
1

Soft-Core Dataflow Processor Architecture
Optimised for Radar Signal Processing

R. Broich∗† and H. Grobler∗
∗Department of Electrical, Electronic and Computer Engineering, University of Pretoria

†DPSS Radar and Electronic Warfare, CSIR, South Africa
Emails: RBroich@csir.co.za, Hans.Grobler@up.ac.za

Abstract—Current radar signal processors lack either perfor-
mance or flexibility. Custom soft-core processors exhibit potential
in high-performance signal processing applications, yet remain
relatively unexplored in research literature. In this paper, we
use an iterative design methodology to propose a novel soft-
core streaming processor architecture. The datapaths of this
architecture are arranged in a circular pattern, with multiple
operands simultaneously flowing between switching multiplexers
and functional units each cycle. By explicitly specifying instruc-
tion level parallelism and software pipelining, applications can
fully exploit the available computational resources. The proposed
architecture exceeds the clock cycle performance of a commercial
high-end DSP processor by an average factor of 14 over a
range of typical operating parameters in a radar signal processor
application.

Index Terms—Soft-core DSP, Transport-Based Processor, Sig-
nal Processing Architecture, Radar Signal Processor, Soft-core
Processor, Processor Design Methodology, Streaming Architec-
ture, Circular Dataflow.

I. INTRODUCTION

In modern radar systems the architecture of the radar signal
processor (RSP) is one of the most important design choices.
The amount of useful information that can be extracted from
the radar echoes is highly dependent on the computational
performance that the RSP can deliver. Current RSPs lack either
performance or flexibility in terms of ease of modification and
large design time overheads. Combinations of processors and
field-programmable gate arrays (FPGAs) are typically hard-
wired together into a precisely timed and pipelined solution
to achieve a desired level of functionality and performance. To
address this gap between performance and flexibility, a custom
processor architecture is proposed.

This paper is organised as follows: Current RSP process-
ing technologies are compared in Section II, emphasising
the need for a programmable radar processing architecture.
The computational characteristics and requirements of radar
algorithms are identified in Section III and used to derive
the conceptual architecture in Section IV. The optimisation
process is described in Section V, with the final architecture
being presented with an example in Sections VI and VII. The
FPGA implementation and the final performance results are
then discussed in Section VIII. Finally, Section IX summarises
the characteristics of the proposed architecture and concludes
this paper.

II. CURRENT RSP PROCESSING TECHNOLOGIES

Early digital radar systems relied heavily on custom ASIC
implementations to achieve the required performance, as other
technologies were simply not available. More recent systems
typically use combinations of DSPs, PCs and reconfigurable
logic as processing technologies, increasing flexibility and
minimising non-recurring engineering costs.

The majority of RSPs rely on FPGAs for both analogue
converter interfaces as well as processing tasks, often imple-
menting the entire RSP on a single FPGA [1]. RSP operations
such as I/Q demodulation, filtering, channel equalisation and
pulse compression are usually implemented as a fixed pipeline
of streaming operations in the traditional hardware description
language (HDL) design flow [2]–[6].

Although these designs are parametrised and thus con-
figurable to a limited extent, they are not programmable.
With evolving requirements in the constantly changing radar
processing field, the traditional HDL based design flow lacks
flexibility in terms of ease of modification and design time
overhead. Some notable attempts have been made to improve
the overall design process of FPGA systems; software abstrac-
tion layers [7], library based tool chains [8], rapid implementa-
tion tool-suites for translating high-level algorithms into HDL
[9], [10] and high-level synthesis tools [11]. Regardless, there
seems to be a struggle to balance speed, flexibility and ease
of implementation.

The embedded processor approach shifts the design method-
ology to a sequential execution paradigm, while still providing
tight coupling to the FPGA resources. This embedded soft-
ware approach offers substantial flexibility advantages over
other HDL approaches, including ease of use, quick design
changes and easy debugging. However, embedded hard-core
(e.g. ARM, PowerPC) or generic soft-core (e.g. NIOS II,
MicroBlaze) processors are limited in computational perfor-
mance, mostly serving simple control, configuration, interface
or supervisory roles in RSPs.

Custom soft-core processors have high performance poten-
tial in the DSP domain, especially with vectorisation tech-
niques [12]–[14]. However, among the vast amount of imple-
mentation details relating to RSPs, custom soft-core processors
remain largely unexplored in the radar and high performance
computing domain.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2014.2363388

2

III. COMPUTATIONAL CHARACTERISTICS

The first step to any architectural design is to identify
the computational characteristics and prominent operations
of the target applications. Typical radar signal processing
algorithms were previously discussed and broken down into
common digital signal processing operations [15], [16]. Fig. 1
summarises the performance requirements that were identified
for various implementation alternatives.

1 2 3 4 5

0

100

200

300

Opt 5: Hilbert, fast corr., CA-CFAR (SW)
Opt 4: Hilbert, freq comp, fast corr., CS-CFAR
Opt 3: Std. mix, fast corr., adaptive-CFAR
Opt 2: Std. mix, fast corr., OS-CFAR
Opt 1: Simpl. mix, digital corr., OS-CFAR

Implementation Options

R
eq

ui
re

d
op

er
at

io
ns

pe
r

se
c

(G
O

PS
) FIR FFT Sort

Sum Other

Fig. 1: Computational requirements of a radar signal processor

Based on the selected implementation option, the compu-
tational requirements range between 25 billion operations per
second (GOPS) and 363 GOPS, comprising mostly of finite
impulse response (FIR), fast Fourier transform (FFT) and sort-
ing operations. Other operations that are common in the radar
signal processing field are convolutions, vector operations,
block summations, matrix multiplications and basic arithmetic
instructions.

