the so-called invariance inequality.

The chapter concludes by looking at the implementation of the product
approach on a Max option on two and three underlying shares. An interesting
way of viewing an option on three assets as a cube decreasing in size as back-
ward induction occurs is explored.
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A convertible bond is also priced using the product of trees approach. The
Hung method for allowing for credit risk is used. The graphical representation
of the implementation shows how a complex exotic option such as the convert-
ible bond can be valued using the Luenberger approach.

Chapter 5 expands on the idea of increasing the number of underlying
sources of risk by investigating alternative approaches to that of Luenberger.
The BEG, KR and Decoupled approaches are investigated.

The method of Boyle uses binomial moment matching approach that is
shown to be analogous to the product of trees approach. Kamrad and Ritchken
expand on the BEG approach by using a trinomial tree. The addition of the
so-called stretch parameter λ is shown to be an improvement over the BEG
approach, but comes with additional complexity. The parameter needs to be
estimated for every problem, and this requires knowledge of the problem at
hand. It is shown that the method is quite sensitive to the level of the stretch
parameter.

KR mention in their paper that the addition of the stretch parameter over-
comes a weakness of the BEG model where negative probabilities can occur.
This claim is refuted by Herath and Kumar. They introduce the modi�ed KR
approach by including the O(∆t) terms that KR discard in their probability
approximations. Bands for both the stretch parameter as well as the correla-
tion coe�cient are given to ensure positive probabilities

The impact of both the negative probabilities and the exclusion of the
O(∆t) terms by KR is shown to be minimal when ∆t is small. The work by
Herath and Kumar [22] does, however, emphasise the importance of investi-
gating the probabilities for each option.

The third model investigated is the so-called decoupled approach by Korn
and Muller. This approach looks at decoupling an option on dependent sources
of risk into their independent components. An understanding of the variance-
covariance matrix is paramount to this method. There are two ways of de-
coupling the matrix, either by Spectral or Cholesky decomposition. The Korn
and Muller approach results in an algorithm that can be used to price options
on a number of correlated assets.

The chapter concludes by investigating the convergence and computational
intensity of the di�erent methods. It is important to consider the computa-
tional intensity of the approaches, as it is logical that the simultaneous addition
of underlying risk sources and possible states can lead to a problem blowing
up. This explosion is evident in the KR approach when the number of nodes
required to be calculated is determined for each method.
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The convergence patterns are shown, and it is clear that all the methods'
convergence to the analytical prices for the three di�erent options is consid-
ered. This is important to note, as this means that the methods work for
options when the payo� is continuous and discontinuous. The rate of conver-
gence is determined using the error ratio as with the multinomial approach.

Finally some sensitivity analysis is compiled on the options considered.
The Strike level, correlation, and volatility of the underlying shares are varied,
and the impact on the option value is discussed.

This dissertation aimed to investigate tree-based models and their applica-
tions. The investigation included the derivation of a number of models, as well
as the convergence rates and computation intensity of these models. These
models are compared using a number of exotic options that are dependent on
multiple sources of risk. A novel way of looking at a three dimensional option
as a cube is proposed.

Figure 6.1: Underlying Binomial Trees for 3D option

This expansion of the three trees seen in Fig. 6.1 of a three dimensional
option can be seen in Fig. 6.2 below.

The �rst cube of dimension 4 × 4 × 4 depicts the �nal nodes for all three
underlying shares. The next cube is 3 × 3 × 3 and so on. If the option is
European, only the �rst cube will be dependent on the three shares, i.e. each
block "X" contains a function on the three shares. The other cubes will then
be calculated using backward induction and the eight probabilities described
in Chapter 4 and 5. If the option is American each block in each cube will be
dependent on the share values at that time.
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Figure 6.2: Cube View of Backward Induction Process for 3D Option

A number of speci�c objectives were de�ned in Chapter 1. These were
completed as follows:

1. Survey existing literature surrounding the derivation of Binomial trees.

A number of articles are referenced throughout the dissertation.

2. Explore the expansion of the Binomial tree, both in terms of expanding
the number of states and the number of sources of risk.

The Binomial model is investigated in Chapter 2. The methods of ex-
panding are discussed in detail. The multinomial expansion is derived
and the relationship between the Black-Scholes model and the Binomial
tree is highlighted.

3. Investigate some options that are dependent on multiple sources of risk.
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A number of options that depend on more than one source of risk are
introduced. These include Basket and Rainbow options, as well as Con-
vertible bonds.

4. Provide an in depth analysis on the Product of Trees approach

Luenberger's Product of trees approach [43] is introduced and explained.
The dissertation goes beyond the objective of introducing the model, by
expanding the approach to examples where options are dependent on
three sources of risk. A visual method of seeing these types of valuations
as cubes is introduced.

5. Introduce three other methods that can value options on multiple sources
of risk.

The three main methods of valuing options mentioned by the previous
objective are described. These are the BEG model [11], the Kamrad
and Ritchken approach [37] and the Decoupled approach [40]. They are
deduced and explained in detail.

6. Compare the accuracy and e�ciency of the models when implemented
on the options discussed using Matlab.

The methods are tested on the options described by Objective 3. The re-
sults are compared to analytical solutions and the accuracy is discussed.
The Matlab code used is provided in Appendix C.

7. Investigate the convergence patterns and rates of these models.

The methods required in the objectives are used to value options, and
the convergence patterns are discussed in detail. The rate of convergence
for each of the models is measured via the error ratio, and using this ra-
tio, the actual and theoretical convergence is compared.

