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In this dissertation we take a look at the rise of interest rate basis spreads in the market
following the liquidity and credit crunch of 2008. We show that post 2008 the valuation of
all interest rate instruments of a single yield curve for a particular currency is no longer a
feasible approach and the assumption of no arbitrage between different tenors is no longer
applicable. Following that a closer look is taken into the cause of such widening basis
spreads and the impact they have had on the market with a focus on reconstituting the
no arbitrage argument and looking at a post crisis multiple curve framework following
an axiomatic approach as introduced by Henrard [37] and further explored by Bianchetti
and Morini [6, 50]. A bottom-up market approach is taken by Ametrano [2] and the two
approaches are shown to be equivalent in result. An analogy is made to quanto style cross
currency swap adjustments observed by the aforementioned authors as well as Michaud
and Upper [47], and Tuckman and Porfirio [57].

We proceed to look at the approaches taken by authors such as Henrard [36, 37] in ex-
tending the Black and Stochastic Alpha Beta Rho models to include basis spreads and
Kijima et al. [42] who extend a model introduced by Boenkost and Schmidt [11] and put
forward a quadratic Gaussian model and a Vasicek model. Mercurio [46] puts forward
an extension to the LIBOR Market Model (also referred to as the Brace-Gatarek-Musiela
model) under both forward measures and spot measures.

Finally we consider the rise of using overnight index swaps in construction OIS discount
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curves and their application in the valuation of interest rate derivatives in the presence

of collateral as well as reconciling the spread between OIS and vanilla interest rate swaps

with credit risk measures.
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NOMENCLATURE x

Nomenclature

Acronyms and Abbreviations
Acronym/Abbreviation Description
AxB FRA A Forward Rate Agreement (see below under FRA) with a the

forward period being the period of time starting A months from
today and ending B months from today, e.g. a 3x6 FRA has the
floating reference period being the three month period starting
three months from today and ending six months from today.

bps Basis points; refers to a percent of one percent or 0.0001.
BBA British Bankers’ Association; an association for the United King-

dom’s banking and financial services sector.
CCY Cross Currency, often used in the context of a cross currency swap

as CCY Swap.
CDS Credit Default Swap; a particular type of swap where a stream of

payments is exchanged for a nominal amount should a particular
default event occur.

CSA Credit Support Annex; an annex to an ISDA master agreement
defining the placement of collateral (see ISDA).

EUR Euros; EUR is the International Standards Organization’s code
for the Euro.

EURIBOR Euro Interbank Offered Rate which is the equivalent to LIBOR in
the Eurozone interbank market (see LIBOR). EURIBOR differs
from EUR LIBOR in that EURIBOR is the rate at which Euros
could be raised in the Eurozone interbank market as opposed to
the London interbank market.

EONIA Euro Overnight Index Average; weighted average of overnight un-
secured lending transactions in the Eurozone interbank market.

FRA Forward Rate Agreement; an interest rate instrument exchange
a single fixed payment at some future date for a floating interest
rate payment.

FX Foreign Exchange.
GBP Great British Pounds; the ISO code for Great British Pounds, or

Pounds Sterling.
ISDA International Swaps and Derivative Association; a body governing

derivative transactions. Referring to “an ISDA” most often refers
to an ISDA master agreement, an contract governing the general
terms under which derivatives would be transacted under.

ISO International Standards Organization, an organisation governing
the setting of specific standards.

JIBAR Johannesburg Interbank Agreed Rate; the South African inter-
bank market equivalent of LIBOR (see LIBOR).
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Acronym/Abbreviation Description
LIBOR London Interbank Offered Rate; the average of the estimated rate

at which banks in the London interbank market could borrow
from one another, used as a fixing or reset rate for interest rate
derivatives. USD LIBOR, GBP LIBOR and EUR LIBOR would
each represent the rate at which US Dollars, British Pounds and
Euros could be raised respectively.

LMM LIBOR Market Model; also known as the BGM (Brace-Gaterek-
Musiela) after the authors who first introduced it, a model to
describe the interest rate markets and the dynamics of forward
rates.

OIS Overnight Indexed Swap; a type of interest rate swap exchanging
a floating overnight rate for a fixed rate.

SABOR South African Benchmark Overnight Rate; the benchmark for
rates paid in the South African interbank market.

SABR Stochastic Alpha Beta Rho; a stochastic volatility model aimed
at modelling the volatility smile in derivatives markets.

USD United States Dollars; USD is the ISO code for United States
Dollars, often also abbreviated as US Dollars.

X-BOR X-Bank Offered Rate; occasionally used to specify a generic fixing
rate, such as LIBOR.

ZAR Zuid-Afrikaanse Rand; the ISO code for the South African Rand.

Symbol Description
∈ Is an element of; denotes when a particular variable or set is an element or subset

of another set.
∀ For all; used to denote that a particular equation or expression is true for all values

of some variable.
P Probability; used to denote a probability function. P(A|B) denotes the probability

of an event A occurring given that an B is true.
t Time; used to denote a point in time.
t0 Time zero; used to denote today.
T Maturity time; used to denote a maturity date or time of an instrument, though

not exclusively so.
≈ Approximately equal to; used either when due to rounding or limited space a

particular number cannot be fully expressed (e.g. π ≈ 3.14) or when a particular
function or equation does not have an exact answer but has an approximate answer
determined via some process e.g. Monte Carlo simulation.

6= Does not equal to; used to express an inequality.
V ar Variance; V arQ(X) would denote the variance of X under the measure Q.
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Chapter 1

Introduction

Beginning in August 2007 and continuing through 2008 the world’s finan-
cial markets experienced a global liquidity crunch. The financial markets
experienced a shortage in market liquidity and funding liquidity (the lack of
funding or extension of credit was often referred to as the 2008 credit crunch).
This financial crisis and liquidity crunch also brought to light various short-
comings in in financial model’s ability to accurately measure liquidity risks
as well as certain counterparty credit risks linked to liquidity risk. One of
the effects of the 2008 liquidity crunch was the rise of interest rate basis and
the breakdown of prevalent interest rate models which introduced arbitrage
into what was previously considered an arbitrage free market. This gave rise
to increasing basis spreads and introduced basis risk into traditionally basis
free models.

The aim of this dissertation is to take a look at the pre and post 2008 interest
rate models and interest rate curve construction methodologies and show how
the rise of interest rate basis in the wake of the 2008 liquidity crisis led to the
pre 2008 models and methodologies no longer being applicable, to explain
the causes of this divergence, and to take a look at which new models and
methodologies could be proposed and implemented to take into account the
increasing basis spreads. Being a relatively new phenomenon there is unfor-
tunately a lack of available long term data as well as limited understanding
and research of the subject. One of the benefits of such a study would be
to illustrate the loss of no arbitrage assumptions post 2008, collate the var-
ious new approaches proposed, see how no arbitrage assumptions could be
reclaimed, and how the new approaches and models can be reconciled with
other changes arising after the 2008 liquidity crunch such as the rise of CVA
(credit valuation adjustments) and of multiple discount curves to take into
account counterparty risk and the effect of collateral. We will thus also take
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CHAPTER 1. INTRODUCTION 2

a look at the impact of inter-bank credit default risk as well as collateralisa-
tion on the valuation and pricing of interest rate derivatives and specifically
the use of overnight index swaps and their corresponding basis spreads for
the construction of overnight rate curves.

To achieve this we will initially take a look at the pre 2008 crisis models and
show how, before the liquidity crunch, there were no significant basis spreads
prevalent in constructing the various interest rate curves used to price and
value interest rate derivatives. We initially introduce some background the-
ory in Chapters 2 and 3 leading into Chapter 4 in which the common interest
rate curve construction methods and forward rate estimation methods before
the crisis will be investigated.

This is followed by applying the same methods and models to post 2008
market data to determine if they would still be applicable after the 2008
liquidity crunch and the rise of large interest rate basis spreads quoted in the
market. We wish to show that post 2008 the assumptions used in the original
models are no longer applicable and would give rise to perceived arbitrage
opportunities and to explore some possible explanations to this breakdown
of previous no arbitrage assumptions. This is done in Chapter 5 along with
exploring some possible new approaches to model this basis risk to reclaim
the assumption of no arbitrage and to explain the rise of multiple curve inter-
est rate frameworks. In Chapter 6 we aim to look at some post crisis market
models as proposed by various authors and how these models are extensions
of existing pre crisis models and frameworks. Of specific interest are exten-
sions to the Black model, the SABR/CEV model, the Vasicek model and the
LIBOR Market Model.

The 2008 liquidity crunch also gave rise to the concern that banks and other
sources of funding can fail and previously assumed “risk-free” curves could
no longer be considered as such. In Chapter 7 we take a look at pricing
and modelling of interest rate instruments when banks can default as well as
the impact of netting agreements and presence or absence of collateral. We
specifically take a look at the rise of overnight index swap curves used for
discounting in the presence of collateral and the construction of such curves.
Finally we attempt to reconcile overnight index swap curve discounting with
basis spreads in the market and other credit risk measures (for example credit
default swap spreads).
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1.1 Plan of Study

Consider the rise of basis spreads as observed in the interest rate market
and to the cause such basis spread. Further to understand the implications
of basis spreads on discounting and pricing interest rate derivatives in the
interbank market both in the absence and presence of collateral. We wish to
take a look at the pre-crisis approach to interest rate derivative pricing and
how under the rise of basis spreads for instruments with different tenors the
previously held assumption of no arbitrage in a single curve framework would
breakdown. We then wish to investigate how such a no arbitrage assumption
could be reclaimed and how under such a new framework these basis spreads
could be included in some of the pre-crisis prevalent interest rate models.
Finally we wish to explore the concept of a “risk-free” curve and whether the
current forward rate curve would still be applicable and if not what approach
could be taken to approximate such a curve. To do this we would take a
look at how the interbank market has reacted to the pricing of interest rate
derivatives transacted under daily cash collaterlisation which would greatly
mitigate any default risk in the interbank market.

1.2 Literature Review

The literature to be reviewed covers several interlinking topics. The review
often covers work done simultaneously by different authors and expanded
upon by others.

Tuckman and Porfirio [57] show that interest rate parity conditions require
default free rates and that the practice of using interest rates swaps is not
appropriate as they inherently do contain an element of default risk. They
derive interest rate parity conditions dependent on basis swap spreads and
reveal the credit risk inherent in one floating rate versus another. Chibane
and Sheldon [17] further set the scene addressing issues surrounding basis
swap adjustments and the state of discount curve construction. The authors
also extend the framework to the joint existence of single currency swaps,
cross currency swaps and money market basis swaps.

Mercurio [46] describes some of the major changes that occurred in the mar-
ket post subprime mortgage crisis. Starting with former analogies, such as
presented by Hull [38] in Options, Futures and Other Derivatives, allowing
the construction of zero curves [32, 38] the author shows the changes resulting
post August 2007. Seeing as the former analogies no longer hold the author
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then investigates the framework allowing for the existence of different values
for same tenor rates. The paper shows how to generalise the main market
models to account for the new market practice of using multiple curves. Fi-
nally a new LIBOR Market Model is introduced based on the joint evolution
of FRA rates under different measures.

Mercurio [46] expands on work that was simultaneously proposed by Morini
and which was subsequently expanded upon by Morini in [50]. Morini [50]
begins with the widening between the market quotes for FRAs and their
standard spot LIBOR replication. The author also looks at the large basis
spreads for floating payments of different tenors. The author uses quoted
basis spreads to explain the difference between FRAs and spot LIBOR and
then explains the market patterns of basis spreads by modelling them as
options in the credit worthiness of a counterparty. In Part 2 the author con-
siders a credit risk factor to link spot and forward quotes. An important
finding though is that credit risk alone cannot explain the market patterns
and thus the author expands upon other elements. The author also observes
the analogy between Foreign Exchange and decoupled forward and discount
curves introduced by Bianchetti [6].

Ametrano and Bianchetti [2] explore how large basis spreads (as observed
in Swap markets) implied that different yield curves are required for forward
rate estimation at different tenors. The authors explore current methodolo-
gies for creating smooth yield curves. They then review the market practice
for pricing and hedging interest rate derivatives and present a double-curve
approach. They describe a bootstrapping procedure and review Euro market
instruments available for yield curve construction. The authors also investi-
gate the impact of the role played by the, quite fundamental, interpolation
scheme adopted. Finally numerical results are depicted for Euro Interbank
Offered Rates (EURIBOR) of varying tenor.

Expanding on that work; Bianchetti [6] proposes that single-curve no ar-
bitrage relationships are no longer valid and can be recovered by taking into
account forward basis. He also takes into account a “foreign currency anal-
ogy” using a quanto adjustment for double curve market-like formulas for
various interest rate derivatives and notes that previously the subject matter
has been explored mostly in the context of cross currency swap basis. The au-
thor cites Wolfram Boenkost and Wolfgang Schmidt [11] whose methodology
for pricing cross-currency swaps coincides with the procedure he described
in [6].
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Fries [24] brings in funding costs and counterparty risk for swap pricing and
valuation showing that it has become non-trivial. The widespread use of col-
lateral has changed the effective funding cost for many financial institutions
[27].

Fujii, Shimada and Takahashi [28, 25, 26, 27] further elaborate that sim-
ple market models no longer reflect the exposure to basis spreads in pricing
and hedging. The authors, similar to [24], introduce collateral and explain
methods to construct a market model as well as multiple swap curves with
and without collateral agreements. They further expand the effect collateral
has had when multiple currencies are considered [27]. The basis spreads are
considered dynamic and all factors are stochastic. The authors extend the
work of Johannes and Sundaresan to include contracts which have differing
payment and collateral currencies. Also expanded upon is a general multi
currency Heath Jarrow Morton framework in the presence of collateral and
stochastic basis spreads.

Of final interest is the spread between Treasury bonds and interest rate swaps
(commonly referred to as Swap Spreads). Whilst the literature thus covered
is focused primarily on the derivatives market, modelling swap spreads may
be of particular interest when considering interest rate basis as in many mar-
kets, such as the South African market, these are readily quoted as asset
packs (a treasury bond sold together with with a similar maturity interest
rate swap hedge). Feldhütter and Lando [23] analyse a six factor model for
Treasury bonds, corporate bonds and swap rates; decomposing them into a
convenience yield for holding treasury bonds, a credit risk element from the
underlying rates and a factor specific to the swap market. They also pose
the question of whether treasury yields or swap rates would be closer to the
“risk-free” rate. This ties back to the original literature given that the orig-
inal analogies for risk-free rates and swap curve discounting no longer hold.
Related to this; Bhansali, Schwarzkopf and Wise [5] develop an integrated
model for the term structure of swap spreads. They also look at the effect of
liquidity crisis on the the traditional swap curve and its term structure.



Chapter 2

Great Expectations

In this chapter we shall introduce some probability theory, define some of the
necessary probability theory and give an outline of the concepts of equivalent
martingale measures and the change of numeraire technique so as to create
a more rigorous framework for the market model described in Chapter 3.

2.1 Market Dynamics

It will be useful to discuss some expectation theory as a basis for the various
models to be discussed throughout this paper. Björk’s Arbitrage Theory in
Continuous Time [9] and Brigo and Mercurio’s Interest Rate Models, Theory
and Practice [13] give nice outlines in their respective books and some of the
definitions below will be from those two books.

Let us first define a trading strategy

Definition 2.1 (Trading Strategy). A trading strategy [9, 13] is a K + 1
dimensional process φ = {φt : 0 ≤ t ≤ T} whose components are locally
bounded and predictable and the value process associated with φ is defined
by

Vt(φ) = φtSt =
K∑
k=0

φktS
k
t , 0 ≤ t ≤ T,

and the gains process associated with φ is

Gt(φ) =

∫ t

0

φt dSu =
K∑
k=0

∫ t

0

φku dSku, 0 ≤ t ≤ T.

6



CHAPTER 2. GREAT EXPECTATIONS 7

Consider the component φkt to be the number of units of security k held
at time t. Predictability of φkt simply means that the value of φkt is known
immediately before t. Vt(φ) is thus the value of such a portfolio and Gt(φ) are
the cumulative gains or losses realised until time t by adopting the strategy
φ. We are primarily concerned with trading strategies which do not require
external cashflows which we name a self-financing trading strategy.

Definition 2.2 (Self-financing Trading Strategy). A self-financing trad-
ing strategy [9, 13] is a trading strategy φ where the following condition
holds true

Vt(φ) = V0(φ) +Gt(φ), 0 ≤ t ≤ T. (2.1)

Thus the value of a self-financing trading strategy is dependant only on the
market value of the securities and no additional cash inflows or outflows occur
after the initial time. A portfolio is simply a collection of securities or assets
used in our trading strategy. In terms of a self-financing trading strategy we
can now define a multi-period arbitrage condition.

Definition 2.3 (Arbitrage). An arbitrage possibility [9, 13] is a self financ-
ing portfolio φ with the properties

Vt(φ) = 0,

P (VT (φ) ≥ 0) = 1,

P (Vt(φ) > 0) > 0.

(2.2)

The concept of arbitrage and the assumption of no arbitrage in the market
will be explored in greater detail in Chapters 3 and 4.

We now have a market filled with securities k = 0, 1, ..., K with values Skt for
each security k at times t and we shall assume that it is arbitrage free. Let us
also consider financial derivatives, or contingent claims, which is a contract
with a value dependent on the value of some other underlying security or
basket of securities.

Definition 2.4 (Contingent Claim). A simple contingent claim [9, 13] is
a stochastic variable H of the form

H = Φ(ST ),

where the function Φ, known as the contract function, is some real valued
function.
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This is a simple contingent claim as H depends only on the value of the
underlying securities at time t = T . One could also consider contingent
claims based on the entire path of the price process over the time interval
[0, T ].

Definition 2.5. A contingent claim is said to be reachable or attainable
if there exists a self-financing strategy φ such that VT (φ) = H.

We call such a portfolio φ a hedging or replicating portfolio.

Definition 2.6. A financial market is complete if and only if every con-
tingent claim is attainable.

2.2 Equivalent Martingale Measures

The no arbitrage pricing approach we use postulates that in the market there
are no arbitrage opportunities. We would like to link the economic princi-
ple of no arbitrage with the mathematical property of probability measures,
i.e. risk-neutral measures, which are given the term equivalent martingale
measures.

Definition 2.7 (Martingale Measure). A probability measure Q is called a
martingale measure [9, 13] if the following condition holds:

EQ[St+1] =
1

P (t, t+ 1)
St, (2.3)

which simply put is that today’s price for security S is the discounted value
(or present value) of the expected value of tomorrow’s price. This is a risk
neutral valuation formula, in other words, we use the probability measures
under Q instead of objective probabilities to obtain a risk neutral valuation
of the stock given the absence of arbitrage. Such probability measures are
also called risk neutral measures or risk adjusted measures.

From this follows the definition of an equivalent martingale measure [13].

Definition 2.8 (Equivalent Martingale Measure). An equivalent martin-
gale measure [9, 13] Q is a probability measure on the space (Ω,F) such
that

1. Q0 and Q are equivalent measures, that is Q0(A) = 0 if and only if
Q(A) = 0, for every A ∈ F ;
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2. the Radon-Nikodym derivative dQ/dQ0 belongs to L2(Ω,F , Q0), i.e. it
is square integrable with respect to Q0;

3. the discounted asset price process, P (0, t)St, is an (F, Q)-Martingale,
i.e.

EQ[P (0, t)Skt |Fu] = P (0, u)Sku, k = 0, 1, ..., K

and
0 ≤ u ≤ t ≤ T.

It is proposed that the market model described above is arbitrage free if there
exists such an equivalent martingale measure Q. Tomas Björk gives an in-
formal proof of this proposition, named the First Fundamental Theorem
[9].

Theorem 2.1. (The First Fundamental Theorem) The market model
is arbitrage free essentially if and only if there exists a (local) martingale
measure Q.

Here the term “essentially” means that the model is arbitrage free only in
reference to the underlying model and may vary in ways that do not affect
the mathematical content and a local martingale refers to a stochastic pro-
cess which is a martingale, as defined in Definition 2.7, before some stopping
time T , i.e. the process is stopped at time T and is a martingale at all times
before T .

Equivalent martingale measures are of particular interest to us as they allow
us to give a general pricing formula for any attainable contingent claim [33].

Proposition 2.1. Assume there exists an equivalent martingale measure Q
and an attainable contingent claim H. Then, for each time t, 0 ≤ t ≤ T,
there exists a unique price πt associated with H:

πt = EQ(P (t, T )H|Ft). (2.4)

Proof of the proposition may be found in [33].

2.3 Change of Numeraire

The concept of a Numeraire as a measure is a very important tool as under
normal circumstances a stochastic discount factor df(t1, t2) complicates the
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calculation of the expectations of various portfolios. Geman, Karoui and
Rochet introduce us to the numeraire as well as the changing or choosing of
the numeraire to normalise the other assets in the market [29].

Definition 2.9. A numeraire is any positive non-dividend paying asset.

The price process for a numeraire, Z = Zt, 0 ≤ t ≤ T , is thus almost surely
strictly positive ∀ t ∈ [0, T ].

In the context of our self-financing strategy Definition 2.2, with the securities
expressed in terms of their present values, we have the following

Theorem 2.2. Let φ be a trading strategy. Then φ is self-financing if and
only if

P (0, t)Vt(φ) = V0(φ) +

∫ t

0

φud(P (0, u)Su), (2.5)

which is proven by Harrison and Pliska in [33]. We then choose a nu-
meraire to act as a reference asset and to normalise all other market prices
with respect to this numeraire; say Z. We thus consider normalised prices,
Sk

Z
, k = 0, 1, ..., K instead of the individual security prices. Theorem 2.2

holds true for any choice of numeraire. A self-financing strategy will remain
a self-financing strategy under any numeraire [29].

Our zero coupon bond (defined in Definition 3.4), or cash amount, is a nat-
ural choice for a numeraire, however, it is only one of a number of possible
choices which may be more convenient for our calculations. Geman et al.
[29] generalise Proposition 2.1 to any numeraire.

Proposition 2.2. Assume there exists a numeraire N and a probability mea-
sure QN , equivalent to the initial Q0, such that the price of any traded asset
X (without intermediate payments) relative to N is a martingale under QN ,
i.e.

Xt

Nt

= EN

{
XT

NT

|Ft
}

0 ≤ t ≤ T. (2.6)

Let U be an arbitrary numeraire, Then there exists a probability measure QU ,
equivalent to the initial (real-world measure) Q0, such that the price of any
attainable claim Y normalised by U is a martingale under QU , i.e.

Yt
Ut

= EU

{
YT
UT
|Ft
}

0 ≤ t ≤ T. (2.7)
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Moreover, the Radon-Nikodym derivative defining the measure QU is given
by

dQU

dQN
=
UTN0

U0NT

. (2.8)

We derive Equation (2.8) as follows [13]: By definition of QN , we know that
for any tradable asset price Z,

EN

[
ZT
NT

]
= EU

[
U0

N0

ZT
UT

]
, (2.9)

as both would be equal to Z0

N0
as per Definition 2.8 of an equivalent martin-

gale measure.

The Radon-Nikodym derivative can be defined as follows [55]:

Definition 2.10. When a measure λ is absolutely continuous with respect to
a positive measure ν then it can be written as

λ(E) =

∫
E

fdν, (2.10)

for a measurable set E. The function f is called the Radon-Nikodym derivative
of λ with respect to ν. It may also be denoted as dλ

dν
or Dλ

Dν
.

By this definition we know that for all Z

EN

[
ZT
NT

]
= EU

[
ZT dQ

N

NT dQU

]
, (2.11)

giving us

EU

[
U0

N0

ZT
UT

]
= EU

[
ZT dQ

N

NT dQU

]
, (2.12)

which can be reduced to the formula in Equation (2.8) by the arbitrariness
of Z. Equivalent martingale measures, as defined in Definition 2.8, are abso-
lutely continuous and as such are Radon-Nikodym integrable.

The reader is referred to Brigo and Mercurio (2006) [13] for a Change of Nu-
meraire Toolkit some useful formulae and notations on using the numeraire.
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2.4 Choosing a Numeraire

Changing the numeraire is a useful technique and in the context of pricing
contingent claims is often used to simplify solving the contingent claim. This
of course raises the question of what would be a suitable choice for a nu-
meraire for a particular problem. For a contingent claim H(ST ) = Φ(ST )
the contract or payoff function is Φ(ST ) and it is dependent on the underly-
ing variable S at the time T . From Proposition 2.1 we would price such a
contingent claim by taking the risk neutral expectation of the payoff.

H = E0[df(0, T )Φ(ST )], (2.13)

with E0 being the expectation under objective or real world measures.

Let us consider the risk neutral numeraire to be the bank account as described
in Definition 3.1.

B(t) =
1

df(0, t)
= exp(

∫ t

0

rs ds), (2.14)

and by Definition 2.8 under a new numeraire N

E0[df(0, T )Φ(ST )] = S0E
N

[
Φ(ST )

ST

]
. (2.15)

We would like to find a numeraire N which would make the above equation
simpler to solve, i.e. that Φ(ST )

ST
is simple. Ideally we would also like that

StNt is the price of a tradeable asset so that StNt

Nt
= St is a martingale under

QN [13]. Assuming lognormal martingale dynamics for X

dSt = σ(t)St dWt, QN ,

with distribution

lnSt ∼ N
(

lnS0 −
1

2

∫ t

0

σ(s)2 ds,

∫ t

0

σ(s)2 ds

)
,

allowing us to use some of our more familiar tools such as Itō’s Lemma.



Chapter 3

Interest Rate Market Model

We will now take a look at some of the theory and the framework around
which interest rate market models are built. These concepts and definitions
will be used later when looking at curve construction and the concepts of
interest rate basis. The assumption of no arbitrage is used as a foundation
and overarching concept which we attempt to preserve in the various basis
models analysed later.

3.1 The Spot Interest Rate

Typically money does not sit as unutilised cash and is rather deposited or
lent out in return for compensation for allowing someone else the use of that
money; the borrower pays this compensation, which we call interest, in return
for being able to utilise that money for a period of time. For the purposes of
this section, unless otherwise specified, a deposit with a bank is considered a
loan to the bank (for economic purposes this is true, though not necessarily
from a legal perspective). Thus a sum of money, say one unit of currency,
deposited in a bank account is expected to earn interest and thus we can
have B(t) the value of a bank deposit and the process for B(t) defined as
follows [13].

Definition 3.1 (Bank Deposit). B(t), is the value of a bank deposit [13]
at a time t ≥ 0 and it follows the following process:

dB(t) = itB(t) dt and B(0) = 1, (3.1)

it is called the instantaneous spot rate or short rate and is the rate of interest
at which the deposit continuously accrues interest giving

B(t) = exp(

∫ t

0

is ds). (3.2)

13
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Hence a deposit of 1 at a bank will yield B(t) at time t. If we considered the
question of how much one should invest today to receive 1 unit of currency
at time t it would lead to the concept of a discount factor.

