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ABSTRACT  

The incompressible Navier-Stokes equations with heat 
transfer are solved by an implicit pressure correction method on 
Cartesian mesh with local refinement.  A simple immersed 
boundary method is developed to treat arbitrary solid bodies in 
the flow field.  A direct forcing term was added to cells inside 
the immersed body to enforce the Dirichlet boundary condition 
for velocity and temperature.  This forcing is also assumed to 
have an active range of one cell size normal to the immersed 
boundary, acting on fluid cells external to the immersed body.  
For those cells within the active range, the forcing term is scaled 
by the normal distance from the cell center to the body surface.  
The same pressure Poisson equation is applied to the entire flow 
field without distinguishing whether it is inside or outside the 
immersed body. Various tests are computed to verify this simple 
immersed boundary method, including the steady and unsteady 
forced convection over a circular cylinder and the natural 
convection over a heated circular cylinder inside a square cavity. 

INTRODUCTION 
Recently numerical methods for solving incompressible 

flows on fixed Cartesian grids are gaining popularity for their 
relative ease in treating complex immersed bodies [1-10].  The 
differences among these methods lie on the different ways the 
boundary conditions for the immersed bodied are enforced.  For 
example, the immersed boundary method [1] and the virtual 
boundary method [2] simulate the no-slip boundary condition on 
the body surfaces by adding appropriate forcing terms to the 
appropriate cells.  The force added to the flow field is spread 
over several grid cells using a delta function-like distribution 
normal to the fluid-solid interface.  In the direct-forcing method 
[4, 5] the no-slip condition at the fluid-solid interface is used to 
interpolate the velocity distribution for cells around the solid 
body without actually solving the fluid equations.  The fictitious 
domain method [6] is a finite-element method that enforces the 
no-slip boundary condition using Lagrange multiplier. 

Very recently, Pan [7,8] viewed the domain inside the solid 
body as being occupied by the same fluid as outside with a 
prescribed divergence-free velocity field.  In this view a fluid-
body interface is similar to a fluid-fluid interface commonly 
encountered in the Volume of Fluid (VOF) method for the two-
fluid flow problems.  Thus a Volume of Body (VOB) function 

analogous to the VOF function can be used to identify and track 
the presence of the immersed body.  For the grid cells 
containing the fluid-body interface, a mixture of the “two fluids” 
based on the fluid volume is assumed.  This volume averaging 
of the velocity automatically enforces the no-slip boundary 
condition inside the interface cell, but it also smears the fluid-
body interface to the size of one cell width.  In this work, we 
tried to improve the representation of the fluid-body interface by 
using a scaled forcing term.  A direct forcing is added to cells 
inside the body to enforce the Dirichlet boundary condition for 
the velocity and temperature.  This forcing is further assumed to 
have an effective range of one cell size normal to the body 
surface, acting on cells external to the immersed body.  For 
those cells within the active range, the amount of added forcing 
is scaled by a Delta function based on the normal distance from 
the cell center to the body surface.  Test results of this simple 
scaled direct forcing method are reported in this paper, including 
the steady and unsteady forced convection over a circular 
cylinder and the natural convection over a heated circular 
cylinder inside a square cavity.  

IMPLICIT PRESSURE CORRECTION METHOD 
The incompressible Navier-Stoked equations with heat 

transfer can be written as  
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where vv , P and θ  are Cartesian velocity vector, pressure and 
temperature, respectively; Re is the Reynolds number; Pr is the 
Prandtl number; rG

v
 is the vector of Grashof number 

representing the thermal buoyancy; CV is the control volume 
considered and CS is the boundary surface of CV.  Applying the 
Divergence theorem, adapting the backward time differencing 



 
scheme and keeping the pressure fixed at the current time level 
n, the momentum and temperature equations can be discretized 
as: 
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where the superscript “*” represents the intermediate state, “n” 
the current time level; VΔ  is the volume of the considered 
cell; tΔ  is the time increment.  The vector of conserved 