In addition to ensuring that the architecture is optimally
suited for handling the prominent operations, it is also impor-
tant to define the computational characteristics that dominate
this processing field. The signal and dataflow characteristics of
the radar signal processing algorithms are highly regular with
a linear data independent processing chain. The following list
summarises the most important computational characteristics
of radar signal processing:

• High performance: 350+ GOPS
• Mostly FIR and FFT operations
• Low latency
• Tight coupling to analogue converters and data processor
• Data independent processing chain
• Deterministic and regular dataflow
• Minimal branching, no interrupts
• Large dynamic data range
• Alternating horizontal and vertical memory accesses

In the general purpose and DSP processing paradigm, the
challenges of attaining significant utilisation of the raw compu-
tational resources have been overcome with various instruction
set optimisations and micro-architectural techniques. In the

streaming processing paradigm however, some of these tech-
niques are actually detrimental to the application performance.
Task-, data- and instruction-level parallelism is inadequately
captured in most high-level programming languages, and fur-
ther obscured during compilation into a sequential instruction
stream. As a result, the hardware-based dynamic scheduling
mechanisms cannot extract sufficient parallelism from the
instruction stream, and the low-level computational resources
remain underutilised.

The regular instruction stream and data access patterns of
most stream processing applications enable static scheduling
with large degrees of parallelism, provided that the program-
mer/compiler has explicit control over the low-level processing
resources. The general purpose processing optimisations and
techniques inherently limit this low-level control. For this
reason an architecture with much finer control over each low-
level computational resource is proposed. The following list
summarises some of the desirable and undesirable features of
a radar signal processor.

X Deep Pipelines
X Vectorisation and SIMD
X Multiple cores
X Instruction-level paral-

lelism (VLIW, EPIC)
X Hardware looping mech-

anism
X Dedicated address gen-

eration unit
X Deterministic dual-

ported memory accesses
× Hardware scheduling

× Memory caching
× Data bus arbitration
× Register renaming and

rotating register files
× Out-of-order execution
× Interrupts
× Branch prediction and

speculation buffers
× MMU, virtual memory
× Central register file
× High-level abstraction

These characteristics differ substantially from those of cur-
rent processing architectures, which typically focus on higher
levels of abstraction and task-level parallelism.

IV. CONCEPTUAL ARCHITECTURE

A new processing architecture which is well suited to
these computational characteristics was designed from first
principles. This novel template architecture is shown in Fig. 2.
Rather than an instruction word controlling the execution units,
the instruction word defines how data is routed between the
lower level functional units. The switching matrix consists of
multiple simple multiplexers, each controlled independently
by a unique slice of the program word.

Data values circulate in a counter-clockwise direction, pass-
ing from a register through a functional unit back into a
selected register to form a software pipeline. For functional
units that are not clocked (e.g. integer adder), each data value
completes one revolution per clock cycle. Clocked functional
units can make use of deep pipelines and produce a new
output value each clock cycle. It is thus possible to assign
any functional unit output to each register every clock cycle.

V. OPTIMISATION PROCESS

To optimise this template architecture for the radar appli-
cation, the fine grained details and trade-offs between number

3

Switching Muxes

Registers

Functional Units
Adders, Multipliers,

Memory, I/Os, ...

Program
Memory

program word

program counter

clk clk

clk

Fig. 2: Basic Processor Architecture

and type of functional units as well as register connections
are investigated. The refinement process consists of alternating
processor definition, practical or theoretical implementation,
and application profiling stages. The application profiling stage
includes functional as well as performance verification, but
also takes other factors such as resource usage and power
consumption into consideration. If the designer is not satisfied
with any of these factors, the architecture is modified and the
process repeats.

This detailed optimisation process involves small incremen-
tal architectural changes for each design iteration - a task of
which many aspects can be automated. A software develop-
ment environment was designed to automate this architectural
design space exploration phase, bearing a close resemblance
to the ASIP design methodology [17], [18]. The design flow
of this software-based design approach is shown in Fig. 3.
The shaded components are integrated and generated by the
software development environment.

The architecture is defined by an *.ARCH file, which forms
the foundation of the entire software development environ-
ment. This architecture description consists of a list of the
various functional units, registers and their interconnections.
Based on the *.ARCH file, the VHDL source files for the
processor core implementation, a graphical depiction of the
processor architecture, and all the required development tools
such as code editor, assembler, linker, cycle accurate emulator
/ simulator, debugger and programmer are generated.

Together with the board specific HDL-based hardware ab-
straction layer (HAL) files, the generated VHDL design files
are then synthesised using the vendor specific FPGA tools
(in this case Xilinx ISE, but similarly on Altera Quartus II).
Timing results, functional accuracy, resource usage, profiling
and performance data are then analysed and used by the de-
signer to further refine the architecture through the architecture
description file. The generated *.BIT file can also be loaded
onto the development board for practical verification.

The left side of the design flow in Fig. 3 is more concerned
with the application development and simulation aspect of
the processing architecture. The code editor provides syntax
highlighting and dynamic code completion mechanisms for
the custom FLOW language based source files. Functional
verification and performance profiling are important aspects of
the simulator during algorithm development. The development
environment enables efficient graphical design feedback for
debugging and optimisation of the architecture, automating

Architecture
Description File

*.ARCH

*.FLOW
Architecture Compiler

Editor

Assembler

Linker

Emulator

Result Evaluation
(clock cycles,

functional results)

Programmer

*.HEX

Debugger
Ethernet

Hardware Description

*.VHDL

Synthesis

Result Evaluation
(clock speed, resource

usage, power)

Physical
Hardware

*.BIT

Practical Verification

Fig. 3: Software-based Architecture Design Flow

many of the tedious and error-prone tasks that are usually
involved in the optimisation process.

