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ABSTRACT

The linear stability theory is used to investigate the effects
of gravity modulation on solutal convection in mushy layers
found in solidifying binary alloys. The gravitational field is
modeled to consist of constant part and a sinusoidally varying
part. The linear stability results are presented for both the
synchronous and subharmonic solutions, and it is demonstrated
that up to the transition point between the synchronous and
subharmonic regions, increasing the frequency of vibration
rapidly stabilizes the solutal convection. However, beyond the
transition point, further increases in the frequency tends to
destabilize convection. It is also demonstrated that the effect of
increasing the ratio of the Stefan number and the solid

composition (77,) is to destabilize the solutal convection.

INTRODUCTION

Alloyed components are used in a wide spectrum of
engineering applications, such as turbine blades, automotive
components etc. A consistent internal structure is therefore
paramount to the performance and integrity of a mechanical
component. The internal structure of an alloy traces back to its
solidification from the melt phase. Alloys are susceptible to the
formation of vertical channels of a composition different to the
surrounding solid, commonly known as freckles. Copley et al.
[1] initially proposed a mechanism for the origin of freckles
whilst Chen and Chen [2], and Tait and Jaupart [3] investigated
various modes of convection and the relation to freckle
formation in their experimental studies. Fowler [4] proposed a
model for the mushy layer and analyzed it for the limiting case
when the mushy layer behaved like a non-reacting porous layer,
i.e. he took the composition difference across the mushy layer
to be infinitesimally small as a first approximation. Amberg and
Homsey [5] conducted a weak non-linear analysis of
convection in a mushy layer and were the first to propose a
means of decoupling the mushy layer from the overlying liquid
melt and underlying solid layer. Perturbations were used to re-
introduce the effects of permeability to higher orders of
approximation. Anderson and Worster [6,7] extended the model

of Amberg and Homsey [5], adopting large Stefan number
scaling and observed a hitherto unobserved oscillatory mode of
convection which was distinctly different to the double
diffusive mode observed by Chen et al. [8]. A mushy layer
including rotational effects, for a Stefan number of unit order of
magnitude, was investigated by Govender and Vadasz [9]. It
was observed that rotation stabilizes solutal convection in the
mushy layer.

Recently, Govender [10] analysed the stability of free
convection in a vertically modulated porous layer subjected to
constant vertical stratification, i.e. modulated Rayleigh-Benard
convection and thereafter went on to further analyse the actual
transition points from synchronous to subharmonic solutions,
Govender [11]. The objective of the current work is to analyse
the stability of solutal convection in a mushy layer during the
solidification of binary alloys subject to gravity modulation.

NOMENCLATURE
b [m] vibration amplitude.
C [-] dimensionless composition, equals,
C.-C /AC.
é [-] unit vector in the x-direction.
éx [-] unit vector in the y-direction
éy [-] unit vector in the z-direction.
Dz il solutal diffusivity.
Da - Darcy number, equals TT . / HS
Fr ] Froude number, equals A / ( g.H K ) .
g. [m / s gravitational acceleration
hﬁ; [kI/kg] latent heat of solidification.
H, [m] the height of the mushy layer.
I‘IO [m?] characteristic permeability
k [W/mK]  thermal conductivity.
11, [m?] variable permeability of the mushy layer.
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thermal diffusion length, equals A, / V.
the length of the mushy layer.

Lewis number, equals A, / D ;

dimensionless reduced pressure.

Prandt]l number, equals V, / A .

specific heat per unit volume.

porous media gravitational Rayleigh number,
equals, Hoﬁc*g*AC/v*V_ .

convection wavenumber.

Stefan number, equals /1, / q AT

time.

dimensionless temperature, equals,

(T.-T,(C,))/AT.

horizontal x component of the filtration
velocity.
horizontal y component of the filtration
velocity.
vertical z component of the filtration velocity.
dimensionless  filtration velocity vector,

equals ltéx + Vév + wéz .

Front/Solidification velocity.

space vector, equals xé_+ yé, + ze. .
P q x y =

horizontal length coordinate.
horizontal width coordinate.
vertical coordinate.

a parameter related to the wave number,
2/ 2

equals s'/iz" .

thermal expansion coefficient.

solutal expansion coefficient.

equals y, / P
dimensionless depth of mushy layer, equals

HJL. .

equals, K Fr Q7.
characteristic composition difference, equals

c -C,.
characteristic temperature difference, equals
T,(C)-T,.

volume fraction of solid dendrites (solid
fraction).

porosity, equals (1 - qo) .
b/H.

effective thermal diffusivity.
fluid dynamic viscosity.

density.

