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This study aims to generate from a three-dimensional data set of carbon dioxide flux in the
Southern Ocean, a sample set for use with Kriging in order to generate estimated carbon
dioxide flux values across the complete three-dimensional data set. In order to determine
which sampling strategies are to be used with the three-dimensional data set, a number of
a-priori and a-posteriori sampling methods are tested on a two-dimensional subset. These
various sampling methods are used to determine whether or not the estimated error variance
generated by Kriging is a good substitute for the true error as a measure of error.

Carbon dioxide is a well known ”greenhouse gas” and is partially responsible for climate
change. However, some anthropogenic carbon dioxide is absorbed by the oceans and as such,
the oceans currently play a mitigating role in climate change by acting as a sink for carbon
dioxide. It has been suggested that if the production of carbon dioxide continues unabated
that the oceans may become a source rather than a sink for carbon dioxide. This would mean
that the oceanic carbon dioxide flux (exchange of carbon dioxide between the atmosphere
and the surface of the ocean) would invert. As such, modelling of the carbon dioxide flux is
of clear importance. Additionally as the Southern Ocean is highly undersampled, a sampling
strategy for this ocean which would allow for high levels of accuracy with small sample sizes
would be ideal.

Kriging is a geostatistical weighted interpolation technique. The weights are based on the co-
variance structure of the data and the distances between points. In addition to an estimate at
a point, Kriging also produces an estimated error variance which can be used as an indication
of uncertainty. This study made use of model data for carbon dioxide flux in the Southern
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Ocean. This data covers a year by making use of averaged data for 5 day intervals. This
results in a three-dimensional data set covering latitude, longitude and time. This study used
this data to generate a covariance structure for the data after the removal of trend and us-
ing this covariance structure, tested various sampling strategies in two dimensions, sampling
approximately 10% of the two-dimensional data subset. These sampling strategies made use
of either the estimated error variance or the true error and included two simple heuristics,
genetic algorithms, the Updated Kriging Variance Algorithm and Random Sampling. Two
of the genetic algorithms tested were selected to maximise the error measure of interest, in
order to determine the full range of errors that could be generated. The percentage absolute
errors obtained across these methods ranged from 2.1% to 64.4%.

Based on these strategies, the estimated error variance was determined to not be an accurate
surrogate for true error and that in cases where absolute error is available, such as data
minimisation, absolute error should be used as the measure of error. However, if no data is
available then it does provide an easy to calculate measure of error. This study also concluded
that Addition of a Point at Point of Maximum Absolute Error does provide a good validation
sampling method to which other methods may be compared.

Additionally, based on true errors and computational requirements, three methods were se-
lected to be implemented on a three-dimensional subset of the data. These methods were
Random Sampling, Addition of a Point at Point of Maximum Absolute Error and Addition of
a Point at Point of Maximum Estimated Error Variance. Each of these methods for sampling
were performed twice on the data, sampling up to approximately 5% of the data. Random
Sampling produced percentage absolute errors of 21.02% and 20.98%, Addition of a Point at
Point of Maximum Estimated Error Variance produced errors of 18.54% and 18.55% while
Addition of a Point at Point of Maximum Absolute Error was able to produce percentage
absolute errors of 14.33% and 14.32%.
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CHAPTER 1

INTRODUCTION

1.1 Background

Kriging is a geostatistical interpolation method [13] which has long been used in mining [73].
Kriging was developed by a South African mining engineer D.G. Krige. Krige developed the
method to improve his estimations of the gold ore grades in mining blocks by considering
the ore grades in other blocks which are close by [73]. Kriging is different from classical
interpolation schemes, in that it not only predicts a function value at any unsampled location,
but it also provides an estimate of the uncertainty of the predicted value at this unsampled
location (the Kriging variance). Another attractive feature of Kriging is that it can produce
highly complex functional landscapes using relatively few sample locations. This last feature
of Kriging makes it particularly popular as a surrogate model. Since the quality of a Kriging
based surrogate model depends on the location of the samples, it remains an open question
how to determine the sampling locations. Techniques that attempt to answer this question are
referred to as strategic sampling schemes. In order to demonstrate the relevance of research
in Kriging and/or strategic sampling schemes, consider the following list of prior work:

• Aerodynamic Optimisation - Liu et al. [43], Rosenbaum and Schulz [66], Laurenceau
and Sagaut [41] and Paul-Dubois-Taine and Nadarajah [57] have all made use of Kriging
surrogate models in aerodynamic optimisation. These authors have considered various
sampling schemes in order to lower the computational cost of the computational fluid
dynamics simulations by means of these surrogate models.

• Agricultural Soil Science - Pereira et al. [58] made use of a strategic sampling scheme
which concerns Kriging as recently as 2013 in order to determine the sampling scheme
which should be used to map physical and chemical properties of soil in agriculture.

• Weed Mapping - Cousens et al. [12] made use of Kriging in order to produce weed
maps. Their article focused on the grid spacing, quadrant size and starting point for
the sampling required.

• Contamination Classification - Both Juang, Lee and Chen [37] and more recently Juang,
Lee and Teng [38] have made use of Kriging in the classification and estimation of heavy
metal contamination of soils.

• Water Quality Monitoring - Hedger et al. [29] made use of a systematic sampling
scheme in order to reduce the redundancy in observations for the estimation of water
quality in lakes when remote sensing and Kriging are used.
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• Groundwater Water Level Prediction - Varouchakis and Hristopulos [72] have made use
of Kriging to improve the groundwater level prediction in the Mires basin in Crete.

• Underwater Autonomous Vehicle Sampling - Ho and Saripalli [33] made use of Kriging
as the interpolation function for various sampling strategies for use with an underwater
autonomous sampling vehicle.

• Reliability Studies - Liu et al. [44] made use of Kriging combined with Importance
Sampling in 2012 in the area of structural reliability.

• Estimation of Environmental Variables - Brus and Heuvelink [9] have considered the
optimisation of sampling schemes for various Kriging models as well as a Multiple Linear
Regression model.

• Large Scale Ocean Sampling - Zhu et al. [75] has made use of Kriging in large scale
ocean sampling. They made use of a method called the Updated Kriging Variance
Algorithm in order to systematically select a set of sample points.

• Data Minimisation - Brodkin [8] made use of a systematic sampling strategy using
Kriging in order to minimise a large data set to lessen the storage space required.

• Terrain Modelling for Flight Simulation - Duckett [22] made use of the same method as
Brodkin in order to reduce the sampled gridded terrain elevation data for use in terrain
modelling for flight simulators [22].

In the case of data minimisation, the variable of interest is known at all of the data points,
while for large scale ocean modelling and terrain modelling this may not be the case. For
large scale ocean modelling, it is possible that a model may be available which would give a
predicted value at each point in the set of possible points. This model is, however, unlikely
to perfectly predict the real world values. Based on the availability of values for the variable
of interest, a-posteriori sampling may be allowable or only a-priori sampling may take place
in some instances. In this study, a large model data set is available. Therefore, both a-priori
and a-posteriori methods will be implemented and compared.

With the increasing availability of data especially, spatio-temporal data, the expansion of
sampling methods for use with Kriging in three dimensions is becoming increasingly im-
portant. However, due to computational costs, there is the possibility that some sampling
methods may not be feasible in three dimensions. While in general data is becoming more
available, certain variables and/or areas are vastly undersampled, the Southern Ocean being
an example of such an area [52]. Within this area, the carbon dioxide flux (that is the ex-
change of carbon dioxide between the ocean and the atmosphere at the surface interface) is
also undersampled [52].

Carbon dioxide is well known as a prominent so called “green-house gas” and plays a role in
climate change. The estimates for the percentage of anthropogenic carbon dioxide absorbed
by the oceans ranges from 25 − 48% [10]. Thus, it is clear that the oceans play a large role
in mitigating climate change. However, some studies have suggested that if the production
of anthropogenic carbon dioxide was to continue to increase as it has been, that the oceans
could become a source of carbon dioxide rather than a sink [18]. The absorption or release of
carbon dioxide is known as the carbon dioxide flux. This flux or exchange of carbon dioxide
is driven by the concentration gradients of carbon dioxide at the sea-air surface interface [3].
The absorption of carbon dioxide by the oceans also has an effect on their state and the
lifeforms which inhabit in them [21].

According to Lenton et al. [42], the Southern Ocean alone may absorb as much as 25%
of anthropogenic carbon dioxide. However, as previously stated it is highly undersampled,
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making the understanding of the absorption and effects of carbon dioxide in the Southern
Ocean difficult to quantify [65]. Thus, sampling the Southern Ocean is clearly a necessary
exercise. However, there are many difficulties associated with sampling in the Southern
Ocean. These include the distances from ports and shipping routes [52], the presence of
seasonal sea ice [70] and the extreme weather conditions [65]. This implies that it would be
ideal if an accurate map of the carbon dioxide flux could be produced with few sample points.

1.2 Thesis Objectives

Kriging produces both a prediction and a Kriging variance [46] (also known as an estimated
error variance [17]) for each point in the set of possible points. Some authors such as Rosen-
baum and Schulz [66] refer to this variance as the mean squared error. This variance has been
used by some authors in order to obtain more optimal sample sets. Zhu et al. [75] have made
use of the estimated error variance in the Updated Kriging Variance Algorithm. This method
adds points incrementally and bases the addition of the points on the maximum decrease in
total estimated error variance. Brodkin [8] and Duckett [22] make use of the estimated error
variance by adding a single point at a time to the sample set. They select this point as the
point with the maximum estimated error variance. They continue to add points until the
maximum estimated error variance falls below a pre-determined threshold.

Brus and Heuvelink [9] make use of simulated annealing to minimise the spatially averaged
Universal Kriging Variance (the spatially averaged estimated error variance for Universal
Kriging) in order to determine an optimised sampling strategy. This estimated error variance
incorporates the trend estimation error. The spatially averaged estimated error variance for
Ordinary Kriging is also minimised to determine an optimised sampling strategy for Ordinary
Kriging. Pereira et al. [58] also make use of spatial simulated annealing to minimise the
averaged estimated error variance from Ordinary Kriging. Hedger et al. [29] make use of
grid configurations for sampling which produce lower estimated error variances than those
produced by random samplings.

Liu et al. [43] test various infilling sampling strategies for aerodynamic optimisation, one of
which involves infilling based on maximum estimated error variance while others are designed
to maximise expected improvements or the probability of improvement. These infilling meth-
ods are used in conjunction with genetic algorithms to determine the new sample locations.
Laurenceau and Sagaut [41] and Rosenbaum and Schulz [66] make use of a sampling method
which adds points at the point of maximum absolute error purely as a validation method
for the other methods they test. Both articles consider sample sensitivity error sampling,
while Rosenbaum and Schulz also consider the addition of a point at the point of maximum
estimated error variance.

However, there remains a question as to whether or not the estimated error variance is a
good measure of true error. Makhnin [46] is very clear that the estimated error variance is
dependent only on the spatial position of the sample points and the point at which prediction
is occurring, and the covariance structure of the variable of interest. Juang et al. [37] state
that the estimated error variance cannot be used as a measure of estimation accuracy in
general because it is independent of the data values. This suggests that the estimated error
variance may not provide an accurate surrogate for the true error. However, as described
above, there are still many methods which rely solely on this estimated error variance as
it allows for a sampling strategy to be selected without having available all values for the
variable of interest. Thus, this study wishes to investigate the value of the estimated error
variance as a surrogate measure of error for the true absolute error. Given the model data set
available for this study, which yields values for the variable of interest at all possible sample
points, this study is able to accurately compare these two measures of error.
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While the sample sensitivity error sampling is useful with aerodynamic optimisation, it is
not considered in this study. This study wishes to focus on the apparent contradiction
between author recommendations regarding the use of estimated error variance in the design
of sampling strategies. Additionally, this study considers a large 3D spatio-temporal set in
its later stages and this method of sampling is not particularly suited to spatio-temporal
sampling. This method bases the location of the next sample point on the distances between
points and the current sample values. However, this implies that one must sample the next
point before determining the following sample point location. This implies that one could be
required to wait long periods of time before one is able to sample the next chosen location due
to its position in time. Only in a case such as ours, where values are available for the variable
at all locations, could this method be used for spatio-temporal data but in such a case, one
would prefer to work with the true errors. This method could, however, be considered as a
future extension to this study.

Given a large full data set of carbon dioxide flux values for the Southern Ocean generated
from a model, this study aims to meet the following objectives:

• Compare various a-priori and a-posteriori methods for sampling on a two-dimensional
set when Kriging is used as the method of prediction. This includes the comparison
of both errors and computational costs in order to determine which methods may be
feasible on a large three-dimensional data set.

• Compare the true errors and estimated error variances in order to determine if the
estimated error variance is an accurate surrogate for the true error. Determine whether
or not the addition of a point at the point of maximum absolute error is a good validation
function for future studies.

• Comparing selected methods on a three-dimensional data set in order to determine
the accuracy attainable on that set by means of Kriging using the sampled sets of a
preselected size.

1.3 Delineation and Limitations

A very large data set is available. The complete set (with land and ice removed) consists of
419093 points. This complete data set is too large for many of the methods employed in this
study, based on the available computational power. Thus, some sub-sampled sets are to be
generated. Some of these sets will be randomly selected from the complete set, while others
will be selected by certain criteria. The two-dimensional subset to be used for comparison of
all the tested methods, will simply be taken as a portion of the larger Southern Ocean area
for one time step, while for the three-dimensional subset, every second grid reference in every
direction will be considered admissible to the subset. The randomly chosen subsets will be
used in the estimation of the covariance function and in the validation of the functions which
are to be fitted.

In order to adequately compare the various sampling methods, a predetermined covariance
structure is required. Before a covariance structure can be fitted, it needs to be determined if
there is a trend present in the data. The determination of presence of trend is to be completed
by means of histograms and Ordinary Least Squares estimation. Ordinary Least Squares is
not optimal when the data are not independent, but based on some studies may be sufficient
[31]. While any structure may be used for the trend, this study considers only three linear
polynomial trends. The set of possible trend structures is too vast to consider every possibility
and thus, three common polynomial trends (a constant, linear and quadratic trend) are to be
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considered. These trends will be taken in terms of the grid references for latitude, longitude
and time, as no auxiliary information is available. While many other methods are available
to assess the trend, Ordinary Least Squares is chosen as it is computationally inexpensive
and thus, provides a fast method to determine which of the trend structures is more optimal.

Many techniques are available for the fitting of covariance structures. These include but are
not restricted to, Maximum Likelihood Estimation, Restricted Maximum Likelihood Estima-
tion, Method of Moments Estimation, Generalised Least Squares Fitting and Cross-Validation
[15; 40; 50]. While any of these methods would be sufficient, Maximum Likelihood Estima-
tion allows for the estimation of both covariance and trend parameters simultaneously and
additionally may perform well even in the presence of non-normal data [50]. However, Max-
imum Likelihood Estimation is computationally expensive and as such, the method will be
performed on randomly chosen smaller subsets in order to help alleviate some of the computa-
tional burden. Additionally, due to computational expense, only three covariance structures
will be fitted and randomly chosen validation subsets are to be utilised to determine which
of the three covariance structures is to be used as the pre-determined covariance structure
for the comparison of sampling methods.

While many covariance structures are available, only three will be fitted along with the pre-
viously determined trend structure. Amongst the available covariance structure properties
are isotropic, anisotropic, separable and non-separable options [15; 73]. There is also the
choice between including or excluding the nugget in the structure [15; 73]. Many covariance
functions are available for use within these conditions on the structure. Some of these co-
variance functions include the Gaussian covariance function, exponential covariance function,
spherical covariance function, pentaspherical covariance function and the Matérn covariance
function. This list is not comprehensive. In order to maintain a simple covariance structure
for fitment, the structure was chosen to be separable. Anisotropy will not be considered due
to the separability and the nugget will not be included. This general structure will be used
with three popular covariance functions, namely the exponential, Gaussian and pentaspheri-
cal covariance functions.

Of these covariance structures estimated by Maximum Likelihood Estimation, the one which
provides the lowest errors on the randomly chosen validation subsets will be used further in
this study. Once the covariance and trend structures and parameters have been determined,
the trend will be treated as deterministic if the parameters are deemed to have converged
sufficiently. This would reduce the case from Regression Kriging to Simple Kriging on the
residuals as the trend would be deemed to be fully known.

Once this has all been completed, the various sampling methods may be implemented on the
two-dimensional set and their errors compared. While the range of sampling techniques for
use with the method of Kriging continues to expand and become more complex, the methods
chosen for use in this study, reflect some of the more simple available methods. Two of these
methods are simple heuristics which allow them to be computationally inexpensive. These
two heuristics will decide which single point to add to the sample set per iteration, based
on the simple criteria of maximum absolute error or maximum estimated error variance. As
the optimal sample set is computationally infeasible to locate, genetic algorithms will be
implemented in order to attempt to approximate a good possible solution and the associated
errors. Additionally, genetic algorithms will be used to approximate some of the worst possible
errors attainable in order to determine where within the range of possible errors the techniques
tested lie. These genetic algorithms will be used to both maximise and minimise the total
absolute error and the total estimated error variance. Additionally, for the minimisation of
total absolute error and total estimated error variance, hybridised genetic algorithms will be
implemented which take an initial solution from one of the two simple heuristic techniques.

In addition to the simple heuristics and genetic algorithms, both Random Sampling and the
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Updated Kriging Variance Algorithm (used by Zhu et al. [75]) will be implemented. These
methods encompass a-priori and a-posteriori methods which rely on either the estimated
error variance or the absolute error respectively. The errors and placement of the sample
points for each of these methods will then be compared. Also compared will be the computa-
tional requirements of these methods. As the values are known at all data points, this data
set provides an opportunity to compare not only the errors produced by these methods, but
also the effectiveness of the estimated error variance as a substitute for the absolute error
on a non-ideal data set. Based on these various factors, certain methods will then be imple-
mented on the three-dimensional subset and the errors and predictions presented. In all the
methods tested, it is assumed that sampling can occur at any time and location without any
restrictions.

1.4 Significance of Study

This study aims to demonstrate whether or not the estimated error variance is indeed a good
surrogate for the true error. Brodkin [8] makes use of the estimated error variance for data
minimisation. However, in such a case, the absolute error is available for use. This study aims
to determine whether or not true error should rather be used in cases of data minimisation.

Additionally this study aims to find methods of reasonable computational expense (in com-
parison to other methods) which can be used on a large three-dimensional data set. This
study also aims to show that a three-dimensional data set can be sub-sampled and have the
predicted values provide some level of accuracy. The data set of which this sampling occurs
is a spatio-temporal model for the carbon dioxide flux in the Southern Ocean and given the
need for sampling in this area, it may provide an easily obtainable starting point for more
accurate methods of selecting sampling points.

1.5 Overview of Chapters

Chapter 2 gives a brief review of the effects of carbon dioxide in both the oceans as a whole
and specifically the Southern Ocean. Chapter 2 also explains the importance of and need for
sampling in the Southern Ocean. Thus, it provides the necessary oceanic background for this
study.

Chapter 3 provides the mathematical background to Kriging as well as the necessary infor-
mation regarding covariance functions as required for this study. This chapter in no way
encompasses the full spectrum of available literature for Kriging but merely explores the
mathematics surrounding it, which are used in this study. The theory of Maximum Likeli-
hood Estimation for the prediction of trend and covariance parameters necessary for Kriging
is also addressed in this chapter.

Chapter 4 addresses the literature concerning the sampling methods to be implemented.
While sampling strategies for use with Kriging is a field which is continuously growing and
new methods are being explored, only a few methods have been tested in this study. This
chapter also covers the mathematical preliminaries which are required in order to implement
the sampling strategies used in this study.

Chapter 5 describes the origins of the data used in this study and explains the references
used to describe the data, while Chapter 6 describes the processes followed in order to de-
termine the presence of trend and the resulting decisions in the removal of trend from the

6



CHAPTER 1. INTRODUCTION

data. Chapter 7 documents the Maximum Likelihood Estimation fitments of three covariance
structures making use of the trend structure selected in Chapter 6. This chapter also covers
the comparison of these covariances structures and the choice between them.

Chapter 8 covers the basic information relating to the two-dimensional sampling performed
in this study. The various sampling methods which are used on the two-dimensional set
described in this chapter are addressed in Chapters 9 to 13. Chapter 9 addresses the Random
Sampling method as used in this study and also contains the results from this sampling
method. Chapter 10 covers the Updated Kriging Variance Algorithm and its results while
Chapters 11 and 12 cover the Addition of a Point at Point of Maximum Estimated Error
Variance and Addition of a Point at Point of Maximum Absolute Error and their results
respectively. The genetic algorithms and their results can all be found in Chapter 13.

The comparison of the methods found in Chapters 9 to 13 can be found in Chapter 14. This
chapter addresses not only a comparison of the errors and placement of sample points but also
a comparison of the computational requirements of each of the methods. Also in this chapter,
a decision is made as to which methods should be implemented for the large three-dimensional
data set based on the comparisons of error and computational requirements.

Chapter 15 describes the three-dimensional set on which three-dimensional sampling takes
place and additionally also provides the results of the sampling in three dimensions for the
sampling methods selected in Chapter 14.

Chapter 16 contains the conclusions of this study as well as suggestions for future work and
a short summary of contributions.

Appendix B contains the Ordinary Least Squares Coefficients for the various trends which
are tested in Chapter 6. The Maximum Likelihood Estimation results for the various runs
across the various covariance structures tested in Chapter 7 are given in Appendix C. This
Appendix also contains the histograms of the parameter estimations obtained across the
various runs of Maximum Likelihood Estimation of the tested covariance structures.

Appendix D contains additional graphs of errors and additional maps of predicted carbon
dioxide flux and estimated error variances from the various two-dimensional sampling meth-
ods implemented across Chapters 9 to 13.

Appendix E provides tables of computational requirements for the methods implemented on
the two-dimensional data sub-set. Finally, the additional graphs and histograms of errors
as well as the maps of predicted carbon dioxide flux and estimated error variance for the
three-dimensional sampling methods implemented in Chapter 15 can be found in Appendix
F.
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CHAPTER 2

OCEANIC OVERVIEW

2.1 Carbon Dioxide in the Oceans

2.1.1 The Importance of Carbon Dioxide in the Oceans

Carbon dioxide is well known as a so called Greenhouse gas and as such is partially responsible
for climate change. Prentice et al. [59] suggest that 40% of anthropogenic carbon dioxide
(that is carbon dioxide generated by human activities) remains in the atmosphere, while
60% is absorbed by oceanic and terrestrial systems and that this uptake occurs in equal
percentages. That suggests that the oceans may absorb 30% of anthropogenic carbon dioxide.
Others suggest that the percentage of anthropogenic carbon dioxide absorbed by the oceans
is 25-48% [10], 40% [16],17-39% [3] or 33% [51]. Based on these figures, it is clear that the
ocean plays a significant role in carbon dioxide absorption and, thus, climate change. It was
explained by Kaiser and Barnes [39] that the concentration of carbon dioxide in ice cores from
the Canadian Islands, Greenland and Antarctica is higher now than at any other time in 800
thousand years of Earth’s history and that this concentration is rising at a unprecedented
rate, giving extra urgency to the attempts to accurately model carbon dioxide in the oceans.

The exchange of carbon dioxide between the oceans and atmosphere is governed by physical
transport at their interface and it is well known that this exchange is driven by the concen-
tration gradients of carbon dioxide [3]. The suggestion has been made by some researchers
such as Deng and Chen [18] that these fluxes could invert causing the oceans to become a
source of carbon dioxide rather than a sink, while others such as Doney et al. [20] believe
that the ocean is weakening as a sink.

Once atmospheric carbon dioxide is absorbed by the oceans, it reacts with the water to form
carbonic acid. This carbonic acid can dissociate by the loss of hydrogen ions into bicarbonate
and carbonate ions [21]. This chemical equation is given by [21]

CO2(atmosp) ⇀↽ CO2(aq) +H2O ⇀↽ H2CO3 ⇀↽ H+ +HCO−3 ⇀↽ 2H+ + CO2−
3 . (2.1)

The above chemical reactions are reversible and have been found to be near equilibrium [21].
For a pH of approximately 8.1, the inorganic carbon occurs in the following percentages per
form: 90% bicarbonate ions, 9% carbonate ion and 1% dissolved carbon dioxide [21].

When carbon dioxide is added to the oceans, the concentrations of aqueous carbon dioxide,
bicarbonate and hydrogen ions increase. This increase in hydrogen ions lowers the pH causing
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acidification of the oceans [21]. With respect to ocean acidification, the following authors
agree that carbon dioxide uptake by the oceans has the result of surface water acidification:
Maier-Reimer et al. [45], McNeil [51], Meredith et al. [52] and Rintoul et al. [65]. In addition
Meredith et al. [52] holds the opinion that this ocean acidification could have implications of
the food webs of the oceans. The above mentioned increase in hydrogen ions also lowers the
concentration of carbonate ions [21].

The ability of the ocean to absorb atmospheric carbon dioxide over long time frames is
dependent on the dissolution of calcium carbonate in water columns and sediment [21]. This
calcium carbonate is found in the shells and skeletons of many marine organisms, and it
is believed that ocean acidification could effect these organisms [21]. The equation for the
dissociation of calcium carbonate is [21]:

CaCO3 ⇀↽ CO2−
3 + Ca2+. (2.2)

According to Rahmstrof [62] climate change could effect thermohaline circulation. Thermo-
haline circulation is driven by freshwater and heat fluxes and one of its key features is deep
water formation. If the thermohaline effect is weakened (as is suggested will happen if cli-
mate change continues), it would influence the global climate as thermohaline circulation is
responsible for large scale heat transport [62]. Rahmstorf [62] also suggests there is a risk
that the changes to thermohaline circulation may be abrupt and/or irreversible.

Thus accurate modelling is clearly necessary to give clarity on the severity of the environ-
mental effects of carbon dioxide in the ocean, such as those mentioned above. In addition
McNeil [51] is of the opinion that there are possible socio-economic implications that could
arise from accurate carbon dioxide modelling for the oceans. He has suggested that if the
EEZs (exclusive economic zones) of countries were to be added to their carbon dioxide bud-
gets, the budgets for some countries could be dramatically changed and this could potentially
have positive influences on some countries’ economies [51].

2.1.2 The Southern Ocean and Carbon Dioxide

Chen et al. [10] stated that the Southern Ocean accounts for 20% of all ocean area, while
Lenton et al. [42] states that although the Southern Ocean accounts for less than 20% of
the global ocean area, it may account for 25% of the oceanic uptake of anthropogenic carbon
dioxide. Gille [25] has stated that the Southern Ocean is expected to be a prime region
for the uptake of carbon dioxide although this does not necessarily apply to the storage of
carbon dioxide. Metzl et al. [53] suggest that the Southern Ocean is a summer sink and
winter source and while Takahashi et al. [70] agreed with the findings of a summer sink and
winter source in the ice free zone of the Southern Ocean, both results were calculated using
data which contained more data points for the summer months than for the winter months.
Thus, the Southern Ocean is clearly an important factor in the calculation of global oceanic
carbon uptake.

It is well known that the Southern Ocean connects the major ocean basins and is the link
between the upper and lower layers of oceanic circulation [52; 65]. These and other processes
that take place within the Southern Ocean have a great influence on both regional and global
climate [65], global oceanic circulation [65] and biogeochemical cycles [65; 52]. Meredith et
al. [52] state that the Southern Ocean plays a fundamental role in the global Earth system.

In linking the upper and lower layers of global oceanic circulation, the Southern Ocean is
responsible for the movement of carbon, heat, nutrients and other oceanic properties be-
tween the surface and deep ocean via the upwelling and downwelling branches of the global
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overturning circulation found in the Southern Ocean [65]. This also means that the South-
ern Ocean is responsible for the ventilation of a large portion of the global ocean and may
regulate the ocean’s capacity in terms of heat and carbon storage [64].

Given the global influence of the Southern Ocean, changes in its waters could have significant
and far reaching consequences [65] and models suggest that the Southern Ocean will respond
rapidly to climate change [25]. In fact, based on the existing observations, it has been
established that the Southern Ocean influences the mean state of not only the global ocean
but also the global climate [64]. However, given the limited observations available, the extent
of its influence has not been clearly identified [64]. It should be noted, however, that the
limited existing observations suggest various changes are already occurring in the Southern
Ocean. These changes are of concern given the influence of the Southern Ocean [52]. Some
of these changes are listed below:

• Hotspots of extreme warming appear to be occurring [52]

• Regional warming is occurring more rapidly than the global average [65]

• Salinity changes due to changes in precipitation and the melting sea ice and ice shelves
[65]

• Rapid changes in the regional sea ice and ice shelves which has effects on the global sea
level [52]

• Ocean acidification appears to be occurring, while the uptake of carbon appears to be
slowing [65]

• There are indications that ecosystems within the Southern Ocean are changing [65]

Thus, it appears that the Southern Ocean is a definite area of interest when modelling carbon
dioxide in the oceans.

Sampling of the Southern Ocean

As previously stated there are only limited observations in the Southern Ocean and it is in
fact regarded as being severely under-sampled [52; 70; 64; 25; 42]. Some of the reasons for
this undersampling are:

• The presence of partial ice cover in winter [70]

• The Southern Ocean covers a large area [25]

• The Southern Ocean has very few ports for access [25] and is distant from shipping
routes and densely populated areas of land making it a very remote ocean [64; 52]

• The Southern Ocean is well known for it’s harsh environmental conditions including
strong winds, ice and freezing temperatures [25; 52; 64]

• Winter cloud cover which inhibits the use of satellites to gather remotely sensed data
[20]

The lack of existing observations and the availability of only short and incomplete time series
make the determination of cause and consequences of changes in the Southern Ocean difficult
[65]. In addition to the under-sampling, there is currently a lack of data sharing amongst
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various institutions and countries [52]. There is a critical need for observation in the Southern
Ocean in order to better understand its effects on global environmental changes, to increase
our ability to become resilient to these changes and to discover methods for sustainable
resource usage [52].

In order to meet the need for additional observations in the Southern Ocean, various institu-
tions and organisations have come together to develop a Southern Ocean Observing System
(SOOS) [52]. The SOOS was brought about in order to help achieve the following 6 goals
[52]:

• To understand the role of the Southern Ocean in global freshwater and heat balance.

• To investigate the stability of the overturning circulation in the Southern Ocean.

• To understand the role the Southern Ocean plays in the stability of the Antarctic ice-
sheet and its contribution to future global sea level rises.

• To determine the future of carbon uptake in the Southern Ocean and the consequences
of said carbon uptake.

• To determine the future of Antarctic sea ice.

• To investigate the impacts that global changes may have on the Southern Ocean and
its ecosystems.

The traditional methods of data collection in the oceans are labour intensive and have re-
lied on research ships undertaking scientific expeditions [52]. Thus, other methods of data
collection need to be considered in order to greatly increase the number of observations in
the Southern Ocean. Various additional sampling techniques have been suggested for use
in addition to ship based samples and it is hoped to integrate autonomously generated data
with human generated data [52]. A short summary of additional sampling techniques is given
below.

• Moored Instruments could potentially be very important as an additional data source
[20; 52]

• Remotely sensed measurements from satellites [52].

• Profiling floats (such as the Argo floats) and drifters [20]. The Argo floats are robotic
profiling floats and recently there have been some advancements in sending some of
these floats into polar ice regions [52].

• Tagged animals. Marine animals are often not limited by the ice and thus, tagged
animals would allow for some measurements in the ice regions that may previously
have been unavailable [52]

• There is also gathering interest and momentum for the possible use of ocean gliders
and other autonomous underwater vehicles for data collection [52].

In addition to increasing the observations in the Southern Ocean, it falls within the SOOS’s
vision to develop methods of giving gliders automated instructions in order to keep spatial
data coverage at an optimum [52]. However, this relies on models becoming more sophisti-
cated [52]. Meredith et al. [52] also note that real time minimisation of model errors when
used by adaptive autonomous sampling could offer a “step-change” in the optimal monitoring
of the Southern Ocean.