8. Provide a number of alternative ideas for increasing the amount of liter-
ature available on the topic of expanding the Binomial Tree.

The dissertation highlighted the lack of literature available on the topic
of expanding the Binomial tree into multidimensional models. A num-
ber of topics that come up in the dissertation can be used as a basis for
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future research. These include:

a) Relationships between higher order Finite Di�erence methods and
tree models

b) Convergence of multinomial models on exotic options with discon-
tinuous payo�s

c) Application of the decoupling approach on higher order derivatives

d) Computational improvements of the models described
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Appendix A

Wiener Processes and Ito's Lemma

A.1 Stochastic Processes

A stochastic process can be de�ned as any process where the variable's value
changes over time in an uncertain way [27]. The processes can be divided
into continuous or discrete processes, with continuous or discrete variables. A
stochastic process is said to have the Markov property if the probability dis-
tribution of the price in the future is not dependent on the path followed by
the price in the past.

A variable is said to follow a Wiener process or alternatively called Brow-
nian motion if the following two properties hold [27]:

� ∆Q = ϵ
√
∆t where ϵ has a standard normal distribution ∼ N(0, 1) and

� The values for ∆Q in any two time intervals ∆t are independent.

We can write a generalised Wiener process with drift as:

dx = adt+ bdQ. (A.1.1)

If a and b are functions of x and t, then we have an Ito process:

dx = a(x, t)dt+ b(x, t)dQ. (A.1.2)

A.2 Share Price Processes

Using the de�nitions of a Brownian motion from the previous section, we can
investigate the process followed by a share price. If the return shown by a share
over a period of time is de�ned as µS, the value after one time period ∆t is
µS∆t. If we assume that the volatility is zero, and we let ∆t tend to 0, we �nd:

dS = µSdt, (A.2.1)
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or

dS

S
= µdt. (A.2.2)

If we integrate over time 0 to T, we �nd:

ST = S0e
µT . (A.2.3)

We know that shares have volatility, so if we add it to our equation we �nd:

dS

S
= µdt+ σdQ. (A.2.4)

A.3 Ito's Lemma

In order to price derivatives, a very important result from Ito is required. It
is called Ito's Lemma. We know that a derivative is a function of the share
price. Ito's lemma states that if a variable follows an Ito process [27]:

dS = µ(S, t)dt+ σ(S, t)dQt, (A.3.1)

then a function f that is dependent on x and t follows the following process:

df = (
∂f

∂S
µ+

∂f

∂t
+ 0.5

∂2f

∂S2
σ2)dt+

∂f

∂S
σdQ. (A.3.2)

We can prove this equation using Taylor expansions:

Proof:

If f is a continuous and di�erentiable function of S then we know from Taylor
that:

∆f =
df

dS
∆S + 0.5

d2f

dS2
∆S2 +

1

6

d3f

dS3
∆S3 + ..., (A.3.3)

provides the equation when a small change in S results in a small change in f .

If the function f is dependent on two variables S and t then we have:

∆f =
∂f

∂S
∆S +

∂f

∂t
∆t+ 0.5

∂2f

∂S2
∆S2 +

∂2f

∂S2
∆S∆t+ 0.5

∂2f

∂t2
∆t2 + ... (A.3.4)

If function f follows an Ito process, we have:

dS = µ(S, t)dt+ σ(S, t)dQ. (A.3.5)

If this is discretised we �nd:

∆S = µ(S, t)∆t+ σ(S, t)N
√
∆t, (A.3.6)
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where N is a standard normal variable. If we square Eq. (A.3.7) we have that:

∆S2 = σ(S, t)2N2∆t. (A.3.7)

We can ignore the higher terms of ∆t. Since ∆S2 has a term of order ∆t, it
cannot be ignored.

SinceN has an expected value of 0 and a variance of 1, we know that E[N2] = 1
and thus if ∆t tend to zero, N2∆t will be equal to ∆t. Thus as ∆t tend to
zero, Eq. (A.3.7) becomes:

∆S2 = σ(S, t)2∆t (A.3.8)

If we let ∆t and ∆S tend to zero in Eq. (A.3.4), and we substitute the result
from Eq. (A.3.8) we �nd that:

df =
∂f

∂S
dS +

∂f

∂t
dt+ 0.5

∂2f

∂S2
σ(S, t)2dt (A.3.9)

We can now substitute Eq. (A.3.7) into Eq. (A.3.9) which results in :

df = (
∂f

∂S
dSµ(S, t) +

∂f

∂t
+ 0.5

∂2f

∂S2
σ(S, t)2)dt+

df

dS
σ(S, t)dQt. (A.3.10)

This result can be used to prove the Lognormal property used throughout the
dissertation:

If we let f = lnS we can calculate:

∂f

∂S
=

1

S
(A.3.11)

∂f

∂t
= 0 (A.3.12)

∂2f

∂S2
= − 1

S2
, (A.3.13)

and thus we �nd that from Eq. (A.3.10):

df = (µ(S, t)− 0.5σ(S, t)2)dt+ σ(S, t)dQ. (A.3.14)
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Moment Generating Functions

B.1 Moment Generating Functions

If we let Z be a random variable, then the Moment Generating Function
(MGF) of Z can be de�ne as:

M(t) = E(e(tZ)). (B.1.1)

From the de�nition of Expected value, we have that:

M(t) =

∫ ∞

−∞
etzf(z)dz. (B.1.2)

The moments can be generated from Eq. (B.1.1) as follows:

M(t) = E(e(tZ)) = E[
∞∑
n=0

Zn

n!
tn] =

∞∑
n=0

E[Zn]

n!
tn. (B.1.3)

The derivatives of the MGF at 0 determine all of the moments of the variable,
i.e.:

M (n)(0) = E(Zn). (B.1.4)

For the standard normal distribution, we have the probability density function:

ϕ(z) =
1√
2π

e−0.5z2 . (B.1.5)

The MGF thus becomes:

M(t) = e0.5t
2

, (B.1.6)

and

E[Z2n] =
(2n)!