Growth factor.
modified Darcy-Prandtl

Pr(l./11,)
equals 8° y, = Da/Pr

fluid kinematic viscosity.

number, equals

I1(¢) - Retardability function, equals IT / 11,

n, [ equals 1+ S / C,

. [1/s] vibration frequency.

9, - mobility ratio, equals /, : / II,

0 [-] scaled vibration frequency,

equals, 52(0*2&/1/ 2.

T [K/kg] slope of liquidus line.

g ] composition ratio, equals (CY -C, ) / AC

$ -l scaled growth factor, equals O‘/ N-a.
Subscripts

* dimensional values.

B basic state

c characteristic.

C classic.

cr critical values.

eff effective values

E related to eutectic values.

] related to the liquid melt.

m related to the mushy layer parameters.

M modified.

4 related to unmodulated quantities.

S related to the solid layer.

PROBLEM FORMULATION

A binary alloy melt, cooled from below, subject to
vibration parallel to the gravitational field in the vertical
direction, is presented in Figure 1. The solidification process
results in three distinct regions forming viz. the solid region, of
a temperature below the eutectic temperature 7, a liquid melt
region, with a temperature above the liquidus temperature
T,(C,) and a mushy layer sandwiched between the solid layer
and the liquid melt.

The composition at the mush-liquid interface is C, and the

composition at the mush-solid interface is C,.. We propose that

the mush-liquid interface and the mush-solid interface advances
at a constant speed V. implying that the binary alloy is

directionally cast and the mushy layer is of constant height H,

and width Z, , similar to the model of Amberg and Homsey [5]

and Govender and Vadasz [9]. This results in the mushy layer
having rigid and isothermal upper and lower boundary
conditions where the vertical components of velocity is zero,
physically isolating and dynamically decoupling the mushy
layer from the solid region below and the liquid melt above.

Subject to these conditions, and performing a
transformation for the translating frame of reference (for
solidification), the following dimensionless set of governing
equations for continuity, energy, solute and Darcy, are
proposed,

V.V =0, 1)
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Figure 1: A schematic of the proposed problem showing
the imposed boundary conditions.
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The Boussinesq approximation is used and consists of
setting p, = p,. except in buoyancy terms emanating from body

forces in the Darcy equation. The Boussinesq approximation
and linear liquidus relation allows us to define a linear density

p, to composition C, relation in a similar fashion to Govender
and Vadasz [9] with p,=p (1-6.(T.-T,)+B.(C.-C)).
Note that S>> f,.as density is a stronger function of
composition than temperature and the density equation can
simplify to p,—p.. = p..f5..(C.—C,). This allows us to focus
on solutal effects on convection without greatly sacrificing
accuracy. The linear liquidus relation gives C,—C =TAC
further simplifying the density equation
top, = p,. = p,.fo.TAC . The scaling variables V., A./V,.,
A [V}, and Ap' [T, are used to non-dimensionlize the

filtration velocity, length, time and pressure components
respectively. In the above relations Vs the filtration velocity in

the mush, 7, is the dimensional temperature, ¢ is the solid
fraction, C, is the composition, p,is the reduced pressure, and
e, is the unit vector in the direction of gravity. A number of

dimensionless parameters emanate from the dimensionless
analysis. In Eq.(2), Stis the Stefan number, and represents the

ratio of the latent heat (%) to heat content or internal energy,
and is defined asSt= hﬂ_/(qq,,AT). The effective thermal

diffusivity A, is defined as the ratio of the thermal conductivity
and the specific heat per unit volumed, =k, / q, - The

composition ratio ¢, in Eq.(3), relates the differences in the
characteristic compositions of the liquid and solid phases with
the varying composition of the liquid within the mushy layer,
and is defined as ¢=(C,—C)/(C,~C,). In the case of
solidifying binary alloys the Lewis number, Le, usually
assumes large values and therefore the O(1/Le) term that
normally appears in Eq.(3) is omitted. The specific heat per unit
volume (¢) and the mush thermal conductivity (km) of the