Definition 3.2. (Discount Factor) The discount factor [13] df(t1, t2) is
the amount that would need to be deposited at time t1 to yield an amount of
1 at time t2 given by

df(t1, t2) =
B(t1)

B(t2)
, t1 < t2. (3.3)

it is not deterministic but rather a stochastic process, henceB(t) and df(t1, t2)
are also stochastic. Typically though this is often treated as a deterministic
function often justified in that either the money to be paid out is funded at
the same rate at which it is borrowed or that for fixed term contracts the
rate of interest to be received can be fixed upfront. df(0, t) is often dubbed
the present value of a unit of 1 amount of currency to be received at time
t.

Before continuing we should define the concepts of the year fraction, com-
pounding type, and the daycount basis which would be used in interest rate
and present value processes.

Definition 3.3 (Year Fraction). The year fraction, or coverage, τ(t1, t2)
is the period of time between times t1 and t2 expressed as a fraction of a year.
Simply put τ(t1, t2) is the number of days between t1 and t2 divided by the
number of days in the year.

The choice of how to measure time between two dates and the length of a
year, the daycount convention, varies in each market with the typical South
African convention being Actual/365. In this case the number of days in the
numerator of τ(t1, t2) is considered to be all the days between the two appli-
cable dates and the number of days in the year, the denominator of τ(t1, t2)
is always considered to be 365. Numerous daycount conventions exist and
some common ones are discussed in Appendix A along with common business
day rules (being adjustments to take into account public holidays and even
weekends).

Let us now define the zero coupon bond:

Definition 3.4 (Zero Coupon Bond). A zero coupon bond (ZCB), or pure
discount bond, is a contract that provides the holder with the payment of one
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currency unit at time T with no intermediate payments. P (t, T ) denotes the
value of the zero coupon bond, at time t, for a zero coupon bond maturing at
T for 0 ≤ t < T and by definition P (T, T ) = 1∀T .

The zero coupon bond differs from the discount factor defined above in that
it is deterministic and may be seen as the expected discount factor df(t, T )
which would apply from time t to time T 1. Analogously P (0, T ) is the present
value of a zero coupon bond paying an amount of 1 unit of currency at time T .

The interest a zero coupon bond earns may be expressed in different ways
depending on the compounding frequency: the frequency at which interest
earned is reinvested to earn more interest so that one is indifferent towards
leaving a ZCB to mature or continually selling and repurchasing ZCBs so as
to reinvest the interest accrued.

Definition 3.5 (NACC - Nominal Annual Compounded Continuously). The
constant rate of interest at which a ZCB, with value P (t, T ), accrues to a
value of 1 at maturity time T. That is if interest is continuously earned and
instantaneously reinvested and may be expressed as r(t, T ) such that

P (t, T ) = e−r(t,T )·τ(t,T ). (3.4)

This is consistent with our definition of the discount factor above should the
interest rate be deterministic.

Definition 3.6 (NACA - Nominal Annual Compounded Annually). The
constant rate of interest, ra(t, T ) at which a ZCB, with value P (t, T ), accrues
to a value of 1 at maturity time T with interest being reinvested once a year
such that

P (t, T ) = (1 + ra(t, T ))−τ(t,T ). (3.5)

Also of interest is the simple rate of interest because LIBOR (and the other
fixing rates such as JIBAR in South Africa) is just such a rate and is used
extensively in the LIBOR Market Model or LMM (also referred to as the
Brace, Gatarek and Musiela model or BGM model). This model is further
discussed in Section 6.4 but for now let us consider the rate L(t1, t2).

Definition 3.7 (Simple Interest Rate). The simple interest rate L(t1, t2)
is the rate of interest which would apply for a deposit starting at time t1 and
maturing at time t2 such that,

P (t1, t2) =
1

1 + L(t1, t2)τ(t1, t2)
, (3.6)

1An uppercase T is often used to denote a maturity time for financial contract thought
it need not be exclusively so.
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and

L(t1, t2) =
1− P (t1, t2)

τ(t1, t2)
. (3.7)

3.2 Forward Interest Rates

Now let us consider the amount to be placed in a deposit at some time in the
future, t1, so as to receive a unit of currency at some later time, t2. There are
now three time factors to consider: the day which this deposit amount is to
be determined on, the date on which this deposit begins (the near maturity)
and the date on which the deposit matures (the far maturity). One would
need to lock in an interest rate applicable for that future period and this can
be done using a Forward Rate Agreement (FRA).

Definition 3.8 (Forward Rate Agreement). A Forward Rate Agreement,
or FRA, is a contractual agreement between two parties whereby one party
(the fixed rate payer) will, at time t1 (the near maturity date), pay a fixed
amount of interest K and the other party (the floating rate payer) will pay an
amount of interest being the spot rate L(t1, t2) as determined (or fixing) on
date t1 and applicable for a deposit of length t2 − t1 (where t2 is sometimes
referred to as the far maturity date).

The use of such a contract therefore allows one to lock in an interest rate
to be made in the future. Typically a FRA may be settled as a net of the
two payments and conventions may vary as to whether it is settled on the
far maturity date or the near maturity date (using the fixing rate to dis-
count the net cashflow so that it is bilaterally accepted). FRAs have prices
quoted in the market for various tenors and maturity dates. FRAs of various
tenors are often referred to in the market in terms of their effective date, the
near maturity date, and their termination date, the far maturity date, as the
number of months from the current date. For example a 3x6 FRA would
refer to a FRA with an effective date 3 months from today and maturing 6
months from today with a tenor of 3 months, likewise a 3x9 FRA refers to
a FRA with an effective date 3 months from today and maturing 9 months
from today.

As mentioned previously it is common to reference the LIBOR rate for fixing
the rate in FRAs (and other floating interest rate payments). LIBOR stands
for London Inter Bank Offer Rate and is published by the British Banker’s
Association (BBA) daily. It is derived as an average of the various rates
at which the member banks could borrow money at if asked “At what rate
could you borrow funds, were you to do so by asking for and then accepting
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interbank offers in a reasonable market size just prior to 11 am?”[3]. There
are other conventions for deposits in other countries and currencies, such as
JIBAR the Johannesburg Inter Bank Acceptance Rate, and whilst the tech-
nical details may vary they are used in similar ways and this paper will use
LIBOR as a universal rate.

Of significant importance in various interest rate frameworks is the economic
principle of no-arbitrage. Arbitrage is defined as the being able to invest
zero today with a non-zero probability of receiving a positive profit (i.e. a
positive cashflow) and a zero probability of making a loss (i.e. a negative
cashflow). It can be defined mathematically as follows

Definition 3.9 (Arbitrage Opportunity). An arbitrage opportunity may
be defined as the case where:
P(Vt > 0) ≥ 0 and P(Vt < 0) = 0 for a portfolio of value Vt time t and V0 = 0.
P(A) refers to the probability of an event, A, occurring. In other words an
arbitrage opportunity is the case where there is a possibility of making a future
profit, with zero probability of making a loss, at zero cost today.

The assumption that no-arbitrage opportunities exist in the market leads to
the fact that any two portfolios having the same payoff at a future date must
have the same value today. This leads to the method of portfolio replication
for determining unknown market values; by creating a portfolio containing
all known prices which replicates the payoff of another which contains an
unknown price (or unknown variable such as a forward interest rate). This
allows one to define K as the simple fair forward interest rate which would
be applicable to a FRA.

Derivation 3.1 (Fair Forward Rate). Consider a portfolio A consisting of
a zero coupon bond with value P (0, t2) maturing at time t2 (and a matu-
rity value of 1) and another portfolio B consisting of P (0, t2) worth of zero
coupon bonds maturing at time t1 which at maturity is reinvested into an-
other zero coupon bond maturing at time t2, t2 > t1 (noting that the latter is
stochastic as the value of such a zero coupon bond is unknown today under
stochastic interest rates) and a FRA applicable with near maturity t1 and far
maturity t2. At the far maturity portfolio A has a value of 1 by the definition
of a zero coupon bond. Thus at the far maturity date t2 portfolio B has a
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value, VB, as follows

VB =
P (0, t2)

P (0, t1)

1

P (t1, t2)
+
P (0, t2)

P (0, t1)

1

P (t1, t2)
(K − L(t1, t2))τ(t1, t2)

=
1 + L(0, t1)τ(0, t1)

1 + L(0, t2)τ(0, t2)
(1 +K)τ(t1, t2),

(3.8)

and considering that, by the no arbitrage assumptions given above, the only
value for K which is fair is one such that the value of portfolio A at far matu-
rity must equal that of portfolio B at far maturity else one could sell portfolio
A and purchase portfolio B (or vice versa) to give rise to an arbitrage.

K =

(
1 + L(0, t2)τ(t2)

1 + L(0, t1)τ(t1)
− 1

)
1

τ(t1, t2)
. (3.9)

This results in the concept of the fair forward rate used in calculating cash-
flows of various floating interest rate instruments.

Definition 3.10 (Simple Compounding Forward Interest Rate). F (t; t1, t2),
the forward interest rate using simple compounding as at time t prevailing
from the near maturity date t1 until the far maturity date t2 is expressed as

F (t; t1, t2) =
1

τ(t1, t2)

(
P (t, t1)

P (t, t2)
− 1

)
, t2 > t1. (3.10)

The forward rate F (t; t1, t2) is treated as the expectation, based on values
observable at time t, of the stochastic future spot rate L(t1, t2) and is used
to replace the LIBOR rate in valuing a FRA to give the well known formula
to value VFRA(t) a FRA with a notional of N at time t [13, 38].

VFRA(t, t1, t2, K,N) = N · P (t, t2)τ(t1, t2)(K − F (t; t1, t2)). (3.11)

The following no-arbitrage relation could also be postulated

Proposition 3.1. Let P (t, t1) and P (t, t2) be the values, at time t, of two
zero coupon bonds maturing at times t1 and t2 respectively with t ≤ t1 ≤ t2.
Let P (t; t1, t2) be the value at time t of a zero coupon bond starting at time
t1 and maturing at time t2, i.e. a forward starting zero coupon bond. The
following would hold true:

P (t, t2) = P (t, t1)P (t; t1, t2), t ≤ t1 ≤ t2, (3.12)

and further, analogous to the fair forward rate above

P (t; t1; t2) =
P (t, t2)

P (t, t1)
=

1

1 + F (t; t1, t2)τ(t1, t2)
. (3.13)
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This means that discounting a unit of currency in one step from t2 to t, or
in two steps from t2 to t1 and then from t1 to t should both give rise to the
same unique present value. Again we may see P (t; t1; t2) as the expectation
at time t of the discount factor df(t1, t2).

The forward rate may also be expressed in other compounding forms though
simple interest is the most widely used and matches the form in which LIBOR
is quoted. Much like the instantaneous short rate it defined in Definition 3.1
there exists the analogous concept of an instantaneous forward rate ft1,t2 . By
considering what happens as t2 tends to t1 from right we obtain

ft1,t2 = lim
t2→t+1

F (t; t1, t2). (3.14)

Much of the historical approach to modelling yield curves and the term
structure of interest rates was based on modelling the instantaneous short
and forward rates. The ubiquitous Heath-Jarrow-Morton framework (HJM
framework)[35] is just such an example and is based on the exogenous spec-
ification of the evolution of the instantaneous forward rates.

We shall quickly look at another ubiquitous interest rate derivative; the in-
terest rate swap.

Definition 3.11 (Interest Rate Swap). An Interest Rate Swap or often
simply a Swap is an agreement between two parties to exchange a series
of cashflows. One party (the floating rate payer) shall, at regular intervals
for a fixed number of intervals, pay variable interest rate payments being the
spot rate L(ti−1, ti) as determined (or fixing) on date ti−1 and applicable for a
deposit of length ti−ti−1 with ti, i = 1, 2, .., n being the payment dates. The
other party (the fixed rate payer) shall make interest rate payments based on a
fixed interest rate K on those same dates. The length of the regular intervals,
ti − ti−1 is the term of the swap, and the total duration of the swap is called
the maturity.

A swap would typically reference LIBOR as the fixing rate, much like a FRA.
A Swap may be seen as analogous to a series of FRAs each with the same
fixed rate K being exchanged for a floating interest rate payment. Likewise
a Swap may be seen as borrowing a unit of currency at a floating interest
interest rate, say 3-Month LIBOR, and then depositing a single unit of cur-
rency to receive a fixed interest rate of, say, K. Swaps are discussed in most
texts on interest rate markets or derivatives such as [38] and [13].
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A particular type of swap, the overnight index swap (OIS), is of specific
importance, especially when considering interest rate derivatives priced in
the presence of collateral (as discussed later in Section 7.3).

Definition 3.12 (Overnight Index Swap). An overnight index swap or
OIS is an interest rate swap where a floating rate referencing an overnight
deposit rate such as the Euro Overnight Index Average (EONIA), a weighted
average of overnight unsecured lending transactions, or the Federal Funds
Rate is swapped for a fixed payment. The floating interest rate is usually
compounded to the maturity date of the swap and settled on that maturity
date. For OIS’ with tenor less than one year the fixed interest rate is treated
as a simple rate of interest and for those with a tenor greater than a year the
fixed rate is an annual fixed rate.

Overnight index swaps are covered in greater detail in Section 7.4.

3.3 Forward Measures

In this section we will now tie together the previous two as well as introducing
the expectation theory described in Chapter 2; we will take the concept
of the instantaneous spot rate, forward rates and our zero coupon bonds
and use them in the context of suitable numeraires and martingale theory.
When dealing with interest rates and interest rate derivatives a choice of a
zero coupon bond maturing at time T (P (0, T )) is a particularly useful and
intuitive numeraire.

Definition 3.13. For a fixed time T the T -forward measure QT is defined
as the martingale measure for the numeraire process P (t, T ).

QT can then have the following explicit description [9, 29] with the corre-
sponding proofs in [9],

Proposition 3.2. If Q denotes the risk neutral martingale measure then the
likelihood process

LT (t) =
dQT

dQ
, on Ft, 0 ≤ t ≤ T,

is given by

LT (t) =
P (t, T )

B(t)P (0, T )
.

In particular, if the Q-dynamics of the T-bond are Wiener driven, i.e. of the
form

dP (t, T ) = r(t)P (t, T ) dt + P (t, T )ν(t, T ) dWt,
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where W is a (possibly multidimensional) Q-Wiener process, then the LT

dynamics are given by

dLT (t) = LT (t)ν(t, T ) dWt,

i.e. the Girsanov kernel for the transition from Q to QT is given by the
T-bond volatility ν(t, T ).

As we know P (T, T ) = 1 we have a corollary to Proposition 2.1 [9]

Proposition 3.3. For any T-claim X we have

π(t;X) = P (t, T )ET [X|Ft], (3.15)

where ET denotes integration with regard to QT .

We also note that the price P (t, T ) is observable in the market and thus does
not need to be computed.

Let us also reintroduce the forward interest rate described earlier. f(t, T )
is our instantaneous forward rate process describing the rate of return we
would have for the instantaneous infinitesimal time period [T, T + dT ] if
struck at time t. The short rate iT is the rate of return over the infinitesimal
period [T, T + dT ] if struck at time T . We could thus interpret f(t, T ) to
be an estimate of the future short rate iT . The unbiased expectation
hypothesis for forward rates is a common form of expectation hypothesis
and asserts that forward rates equal the conditional expectation of future
spot rates, or that the current forward rate is an unbiased estimator of the
future spot rate.2

f(t, T ) = E[it|Ft]. (3.16)

We would expect this hypothesis to hold true in the risk neutral world (if
not under the objective measure P ) so we can reformulate it as follows [9]

f(t, T ) = EQ[iT |Ft], (3.17)

where Q is the risk neutral martingale measure. We can now follow [6]
and other common texts to express the value of contingent claims (in this
case a FRA as described earlier) in the context of martingale measures and
expectations.

VFRA(t; t1, t2, K,N) = N · P (t, t2)τ(t1, t2)(K − F (t; t1, t2)). (3.18)

2Cox, Ingersoll and Ross [20] show that this does not always hold equilibrium and must
always give rise to arbitrage. This has been shown to not always be the case though under
certain circumstances and under the Heath-Jarrow-Morton framework [53]
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Introducing expectations we have

VFRA(t; t1, t2, K,N) = P (t, t2)EQ
t [VFRA(t2; t1, t2, K,N)] (3.19)

= N · P (t, t2)τ(t1, t2)
{
K − EQ

t [L(t1, t2)]
}

(3.20)

= N · P (t, t2)τ(t1, t2) {K − F (t; t1, t2)} , (3.21)

and Q is the forward measure corresponding to the numeraire P (t, t2) and
EQ
t is the expectation at time t with regard to measure Q and filtration F

assuming the standard martingale property for forward rates.



Chapter 4

Pre-Crisis Single Curve
Framework

In this chapter we shall consider the framework used to create interest rate
curves from which various interest rate instruments were priced and valued
before the 2008 liquidity crisis had an impact on basis spreads. This is
the treatment of interest rates found in most textbooks (or their specific
editions) before the crisis such as [9, 13, 38]. We shall also look at how, pre-
crisis, under the assumption of no-arbitrage there would be no difference, or
spread, arising from using forward rates of different terms.

4.1 Once Upon a Time...

The concept of the risk-free rate is prevalent in almost all finance and
economics literature. It is the rate of return an investor would expect to
receive in an investment with no risk of financial loss. This is often treated
in literature as some or other form of bank-account; or more often as an
investment in government Treasury Bills (or T-Bills) or other government
issued money-market securities. A T-Bill is similar to our Zero Coupon Bond
in that a sum of money will be paid out at a given maturity. A T-Bill is
issued by the government and as such is (was!) often seen as risk-free. It
was the benchmark for all other investments as anything bearing a greater
risk would require a higher potential rate of return. This risk-free rate is also
prevalent in the Capital Asset Pricing Model (CAPM) and in this context is
the compensation for systemic risk which cannot be hedged out or diversified
out by the investor.

Tied in with the risk-free rate is the concept of a central bank rate, some-

23
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times called the official bank rate, repo rate or minimum lending rate,
the minor details may differ for various central banks but the overall con-
cept is the same, this is the rate at which a central (government) bank will
lend money to various banks, usually for a short term such as a week or
overnight. Analogous to this is the rate at which banks would lend money
to each other. This too has a number of different names in each jurisdiction
such as LIBOR (London Inter Bank Offer Rate), JIBAR (Johannesburg
Inter Bank Agreed Rate) and various other X-BOR rates. We shall use the
term LIBOR generically in this text to be in line with most other literature.
LIBOR itself can be quoted for different currencies such as USD LIBOR,
GBP LIBOR or even EUR LIBOR which is the rate at which the participant
BBA (British Banker’s Association) banks will lend those respective curren-
cies to each other.1 LIBOR is also quoted for different terms such as 1-Month
USD LIBOR, 3-Month USD LIBOR or 6-Month USD LIBOR. LIBOR is of
particular importance in the context of interest rate derivatives and contin-
gent claims as it is the fixing rate against which FRAs, Swaps, Caps/Floors
and many other interest rate derivatives’ payoffs are calculated against. Of
interest is also the overnight rate such as EONIA (Euro OverNight In-
dex Average), US Federal Reserve overnight rate or simply the OIS
(overnight index swap) rate.

Before the credit crunch of August 2007 many of these various rates tracked
each other quite closely [50]; FRAs and LIBOR had a precise relationship.
Cashflows at different frequencies were considered equivalent (apart from
very small basis spreads). In typical interest rate theory swapping out 3-
Month LIBOR for an OIS rate had the same present value. In the absence
of credit risk floating rate notes at inception had a present value equal to
the par nominal regardless of whether they paid out a 3-Month or 6-Month
floating rate or whether they had a term of 1-year or 3-years. Henrard
2007 [36] gives an analogy of how different curves would either be used to
value different financial instruments or the same instrument with different
obligors (having different credit or default risk). According to [36] there is
a fundamental problem in the treatment of contingent derivative cashflows
and the respective discounting without a lot of attention in the literature (at
the time). The cashflows are thus contingent on the obligor being able to
pay. Often bonds or similar instruments were quoted as a yield, a number
which is part discounting and part default risk (and later, part liquidity).

1EUR LIBOR is distinct to EURIBOR which is the rate at which Eurozone mem-
ber banks would lend EUR to each other at. The intricacies of calculating each
X-BOR rate differs for each jurisdiction. The details for LIBOR may be found at
http://www.bbalibor.com.
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The task of valuing each cashflow as a contingent claim is made simpler
as each is treated as a discounted cashflow. Incorrect methods are applied
to the cashflows (discounting applicable to non contingent cashflows) with
an incorrect rate (the discount rate with a spread) replacing ignorance in
method with ignorance on the data. This is addressed in a later section.

4.2 Absence of Arbitrage Between Different

Tenors

The assumption of no-arbitrage in the market implies that there exists a rela-
tionship between FRA rates of different yet overlapping tenors. By assuming
no-arbitrage one should be indifferent between having a 3 month LIBOR de-
posit and a 3x6 FRA (as defined in Section 3.2) or having a 6 month LIBOR
deposit. Likewise one should be indifferent between having a 3x6 FRA and a
6x9 FRA or having 3x9 FRA. Pre-2008 this assumption was consistent with
what was observable in the market. As an example let us consider some
market quotes from 2005-11-11.

Figure 4.1: Interest rate instrument quotes as at 2005-11-11, quoted as percentages.
(source: Bloomberg Finance L.P.)

As Figure 4.1 shows, the 3 Month USD LIBOR rate was 4.34% and 3x6 FRA
rate was 4.7165% while the 6 Month LIBOR rate was 4.55%. We can now
apply the following to calculate the 6 Month USD LIBOR rate as implied by
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the 3 Month LIBOR rate and the 3x6 FRA:(
1 +

6M LIBOR’

2

)
=

(
1 +

3M LIBOR

4

)(
1 +

3x6 FRA

4

)
,(

1 +
6M LIBOR’

2

)
=

(
1 +

4.34%

4

)(
1 +

4.7165%

4

)
,(

1 +
6M LIBOR’

2

)
= 1.022769 . . . ,

6M LIBOR’ = 4.5538 . . .%,

where 3M LIBOR refers to the 3 Month LIBOR rate and 6M LIBOR’ refers
to the implied no-arbitrage 6 Month LIBOR rates. Comparing this result to
the quoted 6 Month LIBOR rate we see that there is a difference of approx-
imately 0.00384% which is less than half of a basis point (a percent of 1%)
and thus negligible.

In the case of FRAs we can calculate an implied 3x9 FRA rate by taking the
market quotes for a 3x6 and a 3x9 FRA as follows:(

1 +
3x9 FRA’

2

)
=

(
1 +

3x6 FRA

4

)(
1 +

6x9 FRA

4

)
,(

1 +
3x9 FRA’

2

)
=

(
1 +

4.7165%

4

)(
1 +

4.8840%

4

)
,(

1 +
3x9 FRA’

2

)
= 1.024145 . . . ,

3x9 FRA’ = 4.82904 . . .%,

where 3x9 FRA’ refers to the implied no-arbitrage 3x9 FRA rate. In this
case the difference, or spread, between the implied and quoted rate is 0.1
basis points; again this is a negligible difference2.

This relationship held true before the 2008 liquidity crisis. To show this
we have calculated the spreads between the implied 3x9 FRA rate and the
quoted 3x9 FRA rate beginning in 2005-05-03 up until 2005-12-27, which are
illustrated in Figure 4.2. This spread is never greater than 2.5 basis points
and even this difference can be explained away due to timing mismatches,
rate aggregation or business day rules (to account for weekends and public
holidays).

2Here we have ignored the impact of public holidays on the maturity dates and have
applied the rates to a full three month or six month period; this has no material impact
on the principle being illustrated.
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Figure 4.2: Spreads between the quoted 3x9 FRA rate and that implied from 3x6
and 6x9 FRAs. (source: Bloomberg Finance L.P.)

4.3 Simple Single Currency Single Curve Con-

struction

The concept of discounting cashflows is prevalent in much of the literature
on the pricing and valuation financial instruments. Using the market quoted
prices available a yield curve or zero-coupon curve is the continuous function
of interest rates r(0, t)∀ t > 0 prevalent at the time of construction. For
each interest rate there is the corresponding discount factor df(0, t). This
curve may be expressed using different daycount conventions. Any cashflow
arising at time t would thus be discounted using the corresponding discount
factor calculated from the interest rate r(0, t) as per the curve. Although
considered and often plotted continuously for practical reasons such a curve
would have daily points ti. These points would only be known for specific
days as quotes in the market and the rest of the curve would be filled using
a suitable interpolation method.

Before the credit crunch and liquidity crisis arose the standard market prac-
tice for creating interest rate curves for the pricing and valuation of interest
rate derivatives was fairly simple. A single curve for a particular currency
was bootstrapped using a finite set of the most liquid quoted vanilla interest
rate instruments (viz. short term deposits, forward rate agreements (FRAs),
interest rate swaps (vanilla fixed interest rate payments exchanged for those
linked to the prevalent standard floating interbank rate such as 3 Month
JIBAR) [6].
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The methods of constructing/bootstrapping these curves, along with meth-
ods of interpolating such curves, are discussed by various authors and of
particular interest are the methods discussed by Uri [54], Hagan and West
[32] and by Hull [38]. The various technical methods of constructing such
curves will not be discussed in depth here but there are some standard pro-
cedures used in practice for creating such a curve and calibrating it to the
market [6, 32, 54]. Bianchetti [6] summarises the pre-crisis standard mar-
ket practice quite nicely referencing [32, 54] with the following steps being a
short reprise from [6]

First
Select a single finite set of liquid (with observable market prices) vanilla
interest rate instruments traded in the market with increasing maturi-
ties; for examples short term deposits in the very short end, moving on
to FRAs and then Swaps.

Second
Build a single yield curve using the selected instrument and utilising a
set of interpolation rules.

Third
Using that same yield calculate forward rates, cashflows and discount
factors.

That is not to say that only one curve was ever constructed. Other yield
curves would be constructed for specific instruments such as government
bonds or T-Bills (using government bonds and money market bills as the
benchmark instruments) but for interbank derivatives a single curve was of-
ten used for all instruments.

Some important assumptions in this method are that:

• All cashflows were free of default risk

• Liquidity (i.e. availability of cash) was guaranteed, i.e. a frictionless
market

• One could borrow at the prevailing rate, i.e. at JIBAR flat

Historically these assumptions were reasonable for interbank lending and the
prevailing term rate, such as JIBAR, was, or was reasonably close, to that
at which banks would lend to each other. Thus one would be indifferent in
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having a deposit of, say, three months and then reinvesting for another three
months, fixing the rate with a FRA, or simply having a deposit with a term
of six months in accordance with the no-arbitrage framework defined above.