2nn!
(B.1.7)
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E[Z2n+1] = 0. (B.1.8)

This can be written as:

E[Zn] =

{
(n)!

2
n
2 n

2
!

for all even n

0 for all odd n.



Appendix C

Code

This appendix provides the Matlab code for the results shown in the disserta-
tion. The following �gure depicts the �ow of the code:

Figure C.1: Flow of Matlab Code

C.1 Matlab Code - Multinomial Models

C.1.1 Binomial Lattice
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for k =1:100
%I n i t i a l i s e Parameters

BS = 5 . 3081 ;
S = 100
X = 90
r = 0.05
Div = 0
T = 1
vo l = 0 .3
n = k
dt = T / n ;
alpha = r − ( vo l ^2)/2

RR = exp( r * dt ) ;

w1 = −1;
w2 = 1 ;

P1 = 0 . 5 ; % I n i t i a l i s e p r o b a b i l i t i e s

P2 = 0 . 5 ;

Df = exp(−r * dt ) ;

u = [ exp( alpha *dt + w1* vo l *sqrt ( dt ) ) %i n i t i a l i s e Jump Parameter Matrix

exp( alpha *dt + w2* vo l *sqrt ( dt ) ) ]

for i = 0 : n
State = i + 1 ;
Value ( State ) = max(0 , X − S * u(1 ,1)^ i * u (2 ,1 )^(n − i ) ) ;

end

% Work backwards r e c u r s i v e l y to determine the p r i c e o f the opt ion

for t t = (n − 1):−1:0
for i = 0 : t t

State = i + 1 ;
Value ( State ) = (P1 * Value ( State+1) + P2 * Value ( State ) ) * Df ;

end

end

Binomial (n) = [ Value ( 1 ) ]
error (n) = Binomial (n) − BS
end

C.1.2 Trinomial Lattice

for k =1:100
%I n i t i a l i s e Parameters

BS = 5 . 3081 ;
S = 100
X = 90
r = 0.05
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Div = 0
T = 1
vo l = 0 .3
n = k
dt = T / n ;
alpha = r − ( vo l ^2)/2

RR = exp( r * dt ) ;

w1 = −1.732051;
w2 = 0 .000000 ;
w3 = 1 .732051 ;

P1 = 0 .166667 ; % I n i t i a l i s e p r o b a b i l i t i e s

P2 = 0 .666667 ;
P3 = 0 .166667 ;

Df = exp(−r * dt ) ;

u = [ exp( alpha *dt + w1* vo l *sqrt ( dt ) ) %i n i t i a l i s e Jump Parameter Matrix

exp( alpha *dt + w2* vo l *sqrt ( dt ) )
exp( alpha *dt + w3* vo l *sqrt ( dt ) ) ]

for i = 0 : ( 2 * n)
State = i + 1 ;
Value ( State ) = max(0 , X − S * u(1 ,1)^max( i − n , 0) *

u(3 ,1)^ max(n − i , 0 ) ) ;
end

% Works backwards r e c u r s i v e l y to determine the p r i c e o f the opt ion

for t t = (n − 1):−1:0
for i = 0 : ( t t * 2)

State = i + 1 ;
Value ( State ) = (P1 * Value ( State+2)
+ P2 * Value ( State+1) + P3 * Value ( State ) ) * Df ;

end

end

Trinomial (n) = [ Value ( 1 ) ]
error (n) = Trinomial (n) − BS
end

C.1.3 Pentanomial Lattice

for k = 1:100
%I n i t i a l i s e Parameters

BS = 5 . 3081 ;
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S = 100
X = 90
r = 0.05
Div = 0
T = 1
vo l = 0 .3
n = k
dt = T / n ;
alpha = r − ( vo l ^2)/2

RR = exp( r * dt ) ;
w1 = −2.738608;
w2 = −1.369304;
w3 = 0 .000000 ;
w4 = 1 .369304 ;
w5 = 2 .738608 ;

P1 = 0 .013333 ; % I n i t i a l i s e p r o b a b i l i t i e s

P2 = 0 .213334 ;
P3 = 0 .546666 ;
P4 = 0 .213334 ;
P5 = 0 .013333 ;

Df = exp(−r * dt ) ;

u = [ exp( alpha *dt + w1* vo l *sqrt ( dt ) ) %i n i t i a l i s e Jump Parameter Matrix

exp( alpha *dt + w2* vo l *sqrt ( dt ) )
exp( alpha *dt + w3* vo l *sqrt ( dt ) )
exp( alpha *dt + w4* vo l *sqrt ( dt ) )
exp( alpha *dt + w5* vo l *sqrt ( dt ) ) ]

for i = 0 : n %Finding va l u e s at the f i n a l time

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u(4 ,1)^ i *u (5 ,1 )^(n−i ) ) ;

end ;
for i = n+1:2*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (3 ,1 )^( i−n)*u (4 ,1)^(2*n−i ) ) ;

end ;
for i = 2*n+1:3*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (2 ,1 )^( i−2*n)*u (3 ,1)^(3*n−i ) ) ;

end ;
for i = 3*n+1:4*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (1 ,1 )^( i−3*n)*u (2 ,1)^(4*n−i ) ) ;

end ;