11



CHAPTER 2. OCEANIC OVERVIEW

It is clear that sampling of the Southern Ocean is both necessary and urgent. In addition
sampling techniques which allow for point by point selection for sampling may be of further
use in conjunction with autonomous vehicles and/or gliders.
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CHAPTER 3

MATHEMATICAL OVERVIEW:COVARIANCE FUNCTIONS AND
KRIGING

3.1 The Method of Kriging

3.1.1 Background

Kriging is a well known Geostatistical technique. It was first developed in a very rudimentary
emperical form by D.G Krige in the 1950s [13]. Krige was a South African mining engineer
who developed the technique to improve his estimations of the gold ore grades in mining
blocks by considering the ore grades in other blocks which are close by [73]. The name
Kriging was given to the method by G.Matheron who was a mathematician in the Paris
Mining School [73]. It was Matheron who was able to provide the theory behind the method
and was able to add the missing components to Krige’s method which have transformed it
into Kriging as we know it today [13].

Cressie [13] makes use of the following quote from Matheron to describe Kriging in his 1990
paper entitled the “Origins of Kriging”, “It consists [of predicting] the grade of a panel
by computing the weighted average of available samples .... The suitable weights ai... are
determined by .... Σai = 1 ... [and the prediction] variance ... should take the smallest
possible value.”

The aim of Kriging is to estimate the value of a variable of interest (Z) at a point or points
which have not been sampled [73]. Kriging in its simpler linear forms is merely a weighted
average of the available values. The weights are, however, dependent of the distances between
points and the covariance structure of the variable [73]. In addition to the estimation of a
value at given coordinates, Kriging also allows for the calculation of an estimated variance
of the prediction error at the unsampled points [30]. This is known as the error variance
[7], prediction variance [67] or Kriging variance [46]. This Kriging variance is also called
the estimated error variance by De-Vitry [17] and this term for the Kriging variance is used
throughout the remainder of this document as it provides an accurate description of the
Kriging variance as it is described by Hengl [30]. This estimated error variance gives an
indication of how precise the prediction is [30]. The weights are also estimated in such a way
as to minimise this error variance and to ensure that the estimates are unbiased [73]. This
leads to the Kriging estimator being referred to as a B.L.U.E (best linear unbiased estimator)
[34]. This name is used as it is a linear predictor (the estimates are a weighted average of
known values), it is unbiased because it attempts to make the mean residual error zero and
it is known as best because it attempts to minimise the error variance [34].
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The Kriging family as it now stands, however, encompasses both linear and non-linear forms
of Kriging and has been further developed into various distinct types for use with a variety
of problems [73].

Listed below are some of the more common forms of Kriging used today:

• Simple Kriging - It is assumed that there is a constant known mean and prediction is
performed by a weighted linear sum of the known values at sample points [73] which
minimises the mean squared prediction error [13]. The weights are dependent on the
spatial positions of the sample points and the covariance function between them [13].

• Ordinary Kriging - In Ordinary Kriging it is assumed that there is a constant but
unknown mean. This unknown mean must then be estimated in addition to the weights
[73]. This is the most commonly used form of Kriging [73].

• Lognormal Kriging - Lognormal Kriging is merely Ordinary Kriging of the logarithms of
the variable of interest. This method is for use with data which exhibit an approximate
log-normal distribution [73].

• Universal Kriging - Also known as Kriging with External Drift or Kriging with Drift
[73]. Universal Kriging recognises two components in the variable of interest: i) a non-
stationary deterministic component and ii) a random component [73]. This method
estimates the trend in the deterministic component and the covariance or variogram
from the random component [73]. In this method the covariance matrix of the residuals
is extended with the additional predictors in order to predict the trend and random
component simultaneously [30]. Hengl [30] suggests that the name Universal Kriging
should be used when the trend is only a function of the spatial co-ordinates, and Kriging
with external Drift should be used when the trend is a function which includes other
measurements. It is noted that the reference to spatial coordinates does not exclude
temporal coordinates as time can be viewed as just another dimension for Kriging [14].

• Regression Kriging - Very similar to Universal Kriging except that the trend and random
components are predicted separately and summed at the end. Regression and Universal
Kriging are equivalent but do, however, follow different computational steps [30]. For a
proof of the equivalence of the two methods see Hengl et al. (2003) [32]. Many authors
do, however, use the names Universal and Regression Kriging interchangeably [32]

• Ordinary Cokriging - Also known as Cokriging. This method is an extension of Ordinary
Kriging for use when there are two or more variables [73]. Although only one variable
is predicted, the other variables are used in the prediction [47]. The variable should
exhibit some coregionalization [73]. This method is particularly useful when there are
properties which are cheap to measure and one which is more expensive. The cheaper to
measure variables can be used to help predict the more expensive one more accurately
[73]. Cross-covariances are, however, required [47].

• Indicator Kriging - This is a non-linear, non-parametric form. In this method continuous
variables are converted into binary indicators [73]. This method also allows for the use
of qualitative variables [73; 48] and it does not require the assumption of normality,
which is common in Kriging [48].

• Disjunctive Kriging - A non-linear but parametric form of Kriging. Best used in decision
making as estimates can be made for the probabilities of exceeding specific pre-defined
values [73].

This review will only cover the two linear forms of Kriging required for the purposes of this
study, namely Simple Kriging and Regression Kriging. The basics required for Simple and
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Regression Kriging will be discussed below and then the specific cases will be discussed further
in the sections that follow.

3.1.2 Basics for Simple and Regression Kriging

Suppose the variable of interest can be thought of as a random process,

{Z(s) : s εD< }; D< ⊂ <d , (3.1)

and has been sampled at locations s1, s2, s3, ...., sn [13]. In addition, suppose that Z can be
represented in the form:

Z(s) = µ(s) + δK(s); s εD< , (3.2)

where δK(s) is a stationary Gaussian process with a zero mean [26]. Also assume that the
covariance function of δK(s) is known and stationary [7].

µ(s) is a deterministic function which is either known or needs to be estimated. If this
trend is known (Simple Kriging) or is estimated outside of the process of Kriging (Regression
Kriging), it can be subtracted from the data and the residuals can undergo Kriging under
the assumption of a zero mean. In this case, the form of the Kriging estimator is then [7]:

Z∗(s) = µ(s) +
n∑
i=1

λi(Z(si)− µ(si)). (3.3)

It is necessary to determine the weights λi under the constraint of unbiasedness [7]

E[Z∗(s)− Z(s)] = 0 , (3.4)

and which minimise the error variance given by [7]:

σ2E(s) = Variance[Z∗(s)− Z(s)]. (3.5)

From the earlier discussion of δK(s), the following is known about the mean of δK(s) [7],

E[δK(s)] = 0 , (3.6)

and based on the stationarity of the covariance of δK(s),

Covariance(δK(s), δK(s + h)) = E[δK(s) · δK(s + h)] = Cδ(h). (3.7)

The type of Kriging which needs to be applied to a problem is determined by the form of
µ(s) [7].
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3.1.3 Simple Kriging

In the case of Simple Kriging, it is assumed that µ(s) = µ, a constant and known mean.
Given the known mean, the Simple Kriging Estimator then becomes [7]:

Z∗SK(s) = µ+

n∑
i=1

λSKi (Z(si)− µ) = µ+ δ∗SK(s). (3.8)

This is equivalent to subtracting the mean from the data, applying Simple Kriging with a
zero mean on the residuals and adding back the mean [30]. This estimator is automatically
unbiased as E[(Z(si)− µ)] = 0 [7]:

(3.9)

E[Z∗(s)− Z(s)] = E[Z∗(s)]− E[Z(s)]

= E[µ+
n∑
i=1

λSKi (Z(si)− µ)]− E[Z(s)]

= µ+ E[

n∑
i=1

λSKi (Z(si)− µ)]− µ

= 0 +

n∑
i=1

E[λSKi (Z(si)− µ)]

=
n∑
i=1

λSKi E[(Z(si)− µ)]

= 0.

It is now necessary to minimise the error variance [7]:

(3.10)
σ2E(s) = Variance[Z∗(s)− Z(s)]

= Variance[δ∗SK(s)] + Variance[δ(s)]− 2Covariance[δ∗SK(s), δ(s)]

=
n∑
i=1

n∑
j=1

λSKi (s)λSKj (s)Cδ(si − sj) + Cδ(0)− 2
n∑
i=1

λSKi (s)Cδ(si − s).

This minimisation is achieved by taking the derivative of the above expression with respect to
each weight λi and setting the resulting expression equal to zero. This results in the following
system of equations [7]:

n∑
j=1

λSKj Cδ(si − sj) = Cδ(si − s) i = 1, 2, 3, ..., n. (3.11)

However, as the mean is constant, the covariance for Z is the same as that of the residual δ
and, thus, the above system of equations can be rewritten in terms of the covariance of Z [7].

n∑
j=1

λSKj C(si − sj) = C(si − s) i = 1, 2, 3, ..., n. (3.12)
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This can be rewritten into matrix notation as:

KλSK = k , (3.13)

where Ki,j = C(si− sj), ki = C(si− s) and λSK is the vector of weights [7]. If no two points
are co-located then K is positive-definite and K−1 can be found [7]. In this case, the weights
can be found as:

λSK = K−1k. (3.14)

By substitution into the error variance Equation (3.10), the estimated error variance can be
found to be [7]:

σ2E(s) = σ2SK(s) = C(0)− λSK(s)k = C(0)−
n∑
i=1

λSKi (s)C(si − s). (3.15)

3.1.4 Regression Kriging

Regression Kriging is known as a hybrid technique, since it combines both interpolation based
on regression and spatial interpolation [31]. It has been shown that hybrid methods provide
better results than either of the single approaches [31].

In the case of Regression Kriging, we assume that µ(s) is a deterministic trend which needs
to be estimated.

Unlike in Universal Kriging, the trend is estimated before Kriging takes place. The determin-
istic trend is then removed and Simple Kriging with a mean of zero is used to fit the residuals
[31]. In Universal Kriging, the covariance matrix is extended to allow for the simultaneous
estimation of trend and spatial interpolation. It has been shown though, that in at least the
case of linear trends, that the two methods are equivalent for both the estimate at a point
and the estimated error variance at a point given the same inputs [30].

When the trend is a linear polynomial, Regression Kriging can be represented as [31],

Z∗RK(s) = m∗(s) + δ∗RK(s) =

p∑
k=0

β∗kqk(s) +
n∑
i=1

λRKi δRK(si) , (3.16)

where m∗(s) is the fitted trend, δ∗RK(s) is the interpolated residual, β∗k are the trend model
coefficients and qk(s) are the values of the additional variables (perhaps spatial coordinates)
at the target location [31].

In addition, the estimated error variance now must account for both the error in the trend
estimation and in the spatial interpolation. This error variance is given by [32]:

(3.17)σ2E(s) = σ2RK(s)

= σ2∗[m∗(s)] + σ2∗[δ∗RK(s)]

= (q0 − qTC−1c0)
T (qTC−1q)−1(q0 − qTC−1c0) + C(0)− cT0 C−1c0 ,
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where q0 is the vector of additional variables at the target point, q is the matrix of additional
variables at the sample points, C is the covariance matrix of the residuals, c0 is the vector
of covariances at between the target location and the sample points and C(0) is the value of
the covariance for a zero distance [31].

The issue in Regression Kriging becomes determining the trend structure and estimating the
trend coefficients. The trend structure is often taken to be linear and often a polynomial as
it is shown in Equation (3.17) [55]. However, arbitrarily complex regression models can be
used [31], which may be parametric or non-parametric [55]. In Section 3.1.5 to follow, the
estimation of the trend coefficients is discussed under the assumption of a polynomial trend.

3.1.5 Estimating the Trend Coefficients for Regression Kriging

Due to the spatial correlation in the data, Ordinary Least Squares is no longer an optimal
technique for the estimation of the trend coefficients [30; 32; 31]. Hengl et al. [32] considers
the use of Generalised Least Squares. Pardo-Igúzquiza and Dowd [55] acknowledge that
the equation for the trend coefficients is identical in both Generalised Least Squares and
Maximum Likelihood Estimation but suggest that Maximum Likelihood Estimation is more
sensitive to changes in the parameters of the covariance. Both Generalised Least Squares and
Maximum Likelihood Estimation are explained below.

Generalised Least Squares

Generalised Least Squares accounts for the correlation between the residuals. The estimator
for the coefficients is given by:

β∗GLS = (qTCδq)−1qTC−1δ Z , (3.18)

where all terms are defined as they were for Regression Kriging and in addition Z is the vector
of values of interest at the sample points [31]. In order to determine these coefficients, it is
first necessary to determine the Ordinary Least Squares coefficients β∗OLS = (qTq)−1qTZ.
These coefficients are then used as the trend, and the covariance of the residuals is estimated.
This estimated covariance is then used to determine the Generalised Least Squares coefficients
which are in turn used as the trend in order to re-estimate the covariance of the residuals.
This is used to update the Generalised Least Squares coefficients which are then used to
update the covariance of the residuals and so forth until it is determined that sufficiently
correct coefficients have been reached [31].

According to Hengl et al. [31] it is worth noting that Kitandis in 1994 showed that the
covariance function derived from the Ordinary Least Squares coefficients is often satisfactory.

Maximum Likelihood Estimation

Under Maximum Likelihood Estimation, Z is assumed to follow a multivariate Gaussian
distribution [49]. This assumption leads to the following log-likelihood function of Z with
the parameters (β,θ), where β are the trend coefficients, θ are the covariance parameters
and n is the number of sample observations [49]:
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l = l(Z;β;θ) = −n
2

ln(2π)− 1

2
ln|C(θ)|−1

2
(Z− qβ)T (C(θ))−1(Z− qβ). (3.19)

The notation ln is is used for the natural logarithm. The covariance parameters will be
further discussed in Section 3.2, as these parameters are dependent on the covariance structure
chosen. Equation (3.19) leads to the following Maximum Likelihood Estimate for β:

β∗ = (qTC∗−1q)−1qTC∗−1Z , (3.20)

where C∗ = C(θ∗) and θ∗ is the Maximum Likelihood Estimate of the covariance parameters
[49]. If further, the covariance matrix can be represented as the product of a constant variance
(σ2) and a correlation matrix, that is C(θ) = C(σ2,θ2) = σ2R(θ2), then the Maximum
Likelihood Estimates of β and σ2 become [49]:

β∗ = (qTR∗−1q)−1qTR∗−1Z (3.21)

and

σ2∗ =
1

n
[(Z− qβ∗)TR∗−1(Z− qβ∗)] , (3.22)

where R∗ is the correlation matrix as produced using the Maximum Likelihood Estimates
for θ2. Based on the equation for the log-likelihood (Equation (3.19)) and C(θ) = σ2R(θ2),
it can be seen that [19]:

l(β;σ2;θ2) ∝ −
1

2
[ln(|σ2R|) + (Z− qβ)T (σ2R)−1(Z− qβ)]. (3.23)

By substituting in the Maximum Likelihood Estimates for β and σ2 found in Equations (3.21)
and (3.22), the reduced log-likelihood is obtained as [19]

l(θ2) ∝ −
1

2
[n ln(|σ2∗(R)|) + ln|R|]. (3.24)

Thus, it is only necessary to maximise Equation (3.24) and back substitute to obtain β and
σ2. This optimisation procedure can be started by an initial guess for θ2 [19]. It is important
to note that in order to optimise the reduced log-likelihood, it is necessary to recalculate β
and σ2 at every step.

Haarhoff et al. [27] further discuss numerical strategies for solving these equations especially
in the presence of ill-conditioned matrices. Haarhoff et al. [27] make the suggestion of using
Cholesky decomposition to factor R such that it can be represented by R = LLT . The
following representations can then be used [27]:

β∗ = (qTD)−1qTU (3.25)

R−1q = D (3.26)

R−1Z = U (3.27)
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D and U can be solved for from [27]:

RD = q , (3.28)

RU = Z. (3.29)

This also allows σ∗2 to be represented as [27]:

σ2∗ =
(Z− qβ∗)T (U−Dβ)

n
. (3.30)

This method also allows for a simplification in the calculation of ln|R| as it is shown by
Haarhoff et al. [27] that it can be calculated as:

ln|R|= 2

(
n∑
i=1

ln(Lii)

)
. (3.31)

Haarhoff et al. [27] found that this method offered significant improvements in both compu-
tational speed and accuracy.

The benefit of Maximum Likelihood is that the trend coefficients and covariance parameters
can be estimated in the same process, while Generalised Least Squares swaps between up-
dating the estimation of the covariance parameters and the trend coefficients using different
methods. However, as mentioned previously, it has been suggested that that Ordinary Least
Squares may be sufficient.

3.2 Covariance Functions and Their Parameters

The covariance between the variable at two locations, Z(s1) and Z(s2) with respective means
of µ(s1) and µ(s2), is defined as [67]:

Covariance[Z(s1), Z(s2)] = Cov[Z(s1), Z(s2)] = E[(Z(s1)− µ(s2))(Z(s1)− µ(s2))]. (3.32)

However, if second order stationarity is assumed, that is [67]

E[Z(s1)] = µ (3.33)

Cov[Z(s1), Z(s2)] = Cov[Z(s1 + h), Z(s2 + h)] ∀ h , (3.34)

then we can use the following notation:

Cov[Z(s1), Z(s2)] = Cov[Z(0), Z(s2 − s1)] =: C(s2 − s1). (3.35)

This implies that the covariance between two locations relies only on the distance between
the locations and not directly on the locations themselves [67].
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In addition, a semivariance(γ) can be defined as [15]:

γ(s1 − s2) =
1

2
Variance[Z(s1)− Z(s2)]. (3.36)

If the variable is assumed second order stationary, then the semivariance and covariance can
be related by [15]

γ(h) = C(0)− C(h). (3.37)

It is important to note that it is possible to have a valid semi-variance which does not possess
a valid covariance [15].
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Figure 3.1: A typical covariance and its corresponding semi-variance (generated in R using the
gstat package [61]).

Figure 3.1 shows both a typical covariance and its corresponding semi-variance.

In the section to follow some characteristics of covariance functions are discussed as well as
some specific forms and their parameters.

3.2.1 Covariance Functions

Covariance functions can display certain characteristics. Some are based on the assumption of
stationarity, some are required in order for the function to define a valid covariance function
while others may or may not occur based upon the choice of covariance function.

• Symmetry - Based on the assumption of stationarity, it can be shown that the covariance
function will exhibit symmetry [73]:

(3.38)

C(h) = E[(Z(v)− µ)(Z(v + h)− µ)]

= E[Z(v − h)Z(v)− µ2]
= E[Z(v)Z(v − h)− µ2]
= C(−h).

This allows us to consider only the lags h ≥ 0.
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• Positive Semi-definiteness - In order for a covariance function to be valid, the covariance
matrix must be positive semi-definite. That is, the principal minors of the matrix must
all be either positive or zero [73], where the covariance matrix is given by:

C =


C(s1, s1) C(s1, s2) · · · C(s1, sn)
C(s2, s1) C(s2, s2) · · · C(s2, sn)

...
... · · ·

...
C(sn, s1) C(sn, s2) · · · C(sn, sn)

 . (3.39)

• Continuity - Due to most environmental variables being continuous, continuous covari-
ance and semi-variance are required. The covariance should decline from a positive
value C(0) = σ2 to smaller values while the semi-variance should climb from γ(0) = 0.
If one, however, considers the sample semi-variance otherwise known as the sample var-
iogram, it is often the case that γ(0) > 0. This is referred to as the nugget effect [73].
According to Cressie and Wikle [14] this nugget effect is composed of two non-negative
components, namely the micro-scale variance of the variable without measurement error
and the measurement error variance of the variable. However, in geostatistical litera-
ture it is commonly assumed that there is no measurement error, that is the that the
nugget is only composed of micro-scale variance[14]. The nugget effect is not considered
further in this study.

• Monotonically Decreasing - As the lag distance h increases, C(h) decreases. That is,
as the distance between points increases, the points become more dissimilar on average
[73]. Conversely, the semi-variance is monotonically increasing [73]. This can be seen
in Figure 3.1.

• Sill and Range - Certain semi-variances reach upper bounds at which they remain after
a certain distance. This upper bound, if it exists, is known as the sill variance [73].
This occurs if the process is second order stationary [73]. This sill variance is also C(0)
[73]. If the sill variance is reached within a finite lag distance, then the lag distance at
which the sill is first reached is known as the range or correlation range [73]. This range
is also the lag distance at which the covariance reaches zero [73]. Some semi-variances,
however, reach their sill in an asymptotic manner and their ranges are then considered
effective ranges, defined as the lag distance where they reach 95% of their sill variance
[73].

• Unboundedness - If the process is not second order stationary, then the semi-variance
increases with increasing lag distances continually and never reaches an upper bound.
In this case, the semi-variance is said to be unbounded. For unbounded semi-variances,
valid covariances do not exist [73].

• Anisotropy - If the semi-variance can written as a function of

‖h‖≡
√

(h21 + h22 + · · ·+ h2d) for h = (h1, h2, · · · , hd) ε<d , (3.40)

then the process is isotropic [14]. However, spatial variation is not always the same in
all directions. If the process is anisotropic, then the semi-variance will be anisotropic
and the covariance, if it exists, will also be anisotropic [73]. Two types of anisotropy
are considered below:

– Geometric Anisotropy - In the case of geometric anisotropy, the initial gradients
vary for different directions. If a sill exists (which is the same in all directions),
then the ranges or effective ranges will vary for different directions. In this case, a
simple transformation of the spatial coordinates will remove the anisotropy [73].
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– Zonal Anisotropy - In the case of zonal anisotropy, a region contains zones with
different mean values. In this case, the variance differs with direction and, thus,
the sill variance varies with direction [73].

• Separability - In purely spatial coordinates, h = (h1, h2, · · · , hd) ε<d, a covariance is
said to be separable when it can be represented by [15]:

C(h) =
d∏
i=1

Ci(hi). (3.41)

In terms of spatio-temporal coordinates, a process Z is said to have a separable spatio-
temporal covariance function if, for all s,x ε<d; t, r ε<, the covariance function can be
represented as [14]:

Cov(Z(s, t), Z(x, r)) = C(s)(s,x)Ct(t, r). (3.42)

It is important to note that non-separable covariance structures have been developed
more recently, specifically for spatio-temporal data [69]. However, they are not consid-
ered in this study.

Some popular covariance functions for use with Kriging are given below in an one-dimensional
form for ease of representation. It is noted that the Kriging equations given earlier can be
rewritten for use with semi-variances. All the functions and their figures, except for the
nugget function, are given for a zero nugget. All of the figures, bar the figure for the Matérn
and nugget functions, are scaled so that the range or effective range occurs at one. The
nugget function has no range parameter and thus it cannot be scaled to be one, while the
Matérn function is difficult to scale due the various parameters which the effective range is
dependent on. Furthermore, all figures are shown for a sill of one.
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Figure 3.2: Nugget covariance and semi-variance with c0 = 1 (generated in R using the gstat
package [61]).

With a nugget function, there is no spatial correlation between points. The semi-variance is
given by [73]:
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γ(h) = c0(1− δ(h)) , (3.43)

where c0 is the sill variance and δ(h) is the Kronecker delta function which takes the value
of one when h = 0 and is zero everywhere else [73].

The covariance is given by:

C(h) = c0δ(h) , (3.44)

where c0 and δ(h) are defined as above. The nugget covariance and semi-variance with c0 = 1
can be seen in Figure 3.2.

Spherical
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Figure 3.3: Spherical covariance and semi-variance with c0 = 1 and a = 1 (generated in R using
the gstat package [61]).

The semi-variance for the spherical function is given by:

γ(h) =

c0
{

3h

2a
− 1

2

(
h

a

)3
}

forh ≤ a

c0 forh ≥ a ,

(3.45)

where c0 is the sill variance and a is the range parameter [73].

The covariance is given by:

C(h) =

c0
{

1− 3h

2a
+

1

2

(
h

a

)3
}

forh ≤ a

0 forh ≥ a.

(3.46)

The spherical covariance and semi-variance with c0 = 1 and a = 1 can be seen in Figure 3.3.
According to Todini [71] the spherical function can lead to problems within the Maximum
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Likelihood Estimation framework as it does not have guaranteed continuity of the function as
well as its first and second derivatives and it is recommended that the pentaspherical function
be used instead.
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Figure 3.4: Pentaspherical covariance and semi-variance with c0 = 1 and a = 1 (generated in R
using the gstat package [61]).

The pentaspherical semi-variance is given by [73]:

γ(h) =

c0
{

15h

8a
− 5

4

(
h

a

)3

+
3

8

(
h

a

)5
}

forh ≤ a

c0 forh ≥ a.

(3.47)

The covariance is given by:

C(h) =

c0
{

1− 15h

8a
− 5

4

(
h

a

)3

+
3

8

(
h

a

)5
}

forh ≤ a

c0 forh ≥ a.

(3.48)

The pentaspherical covariance and semi-variance with c0 = 1 and a = 1 can be seen in Figure
3.4.

Exponential

The exponential model is one which reaches its sill variance asymptotically and its semi-
variance is given by:

γ(h) = c0

{
1− e−h/a

}
, (3.49)

where c0 is the sill variance and a is a distance parameter. The exponential model has an
effective range of approximately 3a [73]. The exponential covariance function is given by:

C(h) = c0

{
e−h/a

}
. (3.50)
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Figure 3.5: Exponential covariance and semi-variance with c0 = 1 and a =
1

3
(generated in R using

the gstat package [61]).

The exponential covariance and semi-variance with c0 = 1 and a =
1

3
can be seen in Figure

3.5.

Powered Exponential
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Figure 3.6: Powered exponential covariance and semi-variance with c0 = 1, r = 1.5 and a = 31.5
(generated in R using the gstat package [61]).

For the powered exponential, the semi-variance is given by:

γ(h) = c0

{
1− e(−(h/a)

r)
}
, (3.51)

where c0 is the sill variance, a is a distance parameter and r is the power parameter. r is
bounded between 0 and 2 (0 ≤ r ≤ 2) [14]. The effective range of the powered exponential
model is dependent on r [19]. The exponential semi-variance function is the special case
where r = 1. The associated covariance function is:
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C(h) = c0

{
e(−(h/a)

r)
}
. (3.52)

The powered exponential covariance and semi-variance with c0 = 1, r = 1.5 and a =
1

31/1.5
can be seen in Figure 3.6.

Gaussian
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Figure 3.7: Gaussian covariance and semi-variance with c0 = 1 and a =
1√
3

(generated in R using

the gstat package [61]).

The semi-variance for the Gaussian model is given by:

γ(h) = c0

{
1− e(−h2/a2)

}
, (3.53)

where c0 is the sill variance and a is a distance parameter. The Gaussian model has an
effective range of approximately

√
3a [73]. The covariance is given by:

C(h) = c0

{
e(−h

2/a2)
}
. (3.54)

The Gaussian covariance and semi-variance with c0 = 1 and a =
1√
3

can be seen in Figure

3.7. The Gaussian model’s semi-variance does however approach the origin with a zero
gradient and this can lead to unstable Kriging equations. As a result, it is common practice
to deprecate the model, that is to replace the exponent of 2 with a slightly different exponent
[73]. This yields a semi-variance of:

γ(h) = c0

{
1− e(−hα/aα)

}
, (3.55)

where the additional parameter α must be such that α < 2 [73].
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Figure 3.8: Matérn covariance and semi-variance with c0 = 1, a = 0.3 and ν = 1.5 (generated in R
using the gstat package [61]).

Matérn

The Matérn model is a generalization of several of the earlier mentioned models. Its semi-
variance is given by:

γ(h) = c0

{
1− 1

2ν−1Γ(ν)

(
h

a

)ν
Kν

(
h

a

)}
, (3.56)

where c0 is the sill variance, a is a distance parameter, ν is a smoothness parameter and Kν

is a modified Bessel function of order ν [73]. The covariance is given by:

γ(h) = c0

{
1

2ν−1Γ(ν)

(
h

a

)ν
Kν

(
h

a

)}
. (3.57)

The Matérn covariance and semi-variance with c0 = 1, a = 0.3 and ν = 1.5 can be seen in
Figure 3.8.

3.2.2 Estimating the Covariance Parameters

There are various ways in which to estimate the covariance parameters. Some involve the
semi-variance and others the covariance. Some of these methods are listed below:

• Maximum Likelihood Estimation [15]

• Restricted Maximum Likelihood Estimation [15]

• Method of Moments Estimation [40]

• Least Squares Fitting [15]

• Generalised Least Squares Fitting [15]

• Cross Validation [50]
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Martin and Simpson [50] concluded that Maximum Likelihood Estimation performs better
than Cross Validation even when the process is non-Gaussian, while Lark [40] found both
advantages and disadvantages to using Maximum Likelihood Estimation in comparison to
Method of Moments Estimation. The Least Squares and Generalised Least Squares Fit-
ting work with the semi-variance function [15]. Restricted Maximum Likelihood requires the
population of an additional matrix which allows the method to apply Maximum Likelihood
Estimation to error contrasts in place of the data [15]. Additionally, the method of Maxi-
mum Likelihood Estimation allows us to estimate both the trend parameters and covariance
parameters, as was explained in Section 3.1.5.

The ability of Maximum Likelihood Estimation to estimate both the trend coefficients and the
covariance parameters, as well as its ability to perform more favourably than cross-validation
even when the data is non-normal, leads to the use of Maximum Likelihood Estimation in
this study.
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CHAPTER 4

MATHEMATICAL OVERVIEW: SAMPLING METHODS

We aim to determine the best sample of a specific size in order to attain knowledge about
the field variable, as a whole, as accurately as possible. In doing so we wish to find the n
locations chosen out of a total of m locations which minimise a function g(S) [75]. There are

approximately
(
m
n

)
=

m!

n! (m− n)!
different sample combinations. Thus, using an exhaustive

search algorithm, it would be infeasible for large scale sampling [75]. Due to the infeasibility
of an exhaustive search, other sampling techniques must be considered.

4.1 Random Sampling

It is possible to perform Random Sampling. However, it is known to be rather inconsistent,
sometimes yielding sets which produce very good interpolation results and sometimes yielding
sets which produce poor interpolation results. This method effectively consists of randomly
generating numbers in the range of the available number of points and then selecting the
locations associated with those numbers as the sample set. Although this method could be
considered both unreliable and unpredictable, it is easy and very quick to implement [68].
It is however, advisable to also consider some more predictable and reliable methods for
selecting sample sets. For this study, it is considered as a comparator for the other methods.

4.2 Genetic Algorithms

Genetic algorithms were first developed in the 1960s by John Holland. However, they were
only popularised by one of his students, David Goldberg, in 1989 [28]. Genetic algorithms
are optimisation and search methods which are based on the evolutionary process [74] and
natural selection or“survival of the fittest” theory [68]. In “survival of the fittest” theory, the
better performing individuals are more likely to attract a mate and to reproduce and thus,
produce offspring which perform just as well if not better [68].

Holland suggested that within a genetic pool of possible solutions to a problem, the optimal
solution or a better solution exists. This solution may, however, currently have not been
found as it is some genetic combination of some of the individual solutions that are currently
available [68]. Holland was of the opinion that evolutionary techniques, such as genetic
algorithms, could allow the optimal or at least a better solution to be found. Holland made
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use of mutation and reproduction in order to alter the possible solutions to obtain a better
one [68]. These processes closely mimic the process of evolution in nature.

Genetic Algorithms do not promise the optimal solution but rather an acceptably good so-
lution [68]. They are broad based optimisation techniques [24] but because of this they are
not very problem specific, leading to slower computation than problem specific solvers [28].