It is also of interest to discuss how such a curve, commonly called a swap
curve, was treated. In the prolific textbook (at least in the pre 2008 editions)
by Hull [38], Options, Futures and Other Derivatives [38], the assumption is
made that borrowing or lending would be done at LIBOR. This approach is
consistent in much of the literature regarding derivatives prior to the 2008
crisis. Further the concept of a risk-free rate is used in many instances for
discounting cashflows and pricing; intuitively there would be no reason for
different cashflows to be discounted at different rates but the market had
previously shown that in certain instances, such as overnight indexed swaps
(OIS), separate curves would be used [37].

Deriving the single currency single-curve framework mathematically follows
from the previous sections. Let us define MZ our interest rate market in
currency Z with our yield curve YZ defined as a continuous term structure
of discount factors

YZ = T → PZ(t0, T ), T ≥ t0 (4.1)

with t0 being time zero, i.e. the reference date used (which may be today,
or perhaps a settlement date in, say, 2 days time). PZ(t0, T ) as before is the
price at time t0 of a zero coupon bond in currency Z maturing at time T as
per Definition 3.4.

Let us have a look at an example of a simple method of constructing such a
yield curve.

Figure 4.3: Interest rate instrument quotes as at 2005-11-11, quoted as percentages,
used to construct a simple yield curve. (source: Bloomberg Finance L.P.)

Figure 4.3 is a table of USD LIBOR, USD FRAs and USD quarterly swap
rates. As per the first step outlined above this is a selection of liquid (with
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observable market prices) vanilla interest rate instruments, of increasing ma-
turities, and traded in the market. r(0, t), f(0, t− 3, t) and P (0, t) represent
the zero coupon interest rate, the forward interest rate and the zero coupon
bond price respectively with t expressed as the number of months from time
0 and and interest rates expressed as quarterly compounded rates. The 3
Month USD LIBOR rate is a simple interest rate which applies for the period
(0, 3), expressed in number of months from today, and as the corresponding
interest rate r(0, 3) matches the quote itself. Likewise as it starts at time 0
the forward rate is the same as the zero coupon rate.

The zero coupon bond price for the first 3 month period follows from Defi-
nition 3.7 and may be derived as follows:

P (0, 3) =
1

1 + L(0, 3)τ(0, t)

=
1

1 + 4.34% · 0.25
≈ 0.989266459.

Here we have simply substituted the 3 Month LIBOR rate into L(0, 3). The
same may be done to calculate the zero coupon bond price P (0, 6) substitut-
ing the 6 Month LIBOR rate into the equation for L(0, 6).

The derivation of the forward rate, f(0, 3, 6), follows from Definition 3.10
and can be calculated as follows:

f(0, 3, 6) =
1

τ(3, 6)

(
P (0, 3)

P (0, 6)
− 1

)
= 0.25

(
0.989266 . . .

0.977756 . . .
− 1

)
≈ 0.04709.

The forward rate f(0, 6, 9) is given by the market quote for the 6x9 FRA as
per by Derivation 3.1. To derive the zero coupon bond price P (0, 9) we can
once again use Definition 3.10 solving for P (0, 9):

P (0, 9) =
P (0, 6)

f(0, 6, 9)τ(6, 9)− 1

=
0.977756 . . .

0.04884 · 0.25− 1
≈ 0.965961658. (4.2)



CHAPTER 4. PRE-CRISIS SINGLE CURVE FRAMEWORK 31

Finally the one year point (12 months) may be calculated from the quotes 1
Year quarterly swap rate of 5%. As the swap is a series of cashflows based off
of a fixed rate in exchange for another series of cashflows based off of the 3
Month USD LIBOR rate one would need to determine the fair forward rate
applying to the period (9, 12) such that the value of the swap is zero. This
can be done as follows

12∑
t=3

0.05τ(t− 3, t)P (0, t) =
12∑
t=3

f(0, t− 3, t)τ(t− 3, t)P (0, t),

t = 0, 3, 6, 9, 12,

f(0, 9, 12)τ(9, 12)P (0, 12) =
12∑
t=3

0.05τ(t− 3, t)P (0, t)

−
9∑
t=3

f(0, t− 3, t)τ(t− 3, t)P (0, t)

t = 0, 3, 6, 9, 12, (4.3)

(4.4)

and since

P (0, 12) =
P (0, 9)

f(0, 9, 12)τ(9, 12)− 1
,

from Definition 3.10, we can substitute the right hand side into Equation
(4.3) and solve for f(0, 9, 12) to obtain

f(0, 9, 12) ≈ 0.04925,

and
P (0, 12) ≈ 0.9542129. (4.5)

What is important to note in this example is that the choice of deposit points,
both 3 month and 6 month, was based on liquidity and not on tenor. The
curve is a mix of 3 month and 6 month instruments and as shown in Section
4.2 and Figure 4.2 one could have elected to use FRAs of other tenors with-
out a significant impact on the construction of the curve.

This is a simplified example to illustrate the concept of yield curve construc-
tion. A more rigorous approach would take into account specific business day
rules (see Appendix A) for each of the maturity dates. For further points on
the yield curve using swaps with maturities greater that 1 year one would
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apply a choice of an interpolation rule to calculate points without a FRA or
deposit maturing on that date. The topic of yield curve bootstrapping tech-
niques and interpolation rules is itself extensive and the reader is referred
to Hagan and West’s [32] treatment on the topic for a comparison of such
techniques and interpolation rules and methods.

4.4 Simple Multiple Currency Multiple Curve

Construction

The concept of interest rate basis pre-crisis was most prevalent in the realm
of cross currency derivatives and contingent claims with cross currency basis
giving rise to either arbitrage or the concept of multiple curves in the context
of cross currency derivatives (including quanto derivatives). The concepts
for multiple curve construction, such as the interest rate parity and the basis
between a forward exchange rate and an implied forward exchange rate are
used in the analogies later explored in Section 5.6. Let us first define some
multiple currency derivatives.

Definition 4.1 (Forward Exchange Contract). A forward exchange con-
tract or FEC (also called a currency forward) is an agreement between two
counterparties to exchange a fixed amount of one currency for a fixed amount
of another currency at some predetermined date in the future (the maturity
date). This rate of exchange, the forward exchange rate or strike price,
is usually agreed upon so that there is no net exchange of currency at incep-
tion.

Definition 4.2 (Cross Currency Swap). A cross currency swap or CCY
Swap is an agreement between two counterparties to exchange regular float-
ing rate interest rate payments based on a floating rate fixing (such as USD
6-Month LIBOR, possibly with a spread) on a nominal amount in one cur-
rency for floating rate interest rate payments based on a floating rate fixing
(such as ZAR 3-Month JIBAR, possibly with a spread) on a nominal amount
in another currency until some predetermined date in the future (the matu-
rity date). The nominal amount of currency may or may not be exchanged at
inception though it is almost always exchanged at maturity. As for a single
currency swap these usually agreed upon such that there is no net exchange
of money at inception.

A cross currency swap may of course be combined with a single currency
swap so that a floating rate in one currency is exchanged for fixed interest
payments in another currency or even to exchange a fixed interest rate in
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one currency for a fixed interest rate in another currency. Typically though
we shall consider the vanilla case being an exchange of two floating interest
rates.

Definition 4.3 (Quanto). A quanto is a contingent claim with an underly-
ing security in one currency (the foreign currency) but settlement in another
currency (the domestic currency) at a predetermined exchange rate. At the
settlement the derivatives value is calculated in the amount of foreign cur-
rency and then converted at a fixed rate into the domestic currency. Essen-
tially, a quanto has an embedded currency forward with a variable notional
amount (i.e. that of the payoff based on the payoff formula of the contingent
claim). Quanto is short for “quantity adjusting option” as the quantity of the
embedded FEC adjusts based on the contingent claim.

Cross currency derivatives are of importance to us as they are a first introduc-
tion to multiple curves used for discounting or for forward rate estimation.
Likewise they also gave rise to non-negligible interest rate basis. Further the
concept of a quanto adjustment analogy shall be explored when considering
the post-crisis yield curve frameworks as shown in multiple sources such as
[6, 37, 42, 50, 57].

Interest Rate Parity

Interest rate parity is a classic no-arbitrage argument used to derive forward
foreign exchange rates for the pricing of forward exchange contracts [38, 57].
Following our typical no arbitrage assumption and the martingale property
of interest rates let us give a derivation of such forward exchange rates using
interest rate parity.

Derivation 4.1 (Interest Rate Parity).

• Let S0 be the amount of currency D (the domestic currency) required,
today (i.e. time t0) to purchase one unit of currency F (the foreign
currency) i.e. it is the prevalent foreign exchange rate.

• Let LD(t0, T ) be the prevailing simple rate of interest for a deposit of
currency D starting today and maturing at time T . Likewise LF (t0, T )
is the prevailing simple rate of interest for a deposit of currency F
starting today and maturing at time T .

Consider the self-financing trading strategy φ which consists of borrowing S0

amount of currency D to be repaid at time T with interest of S0 LD(t0, T )τ(t0, T )
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which is used to purchase a unit of currency F which is in turn deposited into
an account till time T earning a rate of LF (t0, T ). At the same time consider
the contingent claim H an FEC entered into at time t0 being a contract to
buy [1+LD(t0, T )τ(t0, T )]S0 units of currency D for K amount of currency F .

Let ST denote the exchange rate at time T . At maturity, time T , the value
of φ in currency D is

[1 + LF (t0, T )τ(t0, T )]ST − [1 + LD(t0, T )τ(t0, T )]S0,

and the value of H is

[1 + LD(t0, T )τ(t0, T )]S0 −KST .

As K is deterministic and both H and φ1 require no outlay at time t0 and
for no arbitrage to hold they should neither generate nor require cash at time
T if one enters into both φ and H simultaneously. Thus

[1 + LF (t0, T )τ(t0, T )]ST − [1 + LD(t0, T )τ(t0, T )]S0

= [1 + LD(t0, T )τ(t0, T )]S0 −KST ,

K = S0
1 + LD(t0, T )τ(t0, T )

1 + LF (t0, T )τ(t0, T )
. (4.6)

Thus Equation (4.6) gives us the only possible forward exchange rate to be
used in an FEC contract (with no exchange of money at inception) consistent
with no arbitrage and is referred to as the fair forward exchange rate.

Introducing expectations under a numeraire we obtain from Equation (2.1),
under martingale measure Q, with VFEC(t0;T,K) = 0 the value of an FEC
as at time t0 with strike price K at the forward exchange rate and maturing
at time T .

VFEC(t0;T,K) = P (t0, T )EQ[K − ST |Ft], (4.7)

therefore EQ[K − ST |Ft] = 0,

therefore EQ[ST |Ft] = K,

therefore EQ[ST |Ft] = S0
1 + LD(t0, T )τ(t0, T )

1 + LF (t0, T )τ(t0, T )
. (4.8)

In other words the fair forward exchange rate is the expected value of the
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exchange rate at some future time T under a risk neutral measure. The
forward exchange rate derived from interest rate parity relies on the default
free interest rate that can be earned in the foreign and domestic currencies
and by extension to the relevant risk-free curves derived for those currencies.
Market quoted FEC rates though often differ from those implied by interest
rate parity and result in a cross-currency basis. We would thus have that a
market quoted price for an FEC is KM which results in

KM 6= K = S0
1 + LD(t0, T )τ(t0, T )

1 + LF (t0, T )τ(t0, T )
.

Market practice is typically to quote exchange rates against the USD (though
there are numerous other conventions for specific currency pairs) and we shall
treat USD in this case as the domestic currency and the “base” currency. Let
KM(ti) be the market FEC rate for an FEC beginning today and maturing
at time ti

3. Keeping the domestic interest rate constant we could create an
implied foreign interest rate LMF (t0; ti), which is the interest rate implied by
the market rate KM(ti) by solving the following equation

KM(ti) = S0
1 + LD(t0, ti)τ(t0, ti)

1 + LMF (t0, ti)τ(t0, ti)
,

LMF (t0; ti) =

[
S0

KM(ti)
(1 + LD(t0, ti)τ(t0, ti))− 1

]
τ(t0, ti), (4.9)

which would give us a set of interest rates which together with some in-
terpolation rule would be used to create a continuous implied FEC curve.
The spread between this curve and the standard LIBOR curve would be the
cross-currency basis. This curve would then be used to value FECs when
calculating the expected forward exchange rate.

FECs though are not typically quoted for long tenors. For the long end
of this curve, beyond 1 or 2 years, cross-currency swaps would be used in
conjunction with FECs as the instruments from which the curve is derived.
Again, typically, USD LIBOR would be the base interest rate against which

3Foreign exchange and FECs typically trade with a settlement day rule which means
that a foreign exchange transaction will settle on a specific “spot date” that is a number of
business days in the future from the transaction date. Typically this is in 2 business days
or t+ 2, a notable exception is Canadian Dollars which settle in 1 business day. Likewise
an FEC with a tenor of two weeks would settle two weeks after the “spot date” or 12
business days after the transaction date (2 business days for spot plus 10 business days
being the tenor of the FEC). For simplicity we shall treat today as the spot date and any
curves would be treated as beginning from the spot date.
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a cross-currency swap basis spread is quoted. For example 3-Month USD
LIBOR would be exchanged for 3-Month JIBAR plus 50 basis points. Under
the normal pricing assumptions using only a traditional LIBOR and JIBAR
swap curve for valuing such a cross currency swap would imply an arbitrage.
One would then calibrate an implied cross currency JIBAR curve to be used
for valuing cross currency swaps and other cross-currency instruments. We
shall not go into a mathematical derivation of such a curve but simply point
out that a multiple curve framework before the liquidity crisis was in place in
the context of cross-currency swaps and as such is not a completely foreign
concept.

Tuckman and Porfirio [57] give an analogy of a cross-currency swap being a
portfolio of three imaginary swaps: a cross-currency basis swap of overnight
default-free rates; a money market basis swap of USD LIBOR for USD
overnight default-free rates; and a money market swap for foreign LIBOR
for foreign default free overnight rates4. From this perspective the quoted
cross currency swap spread arises from the difference between two local basis
spreads. These basis spreads are explored in greater detail in later sections
but the market practice of using a different implied curve to value FECs
and cross currency swaps is carried through to the post crisis multiple curve
framework using multiple curves. This analogy ties in with the overnight
curve discussed in Section 7.3.

4Overnight default-free curves are discussed in greater detail in Section 7.3.



Chapter 5

Post Crisis Multiple-Curve
Framework

We shall show how, after the 2008 liquidity crisis, that the previously as-
sumed no-arbitrage assumptions no longer apply and how the previously
used framework breaks down. We then look at how a multiple-curve frame-
work would arise. Two approaches are considered, a top-down axiomatic
approach and bottom-up market related approach; under either approach it
is shown that in a multiple-curve framework the assumption of no-arbitrage
could be reclaimed. Finally we look at a quanto-style cross currency swap
analogy and how the multiple curve approach is similar to that observable
in the cross-currency swap market.

5.1 Market Divergence: Who let the arbi-

trage out?

Post the financial crisis much of the previous pre-crisis approach and theory
outlined in the previous sections would no longer directly apply without some
adjustment. Various prices quoted in the market were no longer consistent
with the previously mentioned no-arbitrage assumptions, as shown in Sec-
tion 4.2. Using the single curve approach to value an interest rate derivative
would no longer result in the aforementioned market prices. Let us take a
look at some USD LIBOR and FRA prices as at 2009-04-17.

As Figure 5.1 shows, the 3 Month USD LIBOR rate was 1.1019% and 3x6
FRA rate was 1.0890% while the 6 Month LIBOR rate was 1.6363%. Let
us now calculate the 6 Month USD LIBOR rate as implied by the 3 Month

37
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Figure 5.1: Interest rate instrument quotes as at 2009-04-17, quoted as percentages.
(source: Bloomberg Finance L.P.)

LIBOR rate and the 3x6 FRA:(
1 +

6M LIBOR’

2

)
=

(
1 +

3M LIBOR

4

)(
1 +

3x6 FRA

4

)
,(

1 +
6M LIBOR’

2

)
=

(
1 +

1.1019%

4

)(
1 +

1.089%

4

)
,(

1 +
6M LIBOR’

2

)
= 1.005484 . . . ,

6M LIBOR’ = 1.096939934 . . .%,

where 3M LIBOR refers to the 3 Month LIBOR rate and 6M LIBOR’ refers
to the implied no-arbitrage 6 Month LIBOR rates. Comparing this result to
the quoted 6 Month LIBOR rate we see that there is a difference of approxi-
mately 54 basis points. This difference is much larger than those previously
experienced in the market; as calculated in Section 4.2.

In the case of FRAs let us calculate the implied 3x9 FRA rate by taking the
market quotes for a 3x6 and a 3x9 FRA as follows:(

1 +
3x9 FRA’

2

)
=

(
1 +

3x6 FRA

4

)(
1 +

6x9 FRA

4

)
,(

1 +
3x9 FRA’

2

)
=

(
1 +

1.089%

4

)(
1 +

1.23%

4

)
,(

1 +
3x9 FRA’

2

)
= 1.005805 . . . ,

3x9 FRA’ = 1.16117 . . .%,

where 3x9 FRA’ refers to the implied no-arbitrage 3x9 FRA rate. This results
in a spread, when compared to the quoted 3x9 FRA rate of 46 basis points;
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again a dramatic increase from that previously experienced and illustrated
in Figure 4.2.

Figure 5.2: Pre and post 2008-crisis spreads between the quoted 3x9 FRA rate and
that implied from 3x6 and 6x9 FRAs. (source: Bloomberg Finance L.P.)

The relationship which previously held true no longer did post the 2008 cri-
sis. Figure 5.2 illustrates the spread between the quoted 3x9 FRA rate and
that implied from 3x6 and 6x9 FRAs. From around September 2007 some
erratic behaviour begins to appear, coinciding with the beginning of the sub-
prime mortgage crisis, up until the end of September 2008, coinciding with
the default and collapse of Lehman Brothers Holdings Inc. after which the
spreads rapidly rose.

The single curve approach was no longer consistent with widening basis
spreads quoted for basis swaps [6].

Definition 5.1 (Basis Swap). A Basis Swap is an interest rate swap where
one floating interest rate is swapped for another floating interest rate with a
different basis. For example 6 Month LIBOR payments could be exchanged
for 3 Month LIBOR payments. One leg of the swap may have an added basis
spread applied to it. For example 6 Month LIBOR could be exchanged for 3
Month LIBOR plus 0.1%.

Under the assumption of no-arbitrage, using the framework in previous sec-
tions, the following derivation would hold.
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Derivation 5.1 (Basis Swap Replication). Under the definition of LIBOR
a highly rated bank would be able to lend and borrow at LIBOR. Thus a bank
could borrow a unit of currency with repayments at one month frequency and
pay 1 Month LIBOR; the same bank could then deposit that unit of currency
with the original lender receiving interest at a three month frequency thus
receiving 3 Month LIBOR. The cashflows for the bank under this strategy
would match those entering into a basis swap where 1 Month LIBOR were
exchanged for 3 Month LIBOR using our no-arbitrage assumption and based
on Definition 2.5.

This would imply that a basis swap should trade at zero or very little basis
spread. Such basis spreads, though, were no longer negligible under the new
market regime. The single curve approach did not account for the various sub
areas of the interest market each with different dynamics (such as the short
rate process) [6, 50]. Morini [50] evidences this showing how the replication
FRA rate using forward rates derived from the single interest rate curve and
market FRA rate had an average difference of 0.88bps (basis points, each bp
being a percent of a percent, i.e. 0.000088) in the three years prior to the
crisis (up to July 2007); the basis gap then exploded to an average of 50bps
between August 2007 and May 2009 and at the same time the basis spread to
swap 6 Month LIBOR for 12 Month LIBOR also exploded from a few basis
points to an average of 40bps.

Figure 5.3: Pre- and post-2008 crisis basis swap quotes for 1 year maturity ba-
sis swaps exchanging 3 Month USD LIBOR for 6 Month USD LIBOR. (source:
Bloomberg Finance L.P.)

This blowout of basis spreads is evident when looking at market quotes for
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basis swaps (swapping 3 Month USD LIBOR for 6 Month USD LIBOR) pre-
and post- crisis as illustrated by Figures 5.3 and 5.4.

Figure 5.4: Pre- and post- 2008 crisis basis swap quotes for 5 year maturity ba-
sis swaps exchanging 3 Month USD LIBOR for 6 Month USD LIBOR. (source:
Bloomberg Finance L.P.)

5.2 The cause of widening basis spreads

Various authors have delved into the possible causes and reasons behind these
widening basis gaps. Michaud and Upper [47], in the Bank of International
Settlements (BIS) quarterly review, advocate liquidity problems and credit
concerns amongst banks as drivers of this basis gap. Morini [50] and Acerbi
and Scandolo [1] give some insight into what is meant by Liquidity risk.
Morini [50] gives the following definitions of Liquidity risk citing [1]:

1 Funding Liquidity Risk: the risk of running short of available funds.

2 Market Liquidity Risk: the risk of not being able to sell or purchase a
particular security.

3 Systemic Liquidity Risk: the risk of global crisis where it is difficult or
particularly expensive to borrow or acquire funding.

Morini [50] adds that each of the above elements can be overcome if a bank
faces them in isolation. For example assets could be sold to raise funding in
the presence of 1 but not 2 and 3. These various elements, along with the
presence of credit risk, are particularly difficult to disentangle [47]. It is also
not difficult to see that a bank’s liquidity risk would be strongly correlated
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to bilateral credit risks (i.e. the risk of both a bank and its counterparties
defaulting). The cost of funding and thus the price for liquidity would be
directly related to a bank’s risk of default (both as a cause and as a con-
sequence [50]. One cannot easily consider or easily measure each risk in
isolation though some possible models have been considered [50].

Under our previous replication strategies we have that the fixed rate payable
under a FRA, K, should be equal to the implied forward rate for the same
term based off our LIBOR or Swap curve as under Derivation 3.1. As shown
in Figure 5.2, post-2008, the FRA rates were significantly different to those
implied by the fair forward rates. This deviation would imply an arbitrage
opportunity as one could enter into a 3x6 FRA to receive 3-month LIBOR
and make a fixed payment of 1.1019%, simultaneously one could borrow
money at the three month LIBOR rate for three months and deposit it for
six months and make a positive gain of 54 basis points, as illustrated in Figure
5.1, without, seemingly, taking on any risk. This is not necessarily the case.
As described above; one would face funding liquidity risk, market liquidity
risk and systemic liquidity risk, each historically not being particularly large
risks though through the crisis the impact of each in isolation and in concert
increased to non-negligible levels. The possibility of either being unable to
borrow money for another three months after the initial three month period
or that the deposit counterparty may have defaulted (the impact of an inter-
bank FRA counterparty defaulting is largely mitigated by collateralisation as
under most interbank derivative contracts there would be a Credit Support
Annexure or CSA). The divergence between the FRA rate and the implied
forward rate may thus be seen as a measure or representation of the potential
future credit or liquidity issues [46].

5.3 Defining Basis Spreads

We shall now look at defining some of the basis spreads one could typically
encounter in the markets and which we shall deal with in later sections.

Definition 5.2 (Tenor Basis Spread). The Tenor Basis Spread can be de-
fined as the spread between interest rate swaps with floating interest payments
based on different tenors.

In the absence of liquidity and counterparty risks leading to basis spread risk
interest rate swaps with different underlying tenors should trade without any
basis spread to preserve the original assumption of the absence of arbitrage.
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In other words one would be indifferent between receiving 6-Month LIBOR
or 3-Month LIBOR. Interest rate swaps and FRAs are, as mentioned earlier,
typically traded under CSA agreements and counterparty risk is thus largely
mitigated, they do, however, reference risky term deposit or borrowing rates
in the form of unsecured LIBOR deposits [43]. We therefore encounter that
the payer of the shorter tenor floating leg of an interest rate basis swap would
need to pay large spreads to the payer of the longer term floating rate. When
looking at the underlying deposits this is justified in that the lender requires
a higher rate to compensate for the additional counterparty risk in lending
for a longer period of time and conversely the borrower is willing to pay a
higher rate for funding which would not carry the liquidity risk of not being
available for extended borrowing should there be another liquidity crunch in
the market [57]. To put it in other words: a 6-month deposit can no longer be
treated as a 3-month deposit reinvested after the first 3-months with a rate
fixed by a FRA. Likewise the expected forward interest rate for a 6-month
deposit can no longer be implied by using 3-month FRA rates.

Definition 5.3 (Cross Currency Basis Spread). The Cross Currency Ba-
sis Spread is the spread between cross currency swaps with floating interest
payments in different currencies.

As for vanilla basis swaps, cross currency swaps should trade without any
spread if both legs of the swap are valued using the same forward and dis-
count curve for that particular currency. In practice though cross currency
swaps trade with a spread over one of the reference floating rates.

Definition 5.4 (Bond Swap Basis Spread). The Bond Swap Basis is the
spread between “risk-free” bonds (such as a sovereign bond or T-Bill) and
interest rate swaps of the same tenor.

Again if both the bond and the swap rate are assumed to be “risk-free” there
should be no basis spread between “risk-free” bond rates and swap rates.
Bond-Swap basis is explored in greater detail in Section 6.3.

5.4 Single Currency Multiple-Curve Construc-

tion

As the information now implied by basis swap spreads or by derivative (FRA,
Swap) spreads when compared to LIBOR and cash instruments is now of ma-
terial consequence and can no longer be considered as negligible the original
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single curve construction paradigm is no longer complete. The market is can
now be seen as segmented into a number of sub-markets corresponding to
different instrument types, counterparty risk assumptions and liquidity risk
premia. Different tenors may now be seen as characterised by their own dy-
namics [6]. Various authors such as Bianchetti [6], Mercurio [46], Michaud
[47], Morini [50], Tuckman [57] and others all agree that since cashflows of
various interest rate derivative instruments such as FRAs and Swaps are
all based off the interbank market with the aforementioned collateralisation
being the norm that these cashflows should all be discounted off the same
discount curve. This is consistent with an intuitive view that cash payments
at future dates each with the same risk of occurring should have the same
present value. To preserve the assumption of no-arbitrage two identical cash-
flows with the same probability of occurring must have the same present value
[6]. Having a single discount curve would then imply that these future cash-
flows should then each be determined using a forward rate curve consistent
with that cashflow’s reference rate tenor.