VI. FINAL ARCHITECTURE

The results of this optimisation process are presented in
this section. In the final architecture, registers and functional
units are 32 bits wide and divided into integer as well as
floating-point sections to limit multiplexer sizes. The integer
registers are used for memory address generation and program
flow (e.g. branching and loop control), while the floating-
point registers are used for data processing. Fig. 4 depicts
the switching matrix and register architectures of the integer
and floating-point sections. In both cases, the register output
is fed back into the first multiplexer input. When the select
signal is zero, the register is thus assigned to itself and remains
unchanged.

The input ports on the right of both Fig. 4a and Fig. 4b are
the functional unit outputs. In this implementation, there are
32 multiplexer inputs (31 functional unit outputs) making the
select signal for each multiplexer log2(N) = 5 bits wide.

The program memory width is determined by the number
of registers and the multiplexer select width, and can become
rather large. For the 92 registers (82 actual, 10 expandable)
used in this implementation, 460 bits are required for the
multiplexer select signals. Additionally a 32 bit constant, a 4
bit condition code and 12 flags form the 512 bit wide program
word as shown in Fig. 5.

4

5

clk

D

Q

in
t3

2
se

l(
x)

reg int32 out(x)

32

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

PC0 o
Cons0 w0
Cons0 w1
Cons0 d
Stack0 o
IInc0 o
IInc1 o
IInc2 o
IInc3 o
IMac0 o
IBuf0 o
IAdd0 o
ISub0 o
IAdd1 o
IAdd2 o
IDel0 o
IDel1 o
IDel2 o
FBuf0 o
RotR0 o
IncZ0 o
IncZ0 p
RotL0 o
IRev0 o

IIOPort0 rd
IIOPort1 rd

FtoI0 o

(a) Integer Section

5

clk

D

Q

flo
at

se
l(

x)

reg float out(x)

32

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Cons0 f
ItoF0 o
FDel0 o
FDel1 o
FDel2 o
CMem0 o1
CMem0 o2
DMem0 o1
DMem0 o2
DMem1 o1
DMem1 o2
FBuf0 o
FMul0 o
FMul1 o
FMul2 o
FMul3 o
FDot0 o
FAdd1 o
FAdd2 o
FSub1 o
FSub2 o
FAdd0 o
FSub0 o
IBuf0 o
FSinCos0 s
FSinCos0 c
FSqr0 o
FSwap0 o
FSwap0 p

CUSTOM(x)

(b) Floating-Point Section

Fig. 4: Switching Matrix and Register Architecture

constant

C
on

s0
w

0

C
on

s0
w

1

C
on

s0
f

C
on

s0
d

511 480 479 476 475 464 463 256 255 0

cond

co
nd

se
l

f
dm

em
0

w
e

f
dm

em
1

w
e

f
cm

em
0

w
e

f
st

ac
k

pu
sh

f
st

ac
k

po
p

f
cm

em
0

re
f

pr
oc

do
ne

f
da

c
en

flags[12] float sel[41]

flo
at

se
l(

0)
flo

at
se

l(
1)

flo
at

se
l(

2)
...

flo
at

se
l(

40
)

int32 sel[51]

in
t3

2
se

l(
0)

in
t3

2
se

l(
1)

in
t3

2
se

l(
2)

...

in
t3

2
se

l(
50

)

Fig. 5: Program Word Format

The constant from the program word is also routed to the
multiplexer inputs, making it possible to assign a fixed value
to any register. On the integer section, the constant can be split
into two sign extended 16 bit constants or kept in its 32 bit
form.

The first register, the program counter, deviates slightly
from Fig. 4. It uses the conditional code from the program
word (cond_sel) to determine whether the program counter
is allowed to change. If the condition check fails, or if no
condition is selected, the multiplexer selects input port 0.
Unlike the other registers however, input port 0 is not directly
connected to the register output, but instead increased by one.
Thus, if the condition passes the new value is assigned, else
the program counter is increased and the program execution
continues normally. Fig. 6 depicts the program counter archi-
tecture.

Note that the program counter can still be assigned to
itself, thus repeatedly executing the current instruction for
looping purposes. The loop is terminated and instruction flow
continues normally once the conditional code check fails. The
condition code can be any external flag (e.g. Ethernet packet
received, synchronisation signals) or the result of a comparison
operation via the integer- (rcon) or floating-point comparators
(fcon).

The final architecture is shown in Fig. 7 and Fig. 8 for both
the integer and floating-point sections. Multiple functional
units can share the same physical input register (e.g. IAdd0_a
and ISub0_a refer to the same register) to reduce silicon or
FPGA resource utilisation when these functional units are not

5

clk

D

Q

+1

0

1int32 sel(0)
’00000’

clk Q

D

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cond sel

co
nd

pa
ss

’1’
rcon0 sz
rcon0 gz

rcon0 sz or rcon0 ez
rcon0 gz or rcon0 ez

rcon0 ez
not rcon0 ez

fcon0 sz
fcon0 gz

fcon0 sz or fcon0 ez
fcon0 gz or fcon0 ez

fcon0 ez
not fcon0 ez

cmem0 data avail
proc start

not proc start

[reg int32 out(0)] pmem raddr

32

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

PC0 o
Cons0 w0
Cons0 w1
Cons0 d
Stack0 o
IInc0 o
IInc1 o
IInc2 o
IInc3 o
IMac0 o
IBuf0 o
IAdd0 o
ISub0 o
IAdd1 o
IAdd2 o
IDel0 o
IDel1 o
IDel2 o

RotR0 o
IncZ0 o
IncZ0 p
RotL0 o
IRev0 o

IIOPort0 rd
IIOPort1 rd

FtoI0 o

Fig. 6: Program Counter Architecture

used in parallel.
The majority of functional units on the integer section

perform a standard arithmetic operation such as increment,
add, subtract, multiply-add, or a bitwise operation. The add
and increment functional units are instantiated multiple times
to handle the simultaneous generation of read addresses, write
addresses, offsets, write inhibit signals and the various loop
counters.