A basic genetic algorithm consists of the following components [24; 28; 4]

• A genetic representation of possible solutions to the optimisation problem (Sometimes
known as encoding)

• A method of generating an initial population from the possible solutions to the optimi-
sation problem

• A method to evaluate the fitness of solutions in order to determine which solutions are
more optimal

• Genetic operators which allow changes in genetics due to reproduction and/or mutation

• Choice of values for parameters of the the genetic operators

• Repeated applications of the evolutionary process until convergence is reached

Once the genetic representation of possible solutions, fitness function and parameters of the
genetic operators are defined, the initial population must be selected. The initial population
should ideally offer a wide diversity and be as large as possible, so that solutions across the
whole solution space can be generated [68]. This initial population is often selected randomly
[68; 63]. After generation of the initial population, an iterative process takes place to imitate
the evolutionary process. This iterative process continues until the convergence criterion is
met [68]. Each iteration of a genetic algorithm consists of the following steps [68]:

• Selection

• Evaluation

• Reproduction and Mutation

• Replacement and Elitism

Each of the above steps as well as the convergence criterion and encoding will be considered
in more detail in the sections to follow.

4.2.1 Encoding

This is the process of representing a possible solution in its genetic form, i.e. transforming
a possible solution into an individual for use in the genetic algorithm. Some of the more
common encodings are:

• Binary Encoding - Solutions are represented by binary (bit) strings. Each position in
the string is 0 or 1 [24]. Each bit can represent a characteristic of the solution or the
string may represent a number as a whole [68].
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• Real Number Encoding - Solutions are represented by a string of real numbers, often
used in optimisation problems [24].

• Permutation/Integer Encoding - Solutions are represented by a string of integers. This
type of encoding is the natural choice for ordering problems [68].

• Value Encoding - Solutions are represented by a string of values relevant to the problem.
These values can be numbers and even characters amongst other things. This method
of encoding often requires specialised genetic operators [68].

4.2.2 Selection

This step relates to choosing individuals as “parents” for reproduction. The methods are
aimed at allowing the individuals with highest fitness to reproduce or undergo crossover
more readily than those with a lower fitness, in the hope that the “children” or products
of the crossover will have an even higher fitness [68]. The parents are selected and added
to a mating pool from which they are randomly selected for breeding [68]. Individuals may
be selected more than once in an iteration for reproduction [4]. There are various ways of
selecting individuals for reproduction, which include:

• Roulette Wheel Selection - Individuals are selected from the population with a proba-
bility which is proportional to fitness. A linear search is conducted through a roulette
wheel where each portion of the wheel representing one individual, is weighted based on
the fitness of individuals [68]. A random proportion of the sum of all the individual’s
fitnesses is chosen and the method then advances one individual at a time until that
proportion is reached or exceeded [68]. The individual at which it is reached or first
exceeded is then selected for reproduction [68].

• Tournament Selection - M individuals are selected randomly from the population. The
individual with the highest fitness amongst these M individuals is then selected and
added to the mating pool. This process is repeated until there are enough individuals
in the mating pool [68]. Due to the tournament process, the mating pool has a higher
average fitness than the general population [68].

• Rank Selection - Individuals are ranked according to their fitness. The individual with
the lowest fitness receives a rank of 1 and the best performing individual receives a rank
of N (where N is the number of individuals in the population) [68]. A tournament style
selection then occurs to determine which individuals should be selected as parents [68].

• Random Selection - Individuals are randomly selected from the population to serve as
parents [68].

4.2.3 Evaluation

This step comprises of evaluating the fitness function of each individual. The fitness function
is determined by the problem and in optimisation it is often some function we want to
optimise. However, it may also be a transformed version of the optimisation function [63].
The fitness function determines how well a particular solution performs. The higher the value
of the fitness function for an individual, the “fitter” that individual is deemed to be and the
more optimal that solution is [68]. The above evaluation of the higher the fitness function,
the more optimal the solution is for the case of maximisation. In the case of minimisation, we
either consider the negative of the maximisation fitness function as the new fitness function
or we regard a lower fitness function value as more optimal.
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4.2.4 Reproduction and Mutation

Reproduction and mutation are genetic operators which alter the genetic representation of
solutions [68]. They are based on natural processes [68] and are explained in more detail in
the sections which follow.

Reproduction

Reproduction is also known as recombination and the most common form is crossover [68].
It is the process whereby a child or children, which are also individual solutions, are cre-
ated by the mixing of the genes from two selected parents [68]. The most common form of
reproduction creates two children from two parents [28]. The steps in basic crossover are [68]:

• Two individuals are randomly chosen from the mating pool for crossover.

• A single cross site or multiple cross sites are randomly selected along the length of an
individual’s string.

• A portion or portions of the strings are swapped based on the crossover site(s).

While more complex crossover techniques are available, three of the more basic crossover
techniques which are commonly used are explained below:

• One Point Crossover - This is the traditional crossover [68]. A single cross site is selected
and the portions of the strings after this site are swapped. This leads to the production
of two children. One point crossover is illustrated on binary encoded solutions in Figure
4.1

Figure 4.1: One point crossover.

• Two Point Crossover - Two cross points are selected and the portions of the strings
between these points is swapped [68]. This is illustrated on binary encoded solutions
in Figure 4.2. Two point crossover may negatively influence the performance of the

Figure 4.2: Two point crossover.

genetic algorithm in comparison to one point crossover as adding more cross sites can
lead to the disruption of building blocks. It is, however, beneficial to have more cross
sites, as this allows the solution space to be searched more effectively [68].
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• Three Parent Crossover - This crossover technique yields only one child as opposed to
the two yielded by one and two point crossover. In this technique three parents are
chosen. The bits of the first parent are compared to those of the second parent. If
the corresponding bits match, then the child receives those bits in their corresponding
positions [68]. However, if they do not match, then the child receives the bit which is
in the corresponding position of the third parent. This is illustrated for binary encoded
solutions in Figure 4.3.

Figure 4.3: Three parent crossover.

Mutation

Mutation helps the genetic algorithm escape local maxima/minima. It also helps ensure that
the population remains diverse [68]. In effect, mutation alters a single bit, some bits or all
bits of individuals [68]. Mutation occurs with a chosen probability. This probability must
not be too high, otherwise the genetic algorithm becomes a random search algorithm [68].
Several types of mutation are available, of which three basic forms of mutation are:

• Flipping - Flipping works in binary encoding of solutions and involves the changing of
a randomly selected bit. If the selected bit is 0, it is changed to a 1 and vice versa [68].

• Interchanging - In this technique, two bits from an individual are randomly chosen and
the values of these bits are swapped [68].

• Reversing -A bit is selected by random choice and the bits next to it are then reversed
[68].

4.2.5 Replacement and Elitism

Replacement and elitism define how children and parents advance to the next generation.

Replacement

After reproduction and mutation, there are both children and parents and it must be decided
which of these individuals continue on to become the next population [68]. Clearly not all
children and parents can be kept, as the number of individuals to be returned is equal to the
number of parents chosen [68].

In general there are two types of replacement which can occur, generational replacement and
steady-state replacement [68]. In generational replacement, one generation is replaced at the
end of the iteration with either only the children or with some combination of the children
and parents [68]. In steady-state replacement, as soon as a child is created it is inserted into
the population. This does, however, mean that a current member of the population must be
removed [68]. There are various methods in order to determine which individual is removed.
Some of these methods call for the removal of the oldest member, the weakest member or
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the most similar individual in the population [68]. Another method allows for a form of
tournament selection to take place between the child and the selected member [68].

Three specific replacement methods are considered here:

• Random Replacement - Here two individuals from the current population (including
the parents) are randomly selected to be replaced by the children [68].

• Weak Parent Replacement - Here only the fittest two individuals out of the set of
four (two parents and two children) advance to the next generation [68]. This method
can improve the overall fitness of the population but only when it is combined with a
selection technique that allows for the selection of both fit and less fit individuals [68].
If only strong individuals are selected for breeding, then this method is never able to
replace the worst solutions [68].

• Both Parent Replacement - The two children replace the two parents [68]. Each indi-
vidual only has the opportunity to reproduce once [68]. This does move around genetic
material but it can lead to problems if it is combined with a method of selection that
firmly favours the fittest individuals [68].

Elitism

In elitism, the single best or a few top performing individuals are selected to be carried
through into the next generation [68]. This allows them to be placed into the new population
even when they have been destroyed by mutation and/or crossover [68]. This process has a
positive influence on the genetic algorithm’s performance [68].

4.2.6 Convergence Criterion

The convergence criterion determines when the genetic algorithm should be terminated [68].
Some of the various options for the convergence criterion are listed below:

• Maximum Generations - The genetic algorithm is terminated when the evolutionary
process reached a specified maximum number of generations [68].

• Elapsed Time - The genetic algorithm is terminated after a specified amount of time
has elapsed [68].

• No Change in Fitness - Termination occurs when the best fitness remains unchanged
for a specified number of generations [68].

• Stall Generations - Termination occurs when the objective function undergoes no im-
provement for a specified number of generations [68].

• Stall Time Limit - Termination occurs when the objective function undergoes no im-
provement over a specified time limit [68].

Once the genetic operators to be used and their parameters have been chosen, the genetic
algorithm can be implemented. A basic genetic algorithm follows the scheme shown below
[68]:

Start: Generate randomly n starting individuals to form the first population
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Fitness: Evaluate the fitness of the current population

New Population: Create the next generation/population by performing the following steps:

Selection: Select parents from current generation using the chosen selection method

Crossover: With crossover probability, generate offspring from crossover procedure

Mutation: With mutation probability, mutate new offspring

Acceptance: Place offspring or a portion of them into the new population

Replace: Replace the old population with the new one

Test: Test for convergence. If the criterion is met stop and output the solution, else proceed
to the loop step

Loop: Return to evaluation step and continue the process

Genetic algorithms like any other method have both advantages and disadvantages, some of
which are:

Advantages

• Based on simple principles [68].

• Genetic algorithms have a very wide applicability as they can be used on any problem
for which a fitness function can be generated [68].

• Can be written to run on multiple processors. This ability to run in parallel can greatly
reduce computational time [68].

• They can be hybridised with other techniques such as traditional optimisation methods
to improve optimisation [74].

• They can be used when there is a multi objective function [68].

• Genetic algorithms can potentially escape local maxima/minima [68].

• No knowledge of derivatives is required [68].

• They are easily modified for different problems [68].

• Capable of handling large and not well defined search spaces [68].

• Capable of solving non-linear problems [74].

Disadvantages

• The fitness function can be hard to identify [68].

• Parameter selection for the genetic operators can be difficult [68].

• Premature convergence may occur [68].

• Gradient information cannot be used [68].

• Requires a large number of fitness evaluations [68].

• Does not always find the exact global optimum [68].
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4.3 Updated Kriging Variance Algorithm

Zhu et al. [75] make use of the Updated Kriging Variance Algorithm (UKVA) in their paper
on the optimisation of large scale ocean sampling. They make use of Ordinary Kriging within
the Updated Kriging Variance Algorithm. However, it is easy to adapt the method for both
Simple and Universal Kriging.

The estimated error variance gives a quantitative measure of the impact a set of points has
on the error in the sampling scheme [75]. Since the estimated error variance is dependent
only on the distances between the points and the covariance function, the estimated error
variance can be calculated even before samples are measured [75]. For a given covariance
function, the total estimated error variance (g(S)) is given by:

g(S) =
m∑
i=1

σ2(Z∗(si|S)) , (4.1)

where m is the total number of points, S are the locations of the sampled points, Z∗(si|S) is
the Kriging estimate for point si given a set of sampled locations S and σ2(Z∗(si|S) is the
estimated error variance or Kriging variance for the point si [75]. In the case of Ordinary
Kriging,

σ2(Z∗(s|S)) = C(s, s)−
n∑
i=1

λiC(s, si) + ϕ , (4.2)

where ϕ is the Lagrangian parameter associated with the estimation of the constant mean,
λi is the ith weight and C(s, s) is equivalent to C(0) discussed in Chapter 3. The estimated
error variance can also be represented by [75]:

σ2(Z∗(s|S)) = C(s, s)−VT
nH−1n Vn , (4.3)

where
Vn = [C(s, s1), C(s, s2), · · · , C(s, sn), 1]T

and

Hn =


C(s1, s1) · · · C(s1, sn) 1

...
...

...
...

C(sn, s1) · · · C(sn, sn) 1
1 · · · 1 0

 .

In order to select the best sample, we aim to minimise the total estimated error variance [75].
That is, the objective function is given by :

obj(S∗) = Argmin[g(S)]. (4.4)

Since an exhaustive search is infeasible for large scale sampling, the Greedy Searching Algo-
rithm (GSA) is used [75]. This algorithm often starts from an empty set of locations S0 = ∅
and adds locations until Sn = [s1, s2, · · · , sn] is reached [75]. The greedy rule used to add
each location is given by [75]:
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obj(s∗i ) = Argmax[g(Si−1)− g(Si)] , i > 1. (4.5)

The Greedy Search Algorithm does not ensure the optimal set but rather one which is near
optimal [75]. In order to reduce computational time, Zhu et al. [75] recommend the use of
the updated Kriging variance equation. If one applies the updated Kriging variance equation
as derived for Ordinary Kriging by Barnes and Watson [5], one is able to obtain [75]:

σ2(Z∗(s|Si+1)) = σ2(Z∗(s|Si))−
(ri+1 − r̂i+1)

2

D
, (4.6)

where

ri+1 = C(si+1, s), r̂i+1 = ΛiH
−1
i Vi, D = C(si+1, si+1)−ΛiH

−1
i ΛT

i

and
Λi = [C(si+1, s1), C(si+1, s2), · · · , C(si+1, si)].

Equation (4.6) in conjunction with the Greedy Search Algorithm (Equation (4.5)) leads to
the following objective function [75]:

obj(s∗i+1) = Argmax

{
m∑
i=1

(ri+1 − r̂i+1)
2

D

}
. (4.7)

This method allows the user to calculate H−1i only once per iteration instead of calculating
m different inverses, which greatly reduces computational time [75].

For the case of Simple Kriging, the basis function set is void as opposed to the single basis
function (f1 = 1) in Ordinary Kriging and for Universal Kriging the basis function set contains
monomials of the spatial coordinates [23]. These changes influence the matrices which are
used in the equations and affect the matrix sizes, but they do not change the equations in
general.

4.4 Addition of a Point at Point of Maximum Error Variance

Brodkin [8] made use of this method in order to minimise large data sets in a controlled
manner while Duckett made use of it, citing Brodkin, in the field of terrain modelling [22].
This method consists of the addition of a single point at a time to an existing set. The
additional point is selected as the point at which the estimated error variance was greatest
[8]. The algorithm for the development of this minimal set is described below [8]:

Step 1: Selection of an initial set of points

Step 2: Calculation of values for the variable of interest and estimated error variance by the
method of Kriging

Step 3: Find the location and the value of the largest estimated error variance

Step 4: Compare the maximum estimated error variance to a predefined value. If the max-
imum estimated error variance exceeds this value, add this point and return to Step 2.
If the maximum estimated error variance is less than this value then stop the algorithm.
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Brodkin [8] advises that this method will not produce the optimal minimal set but that
the sub-optimal set produced will not be significantly different and that the difference in
computational time between this method and the branch and bound method to search every
possible set makes the use of this method worth the difference in optimality.

In addition, Brodkin [8] proposes that to calculate the inverse of the correlation matrix (R)
after the addition of a point, the following method which makes use of the inverse calculated
before the addition of the point should be used in order to reduce the computational time.

4.4.1 Calculating the Inverse of the Correlation Matrix

Suppose that two matrices A and B are partitioned into submatrices as follows [8]:

A =

[
P Q
S T

]
, (4.8)

B =

[
E F
G H

]
, (4.9)

where AB = I (I is an identity matrix) and P−1 is known. The aim is to find B = A−1.
From the multiplication, it is found that [8]:

PE + QG = I , (4.10)

PF + QH = 0 , (4.11)

SE + TG = 0 , (4.12)

SF + TH = I. (4.13)

Solving Equations (4.10) to (4.13) for E, F, G and H yields the following relations [8]:

E = P−1 − (P−1Q)G , (4.14)

F = −P−1QH , (4.15)

G = −HSP−1 , (4.16)

H = (T− SP−1Q)−1. (4.17)

In the case of inverting the correlation matrix, P−1 is equivalent to the inverse of the cor-
relation matrix from the previous iteration, A is equivalent to the new correlation matrix
(R) and B is equivalent to the inverse of the new correlation matrix (R−1). Q, S and T are
the matrices which are appended to the previous correlation matrix due to the addition of a
point.
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CHAPTER 5

DATA

5.1 The Model

Carbon dioxide sea-air flux data in the Southern Ocean were used in this study. The data
provided for this study was generated using the biogeochemical PISCES (Pelagic Interaction
Scheme for Carbon and Ecosystem Studies) model embedded within ORCA2-LIM ocean
model [2]. The ORCA2-LIM model is based on an ORCA2 configuration of version 8.2 of
the OPA (Océan Parallélisé) model [2] which is a general ocean circulation model [6]. The
data used in this study was obtained from the Council for Scientific and Industrial Research
Ocean Systems and Climate Research Group.

The PISCES model’s development can be traced back to the P3ZD model released in 1997
and combines some aspects of a quota model with a Monod model [1]. It has been found that
this model data does under-estimate the sea-air carbon dioxide flux especially in summer
months [60]. However, it is recognised that this model is a simplified representation of the
real world problem [2]. For the purposes of this study, however, the model data are taken to
be correct and without error.

5.2 The Data Used

The units in which the data are represented is mol(C)/m2s [60]. The data covers the area
from approximately 180◦W to approximately 180◦E (that is from approximately −180◦ to
approximately 180◦) and from approximately 39◦S to 78◦S (that is from approximately −78◦

to approximately −39◦). The resolution in the W-E (longitudinal) direction is approximately
2◦, while the resolution in the N-S (latitudinal) direction is 2cos(latitude)◦ [2]. In addition,
the data used in this study occurs in 73 time slices, the data at each time slice representing
the mean data for a five day period [60]. The approximate area of the world covered by this
data can be seen as the area found within the red block in Figure 5.1.

The data is given on a grid which has reference numbers of 0-72 in the direction of time,
0 − 44 in the direction of latitude and 0 − 179 in the direction of longitude. It is these grid
references which will be used in the calculation of trend and covariance parameters as well
as for prediction. Rectangular grids are quite common and as such, it was decided to make
use of the grid references.
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Figure 5.1: World map with area for this study indicated by red block (map obtained from
www.dmap.co.uk/utmworld.gif [54]).

5.3 Excluded Data

Locations for which the carbon dioxide flux value was less than 1 × 10−10 mol(C)/m2s were
removed from the data set to be further used in this study. These removals resulted in a
data set containing 419093 locations. All the data points removed were checked and found
to have values of exactly 0 mol(C)/m2s and thus, for the purposes of this study were deemed
either to be land or areas of severe ice coverage. The removal of such points also resulted in
the removal of all points with a latitude grid reference of 0, as the line of latitude associated
with this grid reference is purely land and/or ice cover. This can be seen for a single time
step in Figure 5.2.
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Figure 5.2: Map of carbon dioxide flux across the whole southern ocean for time slice 0.

5.4 Limitations

It is acknowledged that in the directions of time and longitude, the last grid reference would
in reality occur next to the first grid reference. This occurs as the time coverage is for a
whole year, that is, the last point in time would occur just before the first point in time in
the next year. For the case of longitude, as the data covers the full 360◦ when grid size is
taken into account, the first longitudinal grid reference must occur next to that of the last.
This, however, has not being taken into account in this study. Rather, the data has been
treated as if it does not wrap around to meet itself again in these directions.
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CHAPTER 6

DETERMINING THE PRESENCE OF TREND

6.1 Determing the Presence of Trend

In order to determine whether trend is present a histogram of the data is considered as
well as the coefficient of determination (R2) values of various trends. In addition, a normal
(Gaussian) distribution is fitted by means of Python’s stats package [35] (See Appendix A
for a short description of the stats package) and this is also plotted onto the histogram of
the data. If the data possesses a non-zero mean, then at least a constant trend is present.
Ideally for Kriging, the data should possess no trend, have a zero mean and follow a normal
distribution.

Figure 6.1(a) shows the histogram of the original data. It can clearly be seen that the mean
is non-zero. The data also does not appear to follow a normal distribution perfectly, this is
corroborated by a skewness value of 0.8628 and a kurtosis value of 4.7108. This leads to the
conclusion that a trend is indeed present in the data.

In this study, only a constant trend, first order trend and second order trend in the spatial
and temporal co-ordinate references are considered. The reference co-ordinates were used to
provide a representation of the actual time, longitude and latitude which would be easy to
use. These three trend structures can be seen as:

• Constant Trend - µ(s) = β0

• First Order Trend - µ(s) = β0 + β1stime + β2slat + β3slon

• Second Order Trend - µ(s) = β0 + β1stime + β2slat + β3slon + β4s
2
time + β5s

2
lat + β6s

2
lon +

β7stimeslat + β8stimeslon + β9slatslon

where s = [stime, slat, slon] is the position on the grid, stime is the grid reference(0-72) for time,
slat is the grid reference (1-44) for latitude and slon is the grid reference(0-179) for longitude.

In order to determine which of these trends should be used, Ordinary Least Squares is applied
on the whole data set. Ordinary Least Squares is computationally very fast and is thus easy
to implement on the whole set. While Ordinary Least Squares is no longer optimal, it should
provide a good indication of the effect of the trend removal, since Hengl et al. [31] mention
that Ordinary Least Squares is often deemed sufficient. These Ordinary Least Squares trends
are then removed from the data and the residuals are once again plotted as histograms along
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Figure 6.1: Histograms of the residuals after the removal of (a) no trend, (b) constant trend, (c)
linear trend and (d) quadratic trend along with their respective fitted normal distributions.
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with fitted normal distributions. We consider these histograms (Figures 6.1(b), 6.1(c) and
6.1(d)) and check once again for zero mean and normality. The Ordinary Least Squares fitted
trend coefficients are presented in Appendix B.

All three trends produce means which appear to be near zero. None of the three trends
perfectly matches a normal distribution, this is corroborated by the skewness and kurtosis
values for the residuals found in Table 6.1.

Trend Skewness Kurtosis

Constant 0.8628 4.7108
Linear 1.1273 5.9409
Quadratic 0.9989 6.6819

Table 6.1: Skewness and kurtosis values for tested trends.

In order to determine which trend should be used, the coefficient of determination (R2) was
calculated for each of the trends.

R2 = 1−

n∑
i=1

(Zi − Z∗i )2

n∑
i=1

(Zi −mean (Z))2
, (6.1)

where Z is the variable of interest, Zi is the variable of interest at location i and Z∗i is the
Ordinary Least Squares estimate for the variable of interest at location i.

It is acknowledged that due to the correlation between the data points, the true interpretation
of this statistic as the proportion of the sample variation in Z which can be explained by the
using the independent variables to predict Z in the linear model is no longer valid. However,
the premise of the closer the R2 value is to one the better the model still holds. These values
can be seen in Table 6.2.

Trend R2

Constant 2.220× 10−16

Linear 0.0614
Quadratic 0.285

Table 6.2: Coefficient of determination for tested trends.

While even the quadratic trend has a low coefficient of determination, it is significantly
higher than those for the constant and linear trends. Thus, the second order (quadratic)
trend is chosen as the trend structure to be used further in this study. This low coefficient of
determination also suggests the need for the use of another method in conjunction with the
quadratic trend.

6.2 Limitations

The trend structure is chosen based on Ordinary Least Squares trends. These trends are not
optimal and do not take into account the spatial and temporal correlation between points.
Thus, the resulting residuals when a more optimal technique is used to fit the trend may vary
in both value and distribution when compared to the Ordinary Least Squares residuals. As
mentioned in Section 6.1 Ordinary Least Squares is often sufficient. More optimal techniques
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require much greater computational time and thus, Ordinary Least Squares was chosen to
determine the trend structure.

Only three linear polynomial trend structures were considered. Regression Kriging allows for
the choice of arbitrarily complex trend structures and as such, this study does not claim that
the optimal trend structure was chosen, but merely that the one chosen was deemed to be
the best of the three considered.
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DETERMINING TREND COEFFICIENTS AND COVARIANCE
PARAMETERS

7.1 Covariance Structures

As explained in Section 6.1 a quadratic trend structure was chosen. This trend structure was
fitted in conjunction with three separable covariance structures using Maximum Likelihood
Estimation. The three separable covariance structures fitted were:

• Exponential - C(h) = σ2e(−htime/atime)e(−hlat/alat)e(−hlon/alon)

• Pentaspherical -

C(htime) =

 σ2time

{
1− 15htime

8atime
− 5

4

(
htime

atime

)3

+
3

8

(
htime

atime

)5
}

forhtime ≤ atime

σ2time forhtime ≥ atime

C(hlat) =

 σ2lat

{
1− 15hlat

8alat
− 5

4

(
hlat
alat

)3

+
3

8

(
hlat
alat

)5
}

forhlat ≤ alat

σ2lat for hlat ≥ alat

C(hlon) =

 σ2lon

{
1− 15hlon

8alon
− 5

4

(
hlon
alon

)3

+
3

8

(
hlon
alon

)5
}

forhlon ≤ alon

σ2lon forhlon ≥ alon

C(h) = C(htime)C(hlat)C(hlon)

Within Maximum Likelihood Estimation, σ2 = σ2timeσ
2
latσ

2
lon is estimated, not the indi-

vidual terms.

• Approximate Gaussian - C(h) = σ2e(−h
1.99
time/a

1.99
time)e(−h

1.99
lat /a1.99lat )e(−h

1.99
lon /a1.99lon )

In each of these three structures, htime represents the lag in time grid references, hlat represents
the lag in latitudinal grid references and hlon represents the lag in longitudinal grid references.
The range parameters then represent ranges in the respective directions for the grid references.
Due to the manner is which the latitudinal grid is calculated, it is acknowledged that a lag
distance (hlat) of 1 may not always represent the same distance in true latitude. However, all
calculations will be completed using the grid references. In essence, the changing latitudinal
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resolution will merely imply that the conversion of grid reference range to true range will
differ based on latitudinal position. That is, in areas of higher resolution, the range will cover
a smaller true latitudinal range than in areas of lower resolution.

Only the three separable covariance structures given above are considered. It is not implied
in any way that these structures will best fit the data out of all possible structures. This
study does however, attempt to select the best of these three structures for use in comparing
the various sampling methods.

7.2 Details of Covariance Structure and Trend Fitment

The covariance structures described above were fitted along with the quadratic trend using
20 randomly chosen sets each containing 10000 data points. The structures were fitted as
previously mentioned using Maximum Likelihood Estimation. The likelihood was optimised
using Scipy’s built in optimise.minimise function [35]. Within this function, Sequential Least
Squares Programming was selected as the method of optimisation and lower bounds of 1
were given for the range or distance parameters. The lower bounds of 1 are given as a range
of 1 already implies that the data are independent as the data has minimum grid reference
distances of 1 between points.

In order to determine reasonable starting values for the optimisation across the sets of 10000
points described above, a single set of 1000 points was chosen randomly. This set of 1000
points was used to fit the parameters for all three covariance structures using the same method
as was later applied to the sets of 10000 points. atime, alat and alon were all set to a value of 5
in order to provide a starting point. The run across this set converged for all three covariance
structures, and the end values from this run were used to start the runs across the 20 sets of
10000 data points for their respective covariance structures.

Each of the Maximum Likelihood Estimations reached convergence and the resulting pa-
rameter values for all 20 random sets across the three covariance structures can be seen in
Appendix C.

The trend coefficients and covariance parameters were averaged with equal weighting across
the 20 sets. The averaged (mean) trend and covariance parameters for the three covariance
structures can be seen in Table 7.1, while the standard deviations for these parameters can
be seen in Table 7.2. Histograms of these parameters across the 20 randomly selected sets
can be seen in Appendix C.

It is acknowledged that absolute convergence of the parameters may not have been reached in
terms of the values of all parameters. That is, some parameters exhibit standard deviations
which are large in relation to their means. This is especially true when the parameters have
obtained both positive and negative values across the 20 random sets.

However, for the purposes of this study the averaged coefficients are taken to be the true
exact parameters as it is deemed that these averages will provide a good representation of
the true parameters. As such, the trend is considered to be deterministic and without error.
Therefore, the error variance associated with the trend for Regression Kriging is considered
to be zero. That is, the estimated error variance is reduced to the Simple Kriging error
variance.
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Covariance σ2 β a
Structure

Exponential 4.9273 β0 8.9266 atime 23.5807
β1 −1.9649× 10−1 alat 6.2075
β2 −1.4053× 10−1 alon 14.8855
β3 −2.7621× 10−2

β4 1.6380× 10−3

β5 1.4693× 10−4

β6 7.9951× 10−5

β7 2.4664× 10−3

β8 2.1888× 10−5

β9 5.2173× 10−4

Pentaspherical 5.1382 β0 7.8040 atime 50.8998
β1 −1.7662× 10−1 alat 13.4278
β2 −1.1027× 10−1 alon 33.0400
β3 −2.2152× 10−2

β4 1.5025× 10−3

β5 4.6895× 10−5

β6 5.3942× 10−5

β7 2.1620× 10−3

β8 1.2873× 10−5

β9 5.2266× 10−4

Approximate 4.6081 β0 9.2587 atime 11.6437
Gaussian β1 −2.6595× 10−1 alat 8.3595

β2 −2.0545× 10−1 alon 20.7621
β3 −4.0304× 10−3

β4 1.6972× 10−3

β5 1.1091× 10−3

β6 −3.2337× 10−5

β7 4.7296× 10−3

β8 4.3576× 10−5

β9 3.9944× 10−4

Table 7.1: Average trend and covariance parameters for various covariance structures.
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Covariance σ2 β a
Structure

Exponential 0.212820 β0 0.534993 atime 1.192262
β1 0.011179 alat 0.168571
β2 0.0192506 alon 0.648767
β3 0.006238
β4 6.861867× 10−5

β5 0.000250
β6 1.861939× 10−5

β7 0.000208
β8 5.3086112× 10−5

β9 0.0001125

Pentaspherical 0.259799 β0 0.554664 atime 1.970660
β1 0.011705 alat 0.399957
β2 0.020361 alon 1.404853
β3 0.005817
β4 7.133221× 10−5

β5 0.000253
β6 1.568352× 10−5

β7 0.000211
β8 5.117492× 10−5

β9 0.000109

Approximate 0.109099 β0 0.291157 atime 2.408253
Gaussian β1 0.005037 alat 0.849498

β2 0.010475 alon 3.096664
β3 0.003913
β4 5.576261× 10−5

β5 0.000183
β6 9.915505× 10−6

β7 0.000114
β8 2.356401× 10−5

β9 6.418317× 10−5

Table 7.2: Standard deviations for the trend and covariance parameters for various covariance
structures.
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7.3 Validation of Covariance Structures and Trend

In order to select the best covariance structure of the three tested using the averaged pa-
rameters from Maximum Likelihood Estimation, 10 sets of 50000 data points were randomly
chosen to act as validation sets. For each of these 10 sets, 5000 points were randomly selected
as sampled points to be used for prediction. This is equivalent to 10% of each of the data
sets. Given the conditions found in the Southern Ocean and its vast area, it is unrealistic to
expect that a very large percentage of the possible data points will eventually be sampled.
As such, 10% is chosen here and later in this study, 10% and 5% will be used as limits for
sampling. The trend was removed from all 50000 points in each set and using the de-trended
5000 sub-sampled points, prediction by means of Simple Kriging with a zero mean was per-
formed on the residuals. The trend was then added back to the predictions and various error
measures were calculated. The error measures calculated were:

• Maximum absolute error -

Maximum Absolute Error = Argmax{| Z∗(s)− Z(s) |}

• Total absolute error -

Total Absolute Error =
n∑
i=1

{| Z∗(si)− Z(si) |}

• Total estimated error variance -

Total Estimated Error Variance =
n∑
i=1

{σ2(Z∗(si))}

• Percentage absolute error - this is calculated as the total absolute error divided by the
total absolute value multiplied by 100. The total absolute value is the sum across all
points of the absolute value of the true value at that point.

Percentage Absolute Error =
Total Absolute Error

Total Absolute Value
× 100

The error measurements mentioned above for the 10 validation sets can be found in Table
7.3 for the exponential covariance structure, Table 7.4 for the spherical covariance structure
and Table 7.5 for the approximate Gaussian covariance structure.