APPENDIX C. CODE 113

% Works backwards r e c u r s i v e l y to determine the p r i c e o f the opt ion

for t t = (n − 1):−1:0
for i = 0 : ( t t * 4)

State = i + 1 ;
Value ( State ) = (P1 * Value ( State + 4) +
P2 * Value ( State + 3) + P3 * Value ( State+2) +
P4*Value ( State+1) + P5*Value ( State ) ) * Df ;

end

end

Pentanomial (n) = [ Value ( 1 ) ]
error (n) = Pentanomial (n) − BS
end

C.1.4 Hexanomial Lattice

for k =1:100
%I n i t i a l i s e Parameters

BS = 5 . 3081 ;
S = 100
X = 90
r = 0.05
Div = 0
T = 1
vo l = 0 .3
n = k
dt = T / n ;
alpha = r − ( vo l ^2)/2

RR = exp( r * dt ) ;
w1 = −3.189031;
w2 = −1.913419;
w3 = −0.637806;
w4 = 0 .637806 ;
w5 = 1 .913419 ;
w6 = 3 .189031 ;

P1 = 0 .003316 ; % I n i t i a l i s e p r o b a b i l i t i e s

P2 = 0 .081193 ;
P3 = 0 .415492 ;
P5 = 0 .081193 ;
P6 = 0 .003316 ;

Df = exp(−r * dt ) ;

u = [ exp( alpha *dt + w1* vo l *sqrt ( dt ) ) %i n i t i a l i s e Jump Parameter Matrix

exp( alpha *dt + w2* vo l *sqrt ( dt ) )
exp( alpha *dt + w3* vo l *sqrt ( dt ) )
exp( alpha *dt + w4* vo l *sqrt ( dt ) )
exp( alpha *dt + w5* vo l *sqrt ( dt ) )
exp( alpha *dt + w6* vo l *sqrt ( dt ) ) ]
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for i = 0 : n %Finding va l u e s at the f i n a l time

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u(5 ,1)^ i *u (6 ,1 )^(n−i ) ) ;

end ;
for i = n+1:2*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (4 ,1 )^( i−n)*u (5 ,1)^(2*n−i ) ) ;

end ;
for i = 2*n+1:3*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (3 ,1 )^( i−2*n)*u (4 ,1)^(3*n−i ) ) ;

end ;
for i = 3*n+1:4*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (2 ,1 )^( i−3*n)*u (3 ,1)^(4*n−i ) ) ;

end ;
for i = 4*n+1:5*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (1 ,1 )^( i−4*n)*u (2 ,1)^(5*n−i ) ) ;

end ; \\

% Works backwards r e c u r s i v e l y to determine the p r i c e o f the opt ion

for t t = (n − 1):−1:0
for i = 0 : ( t t * 5)

State = i + 1 ;
Value ( State ) = (P1 * Value ( State + 5) +
P2 * Value ( State + 4) + P3 * Value ( State+3)
+ P4*Value ( State+2) + P5*Value ( State+1)
+ P6*Value ( State ) ) * Df ;

end

end

Hexanomial (n) = [ Value ( 1 ) ]
error (n) = Hexanomial (n) − BS
end}

C.1.5 Heptanomial Lattice

for k =1:100
%I n i t i a l i s e Parameters

BS = 5 . 3081 ;
S = 100
X = 90
r = 0.05
Div = 0
T = 1
vo l = 0 .3
n = k
dt = T / n ;
alpha = r − ( vo l ^2)/2

RR = exp( r * dt ) ;
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w1 = −3.594559;
w2 = −2.396373;
w3 = −1.198186;
w4 = 0 .000000 ;
w5 = 1 .198186 ;
w6 = 2 .396373 ;
w7 = 3.594559

P1 = 0.000802 % I n i t i a l i s e p r o b a b i l i t i e s

P2 = 0 .026810 ;
P3 = 0 .233813 ;
P4 = 0 .477150 ;
P5 = 0 .233813 ;
P6 = 0 .026810 ;
P7 = 0 .000802 ;

Df = exp(−r * dt ) ;

u = [ exp( alpha *dt + w1* vo l *sqrt ( dt ) ) %i n i t i a l i s e Jump Parameter Matrix

exp( alpha *dt + w2* vo l *sqrt ( dt ) )
exp( alpha *dt + w3* vo l *sqrt ( dt ) )
exp( alpha *dt + w4* vo l *sqrt ( dt ) )
exp( alpha *dt + w5* vo l *sqrt ( dt ) )
exp( alpha *dt + w6* vo l *sqrt ( dt ) )
exp( alpha *dt + w7* vo l *sqrt ( dt ) ) ]

for i = 0 : n %Finding va l u e s at the f i n a l time

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u(6 ,1)^ i *u (7 ,1 )^(n−i ) ) ;

end ;
for i = n+1:2*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (5 ,1 )^( i−n)*u (6 ,1)^(2*n−i ) ) ;

end ;
for i = 2*n+1:3*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (4 ,1 )^( i−2*n)*u (5 ,1)^(3*n−i ) ) ;

end ;
for i = 3*n+1:4*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (3 ,1 )^( i−3*n)*u (4 ,1)^(4*n−i ) ) ;

end ;
for i = 4*n+1:5*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (2 ,1 )^( i−4*n)*u (3 ,1)^(5*n−i ) ) ;

end ;
for i = 5*n+1:6*n

State = i + 1 ;
Value ( State ) = max(0 ,X−S*u (1 ,1 )^( i−5*n)*u (2 ,1)^(6*n−i ) ) ;
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end ;
% Works backwards r e c u r s i v e l y to determine the p r i c e o f the opt ion

for t t = (n − 1):−1:0
for i = 0 : ( t t * 5)