To preserve the assumption of no-arbitrage when determining forward rates
used to price, value and hedge instruments of a specific tenor they should be
based off a curve created using vanilla instruments of the same underlying
tenor. Bianchetti gives a brief procedure of how this is to be achieved and
the following is a reprise from [6].

First
Build a single discount curve using the most liquid instruments reflec-
tive of each time period.

Second
Build multiple distinct forward curves Cf1 , ..., Cf2 each using distinct
sets of interest market rate instruments of the same underlying LIBOR
tenor (e.g. 1 Month, 3 Month and 6 month); these can be built us-
ing the typical selected bootstrapping and interpolation procedures as
described by Hagan and West in [32].

Third
For each relevant period forward rates are determined using the curves
as defined in step two using the corresponding yield curve for that
tenor.

Ff (t; t1, t2) =
1

τf (t1, t2)

(
Pf (t, t1)

Pf (t, t2)
− 1

)
, t2 > t1. (5.1)
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Fourth Cashflows are calculated based off the corresponding forward curve
built using underlyings of the same tenor.

Fifth The relevant discount factors, df(t1, t2) are calculated from the single
discount curve.

Sixth The derivative’s price at a given time is the sum of the discounted
expected cashflows.

Seventh Hedging and interest rate sensitivities (deltas) are calculated by
calculating the change in value of the instrument as a result of changes
to each of the benchmark bootstrapping instruments for the relevant
yield curves.

Unfortunately it is still not obvious as to which instruments should be con-
sidered as benchmark bootstrapping instruments when creating the discount
curve Cd or which to use when creating the various yield curves of homoge-
nous tenor Cf1 , ..., Cf2 . Further liquidity and availability of market rates
for these instruments is not always readily available; such as in the South
African market where 3-Month JIBAR swaps are the most prevalent but
those of other tenors do not trade readily. A further example is that of
the overnight yield curve, which may be constructed using overnight index
swaps, which is a curve with an increasingly greater importance though the
market for such swaps is not always liquid and with market data not always
readily available (such as in South Africa where a similar equivalent, the
Rand Overnight Deposit Swaps or RODS, is no longer readily traded). Such
overnight yield curves have an increasingly important role when considering
counterparty basis adjustment in the presence of daily collateralisations and
shall be discussed later in the relevant parts of Section 7.2 on pricing with
and without collateral.

Multiple curves each with their own market of bootstrapping benchmark
instruments create pricing and hedging complexities as each instrument’s
price and change in price would now be sensitive to more than one source of
market risk. Also the driving factors behind each spread adjustment is not
always clearly defined or separate containing elements of counterparty risk
as well as liquidity or funding risk.

5.5 Basis following an Axiomatic Approach

Henrard [37] has approached the problem of modelling basis using an ax-
iomatic approach. This approach is also explored by Bianchetti and Morini
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[6, 50]. The question of how cashflows linked to LIBOR related derivatives,
especially in the presence of spreads was presented in [37] and further ex-
plored in [37]. Given what we have seen so far the question of what curve
to use and how to estimate and discount LIBOR related cashflows had been
much debated post the financial crisis. Before this crisis, such questions
had been posed and analysed, but the implications had not been fully ex-
plored and the market in general was reticent to alter methodologies which
would have accounting and legal implications should the standard approach
be questioned or changed. Post the crisis though LIBOR had begun to be
seen as an ambiguous notion (though it is explored by Michaud and Upper
[47]), a rate which was set and fixed, but carried large basis spreads between
tenors and was not necessarily a market related rate which a bank would be
willing to take or give funding at (or the amount offered could be a rather
small amount); this was further put under the spotlight recently with the
“LIBOR scandal” which had been brought to light with various settlements
being made by Barclays Bank. Further details were published by the press
with reports having come in from the Financial Times, BBC, Reuters and
others. Whilst there are many references to this scandal the reader is referred
to the release (PR6289-12) by the Commodity Futures Trading Commission
(CFTC) [18]. This approach attempts to offer a solution to this conundrum.

The approach proposed by Henrard [36, 37] is that of using a unique curve
to discount all the cashflows regardless of the tenor and this approach differs
somewhat from other multiple curve approaches and frameworks. Similar to
other authors such as Pallavicini and Tarenghi [51] the problem is tackled by
taking each forward rate as a single asset without individually modelling the
dynamics between liquidity and credit risks. This approach is a top-down
approach in that it begins by proposing a multiple forward curve, single
discount curve framework which is then fitted to observations and trends in
the market. Let us consider a discount curve and forward curve defined as:

Definition 5.5 (Discount Curve). The discount curve Cd is the curve given
by the continuous set of discount factors df(t, t1) as defined in Definition 3.2.

Definition 5.6 (Forward Curve). The forward curve Cf is the continuous
function P j(t1, t2), analogous to formula 3.6, such that

df(t, t2) ·
(
P j(t, t1)

P j(t, t2)
− 1

)
, t ≤ t1 ≤ t2, (5.2)

is the price at time t of the floating interest rate payment with beginning at
time t1 and maturity date t2.
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Henrard [37] notes that this curve definition differs to that of Mercurio [46],
Kijima et al. [42], Ametrano and Bianchetti [6] but it is similar to that of
Chibane and Sheldon [17].

It is given that the price of an interest rate swap is the discounted value
of all the estimated future cashflows with the LIBOR forward rate being the
estimation of such cashflows; as shown previously in the discussion of forward
measures in Section 3.3. In that context under the risk neutral martingale
measure Q then F (t, t1, t2) (from Definition 3.10) is unbiased estimator of
the future LIBOR rate L(t1, t2). We can now define the LIBOR forward rate
corresponding to a specific forward curve.

Definition 5.7 (LIBOR Forward Rate).

F j(t, t1, t2) =
1

τ(t1, t2)

(
P j(t, t1)

P j(t, t2)
− 1

)
, t ≤ t1 ≤ t2, (5.3)

is the fair forward rate (or LIBOR forward rate) for the period beginning at
time t1 and maturing at time t2 as determined at time t and corresponding
to the forward curve.

The cashflow equivalent approach to pricing interest rate swaps is where a
receiving floating rate leg of a swap is treated as paying the notional at incep-
tion (or just after a payment date) and receiving it at maturity. The value
of this leg at inception or just after a payment was traditionally considered
to be equal to the notional. To have a similar result in the new framework
the following is defined

βft (t1, t2) =
P j(t, t1)

P j(t, t2)

df(t, t2)

df(t, t1)
, t ≤ t1 ≤ t2, (5.4)

which results in the price of a floating interest rate payment, as per the
definition above, as

df(t, t2) ·
(
fc(t, t1)

fc(t, t2)
− 1

)
= df(t, t2)

(
βft (t1, t2)

df(t, t1)

df(t, t2)
− 1

)
= βft (t1, t2)df(t, t1)− df(t, t2), (5.5)

which is the equivalent of receiving βft (t1, t2) at time t1 and paying 1 at time
t2.

Following from Proposition 2.2 from the earlier section on martingale mea-
sures, taking the LIBOR related interest rate payment which is an asset with
value

βft (t1, t2)df(t, t1)− df(t, t2),
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and dividing it by the numeraire (as per Definition 2.9 ) P (t, t1) = df(t, t1)
is a martingale. Dividing βft (t1, t2)df(t, t1) − df(t, t2) by df(t, t1) gives us
βft − 1 and thus (discarding the deterministic last term) βft is a martingale
under Qdf(t,t1) since the price of any attainable claim (in this case a LIBOR
payment) normalised by a numeraire U is a martingale under QU [29].

Having a separate discount curve and forward curve the swap rate (i.e. the
rate at which a vanilla interest rate swap has a value of zero) would now be
expressed as

Sjt =

∑n
i=1 F

j(t, ti−1, ti) df(t, ti)τ(ti−1, ti)∑n
i=1 df(t, ti)τ(ti−1, ti)

(5.6)

for an interest rate swap with a tenor corresponding to that of curve Cj and
the value of a FRA, analogous to Equation (3.11), is

V j
FRA = df(t, t1)

τ(t1, t1 + j)(F j(t, t1, t1 + j)−K)

1 + τ(ti, ti + j)F j(t, ti, ti + j)
(5.7)

which differs slightly from the original formula as in this case the payment is
treated as being made in advance at time ti rather than at the end of the pe-
riod, i.e. time ti+j and is thus discounted by the LIBOR rate for that period.

Treating the FRA as a contingent claim its value would give us

V j
FRA = N · EN−1

t1

[
τ(t1, t1 + j)(Lj(t, t1, t1 + j)−K)

1 + τ(ti, ti + j)F j(t, ti, ti + j)

]
(5.8)

for numeraire N−1
t1 .

The forward curve P j is not an asset as df(0, t) = P j(0, t) under any any
numeraire N which is contrary to the framework of having multiple curves
[36]. Henrard explores the following two propositions under the axiomatic
approach in [37].

Proposition 5.1. The multiplicative coefficient between discount factor ra-
tios βjt (u, u+j) as defined in Definition 5.4 is independent of the rate df(t, u)/df(t, u+
j).

and the stricter proposition for the pricing of interest rate options.

Proposition 5.2. The multiplicative coefficient between discount factor ra-
tios βjt (u, u+ j) as defined in Definition 5.4 constant through time such that
βjt (u, v) = bj0(u, v) ∀ t and u.
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Under these propositions βjt is a martingale for any df(t, u) measure. Fur-
ther, as per the change of numeraire technique described in previous sections
and as described by Geman in [29], the changing of the numeraire does not
affect this martingale property of βjt .

The spread implied by βjt is not constant across maturities but deterministic
and given by its initial values [36, 37]. The spread is given by

ln(
βj(u, v)

(u− v)
),

under continuous compounding.

Theorem 5.1 (FRA). Under Proposition 5.1 and that the LIBOR coupon
and zero coupon bonds are assets, and thus suitable numeraires, the price of
a FRA with tenor j as determined at time t with payment date t1and fixed
rate K is

V j
FRA = df(t, t1)

τ(t1, t1 + j)(F j(t, t1, t1 + j)−K
1 + τ(t1, t1 + j)F j(t, t1, t1 + j)

= df(t, t1 + j)
τ(t1, t1 + j)(F j(t, t1, t1 + j)−K)

βj(t1, t1 + j)
, (5.9)

achieved by algebraic substitution and rearranging of the above coefficients as
well as the independence Proposition 5.1. Even if the floating rate payment is
given under LIBOR and exists as a fixed given LIBOR rate one could still not
price a FRA without the adjustment implied by the spread βjt . An interest
rate swap is no longer a string of FRAs in a portfolio. The Proposition 5.1
justifies the decoupling of the discount curve and the forward curves [37] [46].

An at-the-money FRA, or market FRA, is a FRA where the fixed rate K is
such that the FRA has a value of 0 as is usually the case of FRAs traded at
their inception date. It thus follows, and referring to the previous derivation
of the fair forward rate, Derivation 5.7, that we obtain

K = F j(t0, t1, t2) =
1

τ(t1, t2)

(
βj(t1, t2)

df(t0, t1)

df(t0, t2)
− 1

)
, (5.10)

which coincides with the FRA fair rate obtained by Mercurio in [46] in the
simple top-down multiple curve approach:

βj =
1

R + (1−R)E[Q(t1, t2])
. (5.11)
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This spread can be linked to credit risk measures [24], liquidity risk measures
[42, 46] or as is the case in the axiomatic approach the model parameters
are fitted to the market curves, i.e. those spreads as quoted in the interbank
market. Having defined our market instruments, their market related spreads
and their equivalences under martingale measures the goal is to construct the
multiple forward curves Cf and their functions P j(t0, t) with the discount
curve Cd. and its function df(t0, t) a given single curve. The approach differs
to that of Kijima et al. [42] (one factor quadratic Gaussian model) which
imposes a parameterised shape to the spread between curves. By taking
P j(t0, t0) = 0 and for the function P j(t0, t) where t0 is considered the present
point in time then, with the current market price/fixing of LIBOR Lj0 the
function P j(t0, t) is such that

Lj0 =
1

τ(t, t+ j)

(
P j(t0, t)

P j(t0, t+ j)

)
, (5.12)

where t is the spot-date at which the LIBOR payment references and equiva-
lent to the time Spot(t) as used by Henrard in [37] and thus the curve would
match the current fixing. The difference in this notation due to that in many
markets there is a delay between the date on which LIBOR is fixed and the
day on which the LIBOR deposit is settled, for example in the USD LIBOR
market there is a two business day difference between these days. As such we
consider t the initial settlement date and in the context of the South African
JIBAR market this could be set to t0. In theory the curve interval has no
impact but in practice not all possible dates are used for curve construction
and interpolation is relied upon [32] to fill the missing points there is an
impact [37].

The instruments used in curve construction vary in liquidity in each market.
In the LIBOR market it was common practice to use Eurodollar Futures
in the short end of the curve due to their liquidity. In the South African
market though FRAs have typically been much more liquid in the market
with JIBAR futures (the South African equivalent of Eurodollar Futures with
some minor settlement and quotation differences) being much less liquid. As
such the use of FRAs has been the mainstay in South African curve con-
struction and have recently gained greater popularity in overseas markets as
a way to obtain information for tenors greater than 3 months [37].

A set of FRAs of tenor j are selected and are typically selected up until
the further maturity dates where liquidity decreases and there is increased
liquidity in interest rate swaps. A reminder on FRA notation: a 1x4 FRA is
the FRA, at time t0, which references a floating rate beginning in 1 month
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time and maturing in 4 months time (i.e. having a tenor of 3-months and
for the ease of notation we shall set j to be the time in months, i.e. the 1x4
FRA has j = 3 which is a tenor of 3 months. These FRAs are sorted in order
of increasing maturity with start dates ti and end date Ti, also referred to
as the near maturity and the far maturity. Each of those FRAs would have
an equivalent market quoted fair forward rate Kj

i and this is considered as a
known value. The value of such a FRA is zero with Kj

i = F j(t0, ti, Ti) and
Ti − ti = j.

Following the no-arbitrage assumption and that the value of an initial zero
coupon bond of tenor j, P j(0, ti), is known we can determine, from the value
V j
FRA(t0, ti, Ti), the unknown value of a zero coupon bond P j(0, Ti). This

initial zero coupon bond may be our LIBOR deposit and is equivalent to Lj0.

For maturities usually exceeding 2 years (depending on liquidity of market
traded instruments and thus the reliability of market quotes) interest rate
swaps are substituted for FRAs in the curve. Typically interest rate swaps
are quoted in a single liquid tenor; often referred to as the leading swap. To
obtain market information for other tenors basis swaps would need to be used
(that is an interest rate swap which exchanges floating interest rate payments
of tenor for that of another tenor, i.e. of a different basis). Where there exist
liquid swaps of the various tenors those may be preferable. The equivalence
of a basis swap in conjunction with that of a vanilla interest rate swap to
that of a vanilla interest rate swap with a different tenor is not discussed by
many authors but may easily be shown via the following derivation:

Derivation 5.2. Consider portfolio A consisting of a market at-the-money
vanilla interest rate swap (receiving the floating rate) with maturity date T
and cashflow dates ti referencing LIBOR of tenor j such that ti+1−ti = j and
with fixed rate payments Kj

T . Further consider portfolio B which consists of
a market at-the-money vanilla interest rate swap (receiving the floating rate)
with the same maturity date T but with a tenor of h and payment dates tk and
with payments based on the fixed rate Kh

T ; further portfolio B also consists
of a market at-the-money basis swap which exchanges floating rate cashflows
of tenor j (receiving this rate) for cashflows of tenor h plus some spread S
(note that S may be a negative spread though typically we would not have
Kj + S ≤ 0). Thus portfolio A and portfolio B would have the exact same
incoming cashflows on each of the dates ti; typically the payments of the
shorter tenor rate would be compounded to match the payment dates to that
of the longer tenor (in this case we may arbitrarily assign j to be the longer
tenor with corresponding dates ti. Thus not to have an arbitrage opportunity
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between the two portfolios the present value of each of the payments Kj
i and

those of Kh − S must be equal. Thus if one of the rates Kj
T or Kh

T is known
we can derive what the other rate should be under risk neutral measures and
the assumption of no-arbitrage. For either swaps the discount curve Cf would
be identical but the actual derivation of this curve would be arbitrary as the
equivalence would remain (more specifically this curve could be based off the
liquid leading tenor or off of overnight rates as is currently being advocated
for interest rate swaps in the presence of collateral).

Also of consideration would be that under a risky counterparty framework
where the swaps in either portfolio face a different counterparty we would
introduce a new spread, that of the specific counterparty and not just that
arising due to the market related factors of each tenor. This is mitigated in
the interbank market due to the presence of collateral in the interbank mar-
ket and for the purposes of the derivation the swaps should be considered
trades between equally risky counterparties.

As for the FRAs the swaps are then also sorted by increasing maturities
(with overlapping generally occurring between the last few FRAs and the
first interest rate swap). The curve is then constructed so that the value
of a market at-the-money interest rate swap is zero. The value of such a
swap is given by Equation (5.6). Interpolation techniques and bootstrapping
techniques discussed by Hagan and West in [32] could then be extended to
the multiple curve approach.

This forward curve, Cf is important only in that it gives the ratio between
different values of P j

t for different times t. The value of P j
t on its own is

not a market related rate; it is not a tradeable instrument. The curve up to
the first point may appear arbitrary but it is of significant importance as it
would most likely be used to interpolate other points in the curve; Henrard
highlights this in [37] whilst also noting that this is not broached by Chibane
and Sheldon in[17] and Mercurio [46].

Henrard [37] proposes an approach to pricing contingent claims under the
Proposition 5.2 of deterministic spreads. This could be extended to the
purposes of the risk modelling of these spreads, the β ratios, under well known
models. Taking a standard model for the discount curve, such as that of the
Brace, Gatarek and Musiela model (the LIBOR Market Model) [12] which is
extended in the LogNormal LIBOR Market Model and the Extended LIBOR
Market Model of Mercurio in [46]. Henrard does not apply a specific market
model or extend any of the existing models. The approach to contingent
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claims under the axiomatic framework is to extend the cashflow equivalent
approach of valuing swaps to value contingent claims on the Swap or FRA
rate applying a model which models the term structure of the discount curve
Cd; stochasticity in β is not approached but the spreads are considered under
the Black model and the SABR/CEV model. These market models are
discussed in greater detail in Chapter 6.

5.6 Bottom-up Market Related Approach

Following the above axiomatic approach is an approach which acts as a corol-
lary, it is a bottom-up approach as proposed by Ametrano in [2] using for-
ward basis to recover the no-arbitrage assumption and extended further by
Bianchetti in [6] who adds a foreign currency, or quanto, type analogy to
prevent implied arbitrage. Curve construction follows the approaches pre-
viously described as far as methodology goes in that it uses a discounted
cashflow model based off of multiple distinct forward curves, Cf1 , ..., Cfn . In
this approach the cashflows ci at each time period, ti, are computed as the
expectation at time t0 of the corresponding interest rate payments πi(Ff )
under the forward measure Qti

d corresponding to the forward curve Cf and
the discount curve Cd associated with the numeraire P (t0, ti) which results
in

ci = c(t0, Ti, πi) = E
Q

ti
d

t [πi(Ff )]. (5.13)

Being a bottom-up approach it begins with the current market practice of
using multiple yield curves [2, 57] and extending it to recover the no-arbitrage
assumption. This begins with a market segmentation which treats the in-
terest rate market as a set of sub-markets corresponding to instruments of
different tenors. Whilst there appears to be a general market consensus on
the creation of multiple curves based on the underlying there is no consen-
sus on what should be a unique standard discount curve. Of the various
approaches the most encountered are that of either the original pre-crisis ap-
proach of multiple instruments based on the liquidity of each tenor there is
also the approach of basing this discount curve off of overnight rates such as
that based off of EONIA swaps, Overnight Index Swaps (OIS) or in the South
African context Rand Overnight Deposit Swaps (unfortunately no longer ac-
tively traded). The merits of the overnight type curve are discussed in the
section of approaching the pricing of interest rate derivatives under collateral
which is typically funded overnight: this still leaves open though the question
of what is appropriate for valuing interest rate swaps where there is no collat-
eralising or the complexities where the collateral may be in a currency other
than that of the base swap (as would be encountered in South Africa when



CHAPTER 5. POST CRISIS MULTIPLE-CURVE FRAMEWORK 54

collateralising interest rate derivatives with a foreign bank which would be
done in USD or EUR even for a ZAR based swap). Nonetheless there would
exist some discount curve Cd which would need to be the same for each in-
terest rate submarket.

Ametrano and Bianchetti define a set of N yield curves, Cf which we shall
carry through from Henrard [37] and which extend to Morini [50] and Kijima
et al. [42] and other authors. These curves, in this approach, are treated as
a continuous term structure of discount factors,

CP
f = T → Pf (t0, T )T ≥ t0, (5.14)

where [2] uses the superscript P to stand for the discount curve, Cd which
is the same as that used in the previous section and Pf (t0, T ) is a CP

X zero
coupon bond with price at time t0, which is today, maturing at time T such
that Pf (T, T ) = 1. We can place this in contrast to the previous approach
where P f was an arbitrary function which fulfilled equality in Definition 5.6.
We shall continue to use the superscript to distinguish between these defini-
tions.

Continuously compounded zero coupon rates zx(t0, T ) and the simple com-
pounded instantaneous forward rates fx,t0,T (which were previously consid-
ered under Equation (3.14) under Proposition 3.1) are such that

Pf (t0, T ) = exp[−zx(t0, T )τ(t0, t)]

= exp

[
−
∫ T

t0

fx,t0,u du

]
, (5.15)

which [2] extends to the equivalent log notation,

lnPx(t0, T ) = −zx(t0, T )τ(t0, T )

= −
∫ T

t0

fx,t0,T du. (5.16)

The following observations, based on the above relationships, are taken from
[2]:

1. zx(t0, T ) is the average of fx,t0,T over [t0, T ];

2. If interest rates are non-negative then the above log function is a mono-
tone non-increasing function of T such that 0 < P (t0, T ) ≤ 1 ∀T > t0;
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3. The instantaneous forward curve Cf is the most severe indicator of yield
curve smoothness since anything else is obtained through its integration
and therefore smoother by construction.

We can now define the following rate curves which are associated to CP
f

Cz
f = {T → zf (t0, T ), T ≥ t0}, (5.17)

Cx
f = {T → ff,t0,T , T ≥ t0}, (5.18)

the zero coupon yield curve and the instantaneous forward rate curve 1 where

zf (t0, T ) = − 1

τ(t0, T )
lnPf (t0, t), (5.19)

ff,t0,T = − ∂

∂t
lnPf (t0, t)|t=T

= zf (t0, T ) +
∂

∂t
zf (t0, t)|t=T τ(t0, T ). (5.20)

(5.21)

To preserve no-arbitrage the following relationship between discount factors
(or zero coupon bond prices) hold

Pf (t, t2) = Pf (t, t1) · Pf (t, t1, t2), ∀ t0 ≤ t ≤ t1 ≤ t2, (5.22)

where Pf (t, t1, t2) is as defined in the earlier Proposition 3.1 being the value
at time t of a zero coupon bond starting at time t1 and maturing at time t2
in this case though this zero coupon bond is of tenor corresponding to the
forward curve Cf . Equation (3.13) under Proposition 3.1 could further be
extended as

Pf (t, t1, t2) =
Pf (t, T2)

Pf (t, T1)
=

1

1 + Ff (t, t1, t2)τ(t1, t2)
, (5.23)

where now Ff (t, t1, t2) is the fair forward rate, as measured at time t for the
period beginning at time t1 and ending at time t2 now under the submarket
corresponding to tenor f and the forward curve Cf . We would thus obtain

Ff (t, t1, t2) =
1

τ(t2, t1)

[
1

Pf (t, t1, t2)
− 1

]
=

Pf (t, t1)− Pf (t, t2)

τ(t2, t1)Pf (t, t2)
, (5.24)

1Here the superscript and subscript in Cxf are switched around from that which the
author uses in [2]; this is to be consistent with the previous section where f was used
as a subscript to denote market curve Cf whereas Ametrano and Bianchetti use x. Here
f is used to denote the submarket curve Cf and the superscript x to define it as the
instantaneous forward rate curve.
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which corresponds to the original definition given for a simple compounding
forward interest rate as was defined in Definition 3.10 but now under the
submarket corresponding to Cf .

We could thus express the value of a fair swap rate Kf (t, t, s of a swap with
maturity T with floating rate payment dates s = {s0, ..., sm} paying the
LIBOR rate corresponding to tenor j on the date sj with reference LIBOR
fixing date sj−1 and fixed leg payments paying the fixed rate on payment
dates ti, i = 0, ..., n and where t = {t0, ...tn} as

Kf (t, t, s) =

∑m
j=1 Pf (t, sj)τ(sj−1, sj)Ff (t, sj−1, sj)

Af (t, t)

=
Pf (t, t0)− Pf (t, tn)

Af (t, t)
, (5.25)

where

Af (t, t) =
n∑
i=1

Pf (t, ti)τ(ti−1, ti) (5.26)

is an annuity for curve Cf .

Ametrano and Bianchetti [2] note that in Equation (5.25) they use the tele-
scopic property of summation and that this would only hold true if each
forward rate end date equals the next forward rate start date with no gaps
or overlaps and that this is not always the case due to business day and
spot/settlement date conventions in the various X-BOR markets and that
in practice the error is small and of order 0.1 basis points. In the JIBAR
market there is no spot/settlement day difference between each period so the
telescopic property holds true.

The bootstrapping and interpolation of our set of curves follow the method-
ologies previously outlined; again the main contrast to this approach is the
segmentation of the various markets without (yet) reconstituting them nor
defining the equivalent spread measure β used in the axiomatic approach. To
address this a foreign currency quanto (defined in Definition 4.3) analogy is
used by Bianchetti in [6], Chibane and Sheldon in [17] and Kijima et al. in
[42] and this shall now be addressed.