In addition histograms of the residuals were generated as described in Section 6.1. These
histograms can be seen in Figures 7.1(a), 7.1(b) and 7.1(c). From these histograms, it can
be seen that none of the resulting sets follow a strictly normal distribution. However, they
all appear to have means close to zero. The mean values for the residuals from the different
covariance structures can be seen in Table 7.6. It is clear that the approximate Gaussian
distribution gives a mean closest to zero of the 3 covariance structures. However, the final
decision on which covariance structure is to be used further in this study is based on the
errors calculated and presented in Tables 7.3 to 7.5.

The error measurements were considered and in particular, the total absolute error and its
scaled counterpart (the percentage absolute error) were considered as the deciding factors in
the process of deciding which covariance structure would be the best of the three structures for
further use. Based on the exponential covariance structure having the lowest total absolute
error and thus, the lowest percentage absolute error, it was chosen for use in the comparison
of sampling methods.
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Random Maximum Total Total Percentage Total
Set Absolute Absolute Absolute Absolute Estimated Error

Error Error Value Error Variance

1 15.67 27280.05 156135.25 17.47% 39391.24
2 14.52 27336.75 157030.55 17.41% 39297.66
3 12.16 27546.57 157385.71 17.50% 39365.18
4 16.70 27516.50 156604.59 17.57% 39028.43
5 12.87 27093.81 156823.91 17.28% 39123.10
6 13.71 26889.47 156109.29 17.22% 39282.29
7 17.39 27066.43 156591.10 17.28% 39382.37
8 12.25 27884.11 157136.77 17.75% 39145.60
9 13.80 27509.44 156292.28 17.60% 39339.25
10 13.55 26905.15 156867.59 17.15% 39108.94

Average 14.26 27302.83 156697.70 17.42% 39246.41

Table 7.3: Errors associated with the exponential covariance structure over 10 random sets.

Random Maximum Total Total Percentage Total
Set Absolute Absolute Absolute Absolute Estimated Error

Error Error Value Error Variance

1 16.26 35782.71 156135.25 22.92% 38813.49
2 14.75 36037.39 157030.55 22.95% 38711.56
3 11.96 36275.73 157385.71 23.05% 38794.21
4 16.81 36427.29 156604.59 23.26% 38422.53
5 13.92 35825.17 156823.91 22.84% 38530.54
6 13.81 35535.46 156109.29 22.76% 38706.98
7 17.29 35887.49 156591.10 22.92% 38802.45
8 12.50 36034.78 157136.77 22.93% 38540.01
9 13.92 35673.65 156292.28 22.83% 38745.67
10 14.18 35937.23 156867.59 22.91% 38507.85

Average 14.54 35941.69 156697.70 22.94% 38657.53

Table 7.4: Errors associated with the pentaspherical covariance structure over 10 random sets.

Random Maximum Total Total Percentage Total
Set Absolute Absolute Absolute Absolute Estimated Error

Error Error Value Error Variance

1 16.94 51703.65 156135.25 33.12% 77754.77
2 31.00 51583.90 157030.55 32.85% 77779.37
3 20.37 51597.24 157385.71 32.78% 77801.43
4 16.87 51204.00 156604.59 32.70% 77108.03
5 15.52 51582.56 156823.91 32.89% 76843.86
6 13.36 51519.86 156109.29 33.00% 77326.22
7 18.56 52405.01 156591.10 33.47% 77390.96
8 13.69 52197.04 157136.77 33.22% 77440.21
9 16.04 52028.80 156292.28 33.29% 77729.77
10 16.16 51015.80 156867.59 32.52% 77127.03

Average 17.85 51683.79 156697.70 32.98% 77430.16

Table 7.5: Errors associated with the approximate Gaussian covariance structure over 10 random
sets.
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Figure 7.1: Histograms of the residuals after the removal of quadratic trend with co-efficients (as
shown in Table 7.1) from the (a) exponential covariance structure, (b) pentaspherical covariance

structure and (c) Gaussian covariance structure along with their respective fitted normal
distributions.

Covariance Structure Mean

Exponential −0.1426
Spherical −0.1356
Approximate Gaussian −0.0807

Table 7.6: Mean value of the residuals for various covariance structures.
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7.4 Final Covariance Structure and Trend

As the exponential covariance structure was chosen, the following trend and separable covari-
ance structure will be considered as the true trend and covariance structure for the remainder
of this study (across all methods for both two-dimensional and three-dimensional sampling).

µ(s) = 8.9266− 1.9649× 10−1stime − 1.4053× 10−1slat − 2.7621× 10−2slon+

1.6380× 10−3s2time + 1.4693× 10−4s2lat + 7.9951× 10−5s2lon + 2.4664× 10−3stimeslat+

2.1888× 10−5stimeslon + 5.2173× 10−4slatslon

(7.1)

C(h) = 4.9273e(−htime/23.5807)e(−hlat/6.2075)e(−hlon/14.8855) (7.2)

This study takes these trend and covariance structures to be constant across the entire sam-
pling process. This is done to ensure that these parameters are suitable for the final number
of sample points selected. Some of the methods implemented such as the genetic algorithms,
do not build up from a smaller set to the required size but rather always select sets of the
required size. Thus, they require a suitable covariance structure for the required size data
set from the offset. Additionally, for the implementation of the Updated Kriging Variance
Algorithm, Zhu et al. [75] maintain a constant covariance structure across the sampling
algorithm, while for Addition of a Point at Point of Maximum Estimated Error Variance
Brodkin’s [8] algorithm holds both the trend and covariance structure constant across the
sampling procedure.

7.5 Limitations

Only three covariance structures were fitted. These structures were all separable. There are
many covariance structures which could be considered including ones which take into account
anisotropy and non-separability. One of these many structures could outperform the final
exponential covariance structure chosen. Thus, it is not claimed the the chosen covariance
structure is optimal, rather that it is the best of the three tested.

Additionally, only Maximum Likelihood Estimation is used to fit the three chosen covariance
structures. Many other methods are available but for the reasons given in Section 3.2.2
maximum likelihood was used.

It is acknowledged that some of the parameters have a standard deviation which is large
in relation to the mean for those parameters which could indicate that they have not fully
reached convergence. However, it was deemed that using 10000 points should give values
close to the true values. As such, the values were averaged across the 20 random sets. This
study does not claim that the values for the parameters given are the true values. However,
for the purposes of this study, they are considered close enough to the true values to be used
as such.
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TWO-DIMENSIONAL SAMPLING - INTRODUCTION

The following chapters cover various sampling strategies which were conducted on a smaller
sub-sampled two-dimensional set of data. The subset consisted of 671 sub-sampled points
with a time reference of 72, latitude references between 25 and 35 and longitude references
between 40 and 100. The time step and area chosen were selected as they showed large
amounts of variability. The variability was required in order to determine if the sampling
methods could in fact reproduce large amounts of variability. The sampling strategies tested
consisted of both a-priori and a-posteriori methods and were used to select 70 of the 671
sub-sampled points. That is, approximately 10% of the sub-sampled points were selected as
sample points to be used for estimation purposes. The sum of the absolute values associated
with this set is 1733.32 mol(C)/m2s, while the sum of the values associated with this set is
1711.04 mol(C)/m2s.

The prediction process used with these samples can be seen as follows:

Step 1: Remove the trend as found in Equation (7.1) from the data including the sample
points

Step 2: Perform Simple Kriging using the residuals calculated in step one using the covari-
ance structure as found in Equation (7.2). Calculate both the estimated value and the
estimated error variance at each point.

Step 3: Add the trend from Step 1 back to the estimated values from Step 2 to form the
final predicted values.

Step 4: Calculate errors between the original data and the final predicted values obtained
in Step 3. The estimated error variance is solely from Simple Kriging.

Seven of the chosen sampling strategies were designed to minimise errors, one was random
and the remaining two were designed to maximise errors in an attempt to gauge the worst
performance possible. These sampling strategies and their results are explained and discussed
in the following chapters. In addition, the strategies were compared in order to determine
which of them should be implemented on a larger three-dimensional data set.

The various sampling methods tested were:

• Random Sampling -Chapter 9

• Updated Kriging Variance Algorithm [a-priori ] -Chapter 10
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• Addition of a Point at Point of Maximum Error Variance [a-priori ] -Chapter 11

• Addition of a Point at Point of Maximum Absolute Error [a-posteriori ] -Chapter 12

• Genetic Algorithm designed to Minimise Total Absolute Error [a-posteriori ] -Chapter
13

• Genetic Algorithm designed to Minimise Total Error Variance [a-priori ] -Chapter 13

• Hybridised Genetic Algorithm designed to Minimise Total Absolute Error [a-posteriori ]
-Chapter 13

• Hybridised Genetic Algorithm designed to Minimise Total Error Variance [a-priori ]
-Chapter 13

• Genetic Algorithm designed to Maximise Total Absolute Error [a-posteriori ] -Chapter
13

• Genetic Algorithm designed to Maximise Total Error Variance [a-priori ] -Chapter 13

For each of these methods, the following errors were calculated on each set/run:

• Maximum absolute error -

Maximum Absolute Error = Argmax{| Z∗(s)− Z(s) |}

• Total absolute error -

Total Absolute Error =
n∑
i=1

{| Z∗(si)− Z(si) |}

• Percentage absolute error - this is calculated as the total absolute error divided by the
total absolute value multiplied by 100. The total absolute value is the sum across all
points of the absolute value of the true value at that point.

Percentage Absolute Error =
Total Absolute Error

Total Absolute Value
× 100

• Total integrated error - this is the difference between the sum of true values and the
sum of the predicted values.

Total Integrated Error = Total Value− Total Predicted Value

The total integrated error can be both positive or negative. A positive total integrated
error implies that the total value has been under-estimated while a negative total inte-
grated error implies over-estimation.

• Maximum estimated error variance -

Maximum Estimated Error Variance = Argmax{σ2(Z∗(s))}

• Total estimated error variance -

Total Estimated Error Variance =

n∑
i=1

{σ2(Z∗(si))}

In addition Chapter 14 addresses the comparison of the above mentioned methods.
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TWO-DIMENSIONAL SAMPLING - RANDOM SAMPLING

Sample sets of 70 points are chosen randomly without replacement, to prevent repetition of
points. This ensures that the covariance matrix is positive definite. Each of the 671 points
is assigned a number ranging from 0 to 670. The random function in Python is used to
generate a value between 0 and 1. This value is then multiplied by 670 and the resulting
value is passed through the int function to ensure it is an integer. The point assigned to this
number is then added to the sample set and deleted from the set from which selection takes
place. The remaining points are then assigned numbers in the range of 0 to 669. Again the
random function is used to generate a value between 0 and 1 which is multiplied by 669 and
then passed through the int function. The point associated with this integer is then added
to the sample set and deleted from the selection set. This continues, reducing the number of
points in the selection set by one each iteration until 70 points are present in the sample set.

This process was repeated 10 times. The 10 resulting sample sets were then used to predict
the values of carbon dioxide at all 671 points.

9.1 Results and Discussion

The errors associated with these predictions can be found in Tables 9.1 and 9.2. The units as-
sociated with the maximum absolute error, total absolute error and total integrated difference
are mol(C)/m2s.

Considering the errors for sets one and two in Table 9.1, it can be seen that the total integrated
error for two sets can be very different even when the two sets have very similar total absolute
errors. This is due to the fact the the total integrated error is a sum of negative and positive
components which can cancel each other out. This means that predicted values which are
very different to the true values can sum to a value very similar to that of the sum of the true
values. As such, the total integrated error was not minimised in any of the methods which
follow in this study, as minimising this error does not guarantee predicted values which are
similar to the true values.

Of interest from Tables 9.1 and 9.2 is that although set four has the highest total absolute
error, it does not possess the highest total estimated error variance. The highest total esti-
mated error variance belongs to set three which is neither the best nor the worst performing
set. In addition the two very similar total absolute errors of sets one and two produced total
estimated error variances with a difference of 48 between them. This demonstrates that a
range of total absolute errors can be produced for the same total estimated error variance.
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Random Maximum Total Percentage Total
Set Absolute Absolute Absolute Integrated

Error Error Error Error

1 1.5442 136.8507 7.8953% 6.4844
2 1.4520 137.4879 7.9321% −39.2448
3 1.2438 139.9847 8.0761% −32.1355
4 2.3398 157.3586 9.0784% 3.4931
5 1.7705 145.2019 8.3771% −25.6501
6 1.7841 141.2688 8.1502% 24.5299
7 1.1492 132.4753 7.6429% 18.5520
8 1.3412 122.0329 7.0404% 24.9801
9 1.9810 153.5618 8.8594% 48.0460
10 1.4709 127.6217 7.3628% −15.5297

Table 9.1: Maximum absolute, total absolute, percentage absolute and total integrated errors
associated with Random Sampling in 2D.

Random Maximum Total
Set Estimated Error Estimated Error

Variance Variance

1 2.4731 510.2283
2 2.8782 558.1351
3 2.1022 576.3621
4 3.3111 562.5471
5 2.8670 546.3766
6 2.6058 539.1881
7 2.0994 524.7515
8 2.3992 525.0600
9 2.0062 551.5516
10 2.7088 570.7298

Table 9.2: Maximum estimated error variances and total estimated error variances associated with
Random Sampling in 2D.

This also implies that one could see the same total absolute error with different total esti-
mated error variances. The reason for this is that the estimated error variance relies solely
on the distances between points and the covariance structure. Since the covariance struc-
ture is fixed, it is purely dependent on the distances between points. In order to minimise
the estimated error variance, one needs to minimise the distances between the sampled and
unsampled points. However, it is possible to have the same estimate error variance at two
points, while having two different absolute errors (based on the two points having different
flux values). This is why it is possible to have a higher total estimated error variance but
still a lower total absolute error and vice versa.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and the true error across the chosen two-dimensional region for the
best and worst performing sets (in terms of total absolute error minimisation) can be seen in
Figures 9.1 and 9.2 respectively. The maps for the remaining sets can be seen in Appendix
D.1.

From Figure 9.1, it is clear that even the best performing randomly selected sample set did
not perform particularly well. There are very clear visual differences between the maps of
the true values (Figure 9.1(a)) and predicted values (Figure 9.1(b)). The worst performing
set produces an even more inaccurate map as can be seen from its map of true error, Figure
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Figure 9.1: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the best performing set, set eight, generated using Random Sampling. The white dots in

(c) indicate the sampling points.
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Figure 9.2: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the worst performing set, set four, generated using Random Sampling. The white dots in

(c) indicate the sampling points.
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9.2(d). The location of the sample points is indicated with white dots found on the maps of
estimated error variance (Figures 9.1(c) and 9.2(c)).

9.2 Limitations

It is acknowledged that this method of random selection excludes the last point in the data
set from selection due to the nature of the random() and int() functions.

Only ten instances of Random Sampling were considered. Given the vast number of possible
combinations, it is possible that if more instances had been considered, that the range of
errors would have been larger.
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TWO-DIMENSIONAL SAMPLING - UPDATED KRIGING
VARIANCE ALGORITHM

The Updated Kriging Variance Algorithm is applied as described in Section 4.3 for the ad-
dition of a single point at a time, with the only change being that it is applied for Simple
Kriging on the residuals. The algorithm is stopped when 70 points are in the sample set. In
addition, prediction is performed at each iteration in order to calculate errors. This method
was implemented 10 times using 10 different randomly chosen starting sets. The starting sets
for this method consisted of 4 points. These same starting points were used in the methods
of Addition of Point at Point of Maximum Error Variance and Addition of Point at Point of
Maximum Absolute Error found in Chapters 11 and 12 respectively.

The predictions performed made use of the method detailed in Chapter 8.

10.1 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 10.1
and 10.2. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

Set Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 1.3216 115.0895 6.6398% −6.7870
2 1.6273 108.0042 6.2311% 6.8906
3 1.4081 108.0028 6.2310% −1.3657
4 1.8229 126.4596 7.2958% −0.0612
5 1.7040 108.5669 6.2635% 8.1235
6 1.4878 114.2765 6.5929% −24.6735
7 1.3809 105.4375 6.0830% 14.8140
8 1.6046 114.4195 6.6012% −6.5234
9 0.9288 107.2994 6.1904% 7.6449
10 1.4300 107.2945 6.1901% −10.2925

Table 10.1: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with Updated Kriging Variance Algorithm sampling in 2D.
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Set Maximum Total
Estimated Error Estimated Error
Variance Variance

1 1.7657 409.3044
2 1.5228 409.8325
3 1.6568 408.6157
4 1.6382 408.9705
5 1.4785 413.4339
6 1.4660 405.4529
7 1.4395 408.0583
8 1.4044 407.4754
9 1.4393 409.6080
10 1.5134 410.5291

Table 10.2: Final maximum estimated error variances and total estimated error variances
associated with Updated Kriging Variance Algorithm sampling in 2D.

Tables 10.1 and 10.2 illustrate that even when the total estimated error variance is at it’s
lowest for this method (set six), it does not guarantee that the total absolute error will be at
it’s lowest. Once again it appears as if the same total estimated error variance can produce
different total absolute errors, as was explained in Chapter 9. It is noted, however, that the
total estimated error variances for this method fall within a relatively small range.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and the true error across the chosen two-dimensional region for the
best and worst performing sets (in terms of total absolute error minimisation) can be seen
in Figures 10.1 and 10.2 respectively. Maps for the remaining sets can be seen in Appendix
D.2.

Both Figures 10.1 and 10.2 show some similarities between the true and predicted flux maps
although some visual differences are still distinctly seen. These differences also are apparent
in the maps of true error (Figures 10.1(d) and 10.2(d) respectively). It can be seen from the
estimate error variance maps where the sample points have been placed as they are indicated
by the white dots. In both Figures 10.1(c) and 10.2(c), it can be seen that the points have
been relatively evenly distributed over the region of interest. This occurs as to minimise
estimated error variance. Hence, the distances between points that have not been sampled
and the sampled points are minimised.

Additionally, Figure 10.3 shows how the errors progressed with the addition of points using
the Updated Kriging Variance Algorithm across the best and worst performing sets. Figures
of the progression of the errors across the algorithm for the remaining sets can be found in
Appendix D.2.

From Figure 10.3(a) it can be seen that the addition of points to take the sample size from 4
to 70 results in a large drop in the maximum absolute error. It is important to note though,
that this decrease is not smooth and the values do increase again with the addition of certain
points. In fact, the end values are not the lowest values that are taken on throughout the
algorithm. However, a lower maximum absolute error merely implies a lower upper bound
value on the total absolute error and does not guarantee a lower total absolute error. If one
considers Figure 10.3(b) in conjunction with Figure 10.3(a), it can be seen that increases and
decreases in maximum absolute values do not always translate like for like in total absolute
error.

Figure 10.3(b) also shows a dramatic decrease in total absolute error with the addition of
the 66 points to the starting set of 4. However, once again this is not a smooth decrease. In
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Figure 10.1: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the best performing set, set seven, generated using Updated Kriging Variance Algorithm

sampling. The white dots in (c) indicate the sampling points.
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Figure 10.2: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the worst performing set, set four, generated using Updated Kriging Variance Algorithm

sampling. The white dots in (c) indicate the sampling points.
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Figure 10.3: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across the best and worst performing sets generated using the Updated
Kriging Variance Algorithm.
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fact, if one considers the worst performing set, one can clearly see that there are times where
the addition of a point actually increases the total absolute error (while the total estimated
error variance does continue to decrease). However, over the total 66 additions, the overall
behaviour is definitely decreasing.

Figure 10.3(c) illustrates the percentage absolute error as it changes over the addition of
points. This follows the same pattern as the total absolute error. This figure does however
show that even the worst performing set of the ten generated still has an error of below 10%
with a sample size of only 70 points. If one considers Table 10.1 it can be seen that this error
is in fact just less than 7.3%. It is also important to note that the percentage absolute error
with the initial random sample of 4 points is somewhere in the region of 53 - 55% and thus,
there is a very large decrease in percentage absolute error across this algorithm.

The total integrated error does undergo a large improvement across the algorithm (Figure
10.3(d)). The total absolute error provides a upper bound for the total integrated error.
However, as for reason explained in Chapter 9 it is not a good indicator of overall performance.

Figure 10.3(e) shows the dramatic yet non-smooth decrease in maximum estimated error
variance associated with this algorithm, while Figure 10.3(f) shows the smooth decrease
in total estimated error variance which this algorithm provides. This smooth decrease is
expected as the algorithm tests all possible additions for the highest decrease before adding
the point which provides that decrease. From Table 10.2 and Figure 10.3(f), it can be seen
that these two sets produce very similar total estimated error variance values. Yet, they
produce the best and worst total absolute errors which translates to a percentage absolute
error difference of around 1.2%.

10.2 Limitations

Only ten instances of this algorithm have been run. The starting set consists of 4 points and
it is possible that these 4 points would not belong in the truly optimal set of 70 points. The
conclusions and discussions drawn up about this algorithm are based solely on the ten sets
which have been produced for this study.
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This method was performed as described in Section 4.4, with the exception of the stopping
criterion. Instead of stopping when a lower bound for the maximum estimated error is
reached, the method is stopped when a sample size of 70 is reached. This algorithm is
summarised as:

Step 1: Selection of an initial set of points

Step 2: Calculation of values of variable of interest and estimated error variance by the
method of Kriging

Step 3: Find the location and the value of the largest estimated error variance

Step 4: If the sample size is less than a pre-specified number, add this point to the sample
set and return to step 2, else stop the algorithm.

The Kriging used within this sampling method is Simple Kriging on the residuals. For any
given sample set size, predictions are performed using the method described in Chapter 8.

11.1 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 11.1
and 11.2. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

Table 11.2 indicates that for this method, the total estimated error variance values fall within
a relatively small range. However, once again the lowest total estimated error variance does
not guarantee the lowest total absolute error. If Table 11.1 is also considered it can be seen
that the set with the highest total estimated error variance, set eight, also has the lowest
total absolute error.

From Table 11.1 it can also be seen that all percentage absolute errors fall within the range
of 5.6 to 6.7%.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and true error across the chosen two-dimensional region for the
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Set Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 1.3485 109.2782 6.3046% −4.5915
2 0.8540 106.9973 6.1730% −4.4147
3 0.9016 113.3509 6.5395% −2.6408
4 1.0593 99.9819 5.7682% 4.5817
5 1.3766 109.4288 6.3132% −2.3647
6 0.9336 113.5421 6.5506% −27.2000
7 0.8161 108.3488 6.2509% 4.0762
8 0.7439 97.6324 5.6327% −12.4819
9 0.7841 115.5823 6.6683% −2.6802
10 1.1838 111.2495 6.4183% 8.3153

Table 11.1: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with Addition of a Point at Point of Maximum Estimated Error Variance sampling

in 2D,

Set Maximum Total
Estimated Error Estimated Error
Variance Variance

1 1.1180 411.5144
2 1.1274 417.9051
3 1.0897 415.8471
4 1.1224 414.8858
5 1.0791 414.1715
6 1.1016 412.2581
7 1.1357 416.7959
8 1.1330 418.2989
9 1.1149 411.5168
10 1.1250 418.0174

Table 11.2: Final maximum estimated error variances and total estimated error variances
associated with Addition of a Point at Point of Maximum Estimated Error Variance sampling in 2D.

best and worst performing sets (in terms of total absolute error minimisation) can be seen in
Figures 11.1 and 11.2 respectively. The maps for the remaining sets can be found in Appendix
D.3.

Figure 11.1 shows some similarities between the predicted and true carbon dioxide flux maps,
while in Figure 11.2 the similarities are slightly less clear. The points are fairly evenly
distributed over the area of interest and this is due to the use of the maximum estimated
error variance as point of placement of the next point. The location of the sample points in
the two sets is indicated by white dots in Figures 11.1(c) and 11.2(c).

Figures 11.3 shows how the errors progressed with the addition of points using the method
of Addition of a Point at Point of Maximum Estimated Error Variance across the best and
worst performing sets. The figures illustrating the progression of the errors for the remaining
sets can be found in Appendix D.3.

From Figure 11.3(a) the maximum absolute errors do not exhibit a smooth decrease. The
addition of a point at times causing an increase in the maximum absolute error. However,
the overall drop in maximum absolute error across the algorithm is significant.

The decrease in total absolute error across the algorithm is not smooth as can be seen in
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Figure 11.1: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the best performing set, set eight, generated using Addition of a Point at Point of

Maximum Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure 11.2: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the worst performing set, set nine, generated using Addition of a Point at Point of

Maximum Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure 11.3: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across the best and worst performing sets generated using the Addition of a
Point at Point of Maximum Estimated Error Variance.
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Figure 11.3(b). However, over the course of the algorithm, a large drop in the total absolute
error is seen. From Figure 11.3(c) it is clear that the drop in percentage absolute error is
large. However, the best and worst sets are not always the best and worst sets respectively
across the algorithm. Although these sets end with the highest and lowest total absolute
errors, there are periods in the algorithm (from just before 30 points to just after 40 points)
where the worst performing set outperforms the best performing set.

Figure 11.3(d) illustrates once again why the total integrated error is not considered a good
indication of performance as the worst performing set has a total integrated error nearer to
zero than the best performing set.

Illustrated in Figure 11.3(e) is the non smooth decrease in maximum estimated error variance
which occurs when the point added is placed at the point of maximum estimated error
variance. The total estimated error variance undergoes a non-smooth decrease as the number
of points is increased (illustrated in Figure 11.3(f)) following the algorithm. The curve appears
to become more smooth as the number of points increases.

11.2 Limitations

Only ten sets are considered. They are considered using only the trend and covariance
structure chosen earlier in this study. All conclusions are based on only the ten sets generated
using this method.
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This method is very similar to the method in Chapter 11. The algorithm for this method is
presented below:

Step 1: Selection of an initial set of points

Step 2: Calculation of values of variable of interest and estimated error variance by the
method of Kriging

Step 3: Find the location and the value of the largest absolute error

Step 4: If the sample size is less than a pre-specified number, add this point to the sample
set and return to step 2, else stop the algorithm.

The Kriging used in this algorithm is Simple Kriging of the residuals. Once again, for any
given sample set size, predictions are performed using the method described in Chapter 8.

12.1 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 12.1
and 12.2. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

Table 12.1 shows the all the sets achieve a percentage absolute error between 3.4 and 4.2%.
This table also shows that this method results in a very low maximum absolute error while
Table 12.2 shows that in spite of the low total absolute error, the total estimated error
variance is quite high. Considering sets five and seven shows once again that very similar
total absolute errors can exhibit very different total estimated error variances, as has been
explained in Chapter 9.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux
and the estimated error variance across the chosen two-dimensional region for the best and
worst performing sets (in terms of total absolute error minimisation) can be seen in Figures
12.1 and 12.2 respectively. Maps for the remaining sets are given in Appendix D.4.
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Figure 12.1: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the best performing set, set eight, generated using Addition of a Point at Point of

Maximum Absolute Error sampling. The white dots in (c) indicate the sampling points.
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Figure 12.2: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the worst performing set, set six, generated using Addition of a Point at Point of Maximum

Absolute Error sampling. The white dots in (c) indicate the sampling points.
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Set Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 0.4777 70.4430 4.0640% −20.9385
2 0.3752 70.5894 4.0725% −1.05180
3 0.3966 66.1099 3.8141% 1.8664
4 0.4248 69.6738 4.0197% −19.3797
5 0.3575 64.3786 3.7142% 6.2411
6 0.3647 72.0442 4.1564% 16.6088
7 0.3932 62.8166 3.6241% −11.8342
8 0.3712 58.4807 3.3739% 1.5703
9 0.3969 69.1577 3.9899% 10.7022
10 0.4017 63.4083 3.6582% −0.1515

Table 12.1: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with Addition of a Point at Point of Maximum Absolute Error sampling in 2D.

Set Maximum Total
Estimated Error Estimated Error
Variance Variance

1 2.0006 554.7707
2 2.0937 544.9054
3 1.9079 531.8254
4 1.8729 542.6504
5 2.0711 566.5581
6 1.8971 564.4201
7 1.7525 512.4042
8 1.8085 512.3191
9 1.8090 546.9972
10 1.9031 532.5952

Table 12.2: Final maximum estimated error variances and total estimated error variances
associated with Addition of a Point at Point of Maximum Absolute Error sampling in 2D.

Both Figures 12.2 and 12.1 show very strong similarities between the true and predicted flux
maps although some differences can still be found visually. Of interest in these figures is
the location of the sample points as can be seen from the white dots on Figures 12.1(c) and
12.2(c). It appears as if this method is not providing as even a distribution as the previous
methods, but is rather placing fewer points where there is less variability and more points
where the flux is more variable. Placing more points where there is more variability allows
for more of this variability to be captured by the Kriging predictions and thus, the errors are
lower.

Additionally, Figure 12.3 shows how the errors progressed with the additional of points using
the method of Addition of a Point at Point of Maximum Absolute Error across the above
mentioned two sets. Figures showing the progression of these errors over the remaining sets
can be seen in Appendix D.4.

Figure 12.3(a) illustrates that in spite of the fact that the point is added at the point of
maximum absolute error, there is occasionally an increase in the maximum absolute error.
This maximum absolute error does, however, decrease to a very low value over the course
of the algorithm. Shown in Figure 12.3(b) is a similar trend for total absolute error. The
addition of a point at the point of maximum absolute error does not guarantee a decrease
in total absolute error. While the addition of a point does sometimes cause an increase in
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Figure 12.3: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across the best and worst performing sets generated using the Addition of a
Point at Point of Maximum Absolute Error.
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the total absolute error, the total absolute error decreases significantly over the algorithm for
both the best and worst performing sets.

Figure 12.3(c) which gives the change in the percentage absolute error over the course of the
algorithm naturally reflects the trend shown in Figure 12.3(b). While 12.3(d) indicates how
the total integrated error changes across the algorithm and in these sets ends close to zero.

Figure 12.3(e) shows the non-smooth decrease in maximum estimated error variance. This
graphs shows periods where the maximum error variance appears relatively stable. Figure
12.3(f) demonstrates the non smooth decrease seen in total estimated error variance due to
this method. This figure also shows that even when the maximum estimated error variance
remains quite stable, the total estimated error variance can experience changes. This can
occur as the maximum estimated error variance provides an indication only of the upper
bound for total estimated error variance.

12.2 Limitations

The method was applied to sample only up to 10.5% of the data. All conclusions were drawn
based only on the 10 sets generated using this method. Only one covariance structure and
trend were applied.
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TWO-DIMENSIONAL SAMPLING - GENETIC ALGORITHMS

In this section, the genetic algorithms used in this study are discussed and the results obtained
from them presented. The genetic algorithms used all made use the of the same genetic
features apart from how the initial population is selected (two of the six use a solution
obtained from another method as an individual in the starting set, referred to as the hybrid
methods in this study), the fitness function and the convergence criterion. Two of the genetic
algorithms try to find the worst sample set, while four (including the two hybrid methods)
try to find the optimal sample set. Two different fitness functions are considered, the sum
of the absolute error and the sum of the estimated error variance. Each of the six genetic
algorithms tested were run 5 times only. This is due to the computational time required in
the running of a genetic algorithm in comparison to the other sampling strategies.

The common genetic features are discussed next and this is followed by a section on each
genetic algorithm used in which details for the choice of initial population, fitness function
and convergence criterion are presented. The results for each genetic algorithm are both
presented and discussed in their respective sections.

13.1 Encoding

Once again, a sample set of 70 distinct points is desired. As a result, the encoding chosen uses
integers in the range of 0 to 670 to represent each point. Each individual consists of a string
of 70 integers from the given range. No repetition of integers is allowed within an individual.
Each individual represents a single sample set and the terms individual and set will be used
interchangeably. Thus, in order to avoid confusion, the final sample set generated will be
referred to as a run (as opposed to the term set which has been used in previous chapters).