44 =94, +(1-9)q, and
k, = ok +(1- @)k, respectively. Taking g, ~¢q, and k =~k

mushy layer are given as

yields ¢ =¢q, =q,and k, =k, =k, . The linear liquidus relation is
defined as  T=(T.-T,(C)))/AT and C=(C.-C,)/AC
where AT =T7,(C)-T,, AC=C,—-C,, AT =T'AC .In Eq.(4),
the modified Darcy-Prandtl number (defined as y, =Prd ),

relevant to solidification-type problems, normally assumes
small values for binary alloy mixtures, see Vadasz [12] and is
thereby resulting in the retention of the time derivative in the

Darcy equation. The mushy layer Rayleigh number Ra, is
defined as Ra, =I1,5,.2.AC/v.V,. . Note that u. refers to the
dynamic viscosity, p, is the density, and g, is the gravitational
acceleration.

In Eq.(4), the retardability function, as proposed by Nield [13],
is defined as Il(¢)=1II /II, (where II is the characteristic
permeability and TI, is the permeability of the mushy layer),
and the dimensional amplitade A is defined as
A=(xk-Fr,)-Q (where k=b/H. and Q=(5wi)/V,’).
Here b, and @, refers to the amplitude and frequency of the
imposed vibration. The modified Froude number,Fr, ,
proposed by Govender [10] for solidifying binary alloy systems
is given as Fr,=A/(Hlg.)=Fr. /5", where Fr. is the

classic Froude Number, Fr, =V, / (H.g.) defined in terms of

the front velocity, gravitational acceleration and the mushy
layer height. For a binary alloy system such as brass (70%
Copper-30% Zinc), the  thermal diffusivity  is
A, =342x10"m’ /s, whilst for a ammonium salt-water system
(NH,CI-H,0), the thermal diffusivity is of the order
2. =0.147x10°m’/s. If the mushy layer height is taken to
be H, =5mm , the modified Froude numbers for the alloy
system and the salt-water system may be approximated to be
Fr, ... =0.000954, and Fr, g, ... =1.762x10". Using the

relationship between the classic and modified Froude numbers
one may evaluate the solidification front velocities for the alloy

and salt-water system (for§ =0.1) to be V., =0.0684cm/s
and¥ ., . =6.44x10" cm/s . 1t should be pointed out that
Chen et al [8], in their lab experiments, found the solidification

front velocity to be of the order 0(10’4)cm/s , which is in full

Brass



agreement with the velocity magnitude calculated using the two
definitions of the Froude number proposed. Forx =4, the

grouping (x-Fr,) defined in the A term above may be

calculated for a binary alloy system (Brass), and for the salt-
water system (NH,CI-H,0) to be (x-Fr,), =3.82x10"

and(x-Fr,,)
medium being solidified the parameter grouping (K-FI’M)
[107,10"]. In

the current study we analyse solidifying systems for small
Prandtl numbers (or small to moderate y values) for the

=7.05x10"*. So depending on the type of

Salt—Water

could assume values in the region, (x-Fr,)e

parameter grouping (x-Fr,)of the order(x-Fr,)=0(107).
The Prandtl number is defined as the ratio of the kinematic
viscosity v. to the thermal diffusivity and is defined
asPr=v. /A,. The dimensionless depth of the layer & is the
ratio of the height of the mushy layer H, to the thermal
diffusive length /,, and is defined as 6 = H*/l“

Following Anderson and Worster [6] and Govender and Vadasz
[9] we may scale the dependent variables as in terms of the

mushy layer depth ¢ as follows,
X=6X, t=58%7, R°=06Ra,, p=Rp, V=§I7. (3)

Applying the scalings in Eq.(5) to Egs.(1-4) we obtain the
following scaled system of governing equations,

V.V =0, ©)
(a_t_a )(T Stg)+ RV -VT=V'T, O
(g_a )((1 O +cp)+ RV VT =0, ®)

1 o .0\ o e N
(1- ¢)x(5_5 aZ]VJrH((p)h VB +R[1+ ASin(Qf) ] Te,
©)

where y = 8"y, = Da/Pr . When the composition of the melt is
close to that of the eutectic composition (C, —C, <<1), a large
concentration ratio, ¢ is obtained. For this so-called near
eutectic limit the concentration ratio may be defined as
¢=C/5, where C, is the solid concentration and & <<1.
Worster [14] showed that for large concentration ratios ¢, the
permeability of the mushy layer is uniform/homogenous, and
for this reason we set II(¢p)=1, in the current analysis. We
follow Anderson and Worster [7] and define a large Stefan
number, St , according to St = 5'/5 .