State = i + 1 ;
Value ( State ) = (P1 * Value ( State + 6) +
P2 * Value ( State + 5) + P3 * Value ( State+4) +
P4*Value ( State+3) + P5*Value ( State+2) +
P6*Value ( State+1)+P7*Value ( State ) ) * Df ;

end

end

Heptanomial (n) = [ Value ( 1 ) ]
error (n) = Heptanomial (n) − BS
end

C.2 Matlab Code - Higher Order Models

C.2.1 BEG Model Code - Max Option

for k = 1:10
t ic

%I n i t i a l i s e Parameters

Boyle = 5 . 4 8 8 ;
S_1 = 40 ;
S_2 = 40 ;
X = 40 ;
r = 0 . 04879 ;
T = 0 .58333 ;
vol_1 = 0 . 2 ;
vol_2 = 0 . 3 ;
co r r = 0 . 5 ;
n = k ;
dt = T / n ;

mu_1 = r − ( vol_1 ^2)/2 ;
mu_2 = r − ( vol_2 ^2)/2 ;

RR = exp( r * dt ) ;

p1 = 0.25*(1+ cor r + sqrt ( dt )* ( (mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p2 = 0.25*(1− co r r + sqrt ( dt )* ( (mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p3 = 0.25*(1− co r r + sqrt ( dt )*(−(mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p4 = 0.25*(1+ cor r + sqrt ( dt )*(−(mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
Df = exp(−r * dt ) ;

u_1 = exp( vol_1*sqrt ( dt ) ) ;
u_2 = exp( vol_2*sqrt ( dt ) ) ;
d_1 = 1/u_1 ;
d_2 = 1/u_2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Share va l u e s at time T

for i = 1 : n+1;
for j = i : n+1;

S1 ( i , j ) = max(S_1*u_1^( j−i )*d_1^( i−1)−X, 0 ) ;
S2 ( i , j ) = max(S_2*u_2^( j−i )*d_2^( i−1)−X, 0 ) ;

end

end

T = zeros (n+1,n+1,n+1);
U = zeros (n+1,n+1,n+1);
P = zeros (n+1,n+1,n+1);
for j = 1 : 1 : n+1

T( : , : , j ) = repmat ( S1 ( : , j ) , 1 , n+1);
U( : , : , j ) = repmat ( S2 ( : , j ) , 1 , n+1);
P ( : , : , j ) = max(T( : , : , j ) ,U( : , : , j ) ' ) ;

end

E = zeros (n+1,n+1,n+1);
E ( : , : , n+1) = P( : , : , n+1);
for j = n:−1:1

for i = 1 : 1 : j
for k = 1 : 1 : j
E( i , k , j ) = (p1*E( i , k , j+1)+p2*E( i , k+1, j +1)

+p3*E( i +1,k , j+1)+p4*E( i +1,k+1, j +1))*Df ;
end

end

end

European (n) = [E( 1 , 1 , 1 ) ]
toc

end

C.2.2 BEG Model Code - Product Option

for k = 1:250
t ic

%I n i t i a l i s e Parameters

BS = 3 .26214 ;
S_1 = 22 ;
S_2 = 20 ;
X = 20 ;
r = 0 . 1 ;
T = 1 ;
vol_1 = 0 . 2 ;
vol_2 = 0 . 2 5 ;
co r r = 0 . 5 ;
n = k ;
dt = T / n ;

mu_1 = r − ( vol_1 ^2)/2 ;
mu_2 = r − ( vol_2 ^2)/2 ;

RR = exp( r * dt ) ;

p1 = 0.25*(1+ cor r + sqrt ( dt )* ( (mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
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p2 = 0.25*(1− co r r + sqrt ( dt )* ( (mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p3 = 0.25*(1− co r r + sqrt ( dt )*(−(mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p4 = 0.25*(1+ cor r + sqrt ( dt )*(−(mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
Df = exp(−r * dt ) ;

u_1 = exp( vol_1*sqrt ( dt ) ) ;
u_2 = exp( vol_2*sqrt ( dt ) ) ;
d_1 = 1/u_1 ;
d_2 = 1/u_2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Share va l u e s at time T

for i = 1 : n+1;
for j = i : n+1;

S1 ( i , j ) = S_1*u_1^( j−i )*d_1^( i −1);
S2 ( i , j ) = S_2*u_2^( j−i )*d_2^( i −1);

end

end

T = zeros (n+1,n+1,n+1);
U = zeros (n+1,n+1,n+1);
P = zeros (n+1,n+1,n+1);
for j = 1 : 1 : n+1