The memory write inhibit signal is generated by a counter
and a comparator. The inhibit signal allows the write enable
signal to be asserted a fixed number of clock cycles after
the inner loop instruction commences, aligning to the latency
through the various functional units in the software pipeline. A
loop prologue is thus avoided, greatly simplifying the control
flow.

Other interesting functional units include a stack, increment-
compare-and-zero (IncZ), variable delay, I/O ports, integer to
floating-point conversion and debugging registers.

The stack unit is a simple clocked last-in-first-out (LIFO)
buffer, with a calling hierarchy depth of 16. It only has a single
output, Stack0_o, which represents the current value on top
of the stack. When the “pop” flag from the program word is
asserted, the current value on the top of the stack is “popped”
off, and the next value appears on the output (or zero if the
stack is empty). The “push” flag increases the current program
counter value and adds it to the top of the stack. A function
call thus requires the function address to be assigned to the PC
while asserting the “push” flag. Returning from the function is
achieved by assigning the stack output to the PC and asserting
the “pop” flag.

The increment-compare-and-zero (IncZ) functional unit is
one that is surprisingly not featured on modern instruction
sets. It is however a very useful functional unit in the ad-
dress generation and control-flow paradigm. Under normal
operating conditions the output IncZ0_o is assigned to input
IncZ0_a, which forms a continuous counter that resets to
zero when the value IncZ0_b is reached. When the output
IncZ0_p is assigned to the IncZ0_c input, an up-counter

5

clk

clk

clk

+1255

int32 sel

co
nd

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

QD

PC0 a

RCon0 a

IDebug0 a

IDebug1 a

IDebug2 a

IInc0 a

IInc1 a

IInc2 a

IInc3 a

IMac0 a

IMac0 b

IMac0 c

IAdd0 a
ISub0 a

IAdd0 b
ISub0 b

IAdd1 a

IAdd1 b

IAdd2 a

IAdd2 b

IDel0 a

IDel0 d

IDel1 a

IDel1 d

IDel2 a

IDel2 d

RotR0 a

RotR0 b

IncZ0 a

IncZ0 b

IncZ0 c

RotL0 a

RotL0 b

IRev0 a

IRev0 b

IIOPort0 wr

IIOPort1 wr

ItoF0 a

FDel0 d

FDel1 d

FDel2 d

CMem0 wi

CMem0 waddr

CMem0 raddr

DMem0 wi

DMem0 waddr

DMem0 raddr

DMem1 wi

DMem1 waddr

DMem1 raddr

PC0 o

Cons0 d

Cons0 w0

Cons0 w1PC
0

a+
1

L
IF

O
f

st
ac

k
pu

sh
f

st
ac

k
po

p

Stack0 o

+1

+1

+1

+1

IInc0 o

IInc1 o

IInc2 o

IInc3 o

<0?
=0?
>0?

rcon0 sz
rcon0 ez
rcon0 gz

+ +
IMac0 o

IBuf0 o

IAdd0 o
+

ISub0 o−

IAdd1 o
+

IAdd1 o
+

IDel0 o

IDel1 o

IDel2 o

>>
RotR0 o

<<
RotL0 o

R IRev0 o

a+
1<

b?

a+1:0

c:c+1

IncZ0 o

IncZ0 p

I/Os IIOPort0 rd

IIOPort1 rd

FtoI0 a →I FtoI0 o

IBuf0 o

≥0? cmem0 wi gez

≥0? dmem0 wi gez

≥0? dmem1 wi gez

Fig. 7: Processor Architecture: Integer Section

counting the number of overflows on the IncZ0_a side
is achieved. This instruction can thus be used to transpose
matrices of arbitrary dimension, for FFT address calculation
purposes, as a circular address buffer, or simply as a counter
and comparator.

The integer buffer unit is used for temporary variable
storage (e.g. parameters in function call) or delaying a result by
a single clock cycle for alignment purposes. When more clock
cycles of delay are required, the variable delay operation pro-
vides a tapped delay register, capable of selecting between 1
and 32 clock cycles of latency. This operation is needed for
synchronisation and alignment purposes when the processing
latency needs to be matched to the address generation latency
or vice versa.

An I/O port interface also resides on the integer section,
and similar to all other functional units, can be assigned and
read every clock cycle. The IIOPort functional unit can thus
provide a full duplex high bandwidth interface to peripherals,
coprocessors or general purpose I/O pins.

The integer and floating-point debug registers are routed to
a logic analyser (such as integrated Xilinx ChipScope ILA
or an external logic analyser port) to provide a clock-by-clock
snapshot of the internal debug register values. These snapshots
can be loaded into the development environment for exact
comparisons between runtime and simulated results.

