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ABSTRACT 
It is well known that common procedures in the design and 

testing of the air supply systems in special hydraulic structures 
assume the flow of air through vent ducts to be incompressible 
([5]). Several experimental tests on large scale hydraulic 
models ([2], [6]) however show that this hypothesis quite often 
may not be realistic. In order to verify when the flow of air may 
be treated as that of an incompressible fluid, this paper aims at 
outlining the main mathematical and physical features of a 
compressible fluid flowing through a vent subjected to specific 
boundary conditions and evidence distinctions with the flow of 
the same fluid subjected to identical boundary conditions for 
which compressibility effects are neglected. Starting from basic 
equations of compressible flows some general relations are 
derived and reviewed focusing on design implications for 
aerators and air vents. It is shown that, when shear stresses are 
neglected, distinctions may be considered significant when the 
downstream to upstream pressure ratio in the vent becomes 
lower than 0.9 which, when the air feeding the vent is at STP, 
corresponds to a pressure drop of 10'000 Nm-2 (1 m of water 
column) and an air velocity larger than 150 ms-1. Much higher 
pressure ratios and lower velocities would be expected to be 
suitable however, should singular and distributed friction losses 
be taken into account. Therefore it is believed that compressible 
flow equations should always be used when analysing the flow 
of air through ducts in special hydraulic structures. 

NOMENCLATURE 
For a complete list of symbols see Part 1 of this paper “Self-

aerated bounded flows in special hydraulic structures” also 
presented at HEFAT 2008. 

COMPRESSIBLE FLOW EQUATIONS 
The general 3D motion of a compressible fluid can be 

described through a complex system of partial differential 
equations. The system can be derived by application of basic 
physical principles to different control volumes together with 
the particular equation of state of the fluid and Fourier’s law of 
heat conduction. The fundamental equations therefore result 
from conservation laws of mass, momentum and energy, the 
latter being specified by the First and Second Law of 
Thermodynamics. The attention is now restricted to quasi 1D 
compressible frictionless flow of ideal and non-heat conducting 
gas. It is additionally assumed that gas is polytropic and body 
forces are negligible. Equations are expressed in conservative 
form. 

The mass balance equation gives: 
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The momentum balance equation reads: 
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The total energy balance equation figures out: 
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The kinetic energy balance equation recites: 
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The thermal energy balance equation reports: 
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The entropy balance equation states: 
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The PDE system is completed by the ideal gas law: 
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with R  being the engineering gas constant and by recalling 
that the total energy per unit mass E , defined as the sum of 
thermal energy per unit mass U  and kinetic energy per unit 
mass K , for a polytropic gas reduces to: 
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with k  being the adiabatic coefficient ([1], [3]). 
Since it can be shown that balance equation of kinetic 

energy follows from mass and momentum conservation 
equations while balance equation of thermal energy can be 
obtained by subtracting kinetic from total energy balance 
equation, it is easy to recognise that the PDE system consists of 
6 independent equations (balance equations of mass, 
momentum, total energy and entropy, the equation of state of 
the gas and the assumption of polytropic gas) with 8 unknown 
variables (absolute pressure π , density ρ , absolute 
temperature T , energy per unit mass E , entropy per unit mass 
S , pipe area A , flow velocity V , heat transfer per unit time 
q& ). As a general rule, a solution of the PDE system can then be 
worked out by specifying 2 additional constraints. 

Under steady conditions, these constraints may be 
indentified, for instance, in the system geometry A  or the mass 
flow rate M&  and in a functional relationship between pressure 
and density of the type: 
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with n  being the polytropic coefficient. 
With this choice, the flow of a compressible fluid starting 

from rest and passing through a nozzle can now be shown to be 
completely characterised in terms of different boundary 
conditions by means of simple algebraic equations. 

If boundary conditions are expressed in terms of pressure, 
thermo-dynamical state variables in the nozzle orifice are 
described from: 
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while velocities, mass flow rates and heat transfer are 
known from:  
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with: 
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Analogous results can be obtained when boundary 
conditions are expressed in terms of density or absolute 
temperature. 

RESULTS AND DISCUSSION 
Many variables characterising the steady compressible flow 

of air through a nozzle have been computed for a number of 
thermodynamic processes and boundary conditions. 

Figure 1 describes the main gas flow features in adiabatic 
and isentropic transformations, Figure 2 illustrates endothermic 
and entropy-increasing processes while Figure 3 demonstrates 
exothermic and entropy-decreasing processes. Figure 4 instead 
compares velocity and mass flow rate solutions in adiabatic 
flows to solutions pertaining to isothermal and incompressible 
flows. Boundary conditions are always expressed in terms of 
absolute pressure. In all considered cases absolute pressure, 
density, absolute temperature, flow area, mass flow rate, 
velocity, enthalpy, kinetic energy, enthalpy plus kinetic energy 
and heat transfer of gas in the nozzle are shown. For simpler 
comparisons, quantities have been scaled by assuming the 
adiabatic and isentropic solutions as the reference ones. 