5.6.1 Reclaiming No-Arbitrage Assumptions

It can now be shown the assumption of no-arbitrage is broken under this
framework, the pre-crisis single curve no-arbitrage relations simply do not
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hold any longer. We can show that, from [6, 17, 42] that now

Pf (t, t1, t2) =
Pf (t, t2)

Pf (t, t1)
=

1

1 + Ff (t, t1, t2)τ(t1, t2)

6= 1

1 + Fd(t, t1, t2)τ(t1, t2)

=
Pd(t, t2)

Pd(t, t1)
= Pd(t, t1, t2). (5.27)

Or simply put the fair forward rate as determined by the market related
discount curve Cd does not correspond to that of Cf and unlike the axiomatic
approach, where the forward curve is not equivalent to market instruments
but rather some arbitrary function, under this approach no assumption is
made that the zero coupon bond prices corresponding to Cf are not market
instruments. To recover the assumption of no-arbitrage forward basis is to
be taken into account via a riskiness measure on the forward counterparty
for basis swaps

Pf (t, t1, t2) =
1

1 + Fd(t, t1, t2)BAfd(t, t1, t2)τ(t1, t2)
, (5.28)

or from the transformation of forward rates [6]

Ff (t, t1, t2)τ(t1, t2) = Fd(t, t1, t2)τ(t1, t2)BAfd(t, t1, t2), (5.29)

where BAfd(t, t1, t2), to use the notation from [6], is a function of the forward
basis between Cf and Cd. Rearranging Equation (5.29) we obtain

BAfd(t, t1, t2) =
Ff (t, t1, t2)τ(t1, t2)

Fd(t, t1, t2)τ(t1, t2)

=
Pd(t, t2)Pf (t, t1)− Pf (t, t2)

Pf (t, t2)Pd(t, t1)− Pd(t, t2)
, (5.30)

which expresses the forward basis as a ratio between forward rates or in
terms of discount factors of Cd and Cf . This is similar in concept to the
ratio β under the axiomatic approach though the two are not equal. Here
the forward basis is a multiplicative term but it could also be defined as an
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additive term BA′fd:

Pf (t, t1, t2) =
1

1 + (Fd(t, t1, t2) +BA′fd(t, t1, t2))τ(t1, t2)
,

BA′fd(t, t1, t2) =
[Ff (t, t1, t2)− Fd(t, t1, t2)]τ(t1, t2)

τ(t1, t2)

=
1

τ(t1, t2)

(
Pf (t, t1)

Pf (t, t2)
− Pd(t, t1)

Pd(t, t2)

)
= Fd(t, t1, t2)[BAfd(t, t1, t2)− 1], (5.31)

and we may note that under the pre-crisis frameworks BAfd(t, t1, t2) = 1 and
BA′fd(t, t1, t2) = 0 following from Cf = Cd

For the sake of simplicity the year fraction, or coverage from Definition 3.3,
τ(t1, t2) is assumed to follow the same daycount convention under both Cd
and Cf though this is not a requirement; Bianchetti [6] distinguishes between
τf (t1, t2) and τd(t1, t2).

Curves can now be bootstrapped from a given yield curve plus a given forward
basis using the recursive relations:

Pd(t, ti) =
Pf (t, t1)BAfd(t, ti−1, ti)

Pf (t, ti−1)− Pf (t, ti) + Pf (t, ti)BAfd(t, ti−1, ti)
Pd(t, ti−1)

=
Pf (t, ti)

Pf (t, ti−1)− Pf (t, ti)BA′fd(t, ti−1, ti)τ(ti−1, ti)
Pd(t, ti−1),

(5.32)

Pf (t, ti) =
Pd(t, ti)

Pd(t, ti) + (Pd(t, ti−1)− Pd(t, ti))BAfd(t, ti−1, ti)
Pf (t, ti−1)

=
Pd(t, ti)

Pd(t, ti) + Pd(t, ti−1)BA′fd(t, ti−1, ti)τ(ti−1, ti)
Pf (t, ti−1),

(5.33)

which can be used iteratively given a yield curve up to step i and the forward
basis for the step i − 1 to i. A similar algorithm is described by Kijima et
al. in [42].

Bianchetti [6] further observes that once a “smooth and robust” bootstrap-
ping technique for yield curve construction is used the term structure for for-
ward interest rate basis curve provides a sensitive indicator for the tiny yet
observable differences in the different tenor based interest rate sub-markets
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and provides a tool for the assessment of the degree of liquidity and credit
risks contained in the various derivatives’ prices.

5.6.2 Quanto Style Cross Currency Swap Analogy

Bianchetti [6], Kijima et al. [42], Michaud and Upper[47] and Tuckman and
Porfirio [57] make similar observations regarding interest rate basis; that
it can be explained and defined in a manner similar to that observable in
a multi-currency model using a quanto-style cross-currency swap analogy,
similar to that as described by Boenkost and Schmidt [11]. Let us first
consider the generalised FRA price under the multiple curve framework

VFRA(t; t1, t2, K,N) = Ndf(t, t2)τ(t1, t2)

[
E
Q

t2
d

t [Lf (t1, t2)−K]

]
, (5.34)

compared to the simple market practice where

VFRA(t; t1, t2, K,N) = Ndf(t, t2)τ(t1, t2) [Ff (t; t1, t2)−K] , (5.35)

where the forward rate Ff is seen as an unbiased estimator of the future
LIBOR fixing, Lf , of tenor f .

The forward rate Ff (t; t1, t2) is not in general a martingale under Qt2
d and

thus the simple market practice discards adjustments coming from the mea-
sure mismatch [6]. To calculate the expectation in Equation (5.34) it would
require modelling the dynamic properties of the two interest rate curves un-
der Cf and Cd which is accomplished by introducing the cross-currency swap
analogy [6, 42] using a quanto style adjustment used for cross currency swaps
as evidenced by Tuckman and Porfirio (using credit risk inherent in a cur-
rency as the driver) in [57] and modelled further by Boenkost (using a liq-
uidity premium as the driver) in [11].

Some of the base instruments in a multiple currency framework as well as
the concept of interest rate parity and its importance regarding no-arbitrage
was discussed in Section 4.4 and those concepts carry through. No-arbitrage
in the double currency double curve framework requires the existence of a
spot and forward exchange rate (as shown in the definition for a Forward
Exchange Contract, or FEC in Definition 4.1) and we have that

cd(t) = xfd(t)cf (t),

Xfd(t, t1)Pd(t, t1) = xfd(t)Pf (t, t1), (5.36)
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using the notation from [6] and the subscripts d and f refer to the domestic
and foreign currency respectively (and which may be seen as analogous to
the discount and forward rate in the single currency framework). cd(t) is a
cashflow in the domestic currency at time t and cf (t) is the corresponding
foreign currency cashflow. xfd(t) is the exchange rate at time t and Xfd(t, t1)
is the forward exchange rate at time t1 as calculated at time t and K in the
calculation of an FEC and under interest rate parity in Derivation 4.1 is seen
as the fair forward exchange rate at time t1 (analogous to the fair forward
interest rate). The derivation of the two equations follow interest rate parity
under Derivation 4.1 and the equations must hold under the assumption of
no-arbitrage.

Taking this analogy to the double curve single currency framework we take d
and f to refer to the discount and forward curve and that the spot exchange
rate must be 1, i.e. xfd(t) = 1 resulting in

Xfd =
Pf (t, t1)

Pd(t, t1)
, (5.37)

which is analogous to the forward interest rate basis. This can be substi-
tuted into Equation (5.29) which depicts our forward rate basis as a ratio of
discount factors off of Cd and Cf and results in 2

BAfd(t, t1, t2) = Xfd
Pd(t, t1)− Pd(t, t2)

Pd(t, t1)Xfd(t, t1)− Pd(t, t2)Xfd(t, t1)
. (5.38)

Standard market practice is to assume the lognormal martingale dynamic for
the curve, Cf , of foreign currency forward rates

dFf (t, t1, t2)

Ff (t, t1, t2)
= σX(t) dW t2

f (t), t ≤ t1, (5.39)

where σf (t) is the volatility of the process under the probability space (Ω,Ff , Qt2
f )

with the filtration Fft generated by the Brownian motion W t2
f under the for-

eign currency forward t2 measure Qt2
f associated to the Cf numeraire Pf (t, t2)

[6].

It follows from Proposition 2.2 that since Xfd(t, t2) is the ratio between the
price at time t of a tradeable asset and the Cd numeraire Pd(t, t2) it is a

2Bianchetti in [6] also multiplies the below equation by a ratio
τf
τd

catering for the case
where the two curves use differing daycount conventions.
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martingale process under the forward t2 measure Qt2
d such that

dXfd(t, t2)

Xfd(t, t2)
= σX(t) dW t2

X (t), t ≤ t2, (5.40)

where σX(t) is the volatility of the process and W t2
X is Brownian motion under

Qt2
d such that [6]

dW t2
f (t) dW t2

X (t) = ρfX(t) dt. (5.41)

In calculating FRA rates a cashflow under Cf needs to be transformed to
a corresponding cashflow under Cd. This is accomplished by changing the
numeraire following Definition 2.10 and the formulae given by [13] in the
Change of Numeraire Toolkit to obtain the dynamics of Ff (t, t1, t2) under
Qt2
d

dFf (t, t1, t2)

Ff (t, t1, t2)
= µf (t) dt+ σf (t) dW (t2)d, t ≤ t1, (5.42)

µf (t) = −σf (t)σX(t)ρfX(t), (5.43)

where the forward rate dynamic now has a non-zero drift µf (t) and Ff (t1, t1, t2)
is lognormally distributed under Qt2

d with a mean and variance respectively
as

E
Q

t2
d

t

[
ln
Ff (t1, t1, t2)

Ff (t, t1, t2)

]
=

∫ t1

t

[
µf (u)−

σ2
f (u)

2

]
du, (5.44)

V ar
Q

t2
d

t

[
ln
Ff (t1, t1, t2)

Ff (t, t1, t2)

]
=

∫ t1

t

σ2
f (u) du. (5.45)

This allows us to define our (multiplicative) Quanto AdjustmentQAfd(t, t1, σf , σX , ρfX)
which we shall denote as QAfd(t, t1) for ease of notation

QAfd = exp

[∫ t1

t

µf (u) du

]
,

= exp

[
−
∫ t1

t

σf (u)σX(u)ρfd(u) du

]
, (5.46)

which can be substituted into the expectation of the spot LIBOR or simple
interest rate to give the result

E
Q

t2
d

t [Ff (t1, t1, t2)] = Ff (t, t1, t2)QAfd(t, t1). (5.47)
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Parallel to the additive basis adjustment BA′fd we could also define the ad-
ditive quanto adjustment,

QA′fd(t, t1) = Ff (t, t1, t2)
[
QA′fd(t, t1)− 1

]
, (5.48)

with the expected spot LIBOR rate as

E
Q

t2
d

t [Ff (t1, t1, t2)] = Ff (t, t1, t2) +QA′fd(t, t1). (5.49)

By combining Equations (5.47) and (5.49) with the equations for the for-
ward basis adjustment, Equations (5.30) and (5.31), for the multiplicative
and additive adjustments respectively the following relationship between the
quanto adjustment and the forward adjustment is obtained: [6]

BAfd(t, t1, t2)

QAfd(t, t1)
=

E
Q

t2
d

t [Ld(t1, t2)]

E
Q

t2
d

t [Lf (t1, t2)]
, (5.50)

BA′fd(t, t1, t2)−QA′fd(t, t1) = E
Q

t2
d

t [Ld(t1, t2)]− EQ
t2
d

t [Lf (t1, t2)].

(5.51)

This analogy allows the computation of the expected value of the forward
rates from curve Cf under the measure Qt2

d . The volatilities and correlations
arising in Equation (5.46) may be estimated from market data from either
quoted volatilties or from historical data. The dynamics of the basis and
quanto adjustment are further explored in the next chapter, Chapter 6, which
shall introduce two short rate models constructed by a quadratic Gaussian
model and by the Vasicek model as proposed by Kijima et al. in [42], a Black
Model and a SABR (Stochastic Alpha, Beta, Rho) as discussed by Henrard
[37] and Pallavicini and Tarenghi [51], and extensions of the LIBOR Market
Model into a LogNormal LIBOR Market Model and an Extended LIBOR
Market Model proposed by Mercurio in [46].



Chapter 6

Post-Crisis Market Models

The traditional pre-crisis market model would now need to be adapted to
include measures for the aforementioned basis spreads. We shall take a look
at the inclusion of the spread factor modelled under a Black Model and under
a Stochastic Alpha Beta Rho(SABR) model as proposed by Henrard in [37].
Following that Kijima et al. [42] extend a model introduced by Boenkost
and Schmidt [11] to model three different curves in one currency under a
stochastic interest rate environment under a no-arbitrage paradigm. Kijima
et al.[42] put forward two short rate models to derive closed form formulae for
the three cures, the first a quadratic Gaussian model and the second by the
Vasicek model which we shall explore. Finally we shall explore an extension
to the LIBOR Market Model, as proposed by Mercurio [46], under a multiple
curve framework.

6.1 Black Model and SABR/CEV Model for

Basis Spreads

Henrard’s hypothesis [37], Proposition 5.2, is proposed as a means to link the
various curves under a multi-curve framework. This is extended to a number
of other spread hypotheses. The market spread hypothesis is proposed as
the following

Proposition 6.1. The spreads or basis,

Bj(t0, t1) = Sjt0(t0, t1)− SMt0 (t0, t1), (6.1)

are known for every fixing date t0 and every tenor j.

Where M is defined as the standard market frequency, the one for which there
is market data [37], and commonly referred to as the leading swap term and

63
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this spread is known for every fixing. A model for SM would be extended to
cover the swap rates for other tenors via a deterministic shift which can be
used under a Black-like model under which if the market rate is log-normal
then the other tenors are shifted log-normally [37].

The Black Model used to model forward rates was presented by Fischer Black
in [10] and the base equation may be presented as

dSMt = σSMt dWt, (6.2)

with σ the market volatility given by the market for each tenor, expiry and
strike. Similarly the rates for the forward curve should follow a similar equa-
tion,

dSjt = σSjt dWt, (6.3)

for curves of tenor j. Under the Black spread model the following is proposed

Proposition 6.2. The forward rate follows a Black equation, between time
0 and expiry, with the same Brownian motion as the rate in the market
convention.

Under that approach the spread between the rates SM−Sj is neither constant
nor deterministic [37]. Rather it is a constant proportion of the rate and it
increases and reduces with the rate

Sjt =
Sj0
SM0

SMt . (6.4)

This is analogous to the model proposed by Mercurio in [46] though no rela-
tion is proposed between each rate Sj.

The Stochastic Alpha Beta Rho, commonly referred to as the SABR model
is a stochastic volatility model developed by Hagan, Kumar, Lesniewski and
Woodward introduced in [31]. It describes a single forward rate, F , with
volatility σ where both F and σ are stochastic variables whose time evolution
is given by

dFt = σtF
β
t dWt, (6.5)

dσt = ασt dZt, (6.6)

with Wt and Zt two correlated Wiener processes with correlation coefficient ρ
and constant parameters α and β such that 0 ≤ β ≤ 1, α ≥ 1 and 0 ≤ ρ ≤ 1.
Greater detail on the SABR model can be found in [31] and where α = 0 it
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reduces to the Constant Elasticity of Variance model, or CEV model devel-
oped by Cox [19].

Under market basis spreads the following base equations are proposed by
Henrard in [37]

dSMt = αt(S
M
t )β dWt, (6.7)

dαt = σαt dZt, (6.8)

under the following proposition

Proposition 6.3. The forward swap rate follows a SABR equation, between
0 an expiry) with the same parameters and Brownian motion as the rate in
the market convention.

As above, the market convention is the term followed by the most liquid,
leading swap. Henrard though points out that in the Black and SABR ap-
proaches the spreads would increase when the rates increase though in the
recent crises the spreads increased while the rates decreased. A possible rea-
son for this though could be a result of the original lack of spreads in the
market with spreads increasing as models attempted to catch up with what
was being observed and made evident in the market.

6.2 Quadratic Gaussian Model

We shall now consider the Quadratic Gaussian Model proposed by Kijima et
al. [42]. The market is extended to include a third curve, denoted by Kijima
et al. as G, which is a government yield curve, i.e. that of a yield curve
corresponding to prices for various government bonds using the G curve to
discount the coupons. This can be seen as introducing another basis spread
between the discount curve Cd and the government curve G. Of primary
interest to us are the discount curve Cd and the market forward curve Cf ,
the government yield curve, which we shall denote as Cg for consistency may
be seen as analogous to a risk-free rate (though this is debatable given the
rise of credit risk in the sovereign bond market).

Under the quadratic Gaussian model the short rate spreads are defined by

hf (t) = rf (t)− rd(t), (6.9)

hg(t) = rg(t)− rd(t), (6.10)
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for the short rates rf (t), rd(t) and rg(t). Kijima et al. [42] interpret the
spreads as first, hf (t) as the cost of LIBOR funding over that of rd(t) and sec-
ond, −hg(t) as a convenience yield for holding the government bond for mar-
ket participants. Under the quadratic Gaussian model proposed by Pelsser
[52] the short rate rd(t) is assumed to follow the process

rd(t) = (y(t) + α + βt)2, (6.11)

dy(t) = −ady(t) dt+ σd dWd(t), (6.12)

where α, β, ad and σd are constants. Following Pelsser [52] the zero-coupon
bond price can be derived from Equations (6.11) and (6.12) as

Pd(t, T ) = e[Ad(t,T )−Bd(t,T )y(t)−Cd(t,T )y(t)2], (6.13)

where

γ =
√
a2
d + 2σ2

d,

Fd(t, T ) = 2γeγ(T−t)[(γ + ad)e
2γ(T−t) + γ − ad]−1,

Cd(t, T ) = (e2γ(T−t) − 1)[(γ + ad)e
2γ(T−t) + γ − ad]−1,

Bd(t, T ) = 2Fd(t, T )

∫ T

t

α + βs

Fd(t, T )
ds,

Ad(t, T ) =

∫ T

t

(
1

2
σsdBd(s, t)

2 − σ2
dCd(s, T )− (α + βs)2

)
ds,

(6.14)

as shown in [42]. An explicit formula for the curve Cf can then be derived.
As Wd(t) and Wf (t) are independent under the measure Qd [42] shows that

Pf (t, T ) = EQd

[
Zf (T )

Zf (t)
|Ft
]

= Pd(t, T )Hf (t, T ), (6.15)

where
Hf (t, T ) = EQf

[
e−

∫ T
t hf (s) ds|Ft

]
, (6.16)

for numeraire Zf (t) and tradeable asset Zf (T ) as in Proposition 2.2. Taking

W f
f (t) = Wf (t)+λf t a standard Brownian motion under Qf using Girsanov’s

theorem we can obtain the explicit calculation of Hf (t, T ) from [42]

dhf (s) = af

[(
bf −

σfλf
af

)
− hf (s)

]
+ σf dW f

f (s), (6.17)
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where it is noted that hf (t) is the Vasicek process under Qf . Details on the
Vasicek process may be found in [9] and other literature which covers interest
rate models. Following the Vasicek process

Hf (t, T ) = eAf (t,T )+Bf (t,T )hf (t), (6.18)

where

Bf (t, T ) = − 1

af
(1− e−af (T−t)),

Af (t, T ) = − (Bf (t, T ) + (T − t))

[
bf −

σfλf
af
−

σ2
f

2a2
f

]
−
σ2
fBf (t, T )2

4af
.

From Equation (6.15) the spread in the zero rates between the curves Cd,
the discount curve and Cf , the LIBOR curve, can be represented as

− ln
Pf (t, T )

T − t
+ ln

Pd(t, T )

T − t
= − ln

Hf (t, T )

T − t
. (6.19)

To calculate the forward LIBOR curve, C − f , Kijima et al. utilise the
property that the dynamics of hf (t) are not affected by the change of measure
from Qd to QT1

d which follows from Proposition 2.2 and the properties of
changing the numeraire. Following from Equation (6.18) we obtain [42]

δL(t, t1, t2) = EQ
t2
d

[
1

Pf (t1, t2)
|Ft
]
− 1

=
Pd(t, t1)

Pd(t, t2)
e−Af (t1,t2)−Bf (t1,t2)EQd [hf (t1)|Ft]+

1
2
Bf (t1,t2)2V ARQd [hf (t1)|Ft] − 1.

Which under the conditional normality of hf (t1) [42] results in the forward
LIBOR rates as

L(t, t1, t2) =
1

δ

(
Pd(t, t1)

Pd(t, t2)
Kf (t, t1, t2)− 1

)
, (6.20)

where

Kf (t, t1, t2) =Exp{−Af (t1, t2)−Bf (t1, t2)(hf (t)e
−af (t1,t) + bf (1− e−af (t1−t)))

+
σ2
fBf (t1, t2)2

4af
(1− e−2af (t1,t))}.

(6.21)

The same arguments are extended to derive explicit formulae for the curve
Cg in [42] but which will not be repeated here.
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6.3 Vasicek Model

One of the merits of the Gaussian model is that the short rate rd(t) remains
non-negative. To derive a closed form solution though it was assumed that
rd(t) and the short rate spreads hf (t) and hg(t) are mutually independent
[42]. When fitting to actual market data though this assumption limits the
model as the two processes are correlated significantly. Kijima et al. sacrifice
the non-negativity of the short rate and develop a correlated Gaussian model
where the short rate rd(t) is assumed to follow the Vasicek model. The
Vasicek model is a model of the evolution of interest rates and is a type
of one-factor model of short rate. It was described by Oldrich Vasicek and
is an Ornstein-Uhlenbeck stochastic process. Under the the Vasicek model,
introducing basis spreads, the short rate rd(t) is assumed to follow the process

drd(t) = ad(bd − rd(t)) dt+ σd dWd(t), (6.22)

where ad, bd and σd are constants. The spreads hf (t) and hg(t) follow the
Vasicek process

dhf (t) = af (bf − hf (t)) dt+ σf dWf (t),

dhg(t) = ag(bg − hg(t)) dt+ σg dWg(t), (6.23)

and the Brownian motions Wf (t), Wg(t) and Wd(t) are correlated as

dWd(t) dWf (t) = ρdf dt,

dWd(t) dWg(t) = ρdg dt,

dWf (t) dWg(t) = ρfg dt.

The market prices of risk are assumed to be given by λdd(t) λfd(t) λgd(t)

λdf (t) λff (t) λgf (t)

λdg(t) λfg (t) λgg(t)

 =

 0 0 0
0 λf 0
0 0 λg

 , (6.24)

following the Vasicek model [42].

Under the conditional normality of the Ornstein-Uhlenbeck model Kijima et
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al. [42] give the relevant prices and forward rates as

Pd(t, T ) = eAd(t,T )+Bd(t,T )rd(t),

Pf (t, T ) = EQd

[
Zf (T )

Zf (t)
|Ft
]

= Pd(t, T )Hf (t, T ),

Pg(t, T ) = EQd

[
Zg(T )

Zg(t)
|Ft
]

= Pd(t, T )Hg(t, T ),

L(t, t1, t2) =
1

δ

(
EQt2d

[
1

Pf (t1, t2)
|Ft
]
− 1

)
=

1

δ

(
Pd(t, t1)

Pd(t, t2)
Kf (t, t1, t2)− 1

)
,

G(t, t1, t2) =
1

δ

(
EQt2d

[
1

Pg(t1, t2)
|Ft
]
− 1

)
=

1

δ

(
Pd(t, t1)

Pd(t, t2)
Kg(t, t1, t2)− 1

)
,

(6.25)

with K as defined under Derivation 3.1 and where

Bk(t, T ) = − 1

ak
(1− e−ak(T−t)),

Ak(t, T ) = −(Bk(t, T )− (T − t))
(
bk −

σ2
k

2a2
k

)
− σ2

kBk(t, T )2

4ak
,

Bdk(t, T ) = −1− e−(ad+ak)(T−t)

4ak
,

Adj(t, T ) = λj
σj
aj

(Bj(t, T ) + T − t) + λj
ρdjσd
ad

(Bd(t, T ) + T − t)

+
ρdjσdσj
adaj

(Bd(t, T ) +Bj(t, T )−Bdj(t, T ) + T − t)

Hj(t, T ) = eAj(t,T )+Adj(t,T )+Bj(t,T )hj(t),

Kj(t, t1, t2) = exp
[
−Aj(t1, t2)−Bj(t1, t2)(hj(t)e

−aj(t1−t) + bj(1− e−aj(t1−t)))

+
σ2
jBj(t1, t2)2

4aj
(1− e−2aj(t1−t))− Adj(t1, t2)

− ρdσdσj
ad

Bj(t1, t2)(Bd(t, t1)−Bdd(t, t1))

]
, (6.26)

for k = d, f, g and j = f, g.

The derivation of Kijima et al. [42] is based on distinguishing discount rates
from forward rates (i.e. the expectation of deposit rates over a period in
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the future) and further to distinguish the discount and swap rate from the
fixed-coupon bond rate, thus modelling the bond-swap gap and treating a
bond purchase as swap contract to exchange the fixed-coupon bond against
a floating rate bond. The values of at-the-money swaps in the market have a
value of zero and the market value of in-the-market differs from the pre-crisis
traditional net-present-value model due to the existence of the basis swap
spreads; a well-known fact for international institutions [42].

6.4 Extended LIBOR Market Model

The prolific LIBOR Market Model (LMM; also referred to as the BGM model
after the original authors) was introduced by Brace, Ga̧tarek and Musiela in
[12]. The model models a set of forward rates (or LIBOR rates) as opposed to
the previously mentioned models which model the short-rate models (such
as the Vasicek model) or instantaneous forward rate models (such as the
Heath-Jarrow-Morton framework). The forward LIBOR rates are observable
in the market (as FRAs and Swaps) and their volatilities are also observable
(where liquid enough, as FRA Options, Swaptions, Caps and Floors). Under
the LMM the joint evolutions of consecutive forward LIBOR rates is modelled
under its forward measure such as the Black model. The consecutive forward
rates are modelled under a common pricing measure which is typically some
terminal forward measure of the spot LIBOR measure which corresponds to
a set of times which define the set of forward rates. One may see the LMM
as a collection of forward LIBOR dynamics for different forward rates and
each forward rate matching a Black interest rate caplet formula for its term
and maturity. Under the LMM a set of forward rates Lj, j = 1, ..., n where
each Lj, being a forward rate for the period [tj, tj+1], is a lognormal process
where

dLj(t) = σj(t)Lj(t) dWQtj , (6.27)

for the tj forward measure Qtj . Under the LMM using the multivariate
Girsanov’s theorem to model the dynamics of a whole set of forward rates
jointly as

dWQtj (t) =


dWQti (t)−

∑i
k=j+1

δLk(t)
1+δLk(t)

σk(t) dt, j < p,

dWQti (t), j = p,

dWQti (t) +
∑j−1

k=p
δLk(t)

1+δLk(t)
σk(t) dt, j > p,

(6.28)
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and

dLj(t) =


Lj(t)σj(t) dWQtj (t)− Lj(t)

∑p
k=j+1

δLk(t)
1+δLk(t)

σj(t)σk(t)ρjk dt, j < p,

Lj(t)σj(t) dWQtj (t), j = p,

Lj(t)σj(t) dWQtj (t)− Lj(t)
∑j−1

k=p
δLk(t)

1+δLk(t)
σj(t)σk(t)ρjk dt, j > p,

(6.29)

Mercurio [46] extends the LMM to a multiple curve framework where the
curve used for discounting differs to the curve used for calculating forward
interest rates.Under a set of times T = 0 < T i0, ..., T

i
M for a corresponding

interest rate curve Ci. It is assumed that each forward rate Lik(t) under its

forward measure Q
T i
k
d is a driftless geometric Brownian motion process

dLik(t) = σk(t)L
i
k(t) dZk(t), t ≤ T ik−1, (6.30)

with a deterministic instantaneous volatility σk(t) and Zk is the k-th compo-

nent of an M-dimensional Q
T i
k
d Brownian motion Z, dZk(t) dZj(t) = ρkj dt,

with instantaneous correlation matrix (ρkj)k,j=1,...,M [46].
Under a double-curve framework Mercurio models the evolution of rates as

F d
k (t) = Fd(t, T

i
k−1, T

i
k) =

1

τ dk

[
Pd(t, t

i
k−1)

Pd(t, T ik)
− 1

]
, (6.31)

where τ ik represents the year fraction τ(T ik−1, t
i
k) under the curve Cd.