T( : , : , j ) = repmat ( S1 ( : , j ) , 1 , n+1);
U( : , : , j ) = repmat ( S2 ( : , j ) , 1 , n+1);
P ( : , : , j ) = max( sqrt (T( : , : , j ) . *U( : , : , j ) ' ) − X, 0 ) ;

end

A = zeros (n+1,n+1,n+1);
A( : , : , n+1) = P( : , : , n+1);
E = zeros (n+1,n+1,n+1);
E ( : , : , n+1) = P( : , : , n+1);
for j = n:−1:1

for i = 1 : 1 : j
for k = 1 : 1 : j
E( i , k , j ) = (p1*E( i , k , j+1)+p2*E( i , k+1, j +1)

+p3*E( i +1,k , j+1)+p4*E( i +1,k+1, j +1))*Df ;
end

end

end

European (n) = [E( 1 , 1 , 1 ) ]
toc

end

C.2.3 BEG Model Code - Digital Option

for k = 1:240
t ic

%I n i t i a l i s e Parameters

S_1 = 12 ;
S_2 = 12 ;
r = 0 . 1 ;
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T = 1 ;
vol_1 = 0 . 2 ;
vol_2 = 0 . 2 5 ;
co r r = 0 . 5 ;
n = k ;
dt = T / n ;

mu_1 = r − ( vol_1 ^2)/2 ;
mu_2 = r − ( vol_2 ^2)/2 ;

RR = exp( r * dt ) ;

p1 = 0.25*(1+ cor r + sqrt ( dt )* ( (mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p2 = 0.25*(1− co r r + sqrt ( dt )* ( (mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p3 = 0.25*(1− co r r + sqrt ( dt )*(−(mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p4 = 0.25*(1+ cor r + sqrt ( dt )*(−(mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
Df = exp(−r * dt ) ;

u_1 = exp( vol_1*sqrt ( dt ) ) ;
u_2 = exp( vol_2*sqrt ( dt ) ) ;
d_1 = 1/u_1 ;
d_2 = 1/u_2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Share va l u e s at time T

for i = 1 : n+1;
for j = i : n+1;

S1 ( i , j ) = S_1*u_1^( j−i )*d_1^( i −1) − 17 ;
S2 ( i , j ) = S_2*u_2^( j−i )*d_2^( i −1) − 20 ;

end

end

T = zeros (n+1,n+1,n+1);
U = zeros (n+1,n+1,n+1);
P = zeros (n+1,n+1,n+1);
for j = 1 : 1 : n+1

T( : , : , j ) = repmat ( S1 ( : , j ) , 1 , n+1);
U( : , : , j ) = repmat ( S2 ( : , j ) , 1 , n+1);

end

for j = 1 : 1 : n+1
for i = 1 : 1 : j

for k = 1 : 1 : j
P( i , k , j ) = 0 ;

i f T( i , k , j ) >= 0 & U(k , i , j ) >= 0 ;
P( i , k , j ) = 100 ;

end

end
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end

end

E = zeros (n+1,n+1,n+1);
E ( : , : , n+1) = P( : , : , n+1) ' ;
for j = n:−1:1

for i = 1 : 1 : j
for k = 1 : 1 : j
E( i , k , j ) = (p1*E( i , k , j+1)+p2*E( i , k+1, j +1)

+p3*E( i +1,k , j+1)+p4*E( i +1,k+1, j +1))*Df ;
end

end

end

European (n) = [E( 1 , 1 , 1 ) ]
toc

end

C.2.4 KR Model Code - Max Option

for k = 1:160
t ic

%I n i t i a l i s e Parameters

Boyle = 5 . 4 8 8 ;
S_1 = 40 ;
S_2 = 40 ;
X = 40 ;
r = 0 . 04879 ;
T = 0 .58333 ;
vol_1 = 0 . 2 ;
vol_2 = 0 . 3 ;
co r r = 0 . 5 ;
n = k ;
dt = T / n ;

mu_1 = r − ( vol_1 ^2)/2 ;
mu_2 = r − ( vol_2 ^2)/2 ;
lambda = 1 .11803 ;

RR = exp( r * dt ) ;

p1 = 0.25*((1+ cor r )/ ( lambda^2) + ( sqrt ( dt )/ lambda )* ( (mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p2 = 0.25*((1− co r r )/ ( lambda^2) + ( sqrt ( dt )/ lambda )* ( (mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p3 = 0.25*((1+ cor r )/ ( lambda^2) + ( sqrt ( dt )/ lambda)*(−(mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p4 = 0.25*((1− co r r )/ ( lambda^2) + ( sqrt ( dt )/ lambda)*(−(mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p5 = 1 − (1/( lambda ^2 ) ) ;
Df = exp(−r * dt ) ;

u_1 = exp( lambda*vol_1*sqrt ( dt ) ) ;
u_2 = exp( lambda*vol_2*sqrt ( dt ) ) ;
d_1 = 1/u_1 ;
d_2 = 1/u_2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Share va l u e s at time T

for j =1:n+1
S1 (1 , j ) = S_1*u_1^( j−1)
S2 (1 , j ) = S_2*u_2^( j−1)

for i =1:2*n+1
i f i==j
S1 ( i , j ) = S_1
S2 ( i , j ) = S_2
end

i f i == 2* j−1
S1 ( i , j ) = S_1*d_1^( j−1)
S2 ( i , j ) = S_2*d_2^( j−1)

end

end

end

for j = 3 : n+1
for i = 2 : 2*( j−1)