Continuous smooth lines identify complete mathematical 
solutions covering sub-sonic and super-sonic flows which are 
physically admissible only in convergent-divergent nozzles 
([1], [3]). Continuous non-smooth lines denote instead partial 
mathematical solutions involving subsonic flows which are the 



 

only realistic solutions achievable in convergent nozzles ([1], 
[3]). Both partial theoretical solutions (black solid lines) and 
complete theoretical solutions (different colour solid lines) are 
drawn in graphs. Discontinuities in solution derivatives identify 
critical flow conditions (i.e. transition from sub-sonic to super-
sonic flows or from another point of view transition from non-
choking to choking conditions). Further details are given in the 
captions. 

The results show that critical flow conditions occur when: 
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while maximum mass flow rates or minimum flow area take 
place at: 
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and is easy to note that these two conditions coincide only 
for adiabatic and isentropic transformations (i.e. kn = ). 

Some general features of the flow may be deduced from 
inspection of the graphs. Let us suppose that the upstream and 
downstream extremities of a nozzle are in a certain state of 
equilibrium. As the boundary condition (absolute pressure, 
density, absolute temperature) downstream of the nozzle is 
decreased below the upstream value, the gas equilibrium breaks 
so that we may observe in the nozzle: 
- a decrease in the absolute pressure, density, absolute 

temperature and enthalpy per unit mass; 
- an increase in the flow velocity and kinetic energy per 

unit mass; 
- an increase in the mass flow rate and flow area; 

- no heat transfer per unit mass and constancy of the sum 
of enthalpy and kinetic energy per unit mass when the 
process is adiabatic and isentropic; 

- an increase in the heat transfer per unit mass and in the 
sum of enthalpy and kinetic energy per unit mass when 
the process is endothermic and entropy-increasing (i.e. 
spontaneous process); 

- a decrease in the heat transfer per unit mass and in the 
sum of enthalpy and kinetic energy per unit mass when 
the process is exothermic and entropy-decreasing (i.e. 
non-spontaneous process). 

It is to be stressed that in a convergent nozzle 
thermodynamic and design variables are influenced (either 
decreasing or increasing) up to the critical point (i.e. subsonic 
condition) and further decreases of the boundary conditions do 
not affect anymore the flow within the nozzle (i.e. sonic 
condition) while in a convergent-divergent nozzle they may be 
further affected (either reducing or growing up) if the nozzle is 
accurately shaped for a given mass flow rate (i.e. supersonic 
condition). Furthermore, from inspection of Figure 4, we may 
observe that, when the upstream condition and the nozzle 
geometry is set: 
- in an endothermic and entropy-increasing process the 

mass flow rate is smaller and the velocity is larger than 
in an adiabatic and isentropic transformation, for any 
given downstream condition; vice versa, if the mass 
flow rate passing through the nozzle is specified, 
downstream conditions are lower for sub-sonic flows 
and higher for super-sonic flows; 

- in an exothermic and entropy-decreasing process the 
mass flow rate is larger and the velocity is smaller than 
in an adiabatic and isentropic transformation, for any 
given downstream condition; vice versa, if the mass 
flow rate passing through the nozzle is specified, 
downstream conditions are higher for sub-sonic flows 
and lower for super-sonic flows; 

- as a first rough approximation, discrepancies between 
compressible and incompressible flows become apparent 
when the downstream to upstream pressure ratio 
becomes lower than 0.9 (i.e. ππ max9.0< ); assuming 
that the air feeding the vent is at STP implies that this 
limit is reached for velocities of approximately 150 ms-1. 

All previous considerations apply however to ideal systems 
in which friction losses and thermal excursions may be 
considered negligible. This may not be the case of real 
hydraulic structures characterised by air supply ducts of finite 
size, length and roughness, usually designed to work properly 
under extreme meteorological conditions (external temperature 
ranging from -30 C° to 40 C°). Substantial modifications of the 
results are expected, should all the above mentioned factors be 
properly taken into account. Therefore it is believed that design 
recommendations ([4], [5]) for dam outlet works to keep the 
sub-pressure of air at the vent exit in the order of 15'000 Nm-2 
(1.5 m of water column) and velocities below 50 ms-1 appear to 
be at the same time optimistic and contrasting and worthy of 
additional investigation in future work. 
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Figure 1. Nozzle flow characteristics (on the y-axis) for an 

adiabatic and isentropic process (i.e. kn =  ) versus boundary 
conditions in terms of absolute pressure (on the x-axis). Both 
convergent nozzle solutions (black solid lines) and convergent-
divergent nozzle solutions (different colour solid lines) are 
illustrated. Discontinuities in solution derivatives identify 
critical flow conditions (i.e. transition from sub-sonic to super-
sonic flows or from another point of view transition from non-
choking to choking conditions). Variables are non-dimensional. 