On the floating-point section in Fig. 8, functional units have
longer critical paths and thus higher latency (e.g. 2 clock
cycles for multiply or add) than those of the integer section
(0 or 1 clock cycle). Multipliers, adders and subtracters are
instantiated numerous times to cater for the concurrent arith-
metic requirements of the different applications. All functional
units operate on real numbers, as the software pipelining
mechanism can join these primitives into complex operations
with the same latency and throughput as a dedicated circuit.

The buffer (FBuf), delay (FDel), comparator (FCon),
and debug (FDebug) functional units are similar to their
counterparts of the integer section. Sine, cosine and a square
root functional units are used in various algorithms and thus
also added into the datapath. Conversion functions (ItoF and
FtoI) as well as direct pass-through registers between integer
and floating-point sections are also provided.

Since most algorithms exhibit alternating horizontal and
vertical data dependencies, the processing chain typically
involves reading a complex-valued data stream from mem-
ory, performing some mathematical operations, and writing
back the processed data. Two 64-bit data memories are thus
mapped directly into the datapath as functional units along
with a coefficient memory unit. Memory architectures such as
external QDR memory, SRAM or internal FPGA Block RAM
exhibit deterministic latency and are thus well suited for this
purpose. DDR or NAND memory devices pose a problem
when used as data memory in the processing loop, as the
row activation times vary and additional operations such as
refreshing or block erasing need to be performed.

Other interesting functional units on the floating-point sec-
tion include the FSwap and the FDot operations. The FSwap
functional unit takes two input values, sorts them and outputs
the larger value to the _p port and the smaller value to

6

clk

clk

clk

clk

clk

clk

clk

clk

205

float sel

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

5
QD

A
D

C

FDel0 a

FDel1 a

FDel2 a

CMem0 a1

CMem0 a2

DMem0 a1

DMem0 a2

DMem1 a1

DMem1 a2

FtoI0 a
FBuf0 a

FMul0 a

FMul0 b

FMul1 a

FMul1 b

FMul2 a

FMul2 b

FMul3 a

FMul3 b

FAdd1 a

FAdd1 b

FAdd2 a

FAdd2 b

FSub1 a

FSub1 b

FSub2 a

FSub2 b

FDot0 0a

FDot0 0b

FDot0 1a

FDot0 1b

FDot0 2a

FDot0 2b

FDot0 3a

FDot0 3b

FDot0 4a

FDot0 4b

FDot0 5a

FDot0 5b

FDot0 6a

FDot0 6b

FDot0 7a

FDot0 7b

FAdd0 a

FAdd0 b

FSub0 a

FSub0 b

FSinCos0 a

FSqr0 a

FSwap0 a

FSwap0 b

FCon0 a

FDebug0 a

FDebug1 a

FDebug2 a

Cons0 f

FDel0 d

FDel1 d

FDel2 d

FDel0 o

FDel1 o

FDel2 o

L
=2

64 64

CMem0 o1

CMem0 o2
f cmem0 we

cmem0 wi gez

CMEM0di
n

do
ut

we

raddr

waddr

L
=5

64 64

DMem0 o1

DMem0 o2
f dmem0 we

dmem0 wi gez

DMEM0di
n

do
ut

we

raddr

waddr

L
=5

64 64

DMem1 o1

DMem1 o2
f dmem1 we

dmem1 wi gez

DMEM1di
n

do
ut

we

raddr

waddr

D
A

C

FBuf0 o

ItoF0 a →F ItoF0 o

IBuf0 o

+

+

+

+

+

+

−

−

FMul0 o

FMul1 o

FMul2 o

FMul3 o

FAdd1 o

FAdd2 o

FSub1 o

FSub2 o

FAdd0 o

FSub0 o

+

−

<0?
=0?
>0?

fcon0 sz
fcon0 ez
fcon0 gz

√ FSqrt0 o

min(a,b)

max(a,b)
FSwap0 o

FSwap0 p

FSinCos0 s

FSinCos0 c

sin(πa)

cos(πa)

L=10

L=7

L=7

+

+

+

+

FDot0 4a
FDot0 4b
FDot0 5a
FDot0 5b
FDot0 6a
FDot0 6b
FDot0 7a
FDot0 7b

FMul0 o
FMul1 o
FMul2 o
FMul3 o

B
al

an
ce

d
A

dd
er

Tr
ee

∑

FDot0 o
L=8

Fig. 8: Processor Architecture: Floating-Point Section

the _o port. This operation is extremely useful for algo-
rithms requiring data comparisons such as sorting networks,
maximum value identification, and various CFAR algorithms.
The floating-point dot product (FDot) has 16 inputs and a
throughput of 1 result every clock cycle. Internally the outputs
of all 8 multipliers are connected to a balanced adder tree
consisting of 7 adders (3 levels deep). The FDot functional
unit can thus be used for FIR filters, matrix multiplications,
correlations, convolutions, windowing and any other sum-of-
products operations.

The independent select signals for each multiplexer provide
direct control over horizontal as well as vertical instruction-
level parallelism in both the data- and control-path of the
proposed architecture. This features some resemblance to very
large instruction word (VLIW) and transport triggered archi-
tectures (TTA) [19]–[21]. A simplification of the TTA architec-
ture is the synchronous transfer architecture (STA) [22], [23],
which removes the register file, trigger-ports and queues from
the critical path of the TTA architecture, using synchronous
communication between modules (somewhat resembling [24]).
The assembly instruction thus contains transfer, opcode and
explicit trigger signals for each functional module.