variables is defined as [ ]TvuQ θ= . invR , PR  and 

visR are the surface integral of inviscid flux, the pressure flux, 
the viscous flux divided by the cell volume, respectively, H is 
the source term.  The constants are 1c =1.5, 2c =2 and 3c =0.5 

for the second-order backward differencing scheme, and 1c =1, 

2c =1 and 3c =0 for the first order Euler implicit scheme.  The 

velocity ∗vv  generally does not satisfy the divergence-free 
condition.  The velocity and the pressure are corrected as 
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where φ  is the pressure correction.  By requiring 1+nvv  be 
divergence-free, we obtain the Poisson equation [7-9]: 
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After obtaining 1nv +v
 and 1+np , the temperature equation alone 

in Eq. (2) is then solved to update the temperature, with *θ  in 
the equation being replaced by 1+nθ  and ∗vv  and np  being 

replaced by the latest 1nv +v
 and 1+np .  Equations (2), (3) and (4) 

and the final temperature update constitute the implicit 
fractional step pressure-correction method used in this work. 

FINITE VOLUME DISCRETIZATION 
A finite volume method [7,8] based on the integral form of 

Eq. (1) is used to discretize the momentum equation on a cell-
centered unstructured Cartesian grid system.  The variable states 
at the cell faces are linearly reconstructed from the center values.  
The convective fluxes are upwind oriented based on the velocity 
at the cell face.  The pressure force is computed using the 
reconstructed pressure state at the cell face, while the viscous 
fluxes are computed using the velocity gradients at the cell face.  
Overall, a second order accurate upwind difference scheme is 
used for the convective fluxes and central difference schemes 
are used for the pressure and viscous fluxes.  To compute the 
divergence of velocity, a normal face velocity is defined 
separately from the cell center velocity.  A fourth derivative of 
pressure is added in the divergence field through the normal face 
velocity.  This face velocity is corrected in a similar fashion as 
Eq. (3), and thus constructing the discretized Poisson equation 
for the pressure correction.  The technique of sub-iteration is 

employed for time accuracy, and an implicit multi-grid method 
is developed to accelerate the convergence of the inversion 
process.  Also, a similar implicit multi-grid method is developed 
to solve Eq. (4), or the pressure Poisson equation. 

SCALED DIRECT FORCING 
The position, the velocity Bvv  and the temperature Bθ  of 

the immersed bodies are assumed known from some appropriate 
governing equations.  The body velocity Bvv  is assumed to be 
divergence-free, such that the pressure field inside the body 
surface obeys the same governing equation as the pressure field 
outside.  Under this assumption, Eq. (4) can be applied to the 
entire computational domain including the body interior. 

   The current immersed boundary method simulates the 
existence of solid body by adding a direct forcing term to the 
governing equations: 
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The modeling of IBMf  constitutes the major difference among 
various immersed boundary methods.   In this work, it is 
assumed that IBMf  depends on the normal distance nr  of a cell 

center to the body surface, where nr > 0 indicates the body 

exterior, nr < 0 indicates the body interior and nr = 0 indicates 
the body surface.  

For cell centers inside the body surface with nr < 0, the 

working of IBMf  should enforce the known boundary 
conditions, resulting the following forcing term for each body 
cell 
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where [ ]TBBBB vuQ θ=  represents the component of 
body velocity and the body temperature at the new time level 
n+1.  Note that if Neumann boundary condition is set for 
temperature, then Bθ  should be interpoated from the 
surrounding fluid temperature using given temperature gradient.  
For a cell center on or external to the body surface with 0≥nr , 
it is assumed that the forcing added to the cell center depends on 
its project point on the body surface and can be represented by 

Pj
n
Pvisinv

nnn
B

SDFPjIBM

RHRR
t

QcQcQcf

)

(

***

1
32

1
1

,

++−+
Δ

+−
−=

−+

φ
  (7) 

where the subscript “Pj” indicates the projection point on the 
surface for the cell center under consideration.  The coefficient 