The dynamics of each rate F d
h under the forward measure Q

T i
h
d is given by

dF d
h (t) = σdh(t)F

d
h (t) dZd

h(t), t ≤ T ih−1, (6.32)

again with instantaneous volatility σdh(t) deterministic and Zd
h the h-th com-

ponent of an M-dimensional Q
T i
h
d Brownian motion Zd with correlations

dZd
k(t) dZd

h(t) = ρddkh dt,

dZk(t) dZd
h(t) = ρidkh dt,

such that the global matrix

R :=

[
ρ ρid

(ρid)′ ρdd

]
is positive semi-definite.
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6.4.1 Forward Measure

The LMM forward rates dynamics can be written under a common pricing
measure such as the forward measure or the spot LIBOR measure. Under

the forward measure, Q
T i
j

d the dynamics of Lik(t) can be derived by changing

the measure from Q
T i
k
d to Q

T i
j

d with numeraires the discount curve, Cd, zero-
coupon bonds with maturities T ik and T ij respectively [46]. By applying the
change of numeraire techniques relating to the drifts of a given process under

measures with known numeraires [13]. The drift of Lik(t) under Q
T i
j

d is

Drift(Lik;Q
T i
j

d ) = −
d〈Lik, ln(Pd(·, T ik)/Pd(·, T ij ))〉t

dt
, (6.33)

where 〈X, Y 〉t denotes the instantaneous covariation between the processes
X and Y at time t [46].

Under the case j < k the log ratio of the two numeraires can be written as

ln(Pd(t, T
i
k)/Pd(t, T

i
j )) = ln

(
1∏k

h=j+1(1 + τ dhF
d
h (t))

)

= −
k∑

h=j+1

ln(1 + τ dhF
d
h (t)), (6.34)

from which results

Drift(Lik;Q
T i
jd) = d〈Lik, ln(Pd(·, T ik)/Pd(·, T ij ))〉t

=
k∑

h=j+1

d〈Lik, ln(1 + τ dhF
d
h )

dt

=
k∑

h=j+1

τ dh
1 + τ dhF

d
h (t)

d〈Lik, F d
h 〉t

dt
, (6.35)

and following from Equation (6.32)

Drift(Lik;Q
T i
j

d ) = σk(t)L
i
k(t)

k∑
h=j+1

ρidkhτ
d
hσ

d
h(t)F

d
h (t)

1 + τ dhF
d
h (t)

. (6.36)

For the case j > k the derivation of the drift follows the same process [46].
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The forward rates F d
k , the Q

T i
j

d dynamics are equivalent to those obtained in
the single curve case as is shown in various sources, such as [13, 9], as the
probabilities are associated with the same curve Cd.
The aim of the extended LMM model under a multiple curve framework is to
model the joint evolution of the forward LIBOR rates Li1, ..., L

i
M and forward

discount rates F d
1 , ..., F

d
M under a common forward measure. Mercurio [46]

gives the following proposition

Proposition 6.4. The dynamics of Lik and F d
k under the forward measure

Q
T i
j

d under the three cases j < k, j = k, j > k are, respectively,

j < k, t ≤ T ij :


dLik(t) = σk(t)L

i
k(t)

[
k∑

h=j+1

ρidkhτ
d
hσ

d
h(t)F

d
h (t)

1 + τ dhF
d
h (t)

dt+ dZj
k(t)

]

dF d
k (t) = σdk(t)F

d
k (t)

[
k∑

h=j+1

ρddkhτ
d
hσ

d
h(t)F

d
h (t)

1 + τ dhF
d
h (t)

dt+ dZjd
k (t)

]

j = k, t ≤ T ik−1 :

{
dLik(t) = σk(t)L

i
k(t) dZj

k(t)

dF d
k (t) = σdk(t) = σdk(t)F

d
k (t) dZjd

k (t)

j > k, t ≤ T ik−1 :


dLik(t) = σk(t)L

i
k(t)

[
−

j∑
h=k+1

ρidkhτ
d
hσ

d
h(t)F

d
h (t)

1 + τ dhF
d
h (t)

dt+ dZj
k(t)

]

dF d
k (t) = σdk(t)F

d
k (t)

[
−

j∑
h=k+1

ρddkhτ
d
hσ

d
h(t)F

d
h (t)

1 + τ dhF
d
h (t)

dt+ dZjd
k (t)

]

where Zj
k and Zjd

k are the k-th components of the M-dimensional Q
T i
j

d Brow-
nian motion Zj and Zjd with correlation matrix R.

6.4.2 Spot Measure

Mercurio [46] further derives an extended LMM under the spot LIBOR mea-
sure, QT

d , for times T = T i0, ..., T
i
M whose numeraire is the bank account as,

defined in Definition 3.1, BT
d

BT
d (t) =

Pd(t, T
i
β(t)−1)∏β(t)−1

j=0 Pd(T ij−1, T
i
j )
, (6.37)

where β(t) = m if T im−2 < t ≤ T im−1, m ≥ 1, so that t ∈ (T iβ(t)−2, T
i
β(t)−1],

[46].
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By applying the change of numeraire technique, as discussed in Section 2.3,
Mercurio gives the following proposition [46].

Proposition 6.5. The dynamics of FRA and forward rates under the spot
LIBOR measure QT

d are given by:

dLik(t) = σk(t)L
i
k(t)

k∑
h=β(t)

ρidkhτ
d
hσ

d
h(t)F

d
h (t)

1 + τ dhF
d
h (t)

dt+ σk(t)L
i
k(t) dZ l

k(t),

dF d
k (t) = σdk(t)F

d
k (t)

k∑
h=β(t)

ρddkhτ
d
hσ

d
h(t)F

d
h (t)

1 + τ dhF
d
h (t)

dt+ σdk(t)F
d
k (t) dZ ld

k (t),

(6.38)

where Z l = {Z l
1, ..., Z

l
m} and Z ld = {Z ld

1 , ..., Z
ld
M} are M-dimensional QT

d

Brownian motions with correlation matrix R.



Chapter 7

Risky Markets

In this chapter we take a look at how the liquidity crisis, in the wake of the
default by Lehman Brothers Holdings Inc., brings rise to default considera-
tions in the interbank market. LIBOR is no longer a suitable proxy for the
risk-free interest rate. We take a look at the discounting of cashflows in the
absence and in the presence of collateral and the rise of the overnight index
swap (OIS) curve for discounting collateralised cashflows. We then take a
look at a simple method for constructing and interpolating such a discount
curve and the pricing of interest rate instruments under such a curve in the
continuous and discrete time case. We will then attempt to show that the
overnight deposit rate forming the underlying interest rate for this OIS curve
can be shown to be a better proxy for the risk-free interest rate and that
the OIS curve could now be considered a close approximation of the risk-free
curve. Finally we will attempt to reconcile the basis spreads between the OIS
curve and the traditional LIBOR based curves as a measure of the default
risk between interbank counterparties and how that can be reconciled with
common default and survival probabilities used in credit derivative pricing
models.

7.1 Introduction

One of the major considerations that the credit crisis brought to light was
the impact counterparty risk in the interbank market in the absence of col-
lateral and the impact on the cost of funding in the presence of collateral.
A prominent example of such a change was the move by Goldman Sachs to
price cash-collateralised trades using an overnight index swap (OIS) curve to
discount cashflows rather than the more traditional discount curve based on
liquid swaps with a longer term; as highlighted by Cameron in [15], the need

75
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for this type of pricing may have been identified in the early 2000s. As basis
spreads increased and the gaps between various curves widened the differ-
ence between the OIS curve and the traditional single-curve pricing approach
increased.

Traditional, pre-crisis, pricing was to view swaps as a portfolio of forward
contracts and in the single-curve framework all cashflows were discounted at
the base discount curve (especially in the interbank market) [41]. Collat-
eralisation of swaps and other interest rate derivatives would lead to daily
intermediate payments between the counterparties and large swings in the
mark-to-market value of these instruments could lead to a significant posting
of cash collateral. This would lead to a cost in funding this collateral and
there may be disparity in the rate of raising such funding and the overnight
rate received on posting such collateral.

Numerous authors have commented on and investigated the impact of basis
risks and counterparty default risks in the interbank market on interest rate
derivative pricing and models. Examples include Johannes and Sundaresan
[41]; Fujjii, Shimada and Takahashi [25, 28]; Crépey and Grbac [21]; Fries
[24]; Castanga [16], and Morini [50] to name a few. Complications also arise
depending on the nature of the collateralisation agreement (typically a Credit
Support Annexure, or CSA, under a master ISDA agreement) as differences
may arise based on the currency used for collateralisation, which could differ
from the currency of the instrument being collateralised, threshold amounts
where collateralisation occurs only after a certain mark-to-market threshold
is breached and netting agreements in the absence of collateral, so that even
in the case of a default the amount owed is the net of the mark-to-markets
of a portfolio of trades (without such a netting agreement all amounts owed
to the defaulted counterparty would need to be paid in full and all amounts
owed by the defaulted counterparty would be subject to liquidation and se-
niority of debt). Morini approaches this problem and discusses the case of a
netting “no-fault” rule as well as case of cash collaterlisation [50].

Further considerations to be made are the impact of wrong-way risk, for
example when transacting a cross-currency swap with collateral in the base
currency of counterparty bank (e.g. transacting a United States Dollar (USD)
for Swiss Franc (CHF) cross currency swap with a Swiss bank with CHF
cash collateral), the value of the collateral could decline sharply along with
the mark-to-market value of the swap should the counterparty bank default
causing currency devaluation.
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7.2 Pricing and Modelling when banks can

default

Due to the short term nature of an overnight deposit, the OIS reference rate,
as defined in Definition 3.12, is typically seen to have negligible liquidity and
credit risk [50]. Conversely the LIBOR funding rate (or equivalent X-BOR
rate) is viewed as an indicator of the cost of funding for banks in the interbank
market for longer terms and as such contains elements of both counterparty
default and liquidity risk. The spread between the OIS rate1 and the various
LIBOR rates of different terms can be seen as an indicative measure of the
credit and liquidity risk inherent in the interbank market. However as not
all banks are equal the market quoted OIS spreads while indicative of the
market may not be representative of the risk in a trade between two specific
counterparties (in the absence of other mitigating circumstances such as col-
lateral).

7.2.1 Defaultable Counterparties without Netting

Morini [50] explores how the mathematical no-arbitrage relationships are
modified when market-wide counterparty risk is introduced exploring repli-
cation and change of numeraire techniques. As bank counterparties, post
the liquidity crunch crisis, can no longer be deemed as risk-free from a coun-
terparty and liquidity risk perspective bond cashflows and bond payoffs of 1
need to be replaced with probabilistic values

R + 1{tB>ti}(1−R), (7.1)

where R is a deterministic recovery rate, tB is the default time of the bond
issuer B and the recovery payments occur at maturity ti (this assumption
differs from reality where recovery payments would be made at a time after
default depending on legal process, though for short-term bonds this ap-
proximation is acceptable [50]. 1{tB>ti} may be interpreted as “given that
the default time is after the maturity time”. Taking the price of such a
defaultable ZCB as the present value of the expected payoff we obtain [50]

PB(t, ti) : = Et[df(t, ti)(R + 1{tB>ti}(1−R))]

= df(t, ti)R + E[df(t, ti)(1{tb>ti})](1−R). (7.2)

1We distinguish between the OIS reference rate, which is the overnight benchmark or
reset rate, and the OIS spread which is the spread between the price of an OIS and LIBOR
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A similar result is reached by Mercurio [46] who gives the result as

PB(t, ti) = E
[
e−

∫ ti
t r(u) du(R + (1−R)1{tB>ti}|Ft

]
= R · df(t, ti) + (1−R)df(t, ti)E[1{tB>ti}|Ft], (7.3)

the difference being that Mercurio treats the discount factor as deterministic,
or more specifically, as the price of a default-free zero coupon bond. This
result could also be rewritten as

PB(t, ti) = 1 · df(t, ti)P[tB > ti] +R · df(t, ti)P[tB ≤ ti], (7.4)

where P[A] is the probability of event A occurring.

Considering a contract with inception time t where counterparty A agrees
to pay an amount of 1 at time ti−1 ≥ t if A has not defaulted, else only a
recovery fraction R is paid and where counterparty B pays at time ti ≥ ti−1

the amount 1 +Kτ(ti−1, t) if B has not defaulted earlier, else only a recovery
fraction R is paid. For there to be no-arbitrage, i.e. for it to be fair, the
following needs to hold [50]

Et[df(t, ti−1)(R + 1{tA>ti−1}(1−R)]

= Et[df(t, ti)(R + 1{tB>ti}(1−R))(1 +Kτ(ti−1, ti))], (7.5)

and taking ti−1 = t results in

(R + 1{tA>t}(1−R)) = PB(t, ti)(1 +Kτ(t, ti)). (7.6)

From Definition 3.8 and Derivation 3.1 we consider the equilibrium rate as

LA,B(t, ti) =
1

τ(t, ti)

(
R + 1{tA>t}](1−R)

PB(t, ti)
− 1

)
=

1

τ(t, ti)

(
PA(t, t)

PB(t, ti)
− 1

)
, (7.7)

where LA,B represents a spot rate related to the credit riskiness of counter-
parties A and B. Further, if it is assumed that both A and B do not default
before the inception date t this may be seen as a zero coupon bond issued
by B purchased by A at time t and Equation (7.6) can be interpreted as the
relationship between a risky bond and a risky spot rate [50] and leads to the
equilibrium rate

LB(t, ti) =
1

τ(t, ti)

(
1

PB(t, ti)
− 1

)
. (7.8)
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For the case where ti−1 > t the contract may be seen as the equivalent of
a FRA with credit-risky counterparties with the fair forward interest rate
(which follows from definition of a fair forward interest rate, Definition 3.10,
and the proposition of the replication of a FRA, Proposition 3.1) as

FA,B(t; ti−1, ti) =
1

τ(ti−1, ti)

(
PA(t, ti−1)

PB(t, ti)
− 1

)
, (7.9)

where KA,B represents the fair forward rate for a defaultable FRA between
counterparties A and B [50]. Again similar results are obtained by Mercurio
[46] who gives the value of the fair FRA rate as

FA =
1

τ(ti−1, ti)

(
P (0, ti−1)

P (0, ti)

1

R + (1−R)E[Q(ti−1, ti)]
− 1

)
, (7.10)

where
Q(ti−1, ti) := E[1{tA>ti}|Fti−1

], (7.11)

which only considers single sided (or unilateral) default risk of counterparty
A. For this to be truly equivalent to a FRA counterparty A would also need
to pay a floating interest rate payment based on LIBOR to counterparty B
at time ti; the value of the contract would not change since the payment at
time ti can be seen as making a payment of 1 at time ti−1 reinvested at the
floating interest rate for the time period τ(ti−1, ti), or mathematically

1 = PA(ti−1, ti)(1 + LA(ti−1, ti)τ(ti−1, ti)). (7.12)

However, Morini [50] remarks that for this to be equivalent to a market
FRA (i.e. a generic FRA quoted in the inter bank market) then the rate
LA should be very similar to the market LIBOR rate L, and this would lead
to FA,B(t; ti−1, ti) to be equal to FM(t; ti−1, ti), the market FRA rate, which
cannot be since FA,B corresponds to two specific counterparties while FM is
a unique rate for the whole market and when counterparty risk is no longer
negligible it is not trivial to arrive at a single unique equilibrium FRA rate.
Under these circumstances it cannot be explained why the quoted FRA rate
in the market would diverge from that implied by the forward rates of LI-
BOR deposits.

These circumstances though are not realistic for the way FRAs are traded
in the market. Typical interbank FRAs would have a netting agreement and
thus would only require net settlement of the amounts owed (i.e. the differ-
ence between the fixed strike rate and the floating reference rate). This case
is explored in the next section (Section 7.2.2) and the case where FRAs and
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other interest rate derivatives are transacted under a CSA (Credit Support
Annexure under which derivatives are collateralised, or margined, daily
based on their mark-to-market value) is considered in Section 7.3. FRAs
would also typically be settled on the near maturity date (as defined in Defi-
nition 3.8). Mercurio [46] gives an explanation for the discrepancy remarked
upon in [50] which follows from Equation (7.10)

0 ≤ R ≤ 1, 0 < Q(ti−1, ti) < 1,

therefore 0 < R + (1−R)E[Q(ti−1, ti)] < 1,

such that FA >
1

τ(ti−1, ti)

[
P (0, ti−1)

P (0, ti)
− 1

]
(7.13)

and therefore the FRA rate, FA, for a defaultable counterparty is larger
than that implied by the default free bonds P (0, ti−1) and P (0, ti). This
can be explained if one considers the OIS curve, which is a swap curve,
CO, bootstrapped using the usual methods and the benchmark instruments
being the OISs quoted in the market, as the risk-free curve (a reasonable
approximation due to the short term nature of the overnight deposit). Thus
the FRA rate FA can be higher than the corresponding forward OIS rate if
the LIBOR rate is considered to be credit-risky and has a default risk implicit
in the rate [46].

7.2.2 Defaultable Counterparties with Netting

A more pertinent case in the interbank market would be the treatment of
interest rate derivatives concluded under a standard ISDA agreement which
allows for the netting of payments under a “no-fault” or “two-way payment
rule” [50]. Under such an agreement only the net amount owed, i.e. the
difference between the strike rate and the reference floating interest rate, is
payable. Thus under a default event, where counterparty A defaults at time
tA, the amount owed to B would be

[(NPV B
tA)+ − (−NPV B

tA)+], (7.14)

where NPV X
t refers to the riskless net present value of the residual deal

for counterparty X at time t [50] and where (X)+ means max(X, 0). The
amount actually received would be scaled by the recovery rate R. In this
scenario there exists bilateral counterparty risk which is consistent with [46].
Following Proposition 3.15 which is that the value of a claim is the expected
present value, under some measure QT , of the payoff, in conjunction with
the valuation of a FRA given by Equations (3.21) and (5.34) the value of a
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defaultable FRA between two interbank counterparties A and B (from the
perspective of B) may be given as

V A,B
FRANet

(t; ti−1, ti, K, 1) = τ(ti−1, ti)Et[df(t, ti)(L(ti−1, ti)−K)]

− τ(ti−1, ti)Et[df(t, ti)1{tA≤ti}(L(ti−1, ti)−K)+]

+ τ(ti−1, ti)Et[df(t, ti)1{tB≤ti}(K − L(ti−1, ti))
+],

(7.15)

where to simplify the notation Morini sets the recovery rate to 0. The first
term considers the event of no default, the second term considers the event
that party A defaults before ti, i.e. that tA ≤ ti, and the third term considers
the case where B defaults before ti, i.e tB ≤ ti.

As a model for credit risk Morini uses a framework based on Jamshidian [40],
and Bielecki and Rutkowski [7] and the following is a reprise from Morini [50]:

The filtration (Fs)(s≥0) which is the total market information is divided into
two subfiltrations

Ft = Ht ∨nJ=1 J J
t (7.16)

J J
t = σ({tJ > u}, u ≤ t), (7.17)

where (J J
s )(s≥0) is the natural filtration of the default time tJ of the J th mar-

ket participant. Ht is the no-default information, which is the information
up to time t on economic factors which influence default but exclude infor-
mation on the happening of default. A ∨ B is the joint σ-algebra generated
by the σ-algebras A and B.

Complete credit risk modelling is beyond the scope of this dissertation, the
reader is referred to [7, 40] and numerous other references on the subject.
The following two assumptions from [40, 7] respectively, referred to by Morini
[50] are included for continuity:

Assumption 7.1 (Martingale Invariance). Every (square-integrable)H-martingale
is also a F-martingale, so that for FT ⊆ HT

E[XT |HT ] = E[XT |Ft], t ≤ T.

In this case H and F are filtrations with the one a subfiltation of the other
and an F -Martingale is the stochastic process {Xt, t > 0} such that the
conditional expectation of Xt given Fs equals Xs whenever s < t, where
F = {Ft, t ≥ 0} is an increasing family of sigma algebras.
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Assumption 7.2 (Positivity). The survival probability conditional on no
default information is strictly positive

P(tJ > t|Ht) > 0, t ≥ 0.

A defaultable payoff Y = 1{tD>t}Y, where tD is the default time of a market
participant, can be priced using only the default indicator and no-default
information [50]. Further, from [7]

E[Y|Ft] =
1{tD>t}

P(tD > t|Ht)
E[Y|Ht]. (7.18)

Continuing from Morini [50] it is assumed that the set of potential interbank
LIBOR counterparties can be considered homogenous with regard to default
probabilities expressed by LIBOR quotes since that is the rate at which they
can each trade at amongst each other we can rewrite the value for a FRA
with LM(t, ti) the market LIBOR rate adapted to the no default information
Ht

V A,B
FRANet

(t; ti−1, ti, K, 1) = τ(ti−1, ti)Et[df(t, ti)1{tA>ti}(LM(ti−1, ti)−K)+]

− τ(ti−1, ti)Et[df(t, ti)1{tB>ti}(K − LM(ti−1, ti))
+].

Applying the expectation of a defaultable payment as in Equation (7.18) the
value of a FRA can be rewritten as

V A,B
FRANet

(t; ti−1, ti, K, 1)

=
1{tA>t}

P(tA > t |Ht)
τ(ti−1, ti)EHt [df(t, ti)1{tA>ti}(LM(ti−1, ti)−K)+]

−
1{tB>ti}

P(tB > t |Ht)
τ(ti−1, ti)EHt [df(t, ti)1{tB>ti}(K − LM(ti−1, ti))

+],

and since LM(t, ti) is adapted to the filtration Ht

V A,B
FRANet

(t; ti−1, ti, K, 1)

=
1{tA>t}

P(tA > t |Ht)
τ(ti−1, ti)EHt [df(t, ti)P(tA > t |Ht)(LM(ti−1, ti)−K)+]

−
1{tB>t}

P(tB > t |Ht)
τ(ti−1, ti)EHt [df(t, ti)P(tB > t |Ht)(K − LM(ti−1, ti))

+],

(7.19)

and the assumption of the homogeneity of A and B in an interbank LIBOR
market leads to [50]

1{tA>ti} = 1{tB>ti} = 1, (7.20)
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and also implies that, for the price of a defaultable bond PX issued by some
LIBOR market counterparty X,

PA(t, ti) = PB(t, ti) = PL(t, ti) = PX(t, ti), X ∈ L,

where L represents the LIBOR market. Thus for a defaultable bond issued
by market participant X and following from value of a bond along with
martingale pricing and assuming zero recovery

PX(t, ti) = Et[df(t, ti)1{tX>ti}] =
1{tX>ti}

P(tX > t |Ht)
EHt [df(t, ti)P(tX > ti |Hti)]

= EHt

[
df(t, ti)

P(tX > t |Hti)

P(tX > t |Ht)

]
,

since 1{tA>ti} = 1{tB>ti} = 1 from Equation (7.20).

Further the assumption of homogeneity leads to [50]

P(tA > ti |Hti) = P(tB > ti |Hti) = P(tX > ti |Hti),

leading to the FRA price

V A,B
FRANet

(t, ti−1, ti, K, 1) = V X
FRANet

(t, ti−1, ti, K, 1)

= τ(ti−1, ti)EHt

[
df(t, ti)

P(tX > ti |Hti)

P(tX > t |Ht)
(LM(ti−1, ti)−K)

]
.

Morini thus shows that a FRA and by extension a swap with counterparty
risk can be priced by way of a defaultable payoff where the survival prob-
ability to use is that of a generic LIBOR participant, X and by replacing
P(tX>ti |Hti )

P(tX>t |Ht)
with R +

P(tX>ti |Hti )

P(tX>t |Ht)
(1 − R) it can be extended to account for

the recovery rate R.

This gives a general framework using survival probabilities and Morini ex-
tends this framework with change of numeraire techniques [50]. We shall
choose to focus on the more prevalent case in the market where interbank
derivatives would be concluded under an ISDA with a collateral agreement
which is covered in the next section.

7.3 Pricing and Modelling in the presence of

collateral

In this section we shall consider the case where interest rate derivatives, such
as FRAs and Swaps, are transacted under a collateralisation agreement. This



CHAPTER 7. RISKY MARKETS 84

agreement is usually in the form of a Credit Support Annex (CSA) which is
additional agreement to a typical ISDA agreement between counterparties.
A typical CSA agreement would function in a relatively simple manner. The
net mark-to-market value of instruments traded under the CSA would be
calculated daily and collateral, usually in the form of cash, would be placed
(or “posted”) by the counterparty with the negative mark-to-market value
(i.e. the net portfolio of trades under the CSA would be considered a liabil-
ity, or owed to the other counterparty) with the other counterparty, usually
in the form of an overnight deposit, as collateral against default thus largely
mitigating counterparty credit risk. While being mostly prevalent in the
interbank market CSAs are not restricted to interbank counterparties (i.e.
LIBOR2 market participants) but may be included in ISDA agreements be-
tween a bank and any other counterparty. We shall focus primarily on the
interbank market where, as Christian Fries [24] notes, collateralisation is not
merely some special case. It is indeed considered the norm for many in-
terbank LIBOR type markets. Johannes [41] also explores the prevalence
of collateralised trades and the importance of such collateral agreements in
pricing swaps noting that 65% of plain vanilla derivatives, especially swaps,
are collateralised and more specifically nearly all of swap transactions in the
interbank market are collateralised.