The proposed architecture could thus be seen as a further
simplification of the STA architecture, in which the instruction
word is only used to specify the transfer routing for each
register, and not for functional unit control or triggering. The
proposed architecture thus allows even finer grained control
and can use every computational resource simultaneously,
rather than using multiple functional modules simultaneously.
Additionally, the proposed architecture completely removes
the register file, and provides various architectural optimisa-
tions for loop control and streaming applications. This makes
the architecture ideal for creating deep software pipelines for
a variety of applications and algorithms.

VII. COMPLEX MODULUS EXAMPLE

The complex modulus (magnitude) operation is well suited
for the illustration of this software pipelining mechanism. The
signal flow graph of the magnitude operation is shown below
in Fig. 9.

read addr
Input memory

Re

+

Im

+

+

√

write en

write addr
Output memory

Fig. 9: Signal Flow Graph for the Magnitude Operation

The signal flow graph is almost directly translated to the
dataflow routing on the proposed architecture. Each line in the

7

FLOW language determines a connection between a functional
unit output and a functional unit input as shown in the listing
below:

FMul0_a = DMem0_o ; RE*RE
FMul0_b = DMem0_o
FMul1_a = DMem0_p ; IM*IM
FMul1_b = DMem0_p
FAdd0_a = FMul0_o
FAdd0_b = FMul1_o ; RE*RE + IM*IM
FSqr0_a = FAdd0_o ; SQRT(RE*RE + IM*IM)
DMem0_a = FSqr0_o
|| ; next instruction delimiter

The FLOW language maps the multiplexer routing on the
proposed architecture to a human readable representation, to
some extent resembling the assembly language of traditional
instruction set architectures. Each assignment line in the source
code thus simply determines the constant on the select signal
of the related multiplexer. Every move operation in this listing
occurs in parallel, making the process a software pipeline
capable of producing a new output every clock cycle.

The integer section is responsible for updating the memory
read address to supply a constant stream of input values.
Similarly, the loop counter, write address and write enable
signals need to be updated accordingly. Using the write inhibit
counter, the write enable signal is asserted when the first output
is available from the square root operation after the processing
and memory fetch latency.

Provided that there are sufficient functional units to do the
required operation in a software pipelined stream, only a single
iteration over the data values is required. For more complex
calculations, the processing chain can be split into stages,
writing the temporary results to memory before reading them
in the next stage.

VIII. RESULTS

The final architecture was implemented on a Xilinx Virtex 5
SX95T FPGA for verification purposes. Fig. 10 shows the top
level of the firmware instantiating the soft-processor core.

FPGA

C
L

O
C

K
IN

(4
00

M
H

z)

in
te

rf
ac

e
in

te
rf

ac
e

B
SC

A
N

de
bu

g/
pr

og
ra

m
in

te
rf

ac
e

LV
D

S
C

L
K

/4A
D

C
(4

00
M

SP
S)

LV
D

S
C

L
K

/4D
A

C
(4

00
M

SP
S)

JTAG

A Q D

QDR-II
(200 MHz)

interface PMem CMem

51
264

64

64

100 MHz
reset

dbg regs(256)

128

12
8

Pe
ri

ph
er

al
s

E
T

H
/A

ur
or

a/
V

M
E

64 I/O

done
start

Softcore
Dataflow
Processor

DMem0/1 PMem0 CMem0

Fig. 10: Hardware and Firmware Interface: Top Level

A conservative clock frequency of 100 MHz was initially
chosen as a proof of concept to avoid timing closure prob-
lems, but later synthesis results revealed that substantially

higher clock frequencies are achievable. A full custom ASIC
implementation of the proposed architecture is expected to
achieve clock frequencies in the GHz range, matching or even
exceeding those of commercial DSP and CPU architectures
[25], [26].

The cycle count equations for the FIR and FFT operations
are shown in Eq. 1 and Eq. 2 respectively, where N is the
number of samples, L is the filter length and P is the number
of FFTs to perform consecutively in memory. The cycle count
for any operation that is implementable as a stream with the
available functional units, is simply N with a few extra clock
cycles for memory read and functional unit latency.

FIRcc = 5 + ceil(
L

8
)

(
N + 27− 4ceil(

L

8
)

)
(1)

FFTcc =

(
PN

2
+ 21

)
log2(N) + 8 (2)

The FFT clock cycle results of the proposed architecture
are compared against the Texas Instruments’ C66x architecture
and the Xilinx CORE Generator FFT IP core for point sizes
ranging between 8 and 16384 in Fig. 11. Note that these results
were obtained by averaging the clock cycle results of over
40 repeated runs, and using the optimised floating-point FFT
operation from the Texas Instruments DSPLIB. The proposed
architecture and the FFT core required the identical number
of clock cycles for each repeated run (Eq. 2 for the proposed
architecture), while the C66x clock cycle count achieved a
relative standard deviation of less than 6 percent over the entire
range.

101 102 103 104

102

104

106

108

P=64

P=1

FFT Point Size (N)

C
lo

ck
C

yc
le

s

Xilinx IP Core FFTv7.1
Texas Instruments C66x
Proposed Architecture

Fig. 11: FFT clock cycle comparison N=8 to 16384

The clock cycle performance of the C66x and FFT core is
similar to the proposed architecture for point sizes smaller
than 4096 and single FFT operations. As the point sizes
and the number of FFT operations increase, the C66x cache
performance is no longer optimal and the performance gap be-
tween the architectures increases. For large sizes and multiple
consecutive FFTs, the pipelined streaming architecture of the
FFT IP core outperforms both sequential processors.