13.2 Selection

Selection for reproduction across all six genetic algorithms takes place by means of tourna-
ment selection between two individuals. The two individuals are selected randomly from the
possible twenty without replacement. Only one of these is added to the reproduction pool
based on the criteria discussed below. This process is completed twice, allowing for twenty
individuals to be placed into the reproduction pool. Individuals may be selected for the
reproduction pool once, twice or not at all. Each individual competes in two tournaments.
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In the case of the four genetic algorithms attempting to select the optimal sample set, the
individual with the lower fitness function is chosen, as we wish to minimise the errors. For
the two genetic algorithms attempting to generate the worst performing sample set, the
individual with the higher fitness function is chosen.

13.3 Reproduction

Single point crossover is the reproduction method across all six genetic algorithms. The
crossover point is randomly chosen for every reproduction. The first two individuals placed
into the reproduction pool are paired together, the next two together and so forth.

13.4 Mutation

Every new individual (child) is subject to the mutation section of the algorithm. For each
integer within the individual’s string, a random number between 0 and 1 is generated. If this
number is less than the mutation probability, then that integer is exchanged for a randomly
generated one between 0 and 670. The mutation probability for all six genetic algorithm was
chosen to be 0.001.

13.5 Replacement

In all six genetic algorithms, all 20 new individuals (children) replace all 20 individuals of the
previous generation.

13.6 Replacement of Duplicate Points within an Individual

No repetition of points within a sample set is allowed in order to ensure positive-definiteness
of the covariance matrix. As such, the new generation of individuals must be checked for
repeated integers within an individual. If an integer is found to occur more than once, the
latter occurrences are replaced with randomly chosen integers which are not already present
within the individual.

13.7 Elitism

The individual with the highest fitness (when aiming to find the worst performing sample
set) or the lowest fitness (when attempting to find the optimal sample set) is carried through
to the next generation. This individual replaces a randomly chosen individual of the new
generation. This occurs across all six genetic algorithms implemented.
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13.8 Genetic Algorithm designed to Minimise Total Absolute
Error

13.8.1 Selection of Starting Population

The starting population consists of 20 individuals. Each individual is randomly chosen with-
out repetition and consists of 70 points.

13.8.2 Evaluation - Fitness Function

The evaluation process calculates the sum of the absolute errors from prediction using the
individual/sample set. This is used in conjunction with a lower fitness function being con-
sidered more optimal.

13.8.3 Convergence Criterion

A maximum number of iterations of 30000 is chosen as the convergence criterion. Each
iteration leads to a new generation of individuals. If the initial generation of individuals is
referred to as generation zero, then the convergence criterion could also be expressed as a
maximum number of generations of 30000.

13.8.4 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 13.1
and 13.2. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

Run Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 0.8338 51.9996 2.1000% −0.6576
2 0.8220 50.9861 2.9415% −6.7661
3 0.5791 53.8685 3.1078% 0.5883
4 0.5522 56.7306 3.2729% −3.8904
5 0.5790 60.2845 3.4780% 6.1781

Table 13.1: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with the Genetic Algorithm designed to Minimise Total Absolute Error in 2D.

From Tables 13.1 and 13.2, it can be seen that the percentage absolute errors from across the
5 runs all fall within the small range of 2.94-3.48%. They also show the low total absolute
errors obtained by the runs. These low total absolute errors result in a low upper bound on
the total integrated error which the total integrated errors fall well within. The maximum
absolute errors are also quite low, all falling below 0.85. The total estimated error variances
all fall above 500 with relatively high maximum estimated error variances.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,the
estimated error variance and the true error across the chosen two-dimensional region associ-
ated with the best and worst performing runs (in terms of total absolute error minimisation)
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Run Maximum Total
Estimated Error Estimated Error
Variance Variance

1 2.0092 522.4028
2 2.1127 531.7697
3 2.3053 539.4515
4 2.0056 506.9597
5 1.8584 523.0464

Table 13.2: Final maximum estimated error variances and total estimated error variances
associated with the Genetic Algorithm designed to Minimise Total Absolute Error in 2D.
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Figure 13.1: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the best performing run, run two, generated using the Genetic Algorithm designed to

Minimise Total Absolute Error. The white dots in (c) indicate the sampling points.

can be seen in Figures 13.1 and 13.2 respectively. The maps for the remaining runs can be
seen in Appendix D.5.

Considering Figures 13.1 and 13.2, it can be see the maps of the true flux and predicted flux
are visually very similar. There are still a few visual differences but the predictions and true
values appear to compare favourably. The location of the sample points is indicated by the
white dots on the maps of the estimated error variance (Figures 13.1(c) and 13.2(c)).

Additionally, Figure 13.3 shows how the errors progressed across the best and worst perform-
ing runs as the number of iterations increased. The progression of these errors across the
remaining runs can be seen in Appendix D.5.

Figure 13.3(a) illustrates that the maximum error variance become relatively stable after
10000 iterations, while Figure 13.3(b) shows the step decreases in total absolute error. These
step decreases are expected as this genetic algorithm is designed to minimise total absolute
error while carrying the best solution through from one iteration to the next. The worst
performing run’s total absolute error does not undergo much improvement from roughly 17500
iterations, while the best performing run is still showing good improvement at relatively short
intervals until very near the end of the 30000 iterations. Naturally the changes in percentage
absolute error found in Figure 13.3(c) mimic those of the total absolute error.
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Figure 13.2: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the worst performing run, run five, generated using the Genetic Algorithm designed to

Minimise Total Absolute Error. The white dots in (c) indicate the sampling points.

Figure 13.3(d) shows that even with a decreasing total absolute error, the final total integrated
error does not approach zero. The maximum estimated error variance in both cases becomes
stable for at least the last 5000 iterations as can be seen in Figure 13.3(e). In Figures 13.3(a)
and 13.3(e), it can be seen that the best performing set has a higher maximum absolute error
and maximum estimated error variance. In fact, if Figure 13.3(f) is considered, it can be seen
that the best performing set which has the lowest total absolute error of the 5 runs actually
has a higher total estimated error variance than the worst performing run. If one further
considers this figure along with Figure 13.3(b), it can be seen that as the total absolute error
decreases, the total estimated error variance can increase, decrease or remain stable.
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Figure 13.3: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total
estimated error variance across the best and worst performing runs of the Genetic Algorithm

designed to Minimise Total Absolute Error.
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13.9 Genetic Algorithm designed to Minimise Total Estimated
Error Variance

13.9.1 Selection of Starting Population

The starting population consists of 20 individuals. Each individual is randomly chosen with-
out repetition and consists of 70 points.

13.9.2 Evaluation - Fitness Function

The evaluation process calculates the sum of the estimated error variances from prediction
using the individual/ sample set. This is used in conjunction with a lower fitness function
being considered more optimal.

13.9.3 Convergence Criterion

A maximum number of iterations of 30000 is chosen as the convergence criterion.

13.9.4 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 13.3
and 13.4. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

Run Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 1.3294 103.6156 5.9779% −2.5667
2 0.9616 103.8526 5.9915% −2.2675
3 0.9990 107.6070 6.2081% 3.6387
4 1.2127 103.7934 5.9881% −15.7027
5 0.9286 105.9694 6.1137% −18.4238

Table 13.3: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with the Genetic Algorithm designed to Minimise Total Estimated Error Variance

in 2D.

Run Maximum Total
Estimated Error Estimated Error
Variance Variance

1 1.2762 401.9557
2 1.6344 401.5645
3 1.4355 400.9536
4 1.4551 403.9386
5 1.2369 403.0735

Table 13.4: Final maximum estimated error variances and total estimated error variances
associated with the Genetic Algorithm designed to Minimise Total Estimated Error Variance in 2D.
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Figure 13.4: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the best performing run, run one, generated using the Genetic Algorithm designed to
Minimise Total Estimated Error Variance. The white dots in (c) indicate the sampling points.

From Tables 13.3 and 13.4 it can be seen that all percentage absolute errors are found in a
small range between 5.97 and 6.21%. Total estimated error variance also falls within a small
range of 400− 404.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and the true error across the chosen two-dimensional region associ-
ated with the best and worst performing runs (in terms of total absolute error minimisation)
can be seen in Figures 13.4 and 13.5 respectively. The maps for the remaining runs can be
seen in Appendix D.6.

Figures 13.4 and 13.5 both show visual differences between the predicted flux and true flux
maps. The estimated error variance maps (Figures 13.4(c) and 13.5(c)) show a relatively
evenly distribution of sample points. The sample point locations are indicated by means of
the white dots.

Additionally, Figure 13.6 shows how the errors progressed across the best and worst perform-
ing runs as the number of iterations increased. The progression of these errors across the
remaining runs can be seen in Appendix D.6.

Figure 13.6(a) demonstrates the changes in maximum absolute error over the course of the
genetic algorithm. It can be noted that the best performing run has a higher maximum
absolute error than the poorer performing one. The change in the total absolute error across
the genetic algorithm can be seen in Figure 13.6(b) and it can clearly be seen that the worst
performing run obtained a lower total absolute error earlier in the algorithm than its final
value. This can occur as the goal of this algorithm is not the minimisation of the total
absolute error. If one considers Figure 13.6(f), it is clear that the total estimated error
variance decreases in steps as would be expected. As has been seen with many of the other
methods previously discussed, a decrease in total estimated error variance does not guarantee
a decrease in total absolute error. It can also be seen that the total estimated error variance
drops off very rapidly at first but then begins to decrease at a decreasing rate.

Figure 13.6(c) shows the changes in the percentage absolute error which mimic the changes
shown in Figure 13.6(b). It can be seen that there is a period in the algorithm where the
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Figure 13.5: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the worst performing run, run three, generated using the Genetic Algorithm designed to

Minimise Total Estimated Error Variance. The white dots in (c) indicate the sampling points.

worst performing run does outperform the best performing run. Figure 13.6(d) illustrates
the changes in the total integrated error across the algorithm. Referring to Figure 13.6(e) it
can be seen that the maximum estimated error variance does not show a continual decrease
across the algorithm but rather increases and decreases across the algorithm to end at lower
values than the initial values, but, not necessarily at the lowest value obtained across the
algorithm.
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Figure 13.6: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across the best and worst performing runs generated using the Genetic
Algorithm designed to Minimise Total Estimated Error Variance.
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13.10 Hybridised Genetic Algorithm designed to Minimise
Total Absolute Error

13.10.1 Selection of Starting Population

The starting population consists of 20 individuals. 19 individuals are randomly chosen with-
out repetition and consist of 70 points each, while a single individual of 70 points is taken as
the solution set from a run of the method of Addition of Point at Point of Maximum Absolute
Error (see Chapter 12). The solution set selected from the method of Addition of Point at
Point of Maximum Absolute Error for each run of this algorithm can be found in Table 13.5.

Run Solution Set from
Addition of Point at Point

of Maximum Absolute Error

1 1
2 3
3 5
4 7
5 9

Table 13.5: Solution sets from Addition of a Point at Point of Maximum Absolute Error associated
with each run of the Hybridised Genetic Algorithm designed to Minimise Total Absolute Error.

13.10.2 Evaluation - Fitness Function

The evaluation process calculates the sum of the absolute errors from prediction using the
individual/sample set. This is used in conjunction with a lower fitness function being con-
sidered more optimal.

13.10.3 Convergence Criterion

A maximum number of iterations of 30000 is chosen as the convergence criterion.

13.10.4 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 13.6
and 13.7. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

From Tables 13.6 and 13.7 it can be seen that while the percentage absolute error falls within
the very narrow range of 2.68 to 3.05% and the total absolute error falls within the small
range of 46.5 to 52.9, the total estimated error variances takes on the larger range of 498 to
547.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and the true error across the chosen two-dimensional region for
the best and worst performing runs (in terms of total absolute error minimisation) can be
seen in Figures 13.7 and 13.8 respectively. The maps for the remaining runs can be seen in
Appendix D.7.
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Figure 13.7: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the best performing run, run three, generated using the Hybridised Genetic Algorithm
designed to Minimise Total Absolute Error. The white dots in (c) indicate the sampling points.
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Figure 13.8: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for the worst performing run, run five, generated using the Hybridised Genetic Algorithm
designed to Minimise Total Absolute Error. The white dots in (c) indicate the sampling points.
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Run Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 0.5920 51.3219 2.9609% −2.1085
2 0.5301 51.1355 2.9502% −0.8203
3 0.5382 46.5260 2.6842% −5.7738
4 0.7808 52.0173 3.0010% 2.0533
5 0.6214 52.8374 3.0483% −0.1058

Table 13.6: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with the Hybridised Genetic Algorithm designed to Minimise Total Absolute Error

in 2D.

Run Maximum Total
Estimated Error Estimated Error
Variance Variance

1 2.0828 544.1025
2 2.3056 528.7569
3 2.0180 546.5626
4 1.7465 498.0167
5 1.8196 525.3167

Table 13.7: Final maximum estimated error variances and total estimated error variances
associated with the Hybridised Genetic Algorithm designed to Minimise Total Absolute Error in 2D.

The true flux and predicted flux maps in Figures 13.7 and 13.8 both show remarkable simi-
larity. However, neither of them captures the values of the variable perfectly as is seen on the
maps of true error (Figures 13.7(d) and 13.8(d)). Considering the location of sample points,
seen as the white dots on the estimated error variance maps, it is clear that this hybridised
genetic algorithm maintains grouping rather than evenly spacing the sample points.

Additionally, Figure 13.9 shows how the errors progressed across the best and worst perform-
ing runs as the number of iterations increased. The progression of these errors across the
remaining runs can be seen in Appendix D.7.

From Figure 13.9(a) it can be seen that the maximum error variance ends the algorithm at
a higher value than when it started. However, when Figure 13.9(b) is considered, it can be
seen that this increase in maximum estimated error was actually taking place while the total
absolute error decreased. This decrease occurred in steps due to the nature of the algorithm
and the fitness function used.

From Figure 13.9(c), the percentage absolute error dropped across the 30000 iterations for
both the best and worst cases. Majority of the drop occurred within the first 5000 iterations.

Figure 13.9(d) shows the changes in the total integrated error across the algorithm. To-
tal integrated error for reasons previously mentioned is not considered a good performance
indicator.

Figures 13.9(e) and 13.9(f) illustrate the changes in maximum estimated error variance and
total estimated error variance respectively. Examining these graphs shows that the maximum
estimated error variance changed quite dramatically at some points in the algorithm and was
stable for long stretches at other times. When considering the total estimated error variance,
it shows that although the total estimated error variance was lower at the end than at the
start of the algorithm, the end values were not the lowest values attained across the length of
the algorithm. This is of interest as the total absolute error was never allowed to increase so
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Figure 13.9: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across the best and worst performing runs generated using the Hybridised
Genetic Algorithm designed to Minimise Total Absolute Error.
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these graphs illustrate clearly that a for decreasing total absolute error it is possible to have
an increasing total estimated error variance.

13.11 Hybridised Genetic Algorithm designed to Minimise
Total Estimated Error Variance

13.11.1 Selection of Starting Population

The starting population consists of 20 individuals. 19 individuals are randomly chosen with-
out repetition and consist of 70 points each, while a single individual of 70 points is taken as
the solution set from a run of the method of Addition of Point at Point of Maximum Estimated
Error Variance (see Chapter 11). The solution set selected from the method of Addition of
Point at Point of Maximum Estimated Error Variance for each run of this algorithm can be
found in Table 13.8.

Run Solution Set from
Addition of Point at Point

of Maximum Estimated Error Variance

1 1
2 3
3 5
4 7
5 9

Table 13.8: Solution sets from Addition of a Point at Point of Maximum Estimated Error Variance
associated with each run of the Hybridised Genetic Algorithm designed to Minimise Total Estimated

Error Variance.

13.11.2 Evaluation - Fitness Function

The evaluation process calculates the sum of the estimated error variances from prediction
using the individual/sample set. This is used in conjunction with a lower fitness function
being considered more optimal.

13.11.3 Convergence Criterion

A maximum number of iterations of 30000 is chosen as the convergence criterion.

13.11.4 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 13.9
and 13.10. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

The percentage absolute errors for this genetic algorithm can be found in found in Table 13.9
and show a narrow range of 6.0-6.4% error. The total estimated error variance found in Table
13.10 also covers a narrow range of 400.0-404.3.
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Run Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 1.6963 104.8695 6.0502% −3.8154
2 1.3990 110.7658 6.3904% −4.4000
3 1.4130 106.8266 6.1631% −0.6051
4 1.5500 107.6192 6.2088% −4.9350
5 1.0783 108.5775 6.2641% −8.9593

Table 13.9: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with the Hybridised Genetic Algorithm designed to Minimise Total Estimated

Error Variance in 2D.

Run Maximum Total
Estimated Error Estimated Error
Variance Variance

1 1.2703 400.0009
2 1.3588 404.2867
3 1.1641 403.3292
4 1.3552 403.4786
5 1.5076 400.9658

Table 13.10: Final maximum estimated error variances and total estimated error variances
associated with the Hybridised Genetic Algorithm designed to Minimise Total Estimated Error

Variance in 2D.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and true error across the chosen two-dimensional region associated
with the best and worst performing runs (in terms of total absolute error minimisation) can
be seen in Figures 13.10 and 13.11 respectively. The maps for the remaining runs can be seen
in Appendix D.8.

Both Figures 13.10(c) and 13.11(c) reflect relatively evenly distributed sample points (sample
point locations are seen as the white dots). However, by comparing the maps of the true
flux to the predicted flux in Figures 13.10 and 13.11, there are very clear visual differences
in spite of some similarities.

Additionally, Figure 13.12 shows how the errors progressed across the best and worst per-
forming runs as the number of iterations increased. The progression of these errors across
the remaining runs can be seen in Appendix D.8.

Considering Figure 13.12(a) it can be seen that the genetic algorithm ended with a higher
maximum absolute error than it started with in both the best and worst cases. When the
graph of percentage absolute error is examined (Figure 13.12(c)), it is clear that for the
worst performing run, the end percentage absolute error was not the lowest taken across the
iterations in spite of the total estimate error variance continuing to drop across the remainder
of the iterations. From this figure it is also clear that the percentage absolute error from the
start to end of the algorithm did not undergo massive decreases. The differences between the
starting and ending percentage absolute errors were only 0.25 and 0.15% respectively. Even
if the algorithm had ended for the worst run when the percentage absolute error was at its
lowest, it would only have achieved approximately a 0.39% decrease.

Figure 13.12(d) is not considered but is included for the sake of completeness as it is clear from
Chapter 9 that total integrated error is not a good performance measure. From considering
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Figure 13.10: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for the best performing run, run one, generated using the Hybridised Genetic Algorithm
designed to Minimise Total Estimated Error Variance. The white dots in (c) indicate the sampling

points.
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Figure 13.11: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for the worst performing run, run two, generated using the Hybridised Genetic Algorithm
designed to Minimise Total Estimated Error Variance. The white dots in (c) indicate the sampling

points.
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Figure 13.12: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across the best and worst performing runs generated using the Hybridised
Genetic Algorithm designed to Minimise Total Estimated Error Variance.
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Figures 13.12(e) and 13.12(f) it is clear that there are occasions where the total estimated
error variance continues to decrease in steps while the maximum estimated error variance
remains constant. Like the maximum absolute error, the maximum estimated error variance
also ends on higher values than it started on. The step decreases in total estimated error
variance yield only a decrease of approximately 10-12 units. When compared to the values
they start and end with, this is not a large difference.

13.12 Genetic Algorithm designed to Maximise Total Abso-
lute Error

13.12.1 Selection of Starting Population

The starting population consists of 20 individuals. Each individual is randomly chosen with-
out repetition and consists of 70 points.

13.12.2 Evaluation - Fitness Function

The evaluation process calculates the sum of the absolute errors from prediction using the
individual/sample set. This is used in conjunction with a higher fitness function being con-
sidered more optimal.

13.12.3 Convergence Criterion

A maximum number of iterations of 10000 is chosen as the convergence criterion.

13.12.4 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 13.11
and 13.12. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

Run Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 4.3916 846.1220 48.8151% −713.1526
2 5.1548 1115.7378 64.3700% −1081.0975
3 4.9996 1062.2979 61.2869% −1059.1415
4 4.1759 779.0798 44.9473% −620.7446
5 5.0600 961.9681 55.4986% −922.0639

Table 13.11: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with the Genetic Algorithm designed to Maximise Total Absolute Error in 2D.

From Tables 13.11 and 13.12 it can be seen that all the error measures are high for this
genetic algorithm which maximises total absolute error. The percentage absolute error is
very high falling within the range of 48.8-64.4%. This algorithm appears to produce a large
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Run Maximum Total
Estimated Error Estimated Error
Variance Variance

1 4.4908 1348.1241
2 4.5862 1648.4166
3 4.7114 1630.3684
4 4.2919 1164.8040
5 4.5426 1409.9580

Table 13.12: Final maximum estimated error variances and total estimated error variances
associated with the Genetic Algorithm designed to Maximise Total Absolute Error in 2D.
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Figure 13.13: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for the best performing run, run two, generated using the Genetic Algorithm designed to

Maximise Total Absolute Error. The white dots in (c) indicate the sampling points.

range across the summed errors and this is not surprising as the algorithm was only run for
10000 iterations and as such may not have converged yet.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and true error across the chosen two-dimensional region associated
with the best and worst performing runs (in terms of total absolute error maximisation) can
be seen in Figures 13.13 and 13.14 respectively. The maps for the remaining runs can be seen
in Appendix D.9.

Considering Figures 13.13 and 13.14, it is clear that the maps of true flux and predicted
flux are unrecognisable as representing the same variable. It also appears from the white
dots present on the estimated error variance maps (Figures 13.13(c) and 13.14(c)) that these
algorithm groups sample points in areas of similar values with lower variability.

Additionally, Figure 13.15 shows how the errors progressed across the best and worst per-
forming runs as the number of iterations increased. The progression of these errors across
the remaining runs can be seen in Appendix D.9.

Considering Figure 13.15(a) it is seen that the maximum absolute error more than doubles
across the 10000 iterations. This allows for a dramatic increase in the upper bound of the
total absolute error. Figure 13.15(b) demonstrates how the total absolute error undergoes
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Figure 13.14: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for the worst performing run, run four, generated using the Genetic Algorithm designed to

Maximise Total Absolute Error. The white dots in (c) indicate the sampling points.

step increases across the 10000 iterations. In the case of the run producing the set with the
highest total absolute error, the total absolute error increase by a factor of more than five
across the algorithm.

Figure 13.15(d) shows how with a dramatically increasing total absolute error, the total
integrated error does diverge from zero. However, if one examines the curve carefully, there
are still times where the total integrated error moves towards zero slightly even though the
total absolute error must be stable or decreasing. This shows very well how unsuitable total
integrated error is as a performance indicator.

Figures 13.15(e) and 13.15(f) indicate the changes in maximum estimated error variance
and total estimated error variance respectively. It is once again illustrated that the total
estimated error variance can increase while the maximum estimated error variance remains
stable and that there is the occasional drop in total estimated error variance value while the
total absolute error value remains stable or increases. In spite of this, it is clear that over
such a large increase in total absolute error, that total estimated error variance also exhibits
an overall increasing trend.
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Figure 13.15: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across the best and worst performing runs generated using the Genetic
Algorithm designed to Maximise Total Absolute Error.
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13.13 Genetic Algorithm designed to Maximise Total Esti-
mated Error Variance

13.13.1 Selection of Starting Population

The starting population consists of 20 individuals. Each individual is randomly chosen with-
out repetition and consists of 70 points.

13.13.2 Evaluation - Fitness Function

The evaluation process calculates the sum of the estimated error variances from prediction
using the individual/sample set. This is used in conjunction with a higher fitness function
being considered more optimal.

13.13.3 Convergence Criterion

A maximum number of iterations of 10000 is chosen as the convergence criterion.

13.13.4 Results and Discussion

The errors associated with the predictions using the 70 points can be found in Tables 13.13
and 13.14. The units associated with the maximum absolute error, total absolute error and
total integrated difference are mol(C)/m2s.

Run Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

1 5.1003 890.2971 51.3637% −756.6382
2 4.0670 681.1351 39.2966% −522.1721
3 3.1320 423.9432 24.4584% −205.7628
4 3.5888 660.0253 38.0787% −545.4286
5 4.9063 842.2705 48.5929% −718.5922

Table 13.13: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with the Genetic Algorithm designed to Maximise Total Estimated Error Variance

in 2D.

Run Maximum Total
Estimated Error Estimated Error
Variance Variance

1 4.9253 2493.6870
2 4.9118 2242.4910
3 4.9254 2389.8840
4 4.7398 1962.9460
5 4.9249 2382.0271

Table 13.14: Final maximum estimated error variances and total estimated error variances
associated with the Genetic Algorithm designed to Maximise Total Estimated Error Variance in 2D.
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Figure 13.16: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for the best performing run, run one, generated using the Genetic Algorithm designed to

Maximise Total Estimated Error Variance. The white dots in (c) indicate the sampling points.

Of interest from Tables 13.13 and 13.14 is that in spite of the high total estimated error
variance values, the total absolute errors and percentage absolute errors are not as high.

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and the true error across the chosen two-dimensional region for
the best and worst performing runs (in terms of total absolute error maximisation) can be
seen in Figures 13.16 and 13.17 respectively. The maps for the remaining runs can be seen
in Appendix D.10.

From Figures 13.16(c) and 13.17(c) it is clear that the points are grouped very tightly in
order to maximise distances between sampled and unsampled points. The maps of the true
and predicted fluxes are vastly different except for the areas in which the sample points are
clustered.

Additionally, Figure 13.18 shows how the errors progressed across the best and worst per-
forming runs as the number of iterations increased. The progression of these errors across
the remaining runs can be seen in Appendix D.10.

From Figure 13.18(a) it can be seen that there is a dramatic difference in the maximum
absolute error increase in the best and worst performing runs. The same can be said of the
total absolute error (Figure 13.15(b)) where the worst performing set increases by a factor
of less than two while the best performing set increases by a factor of approximately four.
Figure 13.18(c) illustrates that at the end of the algorithm there is approximately a 25%
difference in the percentage absolute error values.

Considering Figures 13.18(e) and 13.18(f) it can be seen that the best and worst performing
runs have almost identical maximum estimated error variances although the total estimated
error variances differ by approximately 200. This difference of 200 translates, however, into
a 25% difference in percentage absolute error.
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Figure 13.17: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for the worst performing run, run three, generated using the Genetic Algorithm designed
to Maximise Total Estimated Error Variance. The white dots in (c) indicate the sampling points.
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Figure 13.18: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across the best and worst performing runs generated using the Genetic
Algorithm designed to Maximise Total Estimated Error Variance.
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13.14 Limitations

All runs of all the genetic algorithms are stopped on a maximum number of iterations criteria
and thus, do not guarantee the absolute optimal solution.

Only simple genetic operations have been used in the algorithm and as such, more advanced
methods may reach optimal solutions in a more timely manner.

Only 5 runs of each genetic algorithm were performed using a single covariance and trend
structure.
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CHAPTER 14

TWO-DIMENSIONAL SAMPLING - COMPARISON OF SAMPLING
METHODS

14.1 Comparison of Errors Across All Methods

In order to compare the errors produced by the methods described and implemented in
Chapters 9 to 13 histograms of each error were produced. Each histogram shows one of the
resulting errors of all the implemented methods. These can be seen in the (a) sub-figures
of Figures 14.1 to 14.6. Additionally, in order to compare only the methods which aim
to minimise the errors, a histogram was produced per error containing the results only of
methods aiming to minimise errors. The two genetic algorithms which aimed to maximise
total absolute error and total error variance were not included in these histograms. These
histograms can be seen in the (b) sub-figures of Figures 14.1 to 14.6.

Figure 14.1(a) indicates a clear gap in maximum absolute error between the methods designed
to minimise and those designed to maximise errors. Figures 14.2(a) and 14.3(a) show the
total absolute errors and percentage absolute errors obtained across all the methods tested.
It is clear that the two genetic algorithms designed to maximise errors generate these errors
across a very wide range but that is not unusual given that the method was only allowed
to run for 10000 iterations. This does, however, imply that the true worst possible sample
set for prediction by means of Kriging using the chosen covariance and trend structures and
parameter values may in fact produce higher errors than those shown in these figures. It is also
important to note that although the 10 runs of Random Sampling performed produced errors
significantly lower than the genetic algorithms designed to maximise errors, due to the nature
of Random Sampling it is possible to select a set which performs anywhere across the range of
errors. It is also clear that the worst performing of the methods designed to minimise errors
has a total absolute error less than half of that obtained by the worst performing method
designed to maximise errors.

Considering Figure 14.4(a) it can be seen that in terms of total integrated error the Random
Sampling and methods designed to minimise errors have much smaller errors than those of
the methods designed to maximise errors. It is also noted that while the majority of methods
both under- and over-predict, the methods designed to maximise errors all dramatically over
predict the integrated carbon dioxide flux.

Figure 14.5(a) indicates a large gap in maximum estimated error variance values between the
methods designed to maximise errors and the remaining methods. These higher maximum
estimated error variance values place a higher upper bound on the total estimated error
variance.
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Figure 14.1: Maximum absolute errors obtained across (a) all methods and (b) all methods
designed to minimise errors.
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Figure 14.2: Total absolute errors obtained across (a) all methods and (b) all methods designed to
minimise errors.
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Figure 14.3: Percentage absolute errors obtained across (a) all methods and (b) all methods
designed to minimise error.
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Figure 14.4: Total integrated errors obtained across (a) all methods and (b) all methods designed
to minimise errors.
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Figure 14.5: Maximum estimated error variances obtained across (a) all methods and (b) all
methods designed to minimise errors.
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Figure 14.6: Total estimated error variances obtained across (a) all methods and (b) all methods
designed to minimise errors.
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The total estimated error variances for the various methods can be seen in Figure 14.6(a) from
which it is clear that the Genetic Algorithm designed to Maximise Total Estimated Error
Variance yields the largest total estimated error variances. The next highest total estimated
error variances are generated by the Genetic Algorithm designed to Maximise Total Absolute
Error. If Figure 14.2(a) is considered again it can be seen that the method which yields the
highest total absolute error is the Genetic Algorithm designed to Maximise Total Absolute
Error, while the next highest is the Genetic Algorithm designed to Maximise Total Estimated
Error Variance. This implies that although the Genetic Algorithm designed to Maximise
Total Estimated Error Variance produces far larger total estimated error variances, it fails to
produce larger total absolute errors. The explanation for why this is possible can be found
in Chapter 9.

From Figure 14.1(b) it is clear that of the methods designed to find the more optimal sets
(minimise errors); Random Sampling and the Updated Kriging Variance Algorithm fall across
a wider range than the other methods. Addition of a Point at Point of Maximum Absolute
Error clearly produces the lowest maximum absolute errors. However, it does not produce
the lowest total absolute errors, as can be seen in Figure 14.2(b).

Figure 14.3(b) shows the definite gap in percentage absolute error between the a-priori and a-
posteriori methods. Also of interest is the wider range of percentage absolute errors that can
be taken on the Random Sampling and Updated Kriging Variance Algorithm. None of the
optimising a-priori methods appear to have a clear advantage over each other, although they
do show some advantage over Random Sampling. The a-posteriori methods also appear to
perform similarly, although the Genetic Algorithm designed to Minimise Total Absolute Error
and the hybridised genetic algorithm with the same goal do show a slight improvement over
the Addition of a Point at Point of Maximum Absolute Error. If one considers the method of
Addition of a Point at Point of Maximum Absolute Error and the Genetic Algorithm designed
to Minimise Total Absolute Error along with its hybridised counterpart, it can be seen that
the genetic algorithms produced slightly lower total absolute errors and percentage absolute
errors than the more simple method of Addition of a Point at Point of Maximum Absolute
Error.

Figure 14.4(b) illustrates that Random Sampling takes the largest range of total integrated
error values, while the remaining methods designed to minimise errors fall within a relatively
small range on either side of zero.

From Figure 14.5(b) it can be seen that the Genetic Algorithm designed to Minimise Total
Estimated Error Variance, its hybridised version and the Addition of a Point at Point of
Maximum Estimated Error Variance produce the lowest maximum estimated error variances.
The same can be said of the total estimated error variances which can be seen in Figure
14.6(b). While a large difference is present between the a-priori and remaining methods in
terms of total estimated error variance, it is of interest to note that the a-posteriori methods
which exhibit higher total estimated error variances than the a-priori methods exhibit lower
total absolute errors than the a-priori methods. This suggests that the estimated error
variance does not always provide a good indication of true error.