7.3.1 OIS Discounting: A new market Standard

Pre-2008 Liquidity Crunch the typical single-curve framework swap curve,
considered by most as a good approximation of a risk-free curve, was used to
discount cashflows in pricing and valuing derivatives. This was not necessar-
ily the universal case pre-2008 (as is shown by [15] it is likely that even before
the liquidity crisis Goldman-Sachs and possibly a few other market partici-
pants were considering the implications of which discount curve to use under
certain circumstances) it was though the most prevalent case and was the
case referred to originally in literature such as [38], amongst others. While
the original choice of discount curve may have been arbitrary without a sig-
nificant impact on valuations due to negligible basis spreads, post-2008 the
choice is no longer trivial. With bid-offer spreads in the interbank market as
tight as a couple of points, a basis spread of even 10 basis points may have a
significant impact on swap pricing and trading. Figure 7.1 shows the history
of the spread between 3 Month USD LIBOR and the corresponding overnight

2As mentioned previously we point out that LIBOR is used generically in this context
and may refer to any interbank rate fixing, such as JIBAR, and is sometimes referred to
as X-BOR.
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index swap. Once again, similar to Figure 5.2, spreads begin widening late
2007 up until the default and collapse of Lehman Brothers Holdings Inc. af-
ter which the spreads increased rapidly.

Figure 7.1: Pre- and post- 2008 crisis spread between 3 Month USD LIBOR and
3 Month Overnight Index Swap rates. (source: Bloomberg Finance L.P.)

It appears though that from mid-2009 the spreads tightened to much lower
levels, though still quite volatile and reaching peaks of 50 basis points. Whilst
seemingly lower than the spreads observed at the height of the liquidity crisis
we should also take a look at the level of these basis spreads when compared
to the 3 Month LIBOR rate. Figure 7.2 shows the historical level of 3 Month
LIBOR over time both before and after the 2008 crisis. The decrease in the
LIBOR-OIS spread coincides with the decrease in the 3 Month LIBOR rate.
Of interest is how the LIBOR-OIS spread compares to the base underlying
LIBOR rate. Figure 7.3 overlays the LIBOR-OIS spread as a percentage
of the LIBOR rate and shows that, even though recent spreads are around
15 to 20 basis points, the spread is still considerably large when compared
to a base LIBOR rate of 0.25%. As depicted in Figure 7.3 the spreads are
currently between 50% and 65% of 3 Month USD LIBOR.

The choice of discount curve for discounting cashflows for collateralised in-
struments is primarily linked to the choice of collateral and the cost of funding
for such collateral and numerous authors, institutions and publications have
tackled this question as well as the potential impact of a move to a new dis-
count curve. Whittall [58] highlights the emergence of the Overnight Index
Swap curve (OIS) as the new standard curve used to discount collateralised
swaps in the interbank market; a move from the pre-crisis assumption that
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Figure 7.2: Pre- and post- 2008 crisis 3 Month USD LIBOR rates. (source:
Bloomberg Finance L.P.)

Figure 7.3: Pre and post 2008-crisis spread between 3 Month USD LIBOR and 3
Month Overnight Index Swap rates expressed as basis points as well as a percentage
of the LIBOR rate. (source: Bloomberg Finance L.P.)

liquidity was easy to come by and that banks could fund swap cashflows at
LIBOR no matter how long the tenor of the swap was. Cameron [15] gives
some anecdotal insight into the early adoption of the OIS curve for discount-
ing collateralised trades and how Goldman-Sachs may have had an impact
on the traditional approach. As basis spreads were no longer negligible and
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the cost of funding collateral had a material impact, especially when there
may be a large discrepancy between the rate earned on collateral and the cost
of funding that collateral, the move to using an OIS curve for discounting
had far reaching implications. Accounting implications, for example, were
addressed by various accounting firms, such as by PWC [8] and pricing has
been addressed by Bloomberg L.P. in [45, 44] which discussed the impact on
cross currency swaps when comparing OIS curves to cross currency implied
basis.

Intuitively it is easy to understand the choice of an OIS curve for collat-
eralised trades; as collateral is posted daily using short term liquidity it is
raised and funded at an overnight right. Likewise, being based on a short
term rate and the curve created from OIS’, which are in fact also collater-
alised swaps, it may be considered a very close approximation to a risk-free
rate. As such a choice of an OIS curve for discounting seems logical at best
replicating both the cost of funding the collateralised instruments’ cashflows
as well as accounting for the cost of funding for the collateral.

Unfortunately CSA agreements are not all standardised. Differences arise
between choice of collateral with regard to choice of currency as well as the
ability to post high-rated bonds, such as sovereign issued bonds, as collat-
eral. CSA agreements are not always fully bilateral with some high-rated
counterparties requiring unilateral collateralisation; that is where only one
party places collateral. Other CSA agreements only require collateralisation
beyond a certain threshold3 and this threshold is not necessarily at the same
level for each counterparty. Again Cameron [15] gives anecdotal evidence on
how Goldman-Sachs (and possibly other banks) underwent a lengthy process
to go through each CSA to create an infrastructure to develop an individual
curve to cater for the intricacies of each CSA. This would have a significant
impact on systems with regard to pricing and risk measuring as it would
greatly increase the number of curves, and the complexity of each curve,
used for discounting and for various simulations.

7.3.2 The South African market

The move to OIS discounting has not been universal and there have been
some hurdles to overcome in the many markets where there does not exist a
liquid and well developed OIS market from which to obtain OIS rates and

3In other words collateral would only be placed with a counterparty once a certain
mark-to-market level has been exceeded and the collateral would only be to the amount
by which this threshold had been exceeded.
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from which to create and calibrate an OIS curve. Historically there existed
in South Africa a market for Rand Overnight Deposit Swaps (RODS) which
were typically of a short (up to one year) tenor and referenced the South
African Futures Exchange (SAFEX) overnight right as the floating rate and
operated in a manner similar to Overnight Index Swaps; whereby a floating
overnight rate was exchanged for a fixed rate, in the case of a RODS settled
at maturity and the overnight rate was averaged monthly and compounded
to maturity. The market for RODS’ is no longer liquid and market rates no
longer published. When it comes to choosing a reference rate, other than
the SAFEX overnight rate, the South African Reserve Bank also publishes
a South African Benchmark Overnight Rate (SABOR), neither may be seen
as entirely representative of the cost of overnight funding for a South African
bank as SABOR is just a point of reference and the SAFEX overnight rate
represents only a relatively small part of overnight funding in South Africa
[14].

There has been, however, a move to create an OIS work group amongst inter-
est rate dealers in South Africa which have been in discussion amongst each
other and with the SARB in the creation of an equivalent South African OIS
market and to publish relevant rates. In a recent address by Daniel Mminele
[48], deputy governor of the South African Reserve Bank, he highlighted
that the Fixed Income and Derivatives subcommittee of the Financial Mar-
kets Liaison Group (FMLG), a consultative forum between the SARB and
market participants, is working with the market participants in the creation
of an OIS market, in conjunction with the Money Market Subcommittee
of the FMLG who are reviewing the SABOR benchmark rate. Whilst still
lacking an OIS market in South Africa the move would certainly appear to
be towards creating such a curve and the importance of such a curve was
highlighted quite nicely by deputy governor Mminele.

“This work will culminate in an industry-wide consultation to
deliberate on the format of a rand OIS product that would enable
South Africa to be on par with its developed market peers, and to
be part of a handful of emerging markets to deliver a more sound
derivatives pricing and risk management landscape.” - Daniel
Mminele [48]

Thus this section on the pricing of derivatives in the presence of collateral is
still relevant in a South African context where steps are being taken to build
and encourage an OIS market and where even though there might not be a
South African Overnight Rate curve many transactions are concluded with
international counterparties and with which USD or EUR collateral is the
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norm.

One final comment is that it would also be possible to derive an implied
South African overnight curve by using the analogy described in Section 4.4
where a cross currency swap is treated as a swap between two overnight rates
in different currencies and then two basis swaps swapping the overnight rates
to LIBOR/JIBAR rates. Using the LIBOR-OIS spread, as discussed later
in Section 7.6, one could derive an implied South African OIS rate, though
this rate could be influenced by cross-currency swap specific factors (such as
demand and supply) rather than being a pure view of South African forward
overnight rates.

7.4 Bootstrapping and Interpolating the OIS

curve

We defined an overnight index swap in Definition 3.12 as an interest rate
derivative where one counterparty exchanges a floating rate referencing on
overnight deposit rate in return for a fixed interest rate with another coun-
terparty. The floating interest rate is compounded daily to the settlement
date and exchanged for the fixed rate of interest. The ISDA standard for the
calculation of the floating interest rate is equivalent to interest compound-
ing daily for each business day following the business day convention (or
daycount basis) for that particular swap and can be found in numerous sup-
plements to the standard ISDA definitions such as [39]. The nominal interest
rate to be paid on the floating leg for a period t0 to T is expressed as

I =
n−1∏
i=0

(1 + τ(ti, ti + 1)oi)− 1, (7.21)

where n is the number of days based on the daycount convention in the time
period t0 to T and oi is the reference floating overnight interest rate set at
time ti

4. From the unbiased expectation hypothesis and following from
Equation (3.17) we can express o(t, ti), the forward overnight interest rate,
as at time time t for the business day ti, which is equivalent to F (t; ti, ti+1)
where ti+1 − ti equals one business day, as

o(t; ti) = EQ[oi|Ft], (7.22)

4This may be seen as the same as a one day LIBOR rate, i.e. oi = L(ti, ti + 1)
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for the risk neutral martingale measure Q and thus we can rewrite Equation
(7.21) but this time as the expected nominal interest to be paid, I as

I = EQ

[
n−1∏
i=0

(1 + τ(ti, ti+1)oi)− 1

]

=
n−1∏
i=0

(
1 + τ(ti, ti+i)E

Q[oi]
)
− 1

=
n−1∏
i=0

(1 + τ(ti, ti+1)o(t, ti))− 1. (7.23)

Let us define Ko
T the fixed rate for an at-the-money OIS, i.e. where the value

of the OIS at inception date t is 0. The payoff at maturity for such an OIS
would be

H =

[(
n−1∏
i=0

(1 + τ(ti, ti+1)oi)− 1

)
−Ko

T

]
Nτ(t, T ), (7.24)

and thus from Proposition 2.1 the value of an OIS at inception time t paying
the simple interest fixed rate Ko

T and receiving the floating overnight rate for
the period [t, T ] on a nominal amount N , VOIS(t;T,K,N), is

VOIS(t;T,K,N) = EQ[P (t, T )Nτ(t, T )((
n−1∏
i=0

(1 + τ(ti, ti+1)oi)− 1)−Ko
T )]

= dfI(t, T )Nτ(t, T )((
n−1∏
i=0

(1 + τ(ti, ti+1)o(t, ti))− 1)−Ko
T ),

(7.25)

where the discount factor dfI is taken from the OIS curve CI .

Now let us look at the construction of this OIS curve CI , where CI is the
curve given by the continuous set of discount factors dfI(t, ti). The process
for constructing such a curve follows the typical curve construction and in-
terpolation procedures as given by [13, 31, 54] and others substituting the
set of market quoted OIS’ as the benchmark instruments in place of the
typical set of FRAs and Swaps. The curve is constructed to create a set of
discount factors such that the value of each market OIS has a value of zero
and the following is a brief methodology, the reader is referred to the above
mentioned sources for more detailed explanations of interpolation procedures
and convexity, seasonality and other adjustments. We shall focus on the base
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principles.

Let us first define dfI(t1, t2) the discount factor based off of the overnight
index curve CI as analogous to Definition 3.2 but in this case our bank
deposit B(t) is specifically a bank deposit which pays the overnight reference
rate.

Definition 7.1 (Overnight Bank Deposit). BI(t) is the value of a deposit
at time t ≥ 0 which pays the overnight reference rate compounded daily and
follows the process

BI(t+ 1)−BI(t) = BI(t)(1 + ot τ(t+ 1, t)) (7.26)

and BI(0) = 1, ot is the overnight reference rate for time t and t + 1 is one
business day after t.

Which leads to the following definition of a overnight rate discount factor

Definition 7.2 (Overnight Rate Discount Factor). The overnight rate
discount factor dfI(t1, t2) is the amount that would need to be deposited at
time t1 in an overnight bank deposit to yield an amount of 1 at time t2 given
by

dfI(t1, t2) =
BI(t1)

BI(t2)
, t1 < t2. (7.27)

and thus from Equations (7.26), (7.27) and (7.22) with BI(t0) = 1 we have
that

dfI(t0, T ) =
n−1∏
k=0

[1 + ok τ(tk, tk + 1)]−1, T − t0 = n (7.28)

PI(t0; t0, T ) =
n−1∏
k=0

[1 + o(t0; tk) τ(tk, tk + 1)]−1, T − t0 = n, (7.29)

where PI(t; t1, t2) represents the expected discount factor from time t2 to t1
as at time t. We are also able to rewrite oi as

oi = τ(ti, ti + 1)

(
dfI(t, ti)

dfI(t, ti + 1)
− 1

)
. (7.30)

When creating our OIS curve the first benchmark rate would be the current
reference overnight rate, o0 which is the reference interest rate which applies
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for a deposit beginning today and maturing the next business day5.

From the assumption of no-arbitrage and using the typical replication ar-
guments (using an overnight deposit reinvested each day to maturity and a
fixed deposit to maturity) one can show that the fixed rate, Ko

T , must be

Ko
T =

n−1∏
i=0

(1 + τ(ti, ti+1)o(t0; ti))− 1. (7.31)

and that the value of such an overnight index swap paying such a fixed rate,
at its inception date, must be 0. We thus have quoted in the market, Ko

Ti
,

a set of expected geometric averages of the forward overnight rates to each
maturity date Ti, i = 1, ..., q quoted in the market for q observable OIS’. This
corresponds to I in Equation (7.21). Thus given the first benchmark rate
o0 as deterministic and observable in the market, for the first maturity OIS,
maturing at time T1 we can rewrite Ii the expected nominal interest to be
paid as

Ii = (1 + τ(t0, t1)oo)
n−1∏
k=1

(1 + τ(tk, tk + 1)o(t0; tk))− 1, (7.32)

where n is the number of business days between t0 and Ti.

Finally let us denote op(t; ti) the expected overnight rate for time ti to ti + 1
following a choice of interpolation rule p based on some choice of o(t;Ti)
which gives us

Ii = (1+τ(t0, t1)oo)

[
n−2∏
k=1

(1 + τ(tk, tk + 1)op(t0; tk))− 1

]
(1+τ(tn−1, Ti)o(t0;Ti)).

(7.33)
The final result is a set of equations for each Ti where we set

Ii = Ko
Ti
, i = 1, ..., q. (7.34)

We then iteratively select each o(t;Ti), i = 1, ..., q, following our interpola-
tion rule p such that Equation (7.34) holds true for every i = 1, ..., q. Finally
we may use Equations (7.28) and (7.29) to create a set of discount factors

5This may easily be adjusted to take into account spot and settlement days where oi
would apply from spot date ts to settlement day ts+1 for the cases where an overnight
deposit rate applies to a deposit made beginning in a number of spot business days from
today, for example the spot date may be 2 business days from today.
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and expected discount factors corresponding to curve CI .

Many choices can be made for the interpolation rule p and the interpolated
rates themselves may affect, recursively, each choice of o(t;Ti). We shall not
cover the implications of each possible choice of interpolation rule. Hagan
et al. give a good breakdown and formula in [31] for swap curves which one
could also apply to the OIS curve which is itself a specific choice of swap
curve.

7.5 Pricing of Instruments under OIS discount-

ing

We have shown that using an OIS curve for discounting cashflows in the
presence of collateral has become a market accepted practice where possible
(depending on the availability of an OIS market) and one would consider how
and why this sort of discounting is applicable. Intuitively if a future cashflow
is collateralised with cash earning the overnight rate (and this collateral is
typically funded at the overnight rate too) then the present value of that
cashflow should be that cashflow discounted using the OIS curve. Another
intuitive interpretation would be that since the overnight rate is closer to
being risk-free than the LIBOR rate it is a better representation of the true
risk-free rate and as it represents a one day risk which matched the frequency
of the posting of collateral it is a better rate to use when discounting cash-
flows. These are only intuitive solutions though. As such let us first look at
the general case of pricing instruments in the presence of collateral.

7.5.1 General pricing in the presence of collateral

Christian Fries gives a re-interpretation of a collateralised contract with a
discount curve in [24] where for simplicity the collateralisation of a single
cashflow to be made in the future is considered. Assume that an entity A shall
pay an amount of M at time T to counterparty B. For an uncollateralised
cashflow, from the perspective of A, at time t would have a present value of

−MPA(t;T ), (7.35)

keeping our notation from Section 7.2.1 where PA(t;T ) is the present value
of a zero coupon bond which is defaultable by counterparty A. Let us also
assume that A holds a contract where an entity C will pay an amount K,K <
M at time T thus having a value of

KPB(t;T ). (7.36)
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If this second contract held by A were to be passed on to B as collateral
against default there is now a portfolio of two contracts where from the
perspective of A it can be seen giving away the second contract should the
first default. This would result in the net value, N , being

N = (KPC(t;T )−M)PA(t;T ), (7.37)

where PC(t;T ) accounts for the fact that C may default on its obligation to
pay K. We can rewrite N as

N = KPC(t;T )−MPA(t;T ) +K(PC(t;T )PA(t;T )− PC(t;T )), (7.38)

which may be interpreted as a receiving K if C does not default, and paying
out M if A does not default, and paying out K if A does default but C does
not default. The third term gives the difference in value between the sum of
the individual contracts and the collateralised package, which we will denote
as R and is expressed as

R = K(PC(t;T )PA(t;T )− PC(t;T )). (7.39)

From this Fries [24] obtains an implied zero coupon bond rate, PAC such that

−MPAC (t;T ) = −MPA(t;T ) +K(PC(t;T )PA(t;T )− PC(t;T )), (7.40)

resulting in

PAC (t;T ) = PA(t;T )− K

M

(
PC(t;T )PA(t;T )− PC(t;T )

)
, (7.41)

where PAC is the discount factor for collateralised deals.

This can be extended to the specific case where the collateral is considered
risk-free, i.e. cash collateral, and we may set

PC(t;T ) = P (t;T ), (7.42)

where the collateral earns the risk-free zero coupon bond rate from time t to
time T . If the present value of the cash collateral is equal to the payment to
be made by A, i.e. K = M , then Equation (7.38) can be rewritten as

N = −MPA(t;T ) +MP (t;T )PA(t;T ) (7.43)

= −MPA(t;T )(1− P (t;T )), (7.44)

which results in

PAC (t;T ) = PA(t;T )− (P (t;T )PA(t;T )− P (t;T )) (7.45)
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7.5.2 Extension to Continuous Time and Overnight
Funding

General pricing in the presence of collateral can be extended to consider the
case of modelling under continuous time and to take into account the com-
mon form of daily collateral. At first no specific assumption will be made on
the cost of collateral (the collateral rate) nor the rate at which cash collat-
eral would earn any interest if invested at the risk-free rate. Both Fujii et
al. [25, 26], and Johannes and Sundaresan [41] consider the impact of col-
lateralisation on swaps and other interest rate derivatives analysing the case
in continuous time. Johannes builds on the Duffie and Singleton approach
to valuing defaultable securities while Fujii et al. take a more axiomatic
approach and the two results are comparable. The case of pricing in the
presence of collateral is also explored by Morini in [50] who uses a martin-
gale approach with a change of numeraire under the LIBOR Market Model
using a quanto cross currency style analogy which coincides with the analogy
used in Section 5.6.

To consider the continuous time case an initial assumption (which can later
be relaxed) is that collateralisation occurs bilaterally, continuously and per-
fectly with zero thresholds (i.e. to the full mark-to-market value of the col-
lateralised trade and with perfect timing); the market practice is that of
daily collateralisation (which conforms to the ISDA standard) earning an
overnight rate and the assumption of continuous collateralisation is reason-
ably close [26] and the results may be extended to a discrete case. Under
continuous collateralisation counterparty risk is completely negated; a swap
can thus be treated as a set of independently collateralised payments. A
portfolio of contingent claims can also be treated as set of independently
collateralised payments (or expected payments).

Fujii et al. consider a stochastic process V (t) which represents the collateral
account. One can consider this account as a deposit with the counterparty
bank which earns continuous interest as does the bank deposit described in
Definition 3.1, in the case of overnight interest it would match the overnight
bank deposit described in Definition 7.1. We shall denote the collateral rate
(i.e. the cost of funding collateral) at time t as c(t) and the rate earned
by the collateral at time t as r(t), in [26, 41], the latter rate is assumed to
be the risk-free interest rate but this need not necessarily be the case and
the results obtained still hold. The difference between these two rates can
be denoted by y(t) = r(t) − c(t) and can be seen as a cost (or profit) over
time resulting from an interest rate mismatch arising from the cost to raise
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collateral and the interest earned on placing collateral and can be seen as a
carry cost. Thus the process of the collateral account may be given as

dV (s) = y(s)V (s) ds+ a(s) dh(s), (7.46)

which can be interpreted as the continuous change in the collateral process is
equal to the instantaneous carry cost of the collateral plus the instantaneous
change in the value of the collateralised instrument, denoted by h(t), multi-
plied by the size of the position in that instrument, denoted by a(t). With
a maturity date T for the instrument denoted by h(t) integrating Equation
(7.46) we obtain

V (T ) = e
∫ T
t y(u) du V (t) +

∫ T

t

e
∫ T
s y(u) du a(s) dh(s). (7.47)

Earlier on we defined a trading strategy in Definition 2.1. We will now select
a trading strategy with the value process and gains process respectively as

V (t) = φtSt = h(t) (7.48)

a(s) = Gs(φ) = exp

(∫ s

t

y(u) du

)
, (7.49)

which represents an investment in the instrument with value h(t) re-balanced
by process a(t) which can be seen as the continuous reinvestment of the
change in the collateral amount, or in other words the change in the col-
lateral amount must equal to the change in value of h(t) by the definition
of continuous collateral and thus results in a self-financing trading strategy.
Applying this trading strategy in accordance with Equation (7.47) results in

V (T ) = exp

(∫ T

t

y(s) ds

)
h(T ), (7.50)

which is an intuitive result in that the value of the collateral process must be
the value of the collateralised instrument with any interest earned or lost due
to the carry cost y(t). The present value of the instrument with maturity
payoff h(T ) follows from Proposition 2.2 and is given by

h(t) = EQ
t [P (t, T )h(T )|Ft]

= EQ
t [e−

∫ T
t r(s) ds e

∫ T
t y(s) dsh(T )]

= EQ
t [e−

∫ T
t (r(s)−y(s)) dsh(T )]

= EQ
t [e−

∫ T
t c(s) dsh(T )]. (7.51)
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Using the LIBOR curve (i.e. LIBOR discounting) or some other assumed
curve not based on the collateral rate is thus not appropriate [26]. The same
result is obtained in [41] where the term r(s)−y(s) is likened to the stochas-
tic dividend yield formula (and hence the analogy that y(t) can be seen as a
carry cost) with a further analogy that collateralised swaps can be seen as a
portfolio of futures contracts (which are indeed margined daily).

To interpret this collateral cost we may consider the case where a contract
has a positive mark-to-market value (i.e. there is the expectation to receive
a future cashflow). In such a case there would be an immediate receipt of an
equivalent cash amount of collateral on which the collateral rate would need
to be paid and the whole amount returned at maturity. In other words it can
be seen as a loan funded at the collateral rate. The collateral rate used in
the market is typically the overnight rate; such as the Federal Funds Rate (or
Fed Rate) for US Dollars or the SAFEX Overnight Rate for South African
Rands. The use of such a rate makes sense in the context of daily collateral
posting and thus the appropriate curve to use from which to obtain c(t) in
Equation (7.51) would be the overnight curve or OIS curve being the curve
of expected forward overnight rates.

7.5.3 The discrete time case

The results above can be extended to account for discrete time collateralisa-
tion and overnight deposit returns. Replacing the integrals with the product
of compounding daily simple rates would yield such a result. Johannes and
Sundaresan [41] which give a simple interpretation of the mechanics using
two time steps. This can be extended to multiple time steps which is the
case we shall consider.

Let us first assume that an interest rate swap has a fixed rate K so as to
make the market value of all future cashflows 0. At some time t the swap
would have an end of day value of h(t) and collateral is posted equal to this
amount having the carry cost

y(t) =
1

τt

(
1 + τtr(t)

1 + τtc(t)
− 1

)
, (7.52)

where r(t) and c(t) are simple rates compounded daily and τt represents the
year fraction over time t to t+ one business day. y(t) can be seen as repre-
senting borrowing at one rate and then investing at another rate.
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The collateral account process V (t) can thus be given as

∆V (t) = (1 + τ(t+ 1, t)y(t))V (t) + a(t)∆h(t), (7.53)

where ∆V (t) is the change in the collateral process over a single day. This
arises by posting collateral to the value of the change in the mark-to-market
of the swap represented by ∆h(ti) over time ti to ti + 1 which is one business
day. The resulting value at maturity would thus be

V (T ) =
n−1∏
u=t

(1 + τ(u+ 1, u)y(u))V (t)+
n−1∑
s=t

(
n−1∏
u=t

[1 + τ(u+ 1, u)y(u)]

)
a(s)∆h(s),

(7.54)
where the number of days between times T and t is n. Using the same
trading strategy as described in the continuous case but adapted for discrete
re-balancing would give the value process and gains process respectively as

V (t) = h(t) (7.55)

a(s) =
n−1∏
u=t

(1 + τ(u+ 1, u)y(u)). (7.56)

Applying this trading strategy with Equation (7.54) results in

V (T ) =
n−1∏
s=t

(1 + τ(s+ 1, s)y(s))h(T ). (7.57)

Now h(t) is the present value of a set of, say, k future payoffs at times t1 to
tk. Each payoff is of the amount

Hj = τ(tj−1, tj)[L(tj−1, tj)−K], (7.58)

from the perspective of the fixed rate payer where Hj represents the payoff
at time tj, j = 1, ..., k. The present value of the swap at time t, taken again
using Proposition 2.2 is thus

h(t) =
k∑
j=1

EQ [P r(t; tj)Hj|Ft] , (7.59)

where P r represents the zero coupon bond taken off our (previously assumed)
“risk-free” curve. We can also set

P r(t; tj) =

nj∏
u=1

(1 + τ(u+ 1, u)r(u))−1 , (7.60)
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which follows by applying Equations (3.12) and (3.13) iteratively where the
number of days between t and tj is nj.
Finally by substituting Equation (7.58) into (7.59) and then applying Equa-
tion (7.57) and applying the following algebraic relation

1 + y

1 + r
=

1 + r

1 + c
· 1

1 + r
=

1

1 + c
, (7.61)

where r can be seen to represent τ(t+ 1, t)r(t), c to represent τ(t+ 1, t)c(t)
and y to represent τ(t+ 1, t)y(t) we obtain the result

h(t) =
k∑
j=1

(
EQ

[∏nj

u=1 (1 + τur(u))∏nj

u=1 (1 + τuy(u))

1∏nj

u=1 (1 + τur(u))
Hj

])

=
k∑
j=1

(
EQ

[
nj∏
u=1

1

1 + τuc(u)
(τj[L(tj−1, tj)−K])

])
, (7.62)

where we have abbreviated the relevant year fractions as τz for simplicity and
formatting.