To evaluate the radar performance results, the entire radar
signal processing chain was implemented in the FLOW lan-
guage, and run on the hardware platform in Fig. 10. Similarly,

8

101 102 103 104

103

105

107

109

P=512

P=8

Range Bins (N)

C
lo

ck
C

yc
le

s

Texas Instruments C66x
Proposed Architecture

Fig. 12: RSP clock cycle comparison N=8 to 16384

the identical chain was implemented on the Texas Instruments
C66x architecture using only library calls to the DSPLIB
(except for the complex modulus operation, which was not
available in the library). The radar clock cycle performance
comparison chart is shown in Fig. 12.

Note that the last 3 data points of the proposed architecture
were not computable due to limited external memory on the
development board. There is an almost constant offset between
the C66x results and the proposed architecture results on the
log scale (shaded regions), a difference of more than an order
in magnitude. The C66x implementation requires between
10.8 and 20.9 times (average factor of 13.9) the number of
clock cycles compared to the equivalent implementation on the
proposed architecture for typical radar operating parameters
(N=8 to 16384, P=8 to 512).

128x256 64x512 32x1k 16x2k 8x4k

5

5.5

6

6.5

% Speed up

14.9%

7.8%
8.9%

8.2%
7.9%

E
xe

cu
tio

n
Ti

m
e

(m
s)

Proposed Architecture
Texas Instruments C66x

Fig. 13: RSP execution time comparison

A performance comparison based on execution time is
biased towards the DSP architecture, which features a clock
speed of 1200 MHz compared to the proposed architecture
which runs between 100 and 160 MHz on the selected FPGA.
The performance of the two architectures is compared in
Fig. 13 for a few arbitrary selected dimensions. Note how
the performance of the C66x architecture decreases when the
point sizes becomes extremely small. Similarly, the perfor-
mance declines as the point sizes become excessively large
and no longer fit into cache memory. When comparing the

total execution time performance across the entire range of
typical operating parameters (N=8 to 16384, P=8 to 512), the
proposed architecture outperforms the C66x DSP architecture
by an average of 15.8 percent, even with the limited clock
frequency of 100 MHz.

IX. CONCLUSION

The main focus of this research was to design a processing
architecture that is optimised for radar signal processing appli-
cations. Constructs of both sequential processors and dataflow
machines were merged into a tightly coupled solution, ca-
pable of fully exploiting each of the underlying processing
resources concurrently. This novel soft-core processing archi-
tecture features an excellent match to the core computational
requirements of the RSP. The software-based development
environment enables quick algorithmic changes and instant
compile times during field tests, greatly improving the ease
of use compared to the complex FPGA design flow. The pro-
posed architecture outperforms a high-end commercial DSP
architecture in both number of clock cycles and processing
time, despite containing fewer arithmetic resources and being
limited by the restricted clock frequencies achievable in the
FPGA technology. Table I summarises the characteristics of
this processing architecture.

TABLE I: Architectural characteristics summary

Number of Cores 1 (can be increased)

Clock Frequency 100 MHz (ASIC estimated: 1.0 - 2.7 GHz)

Streaming Performance High (data independent processing)

Burst Processing Perf. Medium to High (software pipelines)

General Purpose Perf. Low to Medium (no hardware scheduling)

Interrupt Support Limited (impractical context backup)

Latency Low (deterministic and real-time)

Interface Capabilities Excellent (direct streaming interfaces to pe-

ripherals and external systems)

Architectural Efficiency Excellent (extremely low overhead, high

ALU utilisation)

Performance Scalability Excellent (add/remove functional units)

Power Consumption Low to Average (minimal control overheads)

Code Compatibility None (no backwards compatibility)

Code Density High (horizontal and vertical)

Resource Usage Average (medium to high on an FPGA)

Ease of Use Good (software based: function calls to opti-

mised DSP routines, no compiler yet)

The proposed architecture is well suited for applications
requiring a programmable front-end or streaming processor
with a high computational throughput and a low power con-
sumption. Although the Pulse-Doppler radar processor was the
main focus of this investigation, the architecture is equally
applicable to other radar classes (e.g. SAR, STAP) as well
as sonar processors. A custom ASIC implementation of the
proposed architecture would thus be well suited for integration

9

into the transmit/receive (TR-) modules of active electronically
scanned array (AESA) and multiple-input multiple-output
(MIMO) radar systems, enabling instant front-end processing
mode changes for various operational requirements (e.g. com-
munications, radar, electronic warfare techniques and jamming
modes).

REFERENCES

[1] S. Lal, R. Muscedere, and S. Chowdhury, “An FPGA-Based Signal
Processing System for a 77 GHz MEMS Tri-Mode Automotive Radar,”
in IEEE Int. Symp. Rapid System Prototyping, May 2011, pp. 2–8.

[2] R. Stapleton, K. Merranko, C. Parris, and J. Alter, “The Use of
Field Programmable Gate Arrays in High Performance Radar Signal
Processing Applications,” in IEEE Int. Radar Conf., 2000, pp. 850–855.

[3] H. Nicolaisen, T. Holmboe, K. Hoel, and S. Kristoffersen, “High Res-
olution Range-Doppler Radar Demonstrator Based on a Commercially
Available FPGA Card,” in Int. Conf. Radar, Sept. 2008, pp. 676–681.

[4] Z. Ali, A. Arshad, and U. Razzaq, “An FPGA based semi-parallel archi-
tecture for higher order Moving Target Indication (MTI) processing,” in
IEEE Int. Symp. Rapid System Prototyping (RSP), June 2010, pp. 1–7.

[5] C. Neri, G. Baccarelli, S. Bertazzoni, F. Pollastrone, and M. Salmeri,
“Parallel hardware implementation of RADAR electronics equipment
for a LASER inspection system,” IEEE Trans. Nuclear Science, vol. 52,
no. 6, pp. 2741–2748, Dec. 2005.