LINEAR STABILITY ANALYSIS

To establish the basic flow we need to analyse the equation set
corresponding to the motionless state where the flow velocity is
zero, and the temperature and solid fraction is horizontally

uniform. Using an expansion in § where the basic state has
expansions:

[];’VB9¢B’pB] [7;?0’[/;30’(030’1]30]-'_5[ BI’VBI’¢Bl’pBl]+

+6" [Y;zzﬁvzaq’szapm] (10)
and a motionless state associated with basic flow implies that,
V,=0,0T/ot = oT/ox=0,0T/0y =0, 0p/of =0
Op/éX=0and 0 /0y =0. Substituting Eq.(10) in Eqs.(6-9)
yields the motionless basic state solution for the temperature
and solid fraction to each order of § subject to the boundary
conditions: 2=0, T, =-1 andz=1, T, =0, ¢, =0,

T, :(2-1)-d172i(22-2)+..., (11)

- (1 -1y -
:5%:5( CZ]+5 { (Zcz) +%(z‘—z)}+..., (12)

It can be observed from Eq.(12) that to 0 (5°), ¢,, =0. This

result clearly shows that ford <<1, a small amount of solid is
formed for the near eutectic approximation. Readers are
referred to Roberts et al [15] for a more accurate treatment of
the fluid - mush interface boundary condition. To analyse the
stability of the basic state solution (11-12) we apply small
perturbations about of the form,

[T.V.,0.p]=[T,.0,0,.p, ]+ €[ 1.V, 0. p, |+ €[ 1, V., 0., 1, ]

5

(13)
where ¢ <<1, as required by the linear theory. For the
particular case when §=0(¢), we note that the basic state

solution interacts with the perturbed terms. As a result Eq.(13)
may be re-written as follows for the case 6 = O(¢),

[T’V’q)’ ] [BO’OOPBO]
+e[(T+T,).(V, 4V, (0, +00) (24 Pu) |+

& [(L4T).( V) (040, ). (P4 22) ] (14)
Solving the Equation set (6-8) for the perturbation definition
proposed in Eq.(14) to O(¢) yields

QT—+R 1=-1—v11;, (15)
ot n,

10 . .

—5;+1 V,=-Vp,—R[1+ Asin(Q1)]Té. =0, (16)
X

where 7, = 1+A§/CS .

Following Govender [10], we apply the curl operator twice on
Eq.(16) in order to eliminate the pressure term, and only
consider the z-component of the result as follows,

F—EH}V L+ R[1+ Asin(Qn)|V; T, =0, 17

X ot

where V3, = a—-,+ _,
ox' Oy

component of the filtration velocity. Equation (15) and Eq.(17)

and w, is the perturbation to the vertical




may be decoupled by eliminatingw, providing a single
equation for the temperature perturbation 7, in the form,

10 s ) ) )

——+1 |V —@——iV“ T — R*[1+ ASin(Q)|V;, T, =0 (18)

x Ot ot n,

Assuming an expansion into the normal modes in the x- and y-
directions, and a time dependent amplitude &(¢) similar to that

of Govender [10], we obtain
T =0(t)e"™" sin(xz) +c.c. (19)
where again c.c. represents the complex conjugate terms and
s* =57 +s,”. Substituting Eq.(19) into Eq.(18) yields,
d’o do
—+2p—-—
dt’ dt
wherea =s*/7*, y=y/x*, R=R’, R=R/z*, R =R’
R =R [x’, R is the un-modulated Rayleigh number defined
asR =r’(a+1)/na, 2p=7t2[(a+1)/770+;/:| and
F(a)=r‘af(a+1). Using the
t=(m/2-27)/Q, Eq.20) may be cast, as indicated by
McLachlan [16], into the canonical form of the Mathieu

equation:

X + [a +2q cos(Zz')]X =0 2D

2

F(a)y [(fe ~R)+ ﬁASin(Qt)] =0, (20)

transformation

The solution to Eq.(21) follows the form G(7)=e " y(r)
where G(z)is a periodic function with a period of 7 or 27
and o is a characteristic exponent which is a complex number,
and is a function of @ and ¢ respectively (See Govender [10]).
In this paper the definitions for a, ¢ and o are obtained upon
transforming Eq.(21) into the canonical form of Mathieu’s
equation, and are defined as,