This result is equivalent to that obtained in continuous time and shows the
appropriateness of discounting future collateralised cashflows at the collateral
rate; which we have determined to be the overnight rate. The above case
shows the valuation for a swap though Hj can be substituted for any cashflow
or contingent cashflow.

7.6 Reconciling OIS discounting with Basis

Spreads and Credit Risk Measures

As shown in the previous sections the LIBOR rate can no longer be consid-
ered as reflective of a “risk-free” rate but rather also contains an element of
credit and liquidity risk in the interbank market. Under our assumption of
homogeneity of LIBOR market banks we assume that each bank participat-
ing at LIBOR, and thus able to fund itself at LIBOR for the term of the
relevant LIBOR deposit (e.g 6-Month LIBOR), has a similar risk of default
and carries similar liquidity risk. Should a particular bank no longer be able
to fund itself at (or respectably near) LIBOR it should be treated as no longer
being a LIBOR bank. We can extend this assumption of homogeneity to the
overnight deposit market where each bank in market is able to fund itself at
the overnight rate. Due to the very short-term nature of such an overnight
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deposit the overnight rate can be seen as a strong indicator of where the
theoretical “risk-free” rate should be as it would contain, at a maximum, a
single day’s worth of credit risk. We can also assume that at any point the
overnight reference rate should be lower than the LIBOR rate of a longer
term as the longer term LIBOR deposit carries greater credit risk as well
as a liquidity premium. Likewise we would expect OIS swaps to trade at a
lower fixed rate than a term LIBOR swap with the same maturity date.

Let us consider a theoretical OIS for LIBOR basis swap (as defined in Defi-
nition 5.1) with a maturity date of T which can be transacted between two
LIBOR banks. This basis swap would be replicated by entering into a vanilla
LIBOR swap paying the floating reference rate and receiving the fixed swap
right and simultaneously entering into an OIS swap receiving the floating in-
terest rate and paying the fixed swap rate. Under the traditional single curve
approach to pricing and valuing interest rate derivatives the fixed rate for the
two swaps should be the same or else an arbitrage opportunity would arise.
In the market though there is a difference between these two rates referred
to as the LIBOR-OIS spread. This basis spread is the amount by which
the LIBOR swap rate exceeds the OIS swap rate for swaps of the same tenor.

Before the liquidity crisis these spreads were relatively small and stable at
around 10 basis points but peaked to around 350 basis points (6-Month
LIBOR-OIS Spread) following the collapse of Lehman-Brothers in Septem-
ber 2008 [56].The LIBOR-OIS spread can be interpreted as an indicator of
expected market turmoil as well as a measure of the credit riskiness of LI-
BOR banks. Further, if the OIS curve may be considered as the “risk-free”
curve (or a reasonably close approximation thereof) due to its referencing
the very short-term overnight rate the LIBOR-OIS spread may be seen as a
measure of the credit risk (and built in liquidity risk) of the relevant LIBOR
banks.

We will now attempt to reconcile the concept of basis-spreads, and specifi-
cally the LIBOR-OIS spread, with credit risk measures and the traditional
approach to discounting default contingent cashflows, i.e. CDS pricing. We
will also attempt to justify using the LIBOR-OIS spread as a measure of
inter bank counterparty risk

Earlier we considered approaches to including basis spreads into the tradi-
tional interest rate curve creation and swap and FRA pricing where different
forward rate curves are created to estimate expected future LIBOR reference
rates. The basis spreads between each tenor can again be seen as a measure
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of credit risk for the LIBOR bank counterparties when considering interbank
deposits of those tenors. Our LIBOR-OIS spread is just another basis spread
and can be treated appropriately as such. Under the axiomatic approach
in Section 5.5 we obtained a beta coefficient βft as used in Equation (5.10)
which is a multiplicative factor used in calculating our forward rates. In
the bottom-up market related approach in Section 5.6 we obtained a similar
factor to account for the riskiness between terms which was denoted BAfd
for the multiplicative case and BA′fg for the additive case which were com-
pared to a Quanto-Style approach. The question raised is that if these basis
spreads are measures of bank default risk then how do they reconcile with
the approaches used to value credit derivatives such as credit defult swaps.

Let us fist give a simple definition of a credit default swap, or CDS:

Definition 7.3 (Credit Default Swap). A credit default swap, or CDS, is
an agreement between two counterparties whereby one counterparty (the CDS
buyer) pays a series of fixed payments over a predetermined period of time
(i.e. up until a specific maturity date) to the other counterparty (the CDS
seller) in exchange for a payment of a notional amount occurring in the event
of a default of some third party reference entity during the predetermined
period. The CDS can be cash settled where the nominal payment by the second
party is the notional amount of the CDS less any recovery rate determined to
be applicable to debt (of the same seniority as referenced) of the third party
reference entity. Alternatively the CDS can be physically settled whereby the
CDS buyer receives the full notional amount of the CDS and returns to the
CDS seller a debt instrument (now defaulted) of the same notional amount.
The event of default by the third party reference entity is referred to as a
credit event and no further fixed rate payments are made by the CDS buyer
after this time.

The CDS buyer is often also referred to as the protection buyer and the CDS
seller as the protection seller and the fixed amount paid is referred to as the
CDS premium. As is the case for swaps and FRAs an at-the-market CDS is
one where the CDS premium is such that the value at inception of the CDS is
zero and CDS quotes can be obtained in the market for CDSs of various tenors
and reference entities. We shall not go into the details of valuing a CDS but
shall give a brief description of the concept of a survival probability and how
it is used to value a CDS. As in the pricing of all contingent claims the value
of the CDS can be given by the present value of all expected cashflows. As
the fixed payments only occur so long as the third party reference entity has
not defaulted the expected present value at time t of some credit contingent
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cashflow of amount p to be made at time T , pt, can be expressed as

pt = EQ[P (t;T )p|Ft]
= P (t;T )spA(t;T )p, (7.63)

where spA(t;T ) is called the survival probability (for entity A) and it denotes
the probability, at time t, that some entity A has not defaulted before time
T . This is analogous to the term 1{tA>T} which was used in Sections 7.2.1
and 7.2.2 where we considered defaultable counterparties. Equation (7.63)
assumes that there is no recovery rate on the payment of p. This can be
extended to the case of some recovery rate R as follows

pt = P (t;T )
[
p spA(t;T ) + pR (1− spA(t;T ))

]
(7.64)

= P (t;T )
[
p spA(t;T ) + pR− pR spA(t;T )

]
= P (t;T )

[
pR + p(1−R)spA(t;T )

]
. (7.65)

We can see that Equation (7.65) is analogous to Equation (7.1). In both these
equations it is assumed that the recovery payment will be made at time T and
not on the default event day. The rate dpA(t;T ) = 1−spA(t;T ) is commonly
called the default probability. Typically in the market survival probabilities
are derived from “hazard rates” or “default intensities” commonly denoted
as λ(t) via the following relationship which can be found in various sources,
for example in Hull [38],

spA(t;T ) = e−
∫ T
t λ(s) ds = e−λ̄(T )T , (7.66)

where λ̄(T ) is the average hazard rate between times t and T .

The hazard rate function, or hazard rate curve, λ(t), can be obtained by
from market prices either by using the market quoted premium rate for a
CDS and deriving the hazard rate such that the value of a CDS is zero, or
inferred from credit spreads. A credit spread is the rate above some reference
risk-free rate (for example a government bond) at which an entity can obtain
funding for a certain term. The relationship between hazard rates and credit
spreads can also be found in various sources and we refer to the relationships
given in Hull [38] ∫ T

0

λ(u) du =
1

1−R

∫ T

0

s(u) du, (7.67)

λ̄(T ) =
s

1−R
, (7.68)
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for some assumed recovery rate R. In this case s could be the spread of
the reference entities bond yield over the risk-free rate for tenor T . We can
reformulate this survival probability, when measured at time 0, as

spA(0;T ) =
e−

∫ T
0 r(u)−λ(u) du

e−
∫ T
0 r(u) du

(7.69)

=
e−

∫ T
0 r(u)− s(u)

1−R
du

e−
∫ T
0 r(u) du

, (7.70)

where r(t) is the instantaneous short rate at time t and s(t) the equivalent
instantaneous credit spread at time t. We can thus express the survival prob-
ability as the ratio between two zero coupon bonds or between two discount
factors and the same result can be derived for other forms of discounting.

We can therefore justify the interpretation of LIBOR-OIS spreads and other
basis spreads as measures of credit risk and the multiplicative basis adjust-
ments β and BA defined in Sections 5.5 and 5.6 as forward survival prob-
abilities. This also matches the factor Hf used in the Quadratic Gaussian
Model in Section 6.2 and used in the Vasicek Model in Section 6.3. Likewise
as per Tuckman and Porfirio [57], where the spread between a market FEC
rate and the implied FEC rate derived from the single-curve framework swap
curve or the basis spread in cross-currency swap rates can be interpreted as
a measure of default risk, the factor Xfd used in the cross currency swap
analogy of Section 5.6, which is also a ratio between two zero coupon bond
prices, can also be interpreted as a survival probability.



Chapter 8

Conclusion

The objective of this dissertation was to study the rise of basis spread and
basis risk, the cause of these spreads, and the relevant models to model it af-
ter the 2008 liquidity crisis. We began by introducing the background theory
to interest rate curve construction and forward rate estimation in Chapters 2
and 3. Of importance is the concept of arbitrage and the assumption that no
arbitrage opportunity should exist in the market. This assumption gives rise
to the common interest rate curve construction and forward rate estimation
methods typically used before the 2008 liquidity crisis which is explored in
Chapter 4. The main result shown in this chapter is that under the tradi-
tional single curve framework, pre 2008, there was no-arbitrage opportunity
arising between interest rate instruments of different tenors with the forward
interest rates estimate and discounted off the same interest rate curve. This
was illustrated by example and the results of taking forward interest rates
calculated using instruments of various tenors compared to the market rate
as depicted in Figure 4.2. This figure depicted the spread, or difference, in
the quoted forward rate for 3x9 USD LIBOR FRAs and the calculated for-
ward rate as implied by 3x6 and 6x9 USD LIBOR FRAs. It was shown that
this spread was never greater than 2.5 basis points in the period observed.

We then took a look at just how such a pre-crisis single interest rate curve
would be constructed; specifically that instruments were chosen based on
liquidity rather than with reference to a specific tenor as the choice of under-
lying tenor was assumed arbitrary and inconsequential. We then also took a
look at a simple case for multiple currency multiple curve construction and
the concept of interest rate parity as this would later be used when dealing
with the cross currency swap analogy for a multiple curve framework post
the 2008 liquidity crunch.
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8.1 Multiple Curve Approach

In Chapter 5 we aimed to depict the rise of basis spreads between interest
rate instruments of tenors which arose during and after the 2008 liquidity
crisis. This was illustrated by taking the same approach and examples from
Chapter 4 and applying it to market rates post the 2008 crisis. The result
is that there would now appear to be an arbitrage opportunity between in-
struments of different tenors. Figure 5.2 illustrated the spreads between the
quoted 3x9 USD LIBOR FRA and the 3x9 forward rate implied by the single
curve approach using instruments of a different tenor. What was observed
and depicted is that starting from late 2007 when the subprime mortgage
crisis began these spreads started increasing up until the 2008 collapse of
Lehman Brothers Holding inc. after which these spreads exploded reaching
a peak of 46 basis points. This rise of basis spreads was further illustrated
by observing the market quotes of basis swaps exchanging 3 Month USD
LIBOR for 6 Month USD LIBOR. Figures 5.3 and 5.4 depict these market
quotes for basis swaps with maturities of 1 and 5 years respectively.

What was now clearly evident is that the pre-crisis single-curve fits all ap-
proach is no longer suitable and would give rise perceived arbitrage opportu-
nities under such a single curve framework. We wished to explain the cause
of these widening basis spreads and the breakdown of the traditional single
curve approach and to take a look at what the literature available on the
topic explained as stated under our objectives in the introduction. Acerbi
and Scandolo [1] defined various sources of liquidity risk and Morini [50] ex-
panded on these risks and it was evident that the various specific elements of
basis spreads, together with credit risk which is strongly correlated to liquid-
ity risk, would be difficult to separate. To cite Mercurio [46] the divergence
between implied forward rates and the FRA rate may be seen as a measure
or representation of the potential future credit or liquidity issues. As the
single curve paradigm which considers such liquidity risks as negligible is no
longer complete we wished to take a look at how such a paradigm could be
expanded so as to preserve the assumption of no-arbitrage. This gives rise
to the multiple-curve approach described in Section 5.4. We took a look at
the approach taken by various authors [6, 46, 47, 50, 57] who agreed that
cashflows with the same probability of occurring (in this case in an assumed
homogenous interbank market) on the same date would need to be discounted
off of the same curve so as to preserve the assumption of no-arbitrage. This
then implied that the future cashflows as estimated by forward interest rates
would need to be determined off of different curves or with an adjustment to
the rate calculated off of a single curve.
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We proceeded to take a look at two general approaches to modelling basis risk.
Firstly that of an axiomatic approach as proposed by Henrard [36] and fur-
ther explored by Binanchetti [6] and Morini [50]. This approach is similar to
that of Pallavicini and Tarenghi [51] and tackles the problem by taking each
forward rate as a single independent asset without individually modelling the
dynamics between liquidity and credit risks. The approach begins by propos-
ing multiple forward rate curves which are then fitted to observations in the
market. No specific market model is applied to the spreads by Henrard [36];
we instead took a look at such possible models later in Chapter 6. The sec-
ond approach considered was that of a bottom-up market related approach
as proposed by Ametrano [2]. Under this approach forward basis spreads
are used to reclaim the no-arbitrage assumption. This approach was further
extended by Bianchetti [6] who explores a foreign currency quanto-style anal-
ogy to reclaim the no-arbitrage assumption. This analogy is supported by
Kijima et al. [42], Michaud and Upper [47], and Tuckman and Porfirio [57]
who make similar observations. We see that under these two approaches,
which segment the interest rate market to a number of sub-markets each of
different tenors, that the assumption of no-arbitrage can now be reclaimed
and that the basis spread, denoted as β, can now be explored and modelled
either independently or as multiplicative of additive factor correlated to a
base underlying interest rate curve.

8.2 Post Crisis Market Models

Under Chapter 6 we explore the dynamics of the previously mentioned basis
or quanto style adjustments. We take a look at a number of models proposed
such as modelling basis under the Black model and under the SABR/CEV
model as proposed by Henrard [36]. It is shown that under such a model the
basis spreads between forward rates is neither constant nor deterministic but
rather proportional to the forward rates. We see that this is analogous to the
model proposed by Mercurio [46], though under Mercurio no relationship is
proposed between the forward rates which are treated independently. Fur-
ther Henrard [36] explores basis spreads under the SABR/CEV model with
forward rates following a SABR equation with an added basis spread factor.
It is observed though that under these models the basis spreads increase as
the underlying rates increase which was contrary to that observed in the
market. A possible explanation proposed was that due to the lack of spreads
in the original market models the observed increasing spreads were a result
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of models attempting to catch up with what was being observed at the time.

We followed by taking a look at a Quadratic Gaussian model as proposed
by Kijima et al. which extends the market model to include a third curve,
the government yield curve, followed by taking a look at modelling basis
spreads under the Vasicek model also proposed by Kijima et al. These ap-
proaches are also based on distinguishing discount rates from forward rates
and further by distinguishing swap rates from fixed-coupon bond rates. We
close this chapter by considering an extension to the prolific LIBOR Market
Model as proposed by Mercurio [46] and considering basis under both for-
ward measures and under spot measures. The LIBOR Market Model itself is
a computationally intensive method and such an extension for multiple basis
spreads for curves of different tenors would greatly increase this intensity.

8.3 Risky Markets

We close this study by exploring the implications of basis spreads and the
risks implied to the traditional approaches of valuing interest rate deriva-
tives in the interbank market and the implications to the pre-crisis “risk-free”
curve. Under the risks implied by basis spreads the traditional single curve
approach to creating a forward rate curve could no longer be considered risk-
free. We took a look what various authors such as Johannes and Sundaresan
[41], Fujjii et al. [25, 26, 27, 27], Crepey [21] and others had researched with
regard to the impact of basis risks and counterparty default risk in the inter-
bank market on interest rate derivative pricing. It was shown that separate
approaches would need to be taken for interest rate derivatives transacted in
the presence of default risk and those transacted under a collateral agreement
under which such risks were mitigates. The approach considered was the use
of the overnight index swap curve which has risen as a new market standard
curve for the pricing of instruments transacted under daily collaterlisation
agreements and we also considered how such a curve could be considered as
a proxy for the hypothetical “risk-free” curve. Finally we consider a simple
approach to constructing such a curve and showed the equivalence between
the LIBOR-OIS spread and credit spreads commonly used in the pricing of
credit default swaps and related credit derivative instruments. This enabled
us to reconcile the OIS discounting approach which implied the basis spread
between OIS curves and LIBOR curves as a measure of default risk in the in-
terbank market and the default and survival probabilities, themselves ratios
between two implied interest rates, used in credit derivative pricing models.
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8.4 Closing Remarks and Areas of Further

Study

Our objective was to study the rise of basis spreads in the interest rate mar-
ket, depict how the rise of such spreads would cause a breakdown in the
traditional no-arbitrage assumption for interest rates of different tenors, and
then explore how the no-arbitrage assumption could be reclaimed. We also
wished to consider how some prevalent interest rate market models could be
extended to include basis spread factors to account for the changes observ-
able in the interest rate market. Finally we wished to reclaim the concept of
a “risk-free” curve and show how the rise of the overnight index swap curve
could be a proxy for just such a curve and its applicability as a discount
curve for risk-free (or close to risk free) cashflows for instruments transacted
under daily cash collateralisation.

It was illustrated that the rise of basis spread and basis risk in the market
gave rise to a breakdown of the no-arbitrage assumption previously assumed.
We found that the interest rate market could be segmented into a multiple-
curve framework which could be fitted to market observable rates for interest
rate derivatives of different tenors. Following either an axiomatic approach
or a bottom-up approach the assumption of no-arbitrage could be reclaimed
and the two approaches could be seen as equivalent.Such an approach though
relies on the prevalence of liquid market related quotes for interest rate deriva-
tives with tenors matching those we wish to model.

We also found that numerous current interest rate modelling methods, such
as the Black model and the Vasicek model, could be extended to such a mul-
tiple curve framework; though without making any assumption of modelling
the basis spread as an independent factor. We also took a look at how the
ubiquitous LIBOR Market Model could be extended, as proposed by Mer-
curio [46], to include a basis spread factor. We remark though that such an
extension leads to even greater computational intensity to what is already a
computationally intensive model.

It was also shown that the rise of an overnight index swap curve as a proxy
for the “risk-free” curve is indeed a suitable approach and how interest rate
derivatives transacted under a collateralisation agreement could be priced us-
ing such a curve. We concluded that the LIBOR-OIS spreads between such a
curve and the traditional LIBOR swap curve, implying that it is a measure of
the default risk inherent in the interbank market, can be reconciled with the
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credit spread approaches used in the valuation of credit default derivatives.

Further areas of study would be to consider the modelling of basis spread
factors as stochastic variables under, for example, a Heston type model.
Also of consideration would be how to model the correlation between the
basis spread factors of different tenors. Application of such models in the
South African interest rate market is currently hampered by the lack of
liquid observable market quotes for interest rate derivatives of different tenors
though with the proposed introduction of a South African equivalent to the
overnight index swap this could be tackled at a later date when there is
more observable data. The multiple curve approach could also be extended
to include counterparty specific risks and to disentangle the various risks all
implied by a single basis spread (e.g. liquidity and default risks) as currently
the approach still considers each LIBOR market participant as being mostly
homogenous.
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Appendix A

Daycount and Business Day
Conventions

A daycount convention determines how interest is calculated over a period of
time and varies between currencies and instruments. This section will outline
a few common daycount conventions and their use. The term daycount
basis is also used to refer to daycount conventions. In this section t1 and t2
represent two calendar dates with t2 falling after t1. t1 may be treated as
y1/m1/d1 and t2 as y2/m2/d2 to represent the year, month and day of each
date respectively. This is not an exhaustive set of conventions but covers the
ones most commonly used.

A.1 Actual Methods

actual/actual

Also referred to as act/act or act/act (ISDA). Under this convention,
when calculating the year fraction between times t1 and t2, the year fraction
is calculated as

τact/act(t1, t2) =
D1

365
+
D2

366
(A.1)

where D1 is the total actual number of calendar days between t1 and t2 which
do not fall within a leap year and D2 is the number of total actual calendar
days between t1 and t2 which do fall within a leap year.

actual/365

Also referred to as act/365 or act/365F where the F stands for “Fixed”.
Under this convention, when calculating the year fraction between times t1
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and t2, the year fraction is calculated as

τact/365(t1, t2) =
D

365
(A.2)

where D is the total actual number of calendar days between t1 and t2 and
the denominator is always 365. This is the convention typically used in South
Africa for interest rate swaps, FRAs and other derivatives.

actual/360

Also referred to as act/360. Under this convention, when calculating the
year fraction between times t1 and t2, the year fraction is calculated as

τact/365(t1, t2) =
D

365
(A.3)

where D is the total actual number of calendar days between t1 and t2 and
the denominator is always 360.

actual/365A

Also referred to as act/365A. Under this convention, when calculating the
year fraction between times t1 and t2, the year fraction is calculated as

τact/365(t1, t2) =
D

Y
(A.4)

where D is the total actual number of calendar days between t1 and t2 and
Y is 366 if the leap day (29th February) falls between t1 and t2 else it is 365.
This is in contrast to the actual/actual convention which takes 366 into the
denominator even if the accrual period ends before the leap day.

actual/365L

Also referred to as act/365L. Under this convention, when calculating the
year fraction between times t1 and t2 the year fraction is calculated as

τact/365(t1, t2) =
D

Y
(A.5)

where D is the total actual number of calendar days between t1 and t2 and
Y is 366 if the accrual period ends in a leap year else it is 365. This is in
contrast to the actual/actual convention which takes 366 into account in
the denominator if the period begins in a leap year but does not end in one.
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NL/365

Also referred to as act/365 NL or NL365. Under this convention, when
calculating the year fraction between times t1 and t2, the year fraction is
calculated as

τact/365(t1, t2) =
D

365
(A.6)

where D is the total actual number of calendar days between t1 and t2 if there
is no leap day in the accrual period otherwise it is the total actual number
of calendar days - 1.

BUS/252

Also referred to as business/252 Under this convention, when calculating
the year fraction between times t1 and t2, the year fraction is calculated as

τact/365(t1, t2) =
D

365
(A.7)

where D is the total actual number of business days between t1 and t2 where a
business day is any day not falling on a weekend and not falling on a holiday.

A.2 Fixed Day Methods

In this section the daycount convention is usually represented in the form
d/n where d represents the denominator and assumes a fixed number of
days in a period and n represents the denominator and is usually 360 or
365. The definitions below shall assume d/360 as a standard but 360 can be
substituted for any appropriate number as defined by that convention e.g.
20/252 could represent a fixed 20 business days in a month divided by a
fixed 252 to represent the number of business days in a year.

30/360

Also referred to as 30/360 ISDA. Under this convention each month is
treated as having only 30 days in it and the year contains 360 days. When
calculating the year fraction between times t1 and t2 the year fraction is
calculated as

τact/360(t1, t2) =
D

360
(A.8)

where D is 30 · (m2−m1) + 360 · (y2− y1) + (d′2− d′1) and d′1 = 30 if d1 = 31
else d′1 = d1 and if d1 = 31 then also set d′2 = 30 else d′2 = d2.
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30E/360

Also referred to as 30/360 European or 30/360 ISMA. Under this con-
vention each month is treated as having only 30 days in it and the year
contains 360 days. When calculating the year fraction between times t1 and
t2 the year fraction is calculated as

τact/360(t1, t2) =
D

360
(A.9)

where D is 30 · (m2−m1) + 360 · (y2− y1) + (d′2− d′1) and d′1 = 30 if d1 = 31
else d′1 = d1 and if d2 = 31 then set d′2 = 30 else d′2 = d2. This differs to
30/360 ISDA in that under 30E/360 d′2 = 30 is changed if d2 = 31 as
opposed to being changed based on d1. There is no special treatment for the
last day of February (i.e. d1 or d2 stay = 29).

30U/360

Also referred to as 30/360 US. Under this convention each month is treated
as having only 30 days in it and the year contains 360 days. When calculating
the year fraction between times t1 and t2, the year fraction is calculated as

τact/360(t1, t2) =
D

360
(A.10)

where D is 30 · (m2 − m1) + 360 · (y2 − y1) + (d′2 − d′1) and if t1 and t2 is
the last day of February (28 in a non leap year or 29 in a leap year) then
d′2 = 30; and if t1 is the last day of February then d′1 = 30; and if d1 = 31
then d′1 = 30; and if d2 = 31 and d1 = 30 or 31 then d′2 = 30.

A.3 Business Day Conventions

Also known as date rolling convention or business day rules. This is a set of
rules for the treatment of interest accrual periods beginning or ending on a
weekend or public holiday, i.e. if either t1 or t2 fall on a weekend or public
holiday. The rule defines what adjustments would be made to t1 or t2 before
calculating the year fraction as defined by the day count basis. It is possible
(though not common) for t1 and t2 each to abide by a different rule, as such
we shall simply use ti to define the calculation date in the definitions below.

Actual

No adjustment is made and payments are made and calculated based on the
actual date, even if it is a non-business day.
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Following

If the reference date ti falls on a non-business day then ti is adjusted to be
the date of the immediate following business day, i.e. if ti is a Saturday it is
adjusted to Monday’s date if Monday is not a holiday, else it will be set to
the next business day.

Previous

If the reference date ti falls on a non-business day then ti is adjusted to be
the date of the first previous business date, i.e. if ti is a Saturday then it is
adjusted to the previous Friday’s date if that Friday was not a holiday, else
it is set to the previous business day.

Modified Following

This follows the same convention as the following rule except if that would
cause the adjusted date to fall into the next calendar month, in which case
a previous rule would apply.

Modified Previous

This follows the same convention as the previous rule except if that would
cause the adjusted date to fall into the previous calendar month, in which
case a following rule would apply.