S1 ( i , j ) = S1 ( i −1, j −1);
S2 ( i , j ) = S2 ( i −1, j −1);

end

end

T = zeros (2*n+1,2*n+1,n+1);
U = zeros (2*n+1,2*n+1,n+1);
P = zeros (2*n+1,2*n+1,n+1);
for j = 1 : 1 : n+1

T( : , : , j ) = repmat ( S1 ( : , j ) , 1 , 2*n+1);
U( : , : , j ) = repmat ( S2 ( : , j ) , 1 , 2*n+1);
P ( : , : , j ) = max(max(T( : , : , j ) ,U( : , : , j ) ')−X, 0 ) ;

end

E = zeros (2*n+1,2*n+1,n+1);
E ( : , : , n+1) = P( : , : , n+1);
for j = n:−1:1

for i = 1 : 1 : j *2−1
for k = 1 : 1 : j *2−1
E( i , k , j ) = (p1*E( i , k , j+1)+p2*E( i , k+2, j +1)

+p4*E( i +2,k , j+1)+p3*E( i +2,k+2, j+1)+ p5*E( i +1,k+1, j +1))*Df ;
end

end

end

European (n) = [E( 1 , 1 , 1 ) ]
toc

end

C.2.5 KR Model Code - Product Option

for k = 1:100
t ic

%I n i t i a l i s e Parameters

BS = 3 .26214 ;
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S_1 = 22 ;
S_2 = 20 ;
X = 20 ;
r = 0 . 1 ;
T = 1 ;
vol_1 = 0 . 2 ;
vol_2 = 0 . 2 5 ;
co r r = 0 . 5 ;
n = k ;
dt = T / n ;

mu_1 = r − ( vol_1 ^2)/2 ;
mu_2 = r − ( vol_2 ^2)/2 ;
lambda = 1 .11803 ;

RR = exp( r * dt ) ;

p1 = 0.25*((1+ cor r )/ ( lambda^2) + ( sqrt ( dt )/ lambda )* ( (mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p2 = 0.25*((1− co r r )/ ( lambda^2) + ( sqrt ( dt )/ lambda )* ( (mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p3 = 0.25*((1+ cor r )/ ( lambda^2) + ( sqrt ( dt )/ lambda)*(−(mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p4 = 0.25*((1− co r r )/ ( lambda^2) + ( sqrt ( dt )/ lambda)*(−(mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p5 = 1 − (1/( lambda ^2 ) ) ;
Df = exp(−r * dt ) ;

u_1 = exp( lambda*vol_1*sqrt ( dt ) ) ;
u_2 = exp( lambda*vol_2*sqrt ( dt ) ) ;
d_1 = 1/u_1 ;
d_2 = 1/u_2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Share va l u e s at time T

for j =1:n+1
S1 (1 , j ) = S_1*u_1^( j−1)
S2 (1 , j ) = S_2*u_2^( j−1)

for i =1:2*n+1
i f i==j
S1 ( i , j ) = S_1
S2 ( i , j ) = S_2
end

i f i == 2* j−1
S1 ( i , j ) = S_1*d_1^( j−1)
S2 ( i , j ) = S_2*d_2^( j−1)

end

end

end

for j = 3 : n+1
for i = 2 : 2*( j−1)

S1 ( i , j ) = S1 ( i −1, j −1);
S2 ( i , j ) = S2 ( i −1, j −1);

end

end
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T = zeros (2*n+1,2*n+1,n+1);
U = zeros (2*n+1,2*n+1,n+1);
P = zeros (2*n+1,2*n+1,n+1);
for j = 1 : 1 : n+1

T( : , : , j ) = repmat ( S1 ( : , j ) , 1 , 2*n+1);
U( : , : , j ) = repmat ( S2 ( : , j ) , 1 , 2*n+1);
P ( : , : , j ) = max( sqrt (T( : , : , j ) . *U( : , : , j ) ' ) − X, 0 ) ;

end

E = zeros (2*n+1,2*n+1,n+1);
E ( : , : , n+1) = P( : , : , n+1);
for j = n:−1:1

for i = 1 : 1 : j *2−1
for k = 1 : 1 : j *2−1
E( i , k , j ) = (p1*E( i , k , j+1)+p2*E( i , k+2, j +1)

+p4*E( i +2,k , j+1)+p3*E( i +2,k+2, j+1)+ p5*E( i +1,k+1, j +1))*Df ;
end

end

end

European (n) = [E( 1 , 1 , 1 ) ]
toc

end

C.2.6 KR Model Code - Digital Option

for k = 1:160
t ic

%I n i t i a l i s e Parameters

S_1 = 12 ;
S_2 = 12 ;
r = 0 . 1 ;
T = 1 ;
vol_1 = 0 . 2 ;
vol_2 = 0 . 2 5 ;
co r r = 0 . 5 ;
n = k ;
dt = T / n ;
mu_1 = r − ( vol_1 ^2)/2 ;

mu_2 = r − ( vol_2 ^2)/2 ;
lambda = 1 .11803 ;