\/2_‘ = gz,\ W lq=F(a)71§KFr, (22a,b)

@ [F(a)y(R-m)

O':—-zﬁ,n:_i (Z+1— (23a,b)
Q 4y(a+1)| n,

When o =0, the solution to Eq.(21) is defined in terms of
Mathieu functions, ¢, and d,( where e = 1,2,3,.E and f =

1,2,3..F), such that for each Mathieu function, ¢, and dj, there
exists a relation between a and ¢. This relationship is shown by
Govender [11] for the Mathieu function d, ¢;and d; One would
observe alternating stable and unstable zones if various
Mathieu functions, ¢, and d, are plotted on the same set of axes.
In the stable regions of Mathieu’s equation, o is complex with
a negative real part. Since o is a function of @ and ¢, which are

dependent on y ,IAQ , a, A andQ, the stability of the mushy

layer is also seen to depend on these variables as well. In
addition there are solutions to Eq.(21) for >0 and a<0; also, g
may be replaced by —g with no effect on the solution. In this
study for a solidifying binary alloy the numerical values for “a”
are less than zero and are defined by Eq.(22a). We also propose

the following definition for the modified characteristic
exponent, & = o-/ J-a . We may now present a relation for the
characteristic Rayleigh number in terms of the newly defined
parameter &, by substitutingéza/\/:a— in Eq.(22a), and
rearranging to yield,

R=%+n. (24)

The Mathieu chart, see Govender [11], together with Eqs.(22-
23) and Eq.(24) may be used to evaluate the critical Rayleigh
number and wave numbers in terms of the frequency, Q, the
parameter xFr andy. We proceed, in a similar fashion to
Govender [10], by first evaluating the characteristic Rayleigh
number versus the frequency for selected values of the wave
number according to the following method: (a) select a value

of &, (b) evaluate R using Equation (24), (c) compute the

value for 1/2¢ using Equation (23a), (d) read 2/ J=a from
Mathieu chart, see Govender [11], and (e) evaluate the
frequency from Equation (22a). The results of the process
outlined in steps 1 to 5 above are depicted in Figure 2 for
parameter values y=0(.5) and(xFr)=0(107)., see
Govender [11]. In Figure 2, for any selected wave number, it is
noted that the stable zone is below the curve whilst the unstable
zone is above the curve. An example of the location of the
unstable and stable regions is shown in Figure 2 fora=1.5.
Using the results in Figure 2 we may evaluate the critical wave
number and Rayleigh number for numerous values of wave
number « across a bandwidth of frequencies.

The effect of the important ratio S / C. (embodied in the term
7,) on the critical Rayleigh number and frequency is shown in
Figure 3 for selected 7, values, viz. 77, = 1, 1.5, and 2 at
y=0(1.5) and(xFr)=0(107). It can be observed from
Figure 3 that as 7, increases from 1 to 2 the convection
becomes destabilised across the indicated bandwidth of
frequencies. The setting 7, =1 corresponds to the case when
the Stefan number equals zero (i.e. there is no solidification),
whilst 7, =2 corresponds to the case S§=0(C,) (or

St = O(g) ). Calculations were performed for numerous values

of 17, and it was found that beyond 7, =10 no solutions exist.

The results in general follow similar trends to that generated by
Govender [11], but the transition points €3 ,€, € (from

synchronous to subharmonic solutions for each 7, value) occur

at significantly lower frequencies. In addition the stabilising
effect of vibration occurs over a bandwidth of lower frequency
values in comparison to that of the passive porous layer
investigated by Govender [10]. This is a welcomed result as
high frequency vibration will initiate macro-segregation in the
solidifying alloy and defeat the objective of using vibration to
stabilise the solutal convection.
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Figure 2: Characteristic Rayleigh number versus the scaled
vibration frequency for selected values of wavenumber.
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Figure 3: Critical Rayleigh number versus the scaled vibration

frequency for various values of the parameter 77, at y = O(1.5)
and (x Fr)=0(107).

Bearing in mind that for solidification to occur we require
thatn >1, it is quite clear from the curves presented in Figure
3 that the process of solidification (i.e. increasing Stefan
number) destabilises the convection.

CONCLUSION

The current study investigates the effect of gravity
modulation on the stability of solutal convection in the mushy
layer of a solidifying binary alloy. The study shows that low
amplitude gravity modulation stabilizes the solutal convection
in solidifying mushy layers thus reducing freckle formation.
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