Additionally it can be seen that while the Genetic Algorithm designed to Minimise Total Es-
timated Error Variance and its corresponding hybridised method do produce total estimated
error variance that are slightly lower than those produced by the Updated Kriging Variance
Algorithm and the method of Addition of a Point at Point of Maximum Estimated Error
Variance, the total absolute errors produced by all of the above mentioned methods are very
similar.
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14.2 Comparison of Methods Which Perform the Addition of
a Single Sample Point Per Iteration

In order to compare how the addition of points across the methods of Updated Kriging
Variance Algorithm, Addition of a Point at Point of Maximum Error Variance and Addition
of a Point at Point of Maximum Absolute Error perform from the same starting sets, each of
the recorded errors has been plotted against the number of points in the sample across the
three methods for set two. This set was chosen as the results it gave across all of the three
methods where good but neither the best nor the worst for that method. These can be seen
in Figure 14.7.

From Figure 14.7(a) it can be seen that the Addition of a Point at Point of Maximum Absolute
Error results in the largest decrease in the maximum absolute error value. This is followed
by the method of Addition of a Point at Point of Maximum Estimated Error Variance, with
the Updated Kriging Variance Algorithm yielding the smallest decrease. It is also clear that
the decrease is not smooth across any of these three methods.

Figure 14.7(b) illustrates the changes in total absolute error as points are added by the three
methods. It is clear that the Addition of a Point at Point of Maximum Absolute Error
performs best in this regard, although up until 8 points, there are times where the Addition
of a Point at Point of Maximum Estimated Error Variance performs better. This is however,
still a sample size of approximately 1.2% of the total number of points. After this point, the
Addition of a Point at Point of Maximum Absolute Error remains the best performing method
for the remainder of the additions. From 12 points, the Updated Kriging Variance Algorithm
and the Addition of a Point at Point of Maximum Estimated Error Variance experience very
similar total absolute errors ending on values which differ by less than 2 units. In terms of
percentage absolute error (seen in Figure 14.7(c)), it can be seen that the difference between
the method of Addition of a Point at Point of Maximum Absolute Error and the other two
single addition per iteration methods is only around 2%. However, this difference places
the method of Addition of a Point at Point of Maximum Absolute Error below 5% absolute
error. In addition it can be seen that the method of Addition of a Point at Point of Maximum
Absolute Error’s percentage absolute error falls below 10% using far fewer sample points than
the other two methods.

Figure 14.7(d) has been included for the sake of completeness but as it has been explained
previously, total integrated error does not provide a good measure of performance or accuracy.

Figure 14.7(e) demonstrates the changes in the maximum estimated error variance. It is
clear that this value never increases as by adding another point it is impossible to increase
the distances between the previously chosen sample points and the unsampled points. It
is however, possible for the maximum estimated error variance to remain constant for a
period. Additionally it can be seen that the largest drop in maximum estimated error variance
belongs to the method of Addition of a Point at Point of Maximum Estimated Error Variance,
although this decrease is in no way smooth. The Updated Kriging Variance Algorithm and
the method of Addition of a Point at Point of Maximum Absolute Error trade places in terms
of lower maximum estimated error variance until approximately 31 points, from which point
the Updated Kriging Variance Algorithm clearly produces a lower maximum estimated error
variance.

Figure 14.7(f) shows the changes in total estimated error variance with the addition of points.
The Updated Kriging Variance Algorithm exhibits a smooth decrease which is expected due
to the testing portion of this algorithm. The method of Addition of a Point at Point of
Maximum Estimated Error Variance shows a less smooth curve which yields higher values
until approximately 25 points, after which the curve follows the curve of the Updated Kriging
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Figure 14.7: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across set two generated using the Updated Kriging Variance Algorithm,
Addition of a Point at Point of Maximum Error Variance and Addition of a Point at Point of

Maximum Absolute Error.
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Figure 14.8: Maps of estimated error variance for a sample size of 5 for the sampling methods of
(a)Updated Kriging Variance Algorithm, (b) Addition of a Point at Point of Maximum Estimated

Error Variance and (c) Addition of a Point at Point of Maximum Absolute Error with sample points
indicated by white dots.

Variance Algorithm very closely. The Addition of a Point at Point of Maximum Absolute
Error has the least smooth curve and exhibits the highest total estimated error variance values
in spite of this method exhibiting the lowest total absolute error values. This clearly shows
that the estimate error variance is not an accurate measure of true performance. However,
if there are no values for the variable of interest and no models available for this parameter,
then it is the only reasonable measure available.

In order to consider the differences in sample point placement, Figures 14.8 to 14.12 show
the estimated error variances across the Updated Kriging Variance Algorithm, Addition of a
Point at Point of Maximum Estimated Error Variance and Addition of a Point at Point of
Maximum Absolute Error methods for 5, 10, 20, 40 and 70 points. The sample points can
be seen by the white dots on the estimated error variance maps.

The first four points are randomly chosen and these can be seen as the common four points in
Figure 14.8. The only different point is the single point which has been added by each method
at this point in the algorithms. It can be seen that the three methods considered place this
single point in very different positions. All three methods do, however, place the point in
the right hand side of the map, as there are no points here, while there is one randomly
chosen point on the left hand side of the map. It is also noted that as would be expected, the
estimated error variances are high and increase as one moves further away from the sample
point locations.

Figure 14.9 shows a drop in the individual estimated error variances as 5 more points are
added. This drop is most significant in the method of Addition of a Point at Point of Max-
imum Estimated Error Variance, as would be expected. This does not, however, guarantee
that this method also produces the largest drop in the total estimated error variance. The
Updated Kriging Variance Algorithm attempts to distribute the sample points relatively
evenly across the map. The method of Addition of a Point at Point of Maximum Estimated
Error Variance attempts a similar distribution. However, the placement is not identical due
to the different criteria for placement. Nevertheless, since the estimated error variance is
dependent only on the distances between sampled and unsampled points and the covariance
structure, the relatively even distribution is expected. This distribution is not entirely even,
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Figure 14.9: Maps of estimated error variance for a sample size of 10 for the sampling methods of
(a)Updated Kriging Variance Algorithm, (b) Addition of a Point at Point of Maximum Estimated

Error Variance and (c) Addition of a Point at Point of Maximum Absolute Error with sample points
indicated by white dots.
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Figure 14.10: Maps of estimated error variance for a sample size of 20 for the sampling methods
of (a)Updated Kriging Variance Algorithm, (b) Addition of a Point at Point of Maximum Estimated
Error Variance and (c) Addition of a Point at Point of Maximum Absolute Error with sample points

indicated by white dots.
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Figure 14.11: Maps of estimated error variance for a sample size of 40 for the sampling methods
of (a)Updated Kriging Variance Algorithm, (b) Addition of a Point at Point of Maximum Estimated
Error Variance and (c) Addition of a Point at Point of Maximum Absolute Error with sample points

indicated by white dots.
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Figure 14.12: Maps of estimated error variance for a sample size of 70 for the sampling methods
of (a)Updated Kriging Variance Algorithm, (b) Addition of a Point at Point of Maximum Estimated
Error Variance and (c) Addition of a Point at Point of Maximum Absolute Error with sample points

indicated by white dots.
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as the distribution would change slightly for the various directions, based on the range in that
direction. The method of Addition of a Point at Point of Maximum Absolute Error produces
sample points which are more grouped than the other two methods. It is noted that this
method has placed two points in the lower left corner where, if one considers a map of the
true fluxes (e.g. Figure 13.17) the flux is quite variable.

Figure 14.11 illustrates the estimated error variances when the three methods under con-
sideration have generated sample sets of 40 points. From these maps, it can be seen that
both the Updated Kriging Variance Algorithm and the method of Addition of a Point at
Point of Maximum Estimated Error Variance are distributing points fairly evenly across the
map, although the placement of points differs and thus, the unsampled areas differ. However,
the method of Addition of a Point at Point of Maximum Absolute Error clearly groups the
sample points. This grouping appears to occur around areas that exhibit more change in
flux values. This method also has higher estimated error variances as the grouping generates
larger distances between sampled and unsampled points than the more even distributions of
the other two methods.

Figure 14.12 indicates the estimated error variances produced by the three methods when
they were completed, that is they had reached a sample size of 70 points. It is clear once
again, that the Updated Kriging Variance Algorithm and the method of Addition of a Point
at Point of Maximum Estimated Error Variance both produce relatively evenly distributed
sampled points although the positioning differs. Also clear is that the method of Addition of
a Point at Point of Maximum Absolute Error continues to group sample points is areas where
the change in flux is more sudden (where the flux is more variable). This method thus also
produces larger areas which remain unsampled. However, in spite of this, the total absolute
error produced by this method is lower as it is able to more accurately model the changing
flux.

14.3 Comparison of the Genetic Algorithms

If one considers the genetic algorithms presented in Chapter 13 and the histograms of errors
presented in Section 14.1, it can be seen that the Genetic Algorithm designed to Minimise
Total Absolute Error and the Hybridised Genetic Algorithm designed to Minimise Total
Estimated Error Variance yield the lowest maximum absolute errors and lowest maximum
estimated error variances respectively. The Hybridised Genetic Algorithm designed to Min-
imise Total Absolute Error, however, produces higher maximum absolute errors in spite of
the fact that it ends on a lower total absolute error.

In terms of the total absolute error, the Genetic Algorithm designed to Minimise Total Abso-
lute Error and the hybridised genetic algorithm with the same fitness function both experience
step decreases in total absolute error across their 30000 iterations due to elitism and their
fitness function. Similarly the Genetic Algorithm designed to Maximise Total Absolute Error
experiences step increases in the total absolute error across its 10000 iterations. The Genetic
Algorithm designed to Minimise Total Absolute Error and its respective hybridised method
both show large decreases in total absolute error at the start of the algorithm but this rate
of decrease drops as the number of iterations increases. The Genetic Algorithm designed to
Minimise Total Estimated Error Variance and its hybridised version show continued stability
or decrease in total estimated error variance. However, this does not always imply a decrease
in total absolute error. If one considers Figures 13.12(b) and 13.12(f), it can be seen that
for the worst performing set of the Hybridised Genetic Algorithm to Minimise Total Esti-
mated Error Variance, the lowest total absolute error is obtained around 15000 iterations and
this continues to undergo increases and decreases (ending on a higher value), while the total
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estimated error variance remains stable or decreases. Once again this shows that the total
estimated error variance is not always an accurate substitute for true error.

The Hybridised Genetic Algorithm designed to Minimise Total Estimated Error Variance does
not produce total estimated error variances that are lower than those produced by the Genetic
Algorithm designed to Minimise Total Estimated Error Variance. The total estimated error
variance for this method does, however, appear to still be stepping down although the values
often remain stable for many iterations, as seen in Figure 13.12(f).

14.4 Comparison of Computational Requirements

For some of the methods used in this study, it is not necessary to generate either the Kriging
predictions or the estimated error variances, and in the case of the Updated Kriging Variance
Algorithm, neither needs to be calculated. For this study, however, all errors were required at
all iterations and as such their calculation (implying the calculation of Kriging predictions and
estimated error variances) was performed at every iteration. This is unnecessary for producing
the samples and as such could be done at a later stage if needed. Thus, the unnecessary
calculations that were performed merely to generate the errors have been excluded in the
following discussion on the computational requirements of the methods.

In order to compare the computational requirements of the methods, the algorithms have been
summarised in Tables E.1 to E.10. These tables have been broken down into the description
of the first iteration, the number of further iterations and the description of the remaining
iterations and can be found in Appendix E. In each of these descriptions, Z is regarded to
be the value of the residuals rather than that of the variable itself.

By considering these tables, it is clear that Random Sampling is the least computationally
expensive. The hybridised genetic algorithms are obviously the most computationally expen-
sive as they require the computational resources in order to run the Addition of a Point at
Point of Maximum Absolute Error or Addition of a Point at Point of Maximum Estimated
Error Variance, along with the resources to perform the 30000 iterations of the genetic algo-
rithm, all of which require calculations across 20 sets of 70 points. Additionally no update
algorithm is available for the covariance matrix requiring the solution of a linear system of
70 equations for each set at each iteration.

The Addition of a Point at the Point of Maximum Absolute Error is more computationally
expensive than Random Sampling but less computationally expensive than the Addition
of a Point at Point of Maximum Estimated Error Variance, the Updated Kriging Variance
Algorithm and the genetic algorithms. It requires less matrix-vector multiplications than the
Addition of a Point at Point of Maximum Estimated Error Variance, as the matrix-vector
multiplication for the generation of predicted values can be done once per sample set and
then merely undergo one dot-product multiplication with the covariance vector generated for
a point to generate the Kriging prediction at that point, while the estimated error variance
requires a matrix-vector and a dot-product multiplication at every point, as the vector of
covariances at a point occurs twice in its formula.

The method of Addition of a Point at Point of Maximum Estimated Error Variance is the
third least computationally expensive. It requires slightly more resources than the method of
Addition of a Point at Point of Maximum Absolute Error as has been explained. However, it
also requires less resources than the Updated Kriging Variance Algorithm. This is due to that
fact that the Updated Kriging Variance Algorithm requires a matrix-vector and a dot-product
multiplication per point not yet in the sample set and then an additional matrix-vector and
dot-product multiplication for every point in the data set. This occurs as the Updated Kriging
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Variance Algorithm tests each possible point for the maximum decrease in total estimated
error variance before selecting a point. Notably, the Updated Kriging Variance Algorithm,
Addition of a Point at Point of Maximum Absolute Error and Addition of a Point at Point of
Maximum Estimated Error Variance, all make use of the updating algorithm for the inverse
of the covariance matrix. While this matrix grows by a single point every iteration, it ends
on a size of 69 × 69, as this allows the 70th point to be added. For the genetic algorithms,
the size of the covariance matrix is always 70× 70.

The genetic algorithms designed to maximise errors are the least expensive computationally
of the genetic algorithms but purely due to the lower number of iterations (10000). These are
followed by the genetic algorithms to minimise errors which run for 30000 iterations, while as
explained earlier, the hybridised genetic algorithms are the most computationally expensive.
The genetic algorithms are made further computationally expensive by the various genetic
operators surrounding each iteration, in addition to having to calculate the absolute error or
estimated error variance at every point in the data set 20 times per iteration.

In each of these classes of the genetic algorithms, the one maximising or minimising total
absolute error is less computationally expensive as once again part of the formula for the
prediction at each point can be solved once for a set, meaning that for each point only one
dot-product multiplication is necessary.

Thus, to summarise the methods are presented in the order of ascending computationally
intensity:

• Random Sampling

• Addition of a Point at Point of Maximum Absolute Error

• Addition of a Point at Point of Maximum Estimated Error Variance

• Updated Kriging Variance Algorithm

• Genetic Algorithm to Maximise Total Absolute Error

• Genetic Algorithm to Maximise Total Estimated Error Variance

• Genetic Algorithm to Minimise Total Absolute Error

• Genetic Algorithm to Minimise Total Estimated Error Variance

• Hybridised Genetic Algorithm to Minimise Total Absolute Error

• Hybridised Genetic Algorithm to Minimise Total Estimated Error Variance

14.5 Decision Regarding Three-dimensional Sampling

In each of the methods implemented, parallel computing could be implemented. However,
in this study it was not used. As such, some of these methods could become time intensive
on a larger and/or three-dimensional set. Also available for the Updated Kriging Variance
Algorithm in two dimensions are computational speed ups. However, these are not easily
adapted to three dimensions.

The Genetic Algorithm designed to Minimise Total Absolute Error and its hybridised coun-
terpart outperform the Addition of a Point at Point of Maximum Absolute Error. However,
they are much more computationally expensive and provide no order of preference amongst
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the points. Thus, when considering the a-posteriori methods, in spite of the additional accu-
racy given by the genetic algorithms, the Addition of a Point at Point of Maximum Absolute
Error was chosen to be implemented on the three-dimensional set. The increase in accu-
racy does not warrant the dramatically increased computation requirements of the Genetic
Algorithm designed to Minimise Total Absolute Error or that of its hybridised version. Ad-
ditionally the method of Addition of a Point at Point of Maximum Absolute Error, gives a
preferential order to the points. This means that if the algorithm is run to reach a certain
size but later it is determined that fewer points can be sampled in reality, then the points
added up until the new size should be sampled. The genetic algorithm does not offer this
feature and given the cost of sampling in the Southern Ocean, this feature may be of great
value to those performing the sampling.

The Genetic Algorithm designed to Minimise Total Estimated Error Variance and its hy-
bridised counterpart do provide a slightly lower total absolute error than the other a-priori
methods (Addition of a Point at the Point of Maximum Estimated Error Variance and the
Updated Kriging Variance Algorithm). However, they do not provide a better total absolute
error. All four of the a-priori methods to minimise errors related to the estimated error vari-
ance provide very similar results but have varying computational requirements. Since none
of the a-priori methods stands out in terms of total absolute error minimisation, the method
with the lowest computational cost of the four is selected. Thus, the method of Addition of
a Point at Point of Maximum Estimated Error Variance was chosen to be implemented on
the three-dimensional set.
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CHAPTER 15

THREE-DIMENSIONAL SAMPLING

Various methods of sampling were compared in Chapter 14. However, only three of those
methods were implemented on the three-dimensional set. These methods were implemented
on a three-dimensional set merely to prove the capability of these methods to sample large
data sets. However, as the original data with the zero values removed consists of 419093
points, the decision was taken to sub-sample this set in order to reduce the computational
requirements in implementing the chosen methods for a three-dimensional set. The data
set was sub-sampled such that only every second point in time, latitude and longitude was
taken. This sub-sampling resulted in a data set of 53502 points. The aim of this chapter
is to show that these methods can be used in large scale three-dimensional sampling and
the sub-sampled set is large enough to indicate that. While prediction on the original three-
dimensional set would be of great value, it would also be computationally expensive and
as such, would be better implemented using parallel computing on a cluster which was not
available for this study.

The following methods were implemented on this sub-sampled three-dimensional set:

• Random Sampling - This is a quick and easy method of sampling although not very
reliable

• Addition of a Point at Point of Maximum Absolute Error - This is the chosen a-posteriori
method from the two-dimensional sampling

• Addition of a Point at Point of Maximum Estimated Error Variance - This is the chosen
a-priori method from the two-dimensional sampling

The methods implemented follow the same algorithms as for the two-dimensional sampling.
The only differences are the total number of points and the final sample size. The prediction
procedure is also identical to that found in Chapter 8.

Each of these methods selects 2675 points from the data set, this is approximately 5% of the
data. For the chosen a-posteriori and a-priori methods, a starting set of 4 points is randomly
selected. These same starting points are used by both methods, that is set one for both of
these methods starts using the same 4 points and similarly for set two.
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15.1 Implementation of Sampling Methods on Three-dimensional
Data

The errors for the three methods implemented for 2675 points can be seen in Tables 15.1 and
15.2. The units associated with the maximum absolute error, total absolute error and total
integrated difference are mol(C)/m2s.

Set Maximum Total Percentage Total
Absolute Absolute Absolute Integrated
Error Error Error Error

Random Sampling

1 12.74 35549.38 21.02% −1160.83
2 12.99 35481.89 20.98% −1096.53

Addition of a Point at Point of Maximum Absolute Error

1 2.35 24230.39 14.33% −1907.75
2 1.80 24207.60 14.32% −183.50

Addition of a Point at Point of Maximum Estimated Error Variance

1 10.70 31355.20 18.54% −123.36
2 9.40 31373.88 18.55% −554.12

Table 15.1: Final maximum absolute, total absolute, percentage absolute and total integrated
errors associated with sampling in 3D.

Set Maximum Total
Estimated Error Estimated Error
Variance Variance

Random Sampling

1 3.84 52812.12
2 4.16 53241.83

Addition of a Point at Point of Maximum Absolute Error

1 4.30 74641.82
2 4.46 74806.62

Addition of a Point at Point of Maximum Estimated Error Variance

1 1.31 43615.67
2 1.30 43642.56

Table 15.2: Final maximum estimated error variances and total estimated error variances
associated with sampling in 3D.

From the errors in Tables 15.1 and 15.2, it is clear that Addition of a Point at Point of
Maximum Absolute Error provides the lowest maximum absolute errors, total absolute er-
rors and thus, percentage absolute errors. It does however, provide the highest maximum
estimated error variances and total estimated error variances. Addition of a Point at Point
of Maximum Estimated Error Variance provides the lowest estimated error variance related
errors. However, absolute errors fall in between those of Random Sampling and Addition of
a Point at Point of Maximum Absolute Error. Random Sampling provides the worst percent-
age absolute errors of three methods implemented. Once again, it can be seen that the total
integrated error is a poor indicator of performance.

Additionally for each set run, the final number of sample points per time slice can be seen
in Table 15.3. Naturally for the two sets generated by Random Sampling, no preference or
emphasis is placed on any time slice. Addition of a Point at Point of Maximum Estimated
Error Variance places more sample points/more emphasis on the first and last time slice and
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Sampling Random Addition of a Point Addition of a Point
Method Sampling at Point of Maximum at Point of Maximum

Absolute Error Estimated Error Variance

Time Slice Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

0 78 81 180 195 177 178
2 79 68 130 125 78 79
4 62 78 114 127 68 72
6 63 74 101 104 69 71
8 71 63 103 91 70 64
10 67 80 90 99 69 70
12 66 61 89 84 64 66
14 58 73 74 75 67 70
16 65 93 71 74 61 60
18 60 73 83 81 63 66
20 83 67 99 84 64 67
22 66 70 49 57 73 63
24 78 77 81 76 65 62
26 87 64 59 56 64 67
28 80 85 48 44 64 67
30 87 66 55 46 61 65
32 82 70 58 46 66 60
34 77 80 50 46 65 62
36 82 85 29 25 62 65
38 67 53 40 46 63 62
40 84 73 28 27 70 63
42 75 74 32 26 64 70
44 70 73 34 34 64 60
46 73 73 41 45 62 62
48 73 62 42 41 60 67
50 69 65 39 34 66 64
52 63 77 52 48 65 61
54 78 55 44 52 69 68
56 51 68 81 72 65 62
58 47 73 45 56 65 73
60 89 64 63 60 68 61
62 82 69 58 68 66 63
64 71 75 74 80 63 75
66 86 93 83 75 70 66
68 72 82 105 118 64 73
70 60 73 106 105 85 73
72 74 65 145 153 176 178

Table 15.3: Sample points per time slice in 3D sampling.

distributes the points relatively evenly over the remainder of the time slices with a slight
emphasis on time slices closer to the first and last time slices. This emphasis on the first and
last time slices occurs as this study did not allow the data to wrap around temporally. This
makes the first and last time slices extremes for the data. The method tries to distribute the
sample points relatively evenly based on the temporal range parameter, as can be seen by the
relatively even number of sample points per time slice across the majority of the time slices.
However, the distances to the points in the first and last time slices will clearly be larger in
general and this implies larger estimated error variances in general. Thus, more points are
placed in the first and last time slices as they tend in general to have larger estimated error
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Figure 15.1: Sample points per time slice for sets one and two for Addition of a Point at Point of
Maximum Absolute Error and Addition of a Point at Point of Maximum Estimated Error Variance

in 3D sampling.

variances.

Addition of a Point at Point of Maximum Absolute Error places extreme emphasis on some
time slices such as the first, second, fourth, sixty-eighth, seventieth and last time slices while
very little emphasis is placed on time slices such as thirty-sixth, fortieth, forty-second and
forty-fourth time slices. The predictions at a point are dependent on both the distances
between the sample points and that point (through the weights) and the values of the sample
points. This dependence on the distances helps account for why the starting and ending time
slices have more emphasis. Points at the start and end tend to be further away temporally
resulting in larger distances. These larger distances imply that the covariances will be smaller.
A smaller covariance implies less correlation between the sample points and the point at which
estimation occurs. This results in higher errors. Additionally, those maps per time slice which
show more variability, tend to have more sample points placed in that time slice as the more
variable the values are, the higher the errors tend to be unless a lot of information regarding
the variability is found in the sample point values. Those time slices where very few sample
points are allocated, tend to be the least variable of the time slices.

The final number of sample points per time slice for Addition of a point at Point of Maximum
Absolute Error and Addition of a Point at Point of Maximum Estimated Error Variance for
both set one and two can be seen in Figure 15.1. It is clear from this figure that as previously
discussed, the first and last time slices are favoured. However, it is possible that for the
method of Addition of a Point at Point of Maximum Absolute Error, some of the emphasis
on these time slices may also be linked to increased activity in the oceans at these time
slices. In the summer months, the Southern Ocean exhibits more activity than in the winter
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months and this may account for the placement of some of the points in these time slices.
Additionally, this figure also demonstrates clearly how evenly distributed the sample points
are when using the method of Addition of a Point at Point of Maximum Absolute Error.
Addition of a Point at Point of Maximum Absolute Error, clearly has time slices with more
sample points located within them and this is due to the activity and variability at those
time slices.
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Figure 15.2: Sample points per time slice for sets one and two for Addition of a Point at Point of
Maximum Absolute Error and Addition of a Point at Point of Maximum Estimated Error Variance

in 3D sampling with the modified time step labels.

In order to clarify the affect of higher activity/higher variability in carbon dioxide flux values
on the placement of sample points, the time step reference values were modified such that the
most active period of the year now occurs in the centre of the temporal range. The starting
set of sample points used for the original runs were also modified to reflect the new time step
labelling and used as the starting sets once again. The resulting errors for the new time step
labelling are similar to those obtained under the original labelling. However, the new number
of points per time slice can be seen in Figure 15.2.

For the original time step labels, the high variability period coincides with the temporal
extremes of the data set, thus, we cannot distinguish between the emphasis placed on these
time steps due to the variability in the data or due to extreme distances within the covariances.
Considering Figure 15.2, it is seen that the emphasis on the extremes of the data set is much
less prevalent when the high variability period falls in the temporal centre of the data set.
This high variability period does still receive emphasis for the Addition of a Point at Point
of Maximum Absolute Error method. This suggests that for Addition of a Point at Point of
Maximum Absolute Error that the variability of the data values has more prominent influence
than the extreme distances within the covariances. The placement of sample points by
Addition of a Point at Point of Maximum Estimated Error Variance remains largely unaltered
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with the emphasis occurring at the temporal extremes of the data set and a relatively even
distribution of points over the remaining of the time steps.

Figure 15.3 demonstrates how the various errors change with the addition of points within
the methods of Addition of a Point at Point of Maximum Absolute Error and Addition of a
Point at Point of Maximum Estimated Error Variance.

Figures 15.3(a) and 15.3(e) show the changes in maximum absolute error and maximum
estimated error variance respectively. The notable feature here is that the differences in these
errors between the methods is larger than it was in two-dimensional sampling. However, as
there is now a third dimension and greater distances are possible between points, this is not
totally unexpected. Figure 15.3(c) illustrated that it requires many more points for Addition
of a Point at Point of Maximum Estimated Error Variance to fall below 20% absolute error
than it does for the method of Addition of a Point at Point of Maximum Absolute Error.
The figures of the changes of the remaining errors, as points are added to the sample set,
show similar trends to the results for the same methods in two dimensions.

Figures 15.4 to 15.12 are maps of the true carbon dioxide flux as well as maps of the predicted
carbon dioxide flux, the estimated error variance and the true error across the full latitude
and longitude grid reference ranges for time slices 0, 40 and 72 for the three different methods
for set two. Time slices 0 and 72 were chosen due to emphasis (in terms of number of sample
points) placed on them by the methods which perform the addition of one point per iteration.
Time slice 40 was chosen as it was given an average emphasis by the Random Sampling and
Addition of a Point at Point of Maximum Estimated Error Variance and a very low emphasis
by the method of Addition of a Point at Point of Maximum Absolute Error. Appendix F
contains similar maps for time slices 20 and 60 for set two and for time slices 0, 20, 40, 60
and 72 for set one.

If one considers Figures 15.4 to 15.6 which show time slice zero, it is clear that this time
slice is quite variable. Additionally, it can be seen that Addition of a Point at Point of
Maximum Absolute Error best predicts this time slice, while Random Sampling worst predicts
it. Considering the sample point locations, indicated by white dots in the estimated error
variance maps, it can be seen that Random Sampling has no preferential placement. Addition
of a Point at Point of Maximum Estimated Error Variance places the points with a relatively
even distribution, while Addition of a Point at Point of Maximum Absolute Error groups the
sample points in more variable regions. The same can be seen in Figures 15.10 to 15.12 which
are the maps for the last time slice.

If the maps in Figures 15.7 to 15.9 are considered, all three methods make decent predictions
for this time slice, although none are perfectly matched to the true flux values. Random
Sampling is the worst predictor of the three methods, while visually it is difficult to decide
whether the Addition of a Point at Point of Maximum Absolute Error or the Addition of a
Point at Point of Maximum Estimated Error Variance provides a better prediction. However,
it is noted that the Addition of a Point at Point of Maximum Absolute Error produces a very
similar map with 36 less sample points in this time slice. The locations of sample points
follows the previously mentioned trends once again.

Further considering Figures 15.8(c) and 15.8(d), it is clear that in the areas of highest esti-
mated error variance, the true error is not at its largest. This indicates that the estimated
error variance is not a good surrogate for the true error or the absolute value of the true
error.
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Figure 15.3: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across sets one and two generated using Addition of a Point at Point of
Maximum Absolute Error and Addition of a Point at Point of Maximum Estimated Error Variance.
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Figure 15.4: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 0 of set two generated using Random Sampling. The white dots in (c) indicate

the sampling points.
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Figure 15.5: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 0 of set two generated using Addition of a Point at Point of Maximum Absolute

Error sampling. The white dots in (c) indicate the sampling points.
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Figure 15.6: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 0 of set two generated using Addition of a Point at Point of Maximum Estimated

Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure 15.7: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 40 of set two generated using Random Sampling. The white dots in (c) indicate

the sampling points.
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Figure 15.8: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 40 of set two generated using Addition of a Point at Point of Maximum Absolute

Error sampling. The white dots in (c) indicate the sampling points.
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Figure 15.9: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 40 of set two generated using Addition of a Point at Point of Maximum

Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure 15.10: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 72 of set two generated using Random Sampling. The white dots in (c)

indicate the sampling points.
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Figure 15.11: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 72 of set two generated using Addition of a Point at Point of Maximum

Absolute Error sampling. The white dots in (c) indicate the sampling points.
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Figure 15.12: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 72 of set two generated using Addition of a Point at Point of Maximum

Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.

15.2 Limitations

Each method was only implemented twice. The methods were implemented using only the
single chosen trend and covariance structure. This covariance structure is separable and a
non-separable covariance structure may yield better results. The methods were only allowed
to choose approximately 5% of the data and results would improve if more data was selected.
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CONCLUSIONS

When the sampling methods tested on the two-dimensional subset (which were used to select
approximately 10% of the subset) are considered, it is clear that the a-posteriori methods
outperform the a-priori methods. It was found that the Hybridised Genetic Algorithm de-
signed to Minimise Total Absolute Error and its respective non-hybridised version yielded
the lowest total absolute errors. The percentage absolute errors produced by Hybridised Ge-
netic Algorithm designed to Minimise Total Absolute Error were between 2.68% and 3.05%.
The non-hybridised genetic algorithm with the same fitness function, produced percentage
absolute errors between 2.10% and 3.48%. The Hybridised Genetic Algorithm designed to
Minimise Total Absolute Error was the most computationally expensive of the a-posteriori
methods, while the non-hybridised version was only slightly less expensive.

The remaining a-posteriori method designed to reduce errors, Addition of a Point at Point
of Maximum Absolute Error, produces percentage absolute errors of between 3.37% and
4.16% while remaining significantly less computationally expensive than the other a-posteriori
methods. This lead to the conclusion that the Addition of a Point at Point of Maximum
Absolute Error method produced the best trade-off between computationally intensity and
minimisation of total absolute error amongst the a-posteriori methods.