[6] M. Pfitzner, F. Cholewa, P. Pirsch, and H. Blume, “FPGA based architec-
ture for real-time SAR processing with integrated motion compensation,”
in Asia-Pacific Conf. Synthetic Aperture Radar (APSAR), Sept. 2013, pp.
521–524.

[7] J. Greco, G. Cieslewski, A. Jacobs, I. Troxel, and A. George, “Hard-
ware/software Interface for High-performance Space Computing with
FPGA Coprocessors,” in IEEE Aerospace Conf., Jan. 2006, pp. 1–10.

[8] Y. He, C. Le, J. Zheng, K. Nguyen, and D. Bekker, “ISAAC - A Case
of Highly-Reusable, Highly-Capable Computing and Control Platform
for Radar Applications,” in IEEE Radar Conf., May 2009, pp. 1–4.

[9] J. McAllister, R. Woods, S. Fischaber, and E. Malins, “Rapid implemen-
tation and optimisation of DSP systems on FPGA-centric heterogeneous
platforms,” J. Syst. Architect., vol. 53, no. 8, pp. 511–523, 2007.

[10] O. Cret, K. Pusztai, C. Vancea, and B. Szente, “CREC: A Novel
Reconfigurable Computing Design Methodology,” in Int. Proc. Parallel
Distr. Processing, Apr. 2003, pp. 8–16.

[11] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[12] P. Yiannacouras, J. Steffan, and J. Rose, “Portable, Flexible, and Scalable
Soft Vector Processors,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 20, no. 8, pp. 1429–1442, Aug. 2008.

[13] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux,
“Vector Processing as a Soft Processor Accelerator,” ACM Trans. Re-
configurable Technol. Syst., vol. 2, no. 2, pp. 12:1–12:34, June 2009.

[14] P. Wang, J. McAllister, and Y. Wu, “Soft-core Stream Processing on
FPGA: An FFT case study,” in IEEE Int. Conf. Acoustics, Speech and
Signal Processing (ICASSP), May 2013, pp. 2756–2760.

[15] R. Broich and H. Grobler, “Analysis of the Computational Requirements
of a Pulse-Doppler Radar Signal Processor,” in IEEE Radar Conf., May
2012, pp. 835–840.

[16] R. Broich, “A Soft-Core Processor Architecture Optimised for Radar
Signal Processing Applications,” Master’s thesis, University of Pretoria,
Dec. 2013.

[17] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen,
A. Wieferink, and H. Meyr, “A Novel Methodology for the Design
of Application-Specific Instruction-Set Processors (ASIPs) Using a

Machine Description Language,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 20, no. 11, pp. 1338–1354, 2001.

[18] V. Kathail, S. Aditya, R. Schreiber, B. Rau, D. Cronquist, and M. Sivara-
man, “PICO: Automatically Designing Custom Computers,” Computer,
vol. 35, no. 9, pp. 39–47, 2002.

[19] H. Corporaal, “A different approach to high performance computing,”
in Int. Conf. High-Performance Computing, Dec. 1997, pp. 22–27.

[20] MAXQ Family Users Guide, 6th ed., Maxim Integrated, Sept. 2008.
[21] Y. He, D. She, B. Mesman, and H. Corporaal, “MOVE-Pro: a Low Power

and High Code Density TTA Architecture,” in Int. Conf. Embedded
Computer Systems, July 2011, pp. 294–301.

[22] G. Cichon, P. Robelly, H. Seidel, T. Limberg, and G. Fettweis,
“SAMIRA: A SIMD-DSP architecture targeted to the Matlab source
language,” in Proc. Global Signal Processing Expo & Conf., July 2004.

[23] G. Cichon, P. Robelly, H. Seidel, M. Bronzel, and G. Fettweis, “Syn-
chronous Transfer Architecture (STA),” in Proc. Int. Workshop on
Systems, Architectures, Modeling & Simulation (SAMOS04), July 2004,
pp. 126–130.

[24] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling,
“Architecture Design of Reconfigurable Pipelined Datapaths,” in Conf.
Advanced Research in VLSI, Mar. 1999, pp. 23–40.

[25] L. Noury, S. Dupuis, and N. Fel, “A Reference Low-Complexity
Structured ASIC,” in IEEE Int. Sym. on Circuits & Systems, May 2012,
pp. 2709–2712.

[26] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

René Broich received his BEng, BEng(Hons) and
MEng degrees in electronic engineering from the
University of Pretoria, South Africa, in 2010, 2011
and 2014 respectively, all with distinction. He is
currently working as a digital design engineer in
the Radar and Electronic Warfare department at
the Council for Scientific and Industrial Research
(CSIR), South Africa. His research interests include
application specific architectures, high performance

computing, real-time embedded systems, as well as field-programmable gate
array, digital signal processor and microprocessor architectures.

Hans Grobler received the BE degree in electronic
engineering from Stellenbosch University, South
Africa, in 1995. In 2001 he received the ME degree
in electronic engineering whilst working as digital
systems engineer and software team leader on the
first miniaturized satellite (SUNSAT) designed and
manufactured in South Africa. He completed his
BSc(Hons) and MSc degrees in computer science
at the University of Pretoria, South Africa, in 2005

and 2006 respectively. He is currently senior lecturer in the Department
of Electrical, Electronic and Computer Engineering at the University of
Pretoria. His research interests include real-time embedded systems, hardware
and software parallel processing, robotics, computer vision and artificial
intelligence. He is a member of the IEEE and the ACM.