SDFφ  is a numerical Delta function given by 
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where η  is a preset effective length of pjIBMf , , whicht is 

chosen to be the minimum cell size minl  of the mesh.  Not that 

the condition of 1=SDFφ  when 0=nr  will enforce the 
Dirichlet boundary condition on the body surface, and the 
condition of 0=SDFφ  when η≥nr  indicates that no forcing 
is added when the cell is one cell size away from the body 
surface.  Generally, the projection point does not coincide with 
the cell center and the terms inside the brackets of Eq. (7) need 
to be estimated using nearby cell center values.  In this work, we 
choose a bilinear interpolation based on the cell center values 
surrounding the projection point.  Note that here pIBMf ,

v
 is similar 

to the Lagrangian force developed in the Physical Virtual Model (PVM) 
of Silva et al. [12].   

FORCE CALCULATION 
To compute the aerodynamic forces acting on the immersed 

body and the total heat transfer over the body surface, the 
surface integral of pressure and viscous stress is needed: 

)1( Sv
Re

SPf
surface

Body

vvrvv
Δ⋅∇+Δ−= ∑  

S
PrRe

H
surface

Body

vv
Δ⋅∇= ∑ θ1

 (9) 

where the summation is performed on all surface elements of the 
body surface.  The pressure at each surface element center is 
obtained by a bilinear interpolation based on the vertex values of 
the cell containing the surface element center.  The variable 
gradient for a surface element, however, is not estimated at the 
element center in this work, but at a point having a normal 
distance 0.5 minl   away from the surface element.  In other 
words, the variable gradient is estimated at a point on the 

5.0=SDFφ  contour closest to the element center under 
consideration.  This choice is based on the assumption that the 
variable gradient can be accurately estimaed at the middle of the 
transition zone between body surface and the outside flow field.   

FORCED CONVECTION OVER A CYLINDER 
The steady and unsteady flows over a circular cylinder of 

unit diameter at Re=40 and 100 are computed on an 
unstructured Cartesian grid.  The grid shown in Fig. 1(a) is 
refined around the cylinder to have about 384 cells containing 
the cylinder surface.  The downstream boundary follows the 
upwind differenced equation of 0)/()/( =∂∂+∂∂ xvUtv n

vv
, 

where nU  is the normal outflow velocity at the boundary.   
For the steady case of Re=40, the Euler implicit method is 

used with the maximum CFL number around 20.  The infinity 
norm of the steady state residual for 0=SDFφ  cells, or the 

terms in Eq. (2) without involving tΔ , dropped 4 orders of 
magnitude in 500 steps.   The computed streamlines are plotted 
in Fig. 1(b).  For convenience, the contour of 0=nr  is 
displayed as the cylinder wall.  The streamlines around the 
cylinder are smooth, indicating the effects of the interface cells 
in smoothening the zigzag representation of the cylinder surface.  
Figure 2(a) shows the computed pressure contours.  Note that 
the pressure inside the cylinder adjusts itself automatically to the 
pressure field outside.  The pressure contours intersect the 
cylinder wall in a nearly orthogonal manner.  The pressure 
coefficient at the intersection of the cylinder surface and the grid 
lines is interpolated using the surrounding center values and 
plotted in Fig. 2(b).  The data from Fornberg [11] are also 
included for comparison.  The two results generally agree with 
each other very well.  For the unsteady case of Re=100, the 
second order backward difference scheme is used for time 
integration.  The time increment is chosen such that the 
expected vortex shedding cycle takes about 50 time steps to 
complete.  The instantaneous streamlines at certain instant in the 
periodic vortex shedding process are plotted in Fig. 3(a).  The 
vorticity contours are shown in Fig. 3(b).  The unsteady vortex 
shedding behind the cylinder is clearly seen.  Table I lists the 
computed lift coefficient (Cl), drag coefficient (Cd), the wake 
length (Lw) normalized by the diameter (d), the Strauhal number 
(St) of unsteady vortex shedding and the averaged Nusselt 
number Nu over cylinder surface.  The comparisons between the 
present work and the work of others are generally satisfactory.  
The curve fit of experimental data for average Nusselt number 
in Holman [12] is used as reference data.  The difference 
between the computed Nu and the experimental curve fit is less 
than 5%.   