1.A. Absolute pressure (blue-black), density (green-black) 
and absolute temperature (red-black). 

1.B. Flow area (blue-black), mass flow rate (blue-black) and 
velocity (green-black). 

1.C. Enthalpy (blue-black), kinetic energy (green-black), 
enthalpy plus kinetic energy (magenta-black) and heat transfer 
(red-black) per unit mass. 

 
 

2.A.  

2.B.  
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Figure 2. Nozzle flow characteristics (on the y-axis) for an 

endothermic and entropy-increasing process (i.e. kn <  ) versus 
boundary conditions in terms of absolute pressure (on the x-
axis). Both convergent nozzle solutions (black solid lines) and 
convergent-divergent nozzle solutions (different colour solid 
lines) are illustrated. Discontinuities in solution derivatives 
identify critical flow conditions (i.e. transition from sub-sonic 
to super-sonic flows or from another point of view transition 
from non-choking to choking conditions). Variables are non-
dimensional. 

2.A. Absolute pressure (blue-black), density (green-black) 
and absolute temperature (red-black). 

2.B. Flow area (blue-black), mass flow rate (blue-black) and 
velocity (green-black). 

2.C. Enthalpy (blue-black), kinetic energy (green-black), 
enthalpy plus kinetic energy (magenta-black) and heat transfer 
(red-black) per unit mass. 
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Figure 3. Nozzle flow characteristics (on the y-axis) for an 

exothermic and entropy-decreasing process (i.e. kn >  ) versus 
boundary conditions in terms of absolute pressure (on the x-
axis). Both convergent nozzle solutions (black solid lines) and 
convergent-divergent nozzle solutions (different colour solid 
lines) are illustrated. Discontinuities in solution derivatives 
identify critical flow conditions (i.e. transition from sub-sonic 
to super-sonic flows or from another point of view transition 
from non-choking to choking conditions). Variables are non-
dimensional. 

3.A. Absolute pressure (blue-black), density (green-black) 
and absolute temperature (red-black). 

3.B. Flow area (blue-black), mass flow rate (blue-black) and 
velocity (green-black). 

3.C. Enthalpy (blue-black), kinetic energy (green-black), 
enthalpy plus kinetic energy (magenta-black) and heat transfer 
(red-black) per unit mass. 
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Figure 4. Nozzle flow characteristics (on the y-axis) versus 

boundary conditions in terms of absolute pressure (on the x-
axis). Both convergent nozzle solutions (black solid lines) and 
convergent-divergent nozzle solutions (different colour solid 
lines) are illustrated. Discontinuities in solution derivatives 
identify critical flow conditions (i.e. transition from sub-sonic 
to super-sonic flows or from another point of view transition 
from non-choking to choking conditions). Variables are non-
dimensional. 

4.A. Flow area (blue-black), mass flow rate (blue-black) 
and velocity (green-black) for kn =  (adiabatic flow). 

4.B. Flow area (blue-black), mass flow rate (blue-black) and 
velocity (green-black) for ∞→n  (incompressible flow). 

4.C. Flow area (blue-black), mass flow rate (blue-black) and 
velocity (green-black) for 1→n  (isothermal flow). 

CONCLUSIONS 
It is well known that common procedures in the design and 

testing of the air supply systems in special hydraulic structures 
assume the flow of air through vent ducts to be incompressible. 
To verify to what extent this hypothesis may be considered 
valid, the main mathematical and physical features of a 
compressible fluid flowing through a vent subjected to specific 
boundary conditions have been worked out, enlightening 
similarities and distinctions with the flow of the same fluid 
subjected to identical boundary conditions for which 
compressibility effects are neglected. Starting from basic 
equations of compressible flows some general relations have 
been derived and reviewed focusing on design implications for 
aerators and air vents. It has been shown that differences may 
become significant when the downstream to upstream pressure 
ratio is lower than 0.9 which, when the air feeding the vent is at 
STP, corresponds to a pressure drop of 10'000 Nm-2 (1 m of 
water column) and an air velocity larger than 150 ms-1. Much 
higher pressure ratios and lower velocities would be expected 
to be suitable however, should singular and distributed friction 
losses be taken into account. Compressible flow equations have 
been therefore reckoned as necessary to get better insights into 
the behaviour of air supply systems in special hydraulic 
structures. 
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