RR = exp( r * dt ) ;

p1 = 0.25*((1+ cor r )/ ( lambda^2) + ( sqrt ( dt )/ lambda )* ( (mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p2 = 0.25*((1− co r r )/ ( lambda^2) + ( sqrt ( dt )/ lambda )* ( (mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p3 = 0.25*((1+ cor r )/ ( lambda^2) + ( sqrt ( dt )/ lambda)*(−(mu_1/vol_1)−(mu_2/vol_2 ) ) ) ;
p4 = 0.25*((1− co r r )/ ( lambda^2) + ( sqrt ( dt )/ lambda)*(−(mu_1/vol_1)+(mu_2/vol_2 ) ) ) ;
p5 = 1 − (1/( lambda ^2 ) ) ;
Df = exp(−r * dt ) ;

u_1 = exp( lambda*vol_1*sqrt ( dt ) ) ;
u_2 = exp( lambda*vol_2*sqrt ( dt ) ) ;
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d_1 = 1/u_1 ;
d_2 = 1/u_2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Share va l u e s at time T

for j =1:n+1
S1 (1 , j ) = S_1*u_1^( j−1)
S2 (1 , j ) = S_2*u_2^( j−1)

for i =1:2*n+1
i f i==j
S1 ( i , j ) = S_1
S2 ( i , j ) = S_2
end

i f i == 2* j−1
S1 ( i , j ) = S_1*d_1^( j−1)
S2 ( i , j ) = S_2*d_2^( j−1)

end

end

end

for j = 3 : n+1
for i = 2 : 2*( j−1)

S1 ( i , j ) = S1 ( i −1, j −1);
S2 ( i , j ) = S2 ( i −1, j −1);

end

end

T = zeros (2*n+1,2*n+1,n+1);
U = zeros (2*n+1,2*n+1,n+1);

for j = 1 : 1 : n+1
T( : , : , j ) = repmat ( S1 ( : , j ) , 1 , 2*n+1);
U( : , : , j ) = repmat ( S2 ( : , j ) , 1 , 2*n+1);

end

P = zeros (2*n+1,2*n+1,n+1);
for j = 1 : 1 : n+1

for i = 1 : 1 : j
for k = 1 : 1 : j

P( i , k , j ) = 0 ;
i f T( i , k , j )−17 >= 0 & U(k , i , j )−20 >= 0 ;

P( i , k , j ) = 100 ;
end

end

end

end

E = zeros (2*n+1,2*n+1,n+1);
E ( : , : , n+1) = P( : , : , n+1);
for j = n:−1:1
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for i = 1 : 1 : j *2−1
for k = 1 : 1 : j *2−1
E( i , k , j ) = (p1*E( i , k , j+1)+p2*E( i , k+2, j +1)

+p4*E( i +2,k , j+1)+p3*E( i +2,k+2, j+1)+ p5*E( i +1,k+1, j +1))*Df ;
end

end

end

European (n) = [E( 1 , 1 , 1 ) ]
toc

end

C.2.7 Decoupled Model Code - Product Option

for k = 1:10
t ic

%I n i t i a l i s e Parameters

BS = 3 .26214 ;
S_1 = 22 ;
S_2 = 20 ;
X = 20 ;
r = 0 . 1 ;
T = 1 ;
vol_1 = 0 . 2 ;
vol_2 = 0 . 2 5 ;
co r r = 0 . 5 ;
n = k ;
dt = T / n ;

Df = exp(−r * dt ) ;

M = [ vol_1^2 co r r *vol_1*vol_2
co r r *vol_1*vol_2 vol_2 ^2 ] ;

R = [ r
r ] ;

Sigma2 = [ vol_1^2
vol_2^2]

G = chol (M) ;
Ginv = inv (G) ;
alpha = Ginv *(R − 0 .5* Sigma2 ) ;

Y = Ginv * [ log (S_1 ) ;
log (S_2 ) ] ;
Y1 = zeros (n+1,n+1);
Y2 = zeros (n+1,n+1);
Y1(1 , 1 ) = Y( 1 ) ;
Y2(1 , 1 ) = Y( 2 ) ;
for j = 2 : n+1;
Y1(1 , j ) = Y1(1 , j−1) + alpha (1)* dt + sqrt ( dt ) ;
Y2(1 , j ) = Y2(1 , j−1) + alpha (2)* dt + sqrt ( dt ) ;

end
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for i = 2 : n+1;
for j = i : n+1;

Y1( i , j ) = Y1( i −1, j−1) + alpha (1)* dt − sqrt ( dt ) ;
Y2( i , j ) = Y2( i −1, j−1) + alpha (2)* dt − sqrt ( dt ) ;

end

end

for i = 1 : n+1;
for j = 1 : n+1;
H1( i , j ) = exp(G( 1 , : ) * [ Y1( i , j ) Y2( i , j ) ] ' ) ' ;
H2( i , j ) = exp(G( 2 , : ) * [ Y1( i , j ) Y2( i , j ) ] ' ) ' ;
end

end

T = zeros (n+1,n+1,n+1);
U = zeros (n+1,n+1,n+1);
P = zeros (n+1,n+1,n+1);
for j = 1 : 1 : n+1

T( : , : , j ) = repmat (H1 ( : , j ) , 1 , n+1);
U( : , : , j ) = repmat (H2 ( : , j ) , 1 , n+1);
P ( : , : , j ) = max( sqrt (T( : , : , j ) . *U( : , : , j ) ' ) − X, 0 ) ;

end

p=0.25
E = zeros (n+1,n+1,n+1);
E ( : , : , n+1) = P( : , : , n+1);
for j = n:−1:1

for i = 1 : 1 : j
for k = 1 : 1 : j
E( i , k , j ) = (p*E( i , k , j+1)+p*E( i , k+1, j +1)

+p*E( i +1,k , j+1)+p*E( i +1,k+1, j +1))*Df ;
end

end

end

Decoupled (n) = [E( 1 , 1 , 1 ) ]
toc

end
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