Random Sampling achieved percentage absolute errors in the range of 7.04% to 9.08% and
while this method was also the least computationally expensive, it is known to be unpre-
dictable in that it may produce errors across the full range from the best possible to the
worst possible errors, making it unreliable. This range covers at the very least from the best
attained percentage error of 2.10% to the worst attained percentage error of 64.37%, attained
by the Genetic Algorithm designed to Maximise Total Absolute Error.

Of the a-priori methods tested which relied solely on the estimated error variance, the Addi-
tion of a Point at Point of Maximum Estimated Error Variance was the least computationally
expensive, followed by the Updated Kriging Variance Algorithm, then the Genetic Algorithm
designed to Minimise Total Estimated Error Variance. Finally the most computationally ex-
pensive a-priori method was the Hybridised Genetic Algorithm designed to Minimise Total
Estimated Error Variance. Addition of a Point at Point of Maximum Estimated Error Vari-
ance achieved percentage absolute errors in the range of 5.63% to 6.67%, while those for the
computationally more expensive Updated Kriging Variance Algorithm fell within the range
of 6.08% to 7.30%. The Genetic Algorithm designed to Minimise Total Estimated Error Vari-
ance produced percentage absolute errors in the range of 5.98% to 6.21% while its hybridised
counterpart generated percentage absolute errors in the range of 6.05% to 6.39%. Given the
very small difference in errors produced by the various a-priori methods, the computation-
ally least expensive Addition of a Point at Point of Maximum Estimated Error Variance was
deemed to be the better of the methods for use in three-dimensional sampling.
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Of interest is that the a-posteriori methods attaining the lower percentage absolute errors,
select sample points such that the areas of higher variability are more densely sampled than
those of lower variability, while the a-priori methods designed to minimise errors which rely
solely on the estimated error variance, select the sample points such that there is a relatively
even distribution across the area of interest.

When the total absolute errors and total estimated error variances were compared, it was
noted that a lower total estimated error variance did not guarantee a lower total absolute
error. When the results from the Genetic Algorithm designed to Maximise Total Estimated
Error Variance were considered, it was seen that a run with a resulting percentage absolute
error of 24.46% had a total estimated error variance of 2389.88, while a run with a resulting
percentage error of 48.59% had a total estimated error variance of 2382.03. In this case, a
difference of approximately 0.33% in total estimated error variance resulted in difference of
approximately 24% in percentage absolute error. In addition, the run with the lower total
estimated error variance produced a higher percentage absolute error. However, in the case of
the Genetic Algorithm designed to Maximise Total Absolute Error, the order of runs in terms
of lower total estimated error is also the order of the runs in terms of lower total absolute
error. This appears to be an exception rather than a rule in general though as in many other
instances, this is not the case.

In fact, the results suggest that one can incur a range of total absolute errors for the same
total estimated error variance. This is not unexpected, however, as estimated error variances
relies solely on the distances between points and the covariance structure. Thus, one could
experience the same estimated error variance at two unsampled points (if they are the same
distances from the sampled points) and they would be assigned the same predicted value.
However, it is possible that they would have quite different true values, resulting in a different
absolute error. This explains not only why the same total estimated error may be seen with
different total absolute errors but also why conversely the same total absolute error may
be found to have different total estimated error variances. Thus, it is concluded that the
estimated error variance is not an accurate surrogate for the true absolute error. However, if
the sampling is to be done a-priori, then the estimated error variance is an easily obtainable
error measure. This study does, however, recommend that if the sampling is being performed
a-posteriori (such as for data minimisation), that the absolute error be used to obtain more
accurate estimations. Additionally, if modelled data is available for the parameter to be
sampled, one could consider making use of that data for a-posteriori sampling strategies to
obtain points for sampling in the real world.

One additional benefit of Addition of a Point at Point of Maximum Absolute Error, Addition
of a Point at Point of Maximum Estimated Error Variance and the Updated Kriging Variance
Algorithm is that these methods have an order of preference within the sampling. This order
of preference is not available within the genetic algorithms. This order of preference allows
one to sample a smaller percentage of the data than the algorithm was run up until by
merely selecting the points in the order they were chosen by the algorithm until the new
smaller percentage is reached instead of having to run the algorithm again for the smaller
percentage. Additionally, if a larger percentage is to sampled, the algorithm can be started
with the current percentage’s sample locations as the starting set with the end number of
sample locations determined by the new larger percentage.

The results for sampling from the three-dimensional subset up to approximately 5% of the
subset can be summarised as follows. The Random Sampling produced percentage absolute
errors of 21.02% and 20.98% and total estimated error variances of 52812.12 and 53241.83
respectively. Addition of a Point at Point of Maximum Estimated Error Variance produced
percentage absolute errors of 18.54% and 18.55% with respective total estimated error vari-
ances of 43615.67 and 43642.56. While Addition of a Point at Point of Maximum Absolute
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Error produced the lowest percentage absolute errors of 14.33% and 14.32% with total es-
timated error variances of 74641.82 and 74806.62 respectively. It is clear that as with the
two-dimensional sampling, the a-posteriori method outperforms the a-priori method and
that a lower total estimated error variance does not imply a lower total absolute error as,
the a-posteriori method also generates the highest total estimated error variances. Thus,
using the covariance and trend structures and parameters selected for this study, the a-priori
method selected for use on the three-dimensional subset achieved a percentage absolute error
of below 20% when selecting approximately 5% of the data, while the a-posteriori method
was able to bring the percentage absolute error to below 15% for the same sample size.

16.1 Summary of Contributions

This study has shown that at least for this data set, the estimated error variance does not
provide a good surrogate for absolute error. The results also clearly indicate that in cases
where the true error is available, such as data minimisation, the absolute error should be used
as the measure of error. While this does not follow the decision of Brodkin [8], he did not
conduct a comparison of error measures before making use of Addition of a Point at Point
of Maximum Estimated Error Variance. The conclusions of this study regarding estimated
error variance as a surrogate for absolute error are as follows:

• If the variable is known at all points, in cases such as data minimisation, absolute error
should be used as the error measure.

• If a model of the data is available, or an expert on the variable of interest is avail-
able, the knowledge gained from these sources should be used to determine areas of
higher variability. These areas should be more densely sampled than the areas of lower
variability.

• If there are minimal or no available observations, then the estimated error variance may
be used as a surrogate for absolute error. While the estimated error variance does not
provide a good surrogate for absolute error, if there are no data available, it provides
an easy to calculate error measure.

This study concludes that based on the 2D sampling, that the genetic algorithms designed to
minimise total absolute error have shown that the Addition of a Point at Point of Maximum
Absolute Error would prove to be a good validation sampling method for future studies.

Additionally, this study has shown that there are methods that are relatively computation-
ally inexpensive (both a-priori and a-posteriori) which can be used to sample a large three-
dimensional data set and produce reasonably accurate results which can be seen from the
predicted maps for three-dimensional sampling in Chapter 15. As the data set used is mod-
elled data for the carbon dioxide flux in the Southern Ocean, it is hoped that these methods
may help inform new methods or provide starting points for sampling in the Southern Ocean.

16.2 Suggestions for Further Research

It is suggested that the following be completed in order to further this research:
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• Data Set - It is suggested that the three-dimensional portion of this study be repeated
on the complete data set. This would require more computational power but given that
the methods could be adapted for parallel computing, the time taken for completion
could be reduced.

• Parallel Computing - Regardless of size of the data set, it is advised that the methods
presented in this study be coded for parallel computing to reduce the computational
time of the methods.

• Data Wrap Around - It is suggested that in terms of time and longitude, the code is
reproduced such that the first and last points are considered to be sequential.

• Trend - More complex trends should be considered.

• Covariance Structure - It is suggested that the analysis be performed for various other
conditions on the covariance structure. These include but are not restricted to the
inclusion of a nugget term, the use of non-separable covariance functions and the use
of anisotropy.

• Tapering - In order to reduce the computational burden, it is suggested that a tapering
function (such as the Wendland taper) be used in order to reduce the covariance matrix
to a sparse matrix. This would allow sparse solvers to be used and would reduce storage
for the matrix.

• Genetic Operators - If more complex genetic operators are considered, there is the
possibility that the sample set will converge to a near-optimal set in a more timely
manner.

• Estimation Updating - There are update equations available for the Kriging estimations
and estimated error variances which if used could reduce the computational require-
ments of some of the methods used. Only the update equations for the covariance
matrix were used in this study.

• Moving Window Technique - This technique allows for the model and parameters to be
adapted for a local area based on the data within a window [56]. This technique has
the advantage of an expected increase in accuracy. As one would not expect the model
and parameters to be constant over the entire Southern Ocean (as has been assumed
in this study), this would be the next logical step in the modelling of this data. Use
of the moving window technique would however, increase the complexity of the work.
Additionally, Journel and Rossi [36] provide recommendations for trend removal in this
scenario.

• Sample Sensitivity Error Sampling - It may be worthwhile testing the sample sensitivity
error method of sampling against the methods used in this study. This method requires
that every point in the data set be estimated as many times as there are points in the
sample set, as it must be estimated using the sample set with one sample point removed.
This must be done for each sample point in the sample set [66]. These values must then
be averaged before the next sample point can be selected [66]. This suggests it may
be computationally expensive on large data sets. As the focus of this study was to
determine if the estimated error variance is a good surrogate error for the absolute
error, this method was not tested. The only drawback of this method for sampling
in reality is that it would require the new sample value to be acquired before the
next sample point could be selected. This would make this method infeasible in some
sampling environments, especially if the data under consideration is spatio-temporal.
However, as this method does not require the true values at all locations, only those
already sampled, it would be of value to compare its performance and computational
expense to the that of the methods tested in this study.
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[56] E. Pardo-Igúzquiza, P. A. Dowd, and D. I. F. Grimes. An automatic moving window
approach for mapping meteorological data. Internation Journal of Climatology, 25:665–
678, 2005.

[57] A. Paul-Dubois-Taine and S. Nadarajah. A sequential sampling approach to build effi-
cient kriging response surfaces for aerodynamics data, 2012.

[58] G. T. Pereira, Z. M. de Souza, D. De Bortoli Teixeira, R. Montanari, and J. Marques
Jnr. Optimization of the sampling scheme for maps of physical and chemical properties
estimated by kriging. R. Bras. Ci. Solo, 37:1128–1135, 2013.

[59] I. C. Prentice, G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J.
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APPENDIX A

PYTHON’S STATS PACKAGE

This package is found within Scipy and contains many probability distributions and statistical
functions [11]. A short and incomplete list of these distributions and functions is [11]:

• expon - A continuous exponential variable

• norm - A continuous normal (Gaussian) variable

• binom - A discrete binomial variable

• skew() - Returns skewness of data set

• kurtosis() - Returns kurtosis of data set

• f˙oneway() - Performs a oneway ANOVA

For more information and the remaining distributions and functions see [11].
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APPENDIX B

ORDINARY LEAST SQUARES TRENDS

In Table B.1, the Ordinary Least Squares fitted trend coefficients are given for the constant,
linear and quadratic trends presented in 6.1.

Trend Structure β

Constant β0 2.9782

Linear β0 1.2221
β1 −0.0076
β2 0.0626
β3 0.0035

Quadratic β0 9.0659
β1 −2.7548× 10−1

β2 −2.1838× 10−1

β3 2.1173× 10−3

β4 1.7457× 10−3

β5 1.4499× 10−3

β6 −6.4410× 10−5

β7 4.9714× 10−3

β8 6.5585× 10−5

β9 3.6007× 10−4

Table B.1: Ordinary Least Squares Trend Coefficients for Various Trend Structures.
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APPENDIX C

TREND AND COVARIANCE PARAMETER ESTIMATION

Any additional figures and values from the determination of the trend and covariance param-
eters will be presented in this Appendix.

C.1 Maximum Likelihood Estimation Results - Exponential
Covariance Structure

Tables C.1 to C.3 give the values of the quadratic trend and exponential covariance parameters
as fitted to the 20 randomly generated sets, as discussed in Section 7.1. The histograms of
these parameters can be seen in Figures C.1 to C.2.
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APPENDIX C. TREND AND COVARIANCE PARAMETER ESTIMATION

Random Set σ2 atime alat alon
1 5.0573 22.7835 6.1693 15.0702
2 4.7250 21.4301 6.3511 15.2178
3 5.0345 24.3857 6.2375 14.9917
4 4.8854 23.1719 5.9747 14.8331
5 4.7097 22.5230 6.0012 14.5867
6 4.9937 22.7475 6.4561 13.9191
7 5.3576 24.9536 6.1280 15.5901
8 4.7088 22.2955 5.9718 14.8174
9 4.6233 22.4939 6.2066 14.5908
10 4.6292 23.0525 6.2542 15.0794
11 5.1644 22.8773 6.3991 16.1252
12 4.8642 24.5844 6.2979 14.2846
13 4.6353 22.7629 6.1049 14.2013
14 4.7695 25.0176 6.0136 14.9733
15 5.0303 24.2962 6.4479 15.3430
16 5.0141 24.2188 6.1094 15.0203
17 5.2401 26.3618 5.9868 16.1845
18 5.0765 24.0453 6.3878 13.6712
19 5.0103 24.4827 6.4369 14.9731
20 5.0172 23.1294 6.2146 14.2381

Table C.1: σ2, atime, alat and alon across the 20 random sets for the exponential covariance
structure.

Random Set β0 β1 β2 β3 β4
1 8.6935 −0.1895 −0.1189 −0.0284 0.0016
2 9.0787 −0.1912 −0.1462 −0.0321 0.0016
3 8.6656 −0.1909 −0.1299 −0.0278 0.0016
4 9.4797 −0.1942 −0.1422 −0.0377 0.0016
5 8.4042 −0.1893 −0.1407 −0.0190 0.0017
6 9.3431 −0.2058 −0.1651 −0.0301 0.0018
7 8.6701 −0.1757 −0.1349 −0.0307 0.0015
8 8.2232 −0.1981 −0.1002 −0.0247 0.0016
9 10.2740 −0.2246 −0.1932 −0.0312 0.0017
10 8.3086 −0.2063 −0.1191 −0.0182 0.0017
11 9.1265 −0.1901 −0.1366 −0.0335 0.0016
12 9.0890 −0.1972 −0.1517 −0.0277 0.0017
13 9.2247 −0.1964 −0.1579 −0.0294 0.0016
14 9.4169 −0.1986 −0.1463 −0.0387 0.0016
15 9.2661 −0.2169 −0.1395 −0.0300 0.0018
16 8.6081 −0.1932 −0.1317 −0.0274 0.0016
17 8.7676 −0.1973 −0.1486 −0.01668 0.0016
18 9.3616 −0.2046 −0.1485 −0.02942 0.0016
19 8.4690 −0.1868 −0.1291 −0.02222 0.0016
20 8.0629 −0.1834 −0.1301 −0.01759 0.0016

Table C.2: β0, β1, β2, β3 and β4 across the 20 random sets for the exponential covariance structure.
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Random Set β5 β6 β7 β8 β9
1 −3.2178× 10−4 5.6456× 10−5 0.0023 3.9701× 10−5 0.0006
2 2.3698× 10−4 8.1300× 10−5 0.0023 4.3924× 10−5 0.0006
3 4.0169× 10−5 8.0612× 10−5 0.0022 5.6514× 10−5 0.0005
4 −7.1953× 10−5 9.2234× 10−5 0.0023 5.3165× 10−5 0.0007
5 3.0287× 10−4 4.9960× 10−5 0.0024 −4.6870× 10−5 0.0005
6 5.6232× 10−4 9.2522× 10−5 0.0026 1.2528× 10−5 0.0005
7 −1.1252× 10−5 8.8858× 10−5 0.0023 −3.7337× 10−5 0.0006
8 −3.0318× 10−4 7.5290× 10−5 0.0025 8.0508× 10−5 0.0004
9 6.3191× 10−4 6.8071× 10−5 0.0030 5.3935× 10−5 0.0007
10 3.5894× 10−5 5.8092× 10−5 0.0025 4.7480× 10−5 0.0004
11 −3.2187× 10−5 8.2777× 10−5 0.0023 3.3315× 10−5 0.0006
12 2.2741× 10−4 7.7569× 10−5 0.0025 −9.0743× 10−6 0.0006
13 4.3675× 10−4 1.1935× 10−4 0.0026 −6.5640× 10−5 0.0005
14 2.3701× 10−4 1.0706× 10−4 0.0022 1.4438× 10−4 0.0006
15 1.4786× 10−4 1.0400× 10−4 0.0027 7.6378× 10−5 0.0004
16 1.2081× 10−4 8.7931× 10−5 0.0025 2.8806× 10−6 0.0005
17 2.4956× 10−4 7.2970× 10−5 0.0027 −7.1636× 10−5 0.0003
18 5.5715× 10−5 8.9070× 10−5 0.0028 8.0947× 10−6 0.0005
19 9.7067× 10−6 5.4581× 10−5 0.0024 2.6492× 10−5 0.0005
20 3.8409× 10−4 6.0311× 10−5 0.0023 −1.0986× 10−5 0.0003

Table C.3: β5, β6, β7, β8 and β9 across the 20 random sets for the exponential covariance structure.
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Figure C.1: Histogram of (a) σ2, (b) atime, (c) alat and (d) alon values from the 20 random sets for
the exponential covariance structure.
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Figure C.2: Histogram of (a) β0, (b) β1, (c) β2, (d) β3, (e) β4, (f) β5, (g) β6, (h) β7, (i) β8 and (j)
β9 values from the 20 random sets for the exponential covariance structure.
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C.2 Maximum Likelihood Estimation Results - Spherical Co-
variance Structure

Tables C.4 to C.6 give the values of the quadratic trend and exponential covariance parameters
as fitted to the 20 randomly generated sets, as discussed in Section 7.1. The histograms of
these parameters can be seen in Figures C.3 to C.4.
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Random Set σ2 atime alat alon
1 5.3605 50.2239 13.5137 33.5363
2 4.9507 46.8068 13.5578 34.0753
3 5.1489 51.5012 13.4025 32.9962
4 5.1807 50.6921 13.1981 33.1790
5 4.8423 48.7064 12.8241 32.2104
6 5.2940 50.2454 13.9823 31.3071
7 5.6875 53.7203 13.2934 35.0900
8 4.9454 49.0319 13.2168 32.5935
9 4.7653 48.6569 13.2669 32.1951
10 4.7766 50.4847 13.6215 32.3945
11 5.3898 50.1465 13.4757 35.7351
12 5.0728 52.2925 13.8196 31.9248
13 4.7778 48.7663 13.1575 31.4395
14 4.8526 52.0244 13.1592 32.7050
15 5.2070 52.0300 13.8161 34.1887
16 5.1957 52.1298 12.8605 33.7832
17 5.4008 55.4858 12.7633 35.9469
18 5.3714 52.1224 13.7318 30.9927
19 5.1523 51.5264 14.3448 32.2174
20 5.3925 51.4034 13.5510 32.2885

Table C.4: σ2, atime, alat and alon across the 20 random sets for the spherical covariance structure.

Random Set β0 β1 β2 β3 β4
1 7.4508 −0.1691 −0.0842 −0.0220 0.0015
2 8.0658 −0.1751 −0.1183 −0.0259 0.0015
3 7.6596 −0.1719 −0.1039 −0.0236 0.0015
4 8.4769 −0.1730 −0.1171 −0.0336 0.0014
5 7.2334 −0.1717 −0.1079 −0.0133 0.0016
6 8.2105 −0.1870 −0.1349 −0.0238 0.0016
7 7.4027 −0.1512 −0.1005 −0.0246 0.0014
8 7.1067 −0.1790 −0.0698 −0.0192 0.0015
9 9.2158 −0.2041 −0.1660 −0.0264 0.0016
10 7.3445 −0.1869 −0.0941 −0.0147 0.0016
11 7.9131 −0.1718 −0.1068 −0.0262 0.0015
12 7.9370 −0.1789 −0.1173 −0.0226 0.0015
13 8.1781 −0.1766 −0.1344 −0.0235 0.0015
14 8.2472 −0.1777 −0.1193 −0.0313 0.0015
15 8.1469 −0.1986 −0.1108 −0.0231 0.0016
16 7.3146 −0.1721 −0.0913 −0.0209 0.0015
17 7.5546 −0.1759 −0.1103 −0.0115 0.0015
18 8.2598 −0.1827 −0.1172 −0.0258 0.0015
19 7.3650 −0.1667 −0.1026 −0.0173 0.0014
20 6.9976 −0.1626 −0.0986 −0.0136 0.0014

Table C.5: β0, β1, β2, β3 and β4 across the 20 random sets for the spherical covariance structure.
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Random Set β5 β6 β7 β8 β9
1 −4.4154× 10−4 3.0785× 10−5 0.0020 2.2034× 10−5 0.0006
2 1.0821× 10−4 5.1543× 10−5 0.0021 3.9252× 10−5 0.0006
3 −1.2891× 10−5 5.7303× 10−5 0.0019 4.7674× 10−5 0.0005
4 −1.2319× 10−4 7.0993× 10−5 0.0020 4.7282× 10−5 0.0007
5 2.1009× 10−4 2.9548× 10−5 0.0021 −4.9937× 10−5 0.0005
6 4.4629× 10−4 6.7326× 10−5 0.0023 2.5324× 10−6 0.0005
7 −1.2799× 10−4 6.4796× 10−5 0.0019 −6.1851× 10−5 0.0006
8 −3.9689× 10−4 5.1374× 10−5 0.0022 6.6396× 10−5 0.0004
9 5.5258× 10−4 4.9387× 10−5 0.0027 2.7709× 10−5 0.0007
10 4.5999× 10−6 3.6275× 10−5 0.0022 5.2902× 10−5 0.0004
11 −8.1359× 10−5 5.4497× 10−5 0.0020 1.5312× 10−5 0.0006
12 6.6551× 10−5 5.3248× 10−5 0.0021 −1.4301× 10−5 0.0006
13 4.1127× 10−4 8.4283× 10−5 0.0023 −7.5208× 10−5 0.0005
14 2.0002× 10−4 7.1026× 10−5 0.0020 1.2499× 10−4 0.0006
15 5.3971× 10−5 6.9113× 10−5 0.0024 6.8436× 10−5 0.0004
16 −1.0579× 10−4 5.2883× 10−5 0.0021 1.1019× 10−5 0.0005
17 8.4962× 10−6 4.5845× 10−5 0.0024 −7.4101× 10−5 0.0003
18 −9.3147× 10−5 7.0132× 10−5 0.0025 2.3467× 10−7 0.0005
19 −5.0068× 10−6 2.9259× 10−5 0.0020 1.3512× 10−5 0.0005
20 2.6364× 10−4 3.9226× 10−5 0.0020 −6.4328× 10−6 0.0003

Table C.6: β5, β6, β7, β8 and β9 across the 20 random sets for the spherical covariance structure.
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Figure C.3: Histogram of (a) σ2, (b) atime, (c) alat and (d) alon values from the 20 random sets for
the spherical covariance structure.
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Figure C.4: Histogram of (a) β0, (b) β1, (c) β2, (d) β3, (e) β4, (f) β5, (g) β6, (h) β7, (i) β8 and (j)
β9 values from the 20 random sets for the spherical covariance structure.
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C.3 Maximum Likelihood Estimation Results - Approximate
Gaussian Covariance Structure

Tables C.7 to C.9 give the values of the quadratic trend and exponential covariance parameters
as fitted to the 20 randomly generated sets, as discussed in Section 7.1. The histograms of
these parameters can be seen in Figures C.5 to C.6.
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Random Set σ2 atime alat alon
1 4.7796 9.2314 8.8221 22.6119
2 4.5548 12.1954 8.5727 18.7210
3 4.6101 11.0939 8.9878 18.3619
4 4.6874 15.5184 7.3557 16.6821
5 4.4889 8.5797 8.6546 26.1962
6 4.6780 8.3240 9.0031 25.7619
7 4.8524 9.4512 9.7783 20.8382
8 4.5543 14.4621 7.6881 19.4464
9 4.4619 11.5512 7.8470 21.6766
10 4.4459 12.1568 8.5923 20.9701
11 4.6518 8.6465 9.7745 24.0278
12 4.5603 9.8959 9.1478 22.5086
13 4.4567 10.2680 6.8393 24.0173
14 4.5229 16.9987 7.6082 16.9866
15 4.6737 13.4340 7.6743 20.2086
16 4.7404 10.8897 7.1012 24.9786
17 4.6165 12.2321 8.5475 18.4114
18 4.6428 14.5745 7.5564 18.2987
19 4.5807 11.6347 9.0561 18.3679
20 4.6031 11.7356 8.5834 16.1706

Table C.7: σ2, atime, alat and alon across the 20 random sets for the approximate Gaussian
covariance structure.

Random Set β0 β1 β2 β3 β4
1 9.7171 −0.2722 −0.2113 −0.0076 0.0017
2 9.3739 −0.2606 −0.2111 −0.0069 0.0017
3 9.6350 −0.2627 −0.2160 −0.0094 0.0017
4 9.3554 −0.2631 −0.1968 −0.0078 0.0016
5 9.3745 −0.2722 −0.2229 −0.0009 0.0018
6 8.9531 −0.2695 −0.1907 −0.0012 0.0018
7 9.4328 −0.2665 −0.2108 −0.0063 0.0017
8 8.9550 −0.2614 −0.1882 −0.0045 0.0016
9 9.0957 −0.2746 −0.1969 0.0003 0.0017
10 8.9580 −0.2610 −0.1958 −0.0019 0.0017
11 9.1857 −0.2665 −0.2024 −0.0049 0.0017
12 9.3080 −0.2696 −0.2111 −0.0037 0.0018
13 9.4095 −0.2684 −0.2241 −0.0014 0.0017
14 9.5485 −0.2562 −0.2161 −0.0110 0.0016
15 8.6102 −0.2651 −0.1904 0.0044 0.0017
16 9.1963 −0.2695 −0.1995 −0.0033 0.0018
17 9.4841 −0.2698 −0.2103 −0.0044 0.0017
18 9.3592 −0.2625 −0.2012 −0.0067 0.0016
19 9.4626 −0.2691 −0.2044 −0.0057 0.0017
20 8.7601 −0.2583 −0.2089 0.0025 0.0017

Table C.8: β0, β1, β2, β3 and β4 across the 20 random sets for the approximate Gaussian
covariance structure.
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Random Set β5 β6 β7 β8 β9
1 0.0009 −3.7430× 10−5 0.0048 4.2380× 10−5 0.0005
2 0.0012 −3.4543× 10−5 0.0045 4.8651× 10−5 0.0005
3 0.0011 −2.4213× 10−5 0.0047 5.9154× 10−5 0.0005
4 0.0009 −2.1008× 10−5 0.0047 8.2915× 10−5 0.0004
5 0.0014 −3.6299× 10−5 0.0049 6.8285× 10−6 0.0004
6 0.0010 −3.7360× 10−5 0.0047 3.3042× 10−5 0.0003
7 0.0012 −2.2367× 10−5 0.0048 4.0224× 10−5 0.0004
8 0.0009 −2.4403× 10−5 0.0047 5.4336× 10−5 0.0004
9 0.0009 −4.6820× 10−5 0.0049 4.9074× 10−5 0.0004
10 0.0010 −4.1390× 10−5 0.0046 3.5091× 10−5 0.0004
11 0.0011 −2.0143× 10−5 0.0047 2.4988× 10−5 0.0004
12 0.0013 −3.1080× 10−5 0.0047 2.6555× 10−5 0.0004
13 0.0014 −4.6627× 10−5 0.0048 1.7058× 10−5 0.0004
14 0.0014 −1.3837× 10−5 0.0045 1.0148× 10−4 0.0004
15 0.0011 −4.9898× 10−5 0.0048 2.3672× 10−5 0.0003
16 0.0010 −3.8155× 10−5 0.0047 6.2773× 10−5 0.0004
17 0.0011 −2.4394× 10−5 0.0048 4.1435× 10−5 0.0004
18 0.0009 −2.8415× 10−5 0.0047 4.7165× 10−5 0.0004
19 0.0009 −3.0733× 10−5 0.0048 6.4641× 10−5 0.0004
20 0.0014 −3.7618× 10−5 0.0047 1.0046× 10−5 0.0003

Table C.9: β5, β6, β7, β8 and β9 across the 20 random sets for the approximate Gaussian
covariance structure.
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Figure C.5: Histogram of (a) σ2, (b) atime, (c) alat and (d) alon values from the 20 random sets for
the approximate Gaussian covariance structure.
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Figure C.6: Histogram of (a) β0, (b) β1, (c) β2, (d) β3, (e) β4, (f) β5, (g) β6, (h) β7, (i) β8 and (j)
β9 values from the 20 random sets for the approximate Gaussian covariance structure
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APPENDIX D

TWO-DIMENSIONAL SAMPLING

Any additional figures from the two-dimensional sampling methods will be presented in this
appendix.

D.1 Random Sampling

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and the true error across the chosen two-dimensional region for sets
one, two, three, five, six, seven, nine and ten can be seen in Figures D.1 to D.8. These maps
are given for the full sample set of size 70 generated using Random Sampling (See Chapter
9).
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Figure D.1: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set one generated using Random Sampling. The white dots in (c) indicate the sampling

points.
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Figure D.2: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set two generated using Random Sampling. The white dots in (c) indicate the sampling

points.
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Figure D.3: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set three generated using Random Sampling. The white dots in (c) indicate the sampling

points.
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Figure D.4: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set five generated using Random Sampling. The white dots in (c) indicate the sampling

points.
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Figure D.5: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set six generated using Random Sampling. The white dots in (c) indicate the sampling

points.

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

3

8

(a)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

3

8

(b)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti
tu
d
e

G
ri
d
 R
e
fe
re
n
ce

0.0

1.5

3.0

(c)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

0

3

(d)

Figure D.6: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set seven generated using Random Sampling. The white dots in (c) indicate the sampling

points.
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Figure D.7: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set nine generated using Random Sampling. The white dots in (c) indicate the sampling

points.
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Figure D.8: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set ten generated using Random Sampling. The white dots in (c) indicate the sampling

points.
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D.2 Updated Kriging Variance Algorithm

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and the true error across the chosen two-dimensional region for sets
one, two, three, five, six, eight, nine and ten can be seen in Figures D.9 to D.16. These maps
are given for the full sample set of size 70 generated using the Updated Kriging Variance
Algorithm (See Chapter 10).

Figure D.17 shows how the errors progressed with the addition of points using the Updated
Kriging Variance Algorithm across sets one, two, three, five, six, eight, nine and ten.
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Figure D.9: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for set one generated using Updated Kriging Variance Algorithm sampling. The white dots in

(c) indicate the sampling points.
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Figure D.10: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set two generated using Updated Kriging Variance Algorithm sampling. The white

dots in (c) indicate the sampling points.
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Figure D.11: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set three generated using Updated Kriging Variance Algorithm sampling. The white

dots in (c) indicate the sampling points.
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Figure D.12: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set five generated using Updated Kriging Variance Algorithm sampling. The white

dots in (c) indicate the sampling points.
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Figure D.13: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set six generated using Updated Kriging Variance Algorithm sampling. The white dots

in (c) indicate the sampling points.
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Figure D.14: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set eight generated using Updated Kriging Variance Algorithm sampling. The white

dots in (c) indicate the sampling points.
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Figure D.15: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set nine generated using Updated Kriging Variance Algorithm sampling. The white

dots in (c) indicate the sampling points.
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Figure D.16: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set ten generated using Updated Kriging Variance Algorithm sampling. The white

dots in (c) indicate the sampling points.
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Figure D.17: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across various sets generated using the Updated Kriging Variance
Algorithm.
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D.3 Addition of a Point at Point of Maximum Estimated Er-
ror Variance

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and the true error across the chosen two-dimensional region for
sets one, two, three, four, five, six, seven and ten can be seen in Figures D.18 to D.25. These
maps are given for the full sample set of size 70 generated using the Addition of a Point at
Point of Maximum Estimated Error Variance (See Chapter 11).