NATURAL CONVECTION OVER A HEATED CYLINDER 
IN CAVITY 

The next validation examines the natural convection heat 
transfer from a heated cylinder placed in a square cavity of unit 
length.  This problem has been studied by Moukalled and 
Darwish [13] and Sadat and Couturier [14].  The radius of the 
cylinder is 0.1.  The temperature of the cylinder is one and the 
wall temperature is zero.  The center of the cylinder is at (0.35, 
0.35) from the left lower corner of the cavity.  The natural 
convection with Rayleigh number Ra = 410 , 510  and 610  are 
computed.  Four levels of refinement on a 6464×  grid are 
employed, resulting the finest cell length of 1/1024.  The total 
number of cells for the fine mesh is 13036, which is about 3.2 
times of that of the base mesh.  The number of interface cells is 
about 577, which is about 17.5 times of that of the base mesh. 
This indicates the advantage of local refinement on the 
unstructured Cartesian mesh. 

Table 2 lists the computed average Nusselt number over 
the hot cylinder and the published data in Ref. [13] and [14].  
The agreement with the publish data is generally very good.  
Figure 4 shows the computed streamlines and isotherms.  The 
streamlines and isotherms are similar to those presented in Ref. 
[13, 14].  The formation of a thermal plume at Ra = 610  is 
clearly observed. 



 
CONCLUSIONS 

A simple immersed boundary method on unstructured 
Cartesian meshes is developed and tested for incompressible 
flows with immersed bodies.  The solid body is modeled by a 
direct forcing term added to the governing equations.  For cell 
centers inside the solid body, this forcing term enforces the 
Dirichlet boundary condition directly.  For cells external to the 
body within an effective range, this forcing term is scaled by the 
normal distance from the cell center to the body surface.  The 
same pressure Poisson equation applies to the entire 
computational domain including the body interior.  An implicit 
pressure correction method and multi-grid methods are used to 
integrate the governing equations.  Steady and unsteady forced 
convection over a stationary circular cylinder and the natural 
convections over a heated circular cylinder embedded in a 
square cavity are computed this simple direct forcing method.  
The computed results generally compared well with published 
data.   
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Table I Simulation Results for Flows over a Circular Cylinder 

 
Methods Re Cd Lw/d Cl St Nu 

Current method 40 1.50 2.24   3.21 
Pan(VOB)[7,8] 40 1.51 2.18   3.23 
Fornberg [11] 40 1.50 2.24    

3/1385.0911.0 PrRe  [12] 40     3.36 
Current method 100 1.32  ± 0.32 0.164 4.99 
Pan(VOB)[8] 100 1.32  ± 0.32 0.160 5.02 

Kim, Kim and Choi [5] 100 1.33  ± 0.32 0.165  
3/1466.0683.0 PrRe  [12] 100     5.21 

 
Table 2.  Average Nusselt Number over a Heated Cylinder in Cavity, Radius=0.1, Center at (0.35, 0.35) from the left lower 

corner 
 

Ra Current Method Pan (VOB) [7,8] Moukalled and Darwish [13] Sadat and Couturier [14]
410  4.733 4.686 4.741 4.699 
510  7.395 7.454 7.435 7.430 
610  12.37 12.54 12.453 12.421 
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Fig. 1 Flows over a stationary circular cylinder, Re=40, (a) grid and (b) streamlines. 
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Fig. 2 Flows over a stationary circular cylinder, Re=40, (a) Cp contours, (b) Cp distribution around the cylinder surface, symbols: 
computed, line: Fornberg [11]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 Vortex shedding over a circular cylinder, Re=100, (a) temperature contours, (b) vorticity contours. 
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Fig. 4 (a) Streamlines and (b) Isotherms for Ra = 410 , 510  and  Ra= 610  