Figure D.26 shows how the errors progressed with the additional of points using the method
of Addition of a Point at Point of Maximum Estimated Error Variance across sets one, two,
three, four, five, six, seven and ten.
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Figure D.18: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set one generated using Addition of a Point at Point of Maximum Estimated Error

Variance sampling. The white dots in (c) indicate the sampling points.
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Figure D.19: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set two generated using Addition of a Point at Point of Maximum Estimated Error

Variance sampling. The white dots in (c) indicate the sampling points.

163



APPENDIX D. TWO-DIMENSIONAL SAMPLING

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

3

8

(a)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

3

8

(b)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti
tu
d
e

G
ri
d
 R
e
fe
re
n
ce

0.0

1.5

3.0

(c)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

0

3

(d)

Figure D.20: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set three generated using Addition of a Point at Point of Maximum Estimated Error

Variance sampling. The white dots in (c) indicate the sampling points.
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Figure D.21: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set four generated using Addition of a Point at Point of Maximum Estimated Error

Variance sampling. The white dots in (c) indicate the sampling points.
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Figure D.22: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set five generated using Addition of a Point at Point of Maximum Estimated Error

Variance sampling. The white dots in (c) indicate the sampling points.
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Figure D.23: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set six generated using Addition of a Point at Point of Maximum Estimated Error

Variance sampling. The white dots in (c) indicate the sampling points.
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Figure D.24: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set seven generated using Addition of a Point at Point of Maximum Estimated Error

Variance sampling. The white dots in (c) indicate the sampling points.
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Figure D.25: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set ten generated using Addition of a Point at Point of Maximum Estimated Error

Variance sampling. The white dots in (c) indicate the sampling points.
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Figure D.26: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across various sets generated using the Addition of a Point at Point of
Maximum Estimated Error Variance.
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D.4 Addition of a Point at Point of Maximum Absolute Error

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and the true error across the chosen two-dimensional region for sets
one, two, three, four, five, seven, nine and ten can be seen in Figures D.27 to D.34. These
maps are given for the full sample set of size 70 generated using the Addition of a Point at
Point of Maximum Absolute Error (See Chapter 12).

Figure D.35 shows how the errors progressed with the additional of points using the method
of Addition of a Point at Point of Maximum Absolute Error across sets one, two, three, four,
five, seven, nine and ten.
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Figure D.27: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set one generated using Addition of a Point at Point of Maximum Absolute Error

sampling. The white dots in (c) indicate the sampling points.
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Figure D.28: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set two generated using Addition of a Point at Point of Maximum Absolute Error

sampling. The white dots in (c) indicate the sampling points.
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Figure D.29: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set three generated using Addition of a Point at Point of Maximum Absolute Error

sampling. The white dots in (c) indicate the sampling points.
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Figure D.30: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set four generated using Addition of a Point at Point of Maximum Absolute Error

sampling. The white dots in (c) indicate the sampling points.
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Figure D.31: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set five generated using Addition of a Point at Point of Maximum Absolute Error

sampling. The white dots in (c) indicate the sampling points.
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Figure D.32: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set seven generated using Addition of a Point at Point of Maximum Absolute Error

sampling. The white dots in (c) indicate the sampling points.
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Figure D.33: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set nine generated using Addition of a Point at Point of Maximum Absolute Error

sampling. The white dots in (c) indicate the sampling points.
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Figure D.34: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for set ten generated using Addition of a Point at Point of Maximum Absolute Error

sampling. The white dots in (c) indicate the sampling points.
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Figure D.35: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across various sets generated using the Addition of a Point at Point of
Maximum Absolute Error.
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D.5 Genetic Algorithm Designed to Minimise Total Absolute
Error

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and the true error across the chosen two-dimensional region for
runs one, three and four can be seen in Figures D.36 to D.38. These maps are given for the
full sample set of size 70 generated using the Genetic Algorithm designed to Minimise Total
Absolute Error (See Chapter 13.8).

Figure D.39 shows how the errors progressed across the iterations using the Genetic Algorithm
designed to Minimise Total Absolute Error across runs one, three and four.
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Figure D.36: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run one generated using the Genetic Algorithm designed to Minimise Total Absolute

Error. The white dots in (c) indicate the sampling points.
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Figure D.37: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run three generated using the Genetic Algorithm designed to Minimise Total Absolute

Error. The white dots in (c) indicate the sampling points.
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Figure D.38: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run four generated using the Genetic Algorithm designed to Minimise Total Absolute

Error. The white dots in (c) indicate the sampling points.
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Figure D.39: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across all iterations for various runs of the Genetic Algorithm designed to
Minimise Total Absolute Error.
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D.6 Genetic Algorithm Designed to Minimise Total Estimated
Error Variance

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and the true error across the chosen two-dimensional region for
runs two, four and five can be seen in Figures D.40 to D.42. These maps are given for the
full sample set of size 70 generated using the Genetic Algorithm designed to Minimise Total
Estimated Error Variance (See Chapter 13.9).

Figure D.43 shows how the errors progressed with the number of iterations using the Genetic
Algorithm designed to Minimise Total Estimated Error Variance across runs two, four and
five.
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Figure D.40: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run two generated using the Genetic Algorithm designed to Minimise Total Estimated

Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.41: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run four generated using the Genetic Algorithm designed to Minimise Total Estimated

Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.42: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run five generated using the Genetic Algorithm designed to Minimise Total Estimated

Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.43: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across all iterations for various runs of the Genetic Algorithm designed to
Minimise Total Estimated Error Variance.
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D.7 Hybridised Genetic Algorithm Designed to Minimise To-
tal Absolute Error

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and the true error across the chosen two-dimensional region for
runs one, two and four can be seen in Figures D.44 to D.46. These maps are given for the full
sample set of size 70 generated using the Hybridised Genetic Algorithm designed to Minimise
Total Absolute Error (See Chapter 13.10).

Figure D.47 shows how the errors progressed with the number of iterations using the Hy-
bridised Genetic Algorithm designed to Minimise Total Absolute Error across runs one, two
and four.

182



APPENDIX D. TWO-DIMENSIONAL SAMPLING

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

3

8

(a)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

3

8

(b)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti
tu
d
e

G
ri
d
 R
e
fe
re
n
ce

0.0

1.5

3.0

(c)

40 50 60 70 80 90 100
Longitude

Grid Reference

26

30

34

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−3

0

3

(d)

Figure D.44: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run one generated using the Hybridised Genetic Algorithm designed to Minimise Total

Absolute Error. The white dots in (c) indicate the sampling points.
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Figure D.45: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run two generated using the Hybridised Genetic Algorithm designed to Minimise Total

Absolute Error. The white dots in (c) indicate the sampling points.
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Figure D.46: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run four generated using the Hybridised Genetic Algorithm designed to Minimise Total

Absolute Error. The white dots in (c) indicate the sampling points.
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Figure D.47: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across all iterations for various runs of the Hybridised Genetic Algorithm
designed to Minimise Total Absolute Error.
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D.8 Hybridised Genetic Algorithm Designed to Minimise To-
tal Estimated Error Variance

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux, the
estimated error variance and the true error across the chosen two-dimensional region for runs
three, four and five can be seen in Figures D.48 to D.50. These maps are given for the full
sample set of size 70 generated using the Hybridised Genetic Algorithm designed to Minimise
Total Estimated Error Variance (See Chapter 13.11).

Figure D.51 shows how the errors progressed with the number of iterations using the Hy-
bridised Genetic Algorithm designed to Minimise Total Estimated Error Variance across runs
three, four and five.
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Figure D.48: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run three generated using the Hybridised Genetic Algorithm designed to Minimise

Total Estimated Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.49: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run four generated using the Hybridised Genetic Algorithm designed to Minimise Total

Estimated Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.50: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run five generated using the Hybridised Genetic Algorithm designed to Minimise Total

Estimated Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.51: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across all iterations for various runs of the Hybridised Genetic Algorithm
designed to Minimise Total Estimated Error Variance.
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D.9 Genetic Algorithm Designed to Maximise Total Absolute
Error

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and the true error across the chosen two-dimensional region for
runs one, three and five can be seen in Figures D.52 to D.54. These maps are given for the
full sample set of size 70 generated using the Genetic Algorithm designed to Maximise Total
Absolute Error (See Chapter 13.12).

Figure D.55 shows how the errors progressed with the number of iterations using the Genetic
Algorithm designed to Maximise Total Absolute Error across runs one, three and five.
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Figure D.52: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run one generated using the Genetic Algorithm designed to Maximise Total Absolute

Error. The white dots in (c) indicate the sampling points.
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Figure D.53: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run three generated using the Genetic Algorithm designed to Maximise Total Absolute

Error. The white dots in (c) indicate the sampling points.
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Figure D.54: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run five generated using the Genetic Algorithm designed to Maximise Total Absolute

Error. The white dots in (c) indicate the sampling points.
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Figure D.55: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across all iterations for various runs of the Genetic Algorithm designed to
Maximise Total Absolute Error.
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D.10 Genetic Algorithm Designed to Maximise Total Esti-
mated Error Variance

Maps of the true carbon dioxide flux as well as maps of the predicted carbon dioxide flux,
the estimated error variance and the true error across the chosen two-dimensional region for
runs two, four and five can be seen in Figures D.56 to D.58. These maps are given for the
full sample set of size 70 generated using the Genetic Algorithm designed to Maximise Total
Estimated Error Variance (See Chapter 13.13).

Figure D.59 shows how the errors progressed with the number of iterations using the Genetic
Algorithm designed to Maximise Total Estimated Error Variance across runs two, four and
five.
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Figure D.56: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run two generated using the Genetic Algorithm designed to Maximise Total Estimated

Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.57: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run four generated using the Genetic Algorithm designed to Maximise Total Estimated

Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.58: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for run five generated using the Genetic Algorithm designed to Maximise Total Estimated

Error Variance. The white dots in (c) indicate the sampling points.
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Figure D.59: Progression of (a) maximum absolute error, (b) total absolute error, (c) percentage
absolute error, (d) total integrated error, (e) maximum estimated error variance and (e) total

estimated error variance across all iterations for various runs of the Genetic Algorithm designed to
Maximise Total Estimated Error Variance.
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APPENDIX E

COMPARISON OF COMPUTATIONAL REQUIREMENTS

The computational requirements of each of the methods implemented can be found in Tables
E.1 to E.10. These tables have been broken down into the description of the first iteration,
the number of further iterations and the description of the remaining iterations. In each
of these descriptions, Z is regarded to be the value of the residuals rather than that of the
variable itself.

Method Random Sampling

First Iteration i = 1 1. Random selection of 70 sample points with repetition.

Number of Remaining Iter-
ations

0

Iteration i > 1 N/A

Table E.1: Summary of Random Sampling
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Method Updated Kriging Variance Algorithm

First
Iteration
i = 1

1. Removal of trend.

2. Random selection of 4 points without repetition

3. Generation of covariance matrix R equivalent to H described in Section 4.3. R
is a 4× 4 matrix.

4. Invert R to find R−1. This is not computationally intensive as it is a 4×4 matrix
only.

5. For each point which is not yet in the sample (671− 4 = 667 points):

(a) Generate Λi which is the covariance vector between the sample points and
the point selected at 5. It has length 4.

(b) Generate D = C(0)−ΛiR
−1ΛT

i . This involves a matrix-vector and then a
dot-product multiplication. Vectors of length 4 and matrix of size 4× 4.

(c) For each point in the data set (671 points):

i. Generate Vi, the covariance between the point selected at 5c and the
current sample set. Vector of length 4.

ii. Calculate r̂i+1 = ΛiR
−1Vi. This involves a matrix-vector and a dot-

product multiplication. Vectors of length 4 and matrix size 4× 4.

iii. Generate ri+1 which is the covariance between the points selected at 5
and 5c.

iv. Calculate
(ri+1 − r̂i+1)

2

D
and add it to the variable holding the sum of

these values across all 671 points for each point selected at 5. This
means at this iteration there will be 667 of these sums in total.

6. Find the maximum of the sums described in 5(c)iv. Select the point associated
with this maximum and add to the sample set. Also, remove this point from the
set of points which are not in the sample set.

Number
of
Remaining
Itera-
tions

65

Iteration
i > 1

1. Update R−1 for new point using method described in Section 4.4.1. T = C(0),
Q is the covariance vector between added point from previous iteration and
previous sample set (needs to be generated) and has length i + 3 and S = QT .
Due to same combinations of multiplications being used more than once, only
2 matrix-vector, 2 dot-product and 2 constant-vector multiplications need to
take place. Additionally the inversion required to calculate H is reduced to
the inversion of a constant as only one point has been added. Thus, merely a
division, additions, subtractions, 2 matrix-vector, 2 dot-product and 2 constant-
vector multiplications are needed to generate the new R−1.

2. Repeat steps 5 to 6 for the new R−1. The new vectors’ lengths will be (i + 3),
the new matrix sizes will be (i+ 3)× (i+ 3) and there will be 671− (i+ 3)points
at step 5 and the same number of sums in step 5(c)iv.

Table E.2: Summary of the Updated Kriging Variance Algorithm.

199



APPENDIX E. COMPARISON OF COMPUTATIONAL REQUIREMENTS

Method Addition of Point at Point of Maximum Estimated Error Variance

First
Iteration
i = 1

1. Removal of trend.

2. Random selection of 4 points without repetition.

3. Generate covariance matrix R, equivalent to K in Section 3.1.3. R has size of
4× 4

4. Invert R to obtain R−1. This is not computationally expensive as R is only of
size 4× 4.

5. For each point in the data set (671 points):

(a) Generate k, the vector of covariances between the sample points and the
point chosen at 5. k has length 4.

(b) Calculate the estimated error variance at point chosen at 5 by σ2E = C(0)−
kTR−1k. This involves a matrix-vector and a dot-product multiplication.
The vectors are of length 4 and the matrix is of size 4× 4.

6. Find the maximum estimated error variance of the 671 generated and add point
associated with this maximum to the sample set.

Number
of
Remaining
Itera-
tions

65

Iteration
i > 1

1. Update R−1 for new point using method described in Section 4.4.1. T = C(0),
Q is the covariance vector between added point from previous iteration and
previous sample set (needs to be generated) and has length i + 3 and S = QT .
Due to same combinations of multiplications being used more than once, only
2 matrix-vector, 2 dot-product and 2 constant-vector multiplications need to
take place. Additionally the inversion required to calculate H is reduced to the
inversion of a constant as only one point has been added. Thus, merely a division,
additions, subtractions, 2 matrix-vector, 2 dot-product and 2 constant-vector
multiplications are needed to generate the new R−1.

2. Repeat steps 5 to 6 from the first iteration. The vectors’ lengths will be (i + 3)
and the matrix sizes (i+ 3)× (i+ 3).

Table E.3: Summary of Addition of a Point at Point of Maximum Estimated Error Variance.
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Method Addition of Point at Point of Maximum Absolute Error

First
Iteration
i = 1

1. Removal of trend.

2. Random selection of 4 points without repetition.

3. Generate covariance matrix R, equivalent to K in Section 3.1.3. R has size of
4× 4

4. Invert R to obtain R−1. This is not computationally expensive as R is only of
size 4× 4.

5. Matrix multiply R−1 and the vector of flux values at the sample points (Z).
W = R−1Z. Only one matrix-vector multiplication is involved. The vector is of
length 4 and the matrix of size 4× 4.

6. For each point in the data set(671 points):

(a) Generate k, the vector of covariances between the sample points and the
point chosen at 6. This vector is of length 4.

(b) Calculate the predicted value at the point chosen at 6, Z∗(s) = k ·W. This
involves one dot-product multiplication. The vectors have length 4.

(c) Take absolute value of difference between predicted and true flux value at
point selected at 6.

7. Find the maximum absolute error of the 671 generated and add the point asso-
ciated with this maximum to sample set.

Number
of
Remaining
Itera-
tions

65

Iteration
i > 1

1. Update R−1 for new point using method described in Section 4.4.1. T = C(0),
Q is the covariance vector between added point from previous iteration and
previous sample set (needs to be generated) and has length i + 3 and S = QT .
Due to same combinations of multiplications being used more than once, only
2 matrix-vector, 2 dot-product and 2 constant-vector multiplications need to
take place. Additionally the inversion required to calculate H is reduced to the
inversion of a constant as only one point has been added. Thus, merely a division,
additions, subtractions, 2 matrix-vector, 2 dot-product and 2 constant-vector
multiplications are needed to generate the new R−1.

2. Repeat steps 5 to 7 from the first iteration. The vectors’ lengths will be (i + 3)
and the matrix sizes (i+ 3)× (i+ 3).

Table E.4: Summary of Addition of a Point at Point of Maximum Absolute Error.
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Method Genetic Algorithm designed to Minimise Total Absolute Error

First
Iteration
i = 1

1. Removal of trend.

2. 20 sets of 70 points each randomly selected without repetition from the 671 points
in the data set. Each of the 20 sets forms an individual.

3. Evaluation of each set/individual (20 sets):

(a) Generate the matrix of covariances, R, equivalent to the matrix K in Section
3.1.3. R has size 70× 70.

(b) Solve the linear system of equations RW = Z for W, where Z is the vector
of flux values at the sample points. Z has length 70 and R has size 70× 70.

(c) For each point in the data set (671 points):

i. Generate k, the vector of covariances between the sample points in the
set selected at 3 and the point selected at 3c. k has length 70.

ii. Calculate the predicted value at the point chosen at 3c, Z∗(s) = k ·W.
One dot-product multiplication is involved. The vectors have length 70.

iii. Take absolute value of difference between the predicted and the true
flux value at the point selected at 3c.

iv. Sum the absolute errors across the 671 points for the set selected at 3.

4. Find the set with the lowest total absolute error and save it for use later in
elitism.

5. In order to select sets to be added to the mating pool, tournament selection takes
place. This tournament selection takes place as described in Section 13.2.

6. The sets in the mating pool undergo single point crossover as described in Section
13.3.

7. Each new set must be given the chance to undergo mutation as described in
Section 13.4.

8. Replacement and elitism are implemented as per Sections 13.5 and 13.7 respec-
tively.

9. Each new set must be checked for repetition of points. If repetition is found, the
later of the instances of the point are replaced with a point which is randomly
chosen from all possible points which are not in the set.

Number
of
Remaining
Itera-
tions

29999

Iteration
i > 1

1. Repeat steps 3 to 9 from the first iteration.

Table E.5: Summary of Genetic Algorithm designed to Minimise Total Absolute Error.
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APPENDIX E. COMPARISON OF COMPUTATIONAL REQUIREMENTS

Method Genetic Algorithm designed to Minimise Total Estimated Error Variance

First
Iteration
i = 1

1. Removal of trend.

2. 20 sets of 70 points each randomly selected without repetition from the 671 points
in the data set. Each of the 20 sets forms an individual.

3. Evaluation of each set/individual (20 sets):

(a) Generate the matrix of covariances, R, equivalent to the matrix K in Section
3.1.3. R has size 70× 70.

(b) For each point in the data set (671 points):

i. Generate k, the vector of covariances between the sample points in the
set selected at 3 and the point selected at 3b. k has length 70.

ii. Solve linear system of equations(Rλ = k) for λ. Perform dot-product
multiplication k ·λ. Subtract this value from C(0) to give the estimated
error variance at the point. This involves one dot-product multiplication
and the solving of one linear system of 70 equations.

iii. Sum the estimated error variances across the 671 points for the set
selected at 3.

4. Find the set with the lowest total estimated error variance and save it for use
later in elitism.

5. In order to select sets to be added to the mating pool, tournament selection takes
place. This tournament selection takes place as described in Section 13.2.

6. The sets in the mating pool undergo single point crossover as described in Section
13.3.

7. Each new set must be given the chance to undergo mutation as described in
Section 13.4.

8. Replacement and elitism are implemented as per Sections 13.5 and 13.7 respec-
tively.

9. Each new set must be checked for repetition of points. If repetition is found, the
later of the instances of the point are replaced with a point which is randomly
chosen from all possible points which are not in the set.

Number
of
Remaining
Itera-
tions

29999

Iteration
i > 1

1. Repeat steps 3 to 9 from the first iteration.

Table E.6: Summary of Genetic Algorithm designed to Minimise Total Estimated Error Variance.
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APPENDIX E. COMPARISON OF COMPUTATIONAL REQUIREMENTS

Method Hybridised Genetic Algorithm designed to Minimise Total Absolute Error

First
Iteration
i = 1

1. Removal of trend.

2. 19 sets of 70 points each randomly selected without repetition from the 671
points in the data set. One additional set is selected as the solution from the
method of Addition of a Point at Point of Maximum Absolute Error, adding all
the computational requirements of that algorithm. Each of the 20 sets forms an
individual.

3. Evaluation of each set/individual (20 sets):

(a) Generate the matrix of covariances, R, equivalent to the matrix K in Section
3.1.3. R has size 70× 70.

(b) Solve the linear system of equations RW = Z for W, where Z is the vector
of flux values at the sample points. Z has length 70 and R has size 70× 70.

(c) For each point in the data set (671 points):

i. Generate k, the vector of covariances between the sample points in the
set selected at 3 and the point selected at 3c. k has length 70.

ii. Calculate the predicted value at the point chosen at 3c, Z∗(s) = k ·W.
One dot-product multiplication is involved. The vectors have length 70.

iii. Take absolute value of difference between the predicted and the true
flux value at the point selected at 3c.

iv. Sum the absolute errors across the 671 points for the set selected at 3.

4. Find the set with the lowest total absolute error and save it for use later in
elitism.

5. In order to select sets to be added to the mating pool, tournament selection takes
place. This tournament selection takes place as described in Section 13.2.

6. The sets in the mating pool undergo single point crossover as described in Section
13.3.

7. Each new set must be given the chance to undergo mutation as described in
Section 13.4.

8. Replacement and elitism are implemented as per Sections 13.5 and 13.7 respec-
tively.

9. Each new set must be checked for repetition of points. If repetition is found, the
later of the instances of the point are replaced with a point which is randomly
chosen from all possible points which are not in the set.

Number
of
Remaining
Itera-
tions

29999

Iteration
i > 1

1. Repeat steps 3 to 9 from the first iteration.

Table E.7: Summary of Hybridised Genetic Algorithm designed to Minimise Total Absolute Error.
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APPENDIX E. COMPARISON OF COMPUTATIONAL REQUIREMENTS

Method Hybridised Genetic Algorithm designed to Minimise Total Estimated Error Variance

First
Iteration
i = 1

1. Removal of trend.

2. 19 sets of 70 points each randomly selected without repetition from the 671 points
in the data set. One additional set is selected as the solution from the method
of Addition of a Point at Point of Maximum Estimated Error Variance, adding
all the computational requirements of that algorithm. Each of the 20 sets forms
an individual.

3. Evaluation of each set/individual (20 sets):

(a) Generate the matrix of covariances, R, equivalent to the matrix K in Section
3.1.3. R has size 70× 70.

(b) For each point in the data set (671 points):

i. Generate k, the vector of covariances between the sample points in the
set selected at 3 and the point selected at 3b. k has length 70.

ii. Solve linear system of equations(Rλ = k) for λ. Perform dot-product
multiplication k ·λ. Subtract this value from C(0) to give the estimated
error variance at the point. This involves one dot-product multiplication
and the solving of one linear system of 70 equations.

iii. Sum the estimated error variances across the 671 points for the set
selected at 3.

4. Find the set with the lowest total estimated error variance and save it for use
later in elitism.

5. In order to select sets to be added to the mating pool, tournament selection takes
place. This tournament selection takes place as described in Section 13.2.

6. The sets in the mating pool undergo single point crossover as described in Section
13.3.

7. Each new set must be given the chance to undergo mutation as described in
Section 13.4.

8. Replacement and elitism are implemented as per Sections 13.5 and 13.7 respec-
tively.

9. Each new set must be checked for repetition of points. If repetition is found, the
later of the instances of the point are replaced with a point which is randomly
chosen from all possible points which are not in the set.

Number
of
Remaining
Itera-
tions

29999

Iteration
i > 1

1. Repeat steps 3 to 9 from the first iteration.

Table E.8: Summary of Hybridised Genetic Algorithm designed to Minimise Total Estimated Error
Variance.
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APPENDIX E. COMPARISON OF COMPUTATIONAL REQUIREMENTS

Method Genetic Algorithm designed to Maximise Total Absolute Error

First
Iteration
i = 1

1. Removal of trend.

2. 20 sets of 70 points each randomly selected without repetition from the 671 points
in the data set. Each of the 20 sets forms an individual.

3. Evaluation of each set/individual (20 sets):

(a) Generate the matrix of covariances, R, equivalent to the matrix K in Section
3.1.3. R has size 70× 70.

(b) Solve the linear system of equations RW = Z where Z is the vector of flux
values at the sample points. Z has length 70 and R has size 70× 70.

(c) For each point in the data set (671 points):

i. Generate k, the vector of covariances between the sample points in the
set selected at 3 and the point selected at 3c. k has length 70.

ii. Calculate the predicted value at the point chosen at 3c, Z∗(s) = k ·W.
One dot-product multiplication is involved. The vectors have length 70.

iii. Take absolute value of difference between the predicted and the true
flux value at the point selected at 3c.

iv. Sum the absolute errors across the 671 points for the set selected at 3.

4. Find the set with the highest total absolute error and save it for use later in
elitism.

5. In order to select sets to be added to the mating pool, tournament selection takes
place. This tournament selection takes place as described in Section 13.2.

6. The sets in the mating pool undergo single point crossover as described in Section
13.3.

7. Each new set must be given the chance to undergo mutation as described in
Section 13.4.

8. Replacement and elitism are implemented as per Sections 13.5 and 13.7 respec-
tively.

9. Each new set must be checked for repetition of points. If repetition is found, the
later of the instances of the point are replaced with a point which is randomly
chosen from all possible points which are not in the set.

Number
of
Remaining
Itera-
tions

9999

Iteration
i > 1

1. Repeat steps 3 to 9 from the first iteration.

Table E.9: Summary of Genetic Algorithm designed to Maximise Total Absolute Error.
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APPENDIX E. COMPARISON OF COMPUTATIONAL REQUIREMENTS

Method Genetic Algorithm designed to Maximise Total Estimated Error Variance

First
Iteration
i = 1

1. Removal of trend.

2. 20 sets of 70 points each randomly selected without repetition from the 671 points
in the data set. Each of the 20 sets forms an individual.

3. Evaluation of each set/individual (20 sets):

(a) Generate the matrix of covariances, R, equivalent to the matrix K in Section
3.1.3. R has size 70× 70.

(b) For each point in the data set (671 points):

i. Generate k, the vector of covariances between the sample points in the
set selected at 3 and the point selected at 3b. k has length 70.

ii. Solve linear system of equations(Rλ = k) for λ. Perform dot-product
multiplication k ·λ. Subtract this value from C(0) to give the estimated
error variance at the point. This involves one dot-product multiplication
and the solving of one linear system of 70 equations.

iii. Sum the estimated error variances across the 671 points for the set
selected at 3.

4. Find the set with the highest total estimated error variance and save it for use
later in elitism.

5. In order to select sets to be added to the mating pool, tournament selection takes
place. This tournament selection takes place as described in Section 13.2.

6. The sets in the mating pool undergo single point crossover as described in Section
13.3.

7. Each new set must be given the chance to undergo mutation as described in
Section 13.4.

8. Replacement and elitism are implemented as per Sections 13.5 and 13.7 respec-
tively.

9. Each new set must be checked for repetition of points. If repetition is found,
the later of the instances of the point is replaced with a point which is randomly
chosen from all possible points which are not in the set.

Number
of
Remaining
Itera-
tions

9999

Iteration
i > 1

1. Repeat steps 3 to 9 from the first iteration.

Table E.10: Summary of Genetic Algorithm designed to Maximise Total Estimated Error Variance.
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APPENDIX F

THREE-DIMENSIONAL SAMPLING

Any additional figures from Chapter 15 relating to the three-dimensional sampling can be
found in this appendix. The maps of the true carbon dioxide flux as well as maps of the
predicted carbon dioxide flux, the estimated error variance and the true error across the full
latitude and longitude grid reference ranges for time slices 0, 20, 40, 60 and 72 for the three
different methods for set one are presented in Figures F.1 to F.15. While the maps for time
slices 20 and 60 for set two across the three different methods can be seen in Figures F.16 to
F.21. Only selected time slices have been included as the total number of maps produced is
too large to include all of them.
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APPENDIX F. THREE-DIMENSIONAL SAMPLING
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Figure F.1: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 0 of set one generated using Random Sampling. The white dots in (c) indicate

the sampling points.

0 50 100 150
Longitude

Grid Reference

0

20

40

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−9

3

15

(a)

0 50 100 150
Longitude

Grid Reference

0

20

40

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−9

3

15

(b)

0 50 100 150
Longitude

Grid Reference

0

20

40

La
ti
tu
d
e

G
ri
d
 R
e
fe
re
n
ce

0

2

4

(c)

0 50 100 150
Longitude

Grid Reference

0

20

40

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−4

0

4

(d)

Figure F.2: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 0 of set one generated using Addition of a Point at Point of Maximum Absolute

Error sampling. The white dots in (c) indicate the sampling points.
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APPENDIX F. THREE-DIMENSIONAL SAMPLING
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Figure F.3: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 0 of set one generated using Addition of a Point at Point of Maximum Estimated

Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure F.4: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 20 of set one generated using Random Sampling. The white dots in (c) indicate

the sampling points.
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Figure F.5: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 20 of set one generated using Addition of a Point at Point of Maximum Absolute

Error sampling. The white dots in (c) indicate the sampling points.
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Figure F.6: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 20 of set one generated using Addition of a Point at Point of Maximum

Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure F.7: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 40 of set one generated using Random Sampling. The white dots in (c) indicate

the sampling points.
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Figure F.8: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 40 of set one generated using Addition of a Point at Point of Maximum Absolute

Error sampling. The white dots in (c) indicate the sampling points.

212



APPENDIX F. THREE-DIMENSIONAL SAMPLING

0 50 100 150
Longitude

Grid Reference

0

20

40

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−9

3

15

(a)

0 50 100 150
Longitude

Grid Reference

0

20

40

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−9

3

15

(b)

0 50 100 150
Longitude

Grid Reference

0

20

40

La
ti
tu
d
e

G
ri
d
 R
e
fe
re
n
ce

0

2

4

(c)

0 50 100 150
Longitude

Grid Reference

0

20

40

La
ti

tu
d
e

G
ri

d
 R

e
fe

re
n
ce

−4

0

4

(d)

Figure F.9: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d) true
error for time slice 40 of set one generated using Addition of a Point at Point of Maximum

Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure F.10: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 60 of set one generated using Random Sampling. The white dots in (c)

indicate the sampling points.
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Figure F.11: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 60 of set one generated using Addition of a Point at Point of Maximum

Absolute Error sampling
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Figure F.12: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 60 of set one generated using Addition of a Point at Point of Maximum

Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure F.13: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 72 of set one generated using Random Sampling. The white dots in (c)

indicate the sampling points.
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Figure F.14: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 72 of set one generated using Addition of a Point at Point of Maximum

Absolute Error sampling. The white dots in (c) indicate the sampling points.
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Figure F.15: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 72 of set one generated using Addition of a Point at Point of Maximum

Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure F.16: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 20 of set two generated using Random Sampling. The white dots in (c)

indicate the sampling points.
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Figure F.17: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 20 of set two generated using Addition of a Point at Point of Maximum

Absolute Error sampling. The white dots in (c) indicate the sampling points.
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Figure F.18: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 20 of set two generated using Addition of a Point at Point of Maximum

Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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Figure F.19: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 60 of set two generated using Random Sampling
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Figure F.20: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 60 of set two generated using Addition of a Point at Point of Maximum

Absolute Error sampling. The white dots in (c) indicate the sampling points.
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Figure F.21: Maps of (a) model data, (b) predicted data, (c) estimated error variance and (d)
true error for time slice 60 of set two generated using Addition of a Point at Point of Maximum

Estimated Error Variance sampling. The white dots in (c) indicate the sampling points.
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