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ABSTRACT 

The results of the structural and thermodynamic properties 

simulations of the nanodrops, which emerge on the first stage 

of nanoparticle formation process by supersaturated vapor 

condensation, are presented.  The density profiles, the Irving-

Kirkwood pressure tensors, the chemical potentials of the 

systems, the equimolar radii of the drops and the radii of 

tension, the mechanical and thermodynamic surface tensions 

have been calculated.  

It is shown that both the mechanical and thermodynamic 

surface tensions decrease with the decrease of the equimolar 

radius of the drop, and reach zero at the same 0R  depending on 

temperature. The radii of tension also reach zero. With the 

further equimolar radius decrease the surface tension becomes 

negative, though the drop holds stable in the conditions of the 

numerical experiment. It means that such droplet is metastable. 

Apparently, it testifies that the notion of surface tension which 

is used in macroscopic theory can not be applied to such small 

drops. The dependence of the ratio of the surface tension of the 

drop to the surface tension of the flat surface liquid-vapor on 

the ratio of the equimolar radius of the drop to 0R  is a universal 

function.  

 

INTRODUCTION 
An effective method of nanoparticles production is 

condensation of the particles from supersaturated vapor. For 

this purpose some solid material (metal, semiconductor or 

organic matter) is being evaporated by heating it beyond the 

melting temperature. Then supersaturated vapor is obtained as a 

result of quick cooling. The condensation process of the small 

drops begins in this system. The nanoparticles of various 

compositions and wide range of sizes can be produced by this 

method. The first stage of the nanoparticles formation is 

nucleation – that is the critical nuclei generation. The 

nanoparticles grow later from the nuclei by joining atoms from 

supersaturated vapor. The nucleation is not a unique 

phenomenon and it takes place in gases, solutions, melts and 

even in solids when a new phase is being formed inside the host 

phase. There is the so-called Classical Nucleation Theory 

(CNT), which enables to calculate the nucleation rates 

depending on the process conditions [1, 2]. This theory is a 

statistical thermodynamic one really, because it uses the 

thermodynamic parameters of clusters and small particles, 

which are the critical nuclei. The critical nuclei at the moment 

of their occurrence are the liquid clusters or nanodrops and only 

later they become the solid nanoparticles as a result of cooling. 

The surface tension of the critical nucleus is an important 

parameter in the CNT, because it defines the work of the 

critical nucleus formation [1, 2]. Though this theory often leads 

to unsatisfactory results, it and its modifications are still being 

used for interpretation of experimental data [3, 4].  

Thermodynamic description of nanodrops is very important 

physical problem. There is a problem of applicability of 

thermodynamic parameters to small drop and cluster as these 

parameters are the macroscopic thermodynamic notions, but 

nanodrop is a microscopic system. One of the causes of 

discrepancy between the CNT and experiment can be that the 

dependence of the surface tension on the critical nucleus radius 

is ignored often. However J. Gibbs pointed out, that the surface 

tension of a droplet ( ) must decrease with the decrease of 

droplet tension surface radius (
sR ), so that at 0sR   the 

surface tension be also equal to zero ( 0  ) [5]. At the same 

time the equimolar radius of the droplet ( eR ) is not equal to 
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zero. Consequently the notion of the surface tension can not be 

applied to such droplets.  

 

NOMENCLATURE 
 
  [N/m] Surface tension 

 
 [N/m] Surface tension of a flat interface of liquid - 

vapor 

sR  [m] Droplet tension surface radius 

eR  [m] Equimolar radius of a droplet 

U  [J] Internal energy of thermodynamic system 

lV  [m3] Volume of a liquid drop 

vV  [m3] Volume of vapor 

A  [m2] Surface area of liquid 

T [K] Temperature 

S  [J/K] Entropy of a system 

lP  [Pa] Pressure in a drop 

vP  [Pa] Pressure in vapor 

  [J/kg] Chemical potential of a system 

m  [kg] Mass of a system 

  [m] The Tolman length 

r  [m] Distance from the centre of a drop    

 P r  [Pa] Pressure tensor 

 NP r  [Pa] Pressure tensor normal component 

 TP r
 

[Pa] Pressure tensor tangential component 

r θe ,e ,e  
[-] Unit vectors corresponding to spherical 

coordinate system 
r,

,


 
[m], 

[rad],  

[rad] 

 

Spherical coordinates 

12r  [m] Distance between molecules 1 and 2 

12r  [m] Vector directed from molecule 1 to molecule 

2 

 n r  [m-3] Concentration of molecules 

 r  [kg/m3] Density  

,l g   [kg/m3] Densities of liquid and vapor 

   2

12 12, r rr   [m-6] Pair correlation function of molecules 1 and 

2 

  [J] Lennard-Jones potential parameter 

0r  [m] Lennard-Jones potential parameter 

0m  
[kg] molecule mass 

l  
[J/kg] Chemical potential of liquid 

g  [J/kg] Chemical potential of vapor 

0  [J/kg] Chemical potential of classical ideal gas 

0R  [m] Equimolar radius of a droplet at which the 
surface tension becomes equal to zero  

 
Usually reduced variables are used in computational 

simulations. In that case the basic units are 
0r ,  

1 2

0 0r m


 

and 
0m  for distance, time and mass respectively.       

 
TERMODYNAMICS OF DROPS 

The surface tension concept is proved by J. Gibbs [5] in 

thermodynamics and it is conventional. This concept provides 

introduction of additional term d A  ( is the surface tension, 

d A  is a change of the surface area of a liquid) in fundamental 

thermodynamic equations. Such equation for the internal 

energy of the system consisting of a liquid drop and vapor 

surrounding it, has the usual form 

 

l l v vdU T dS P dV P dV d A dm      .        (1) 

 

Here dU , d S and d m  are changes of the internal energy, of 

entropy and of mass of all system, 
ldV , 

vdV  and d A  are 

changes of volumes of the liquid drop, of the vapor and of the 

drop surface area,
lP , 

vP and T  are pressures in the drop and in 

the vapor and system temperature,   is chemical potential of 

the system. 

Thus, such surface tension  determines additional energy 

to the thermodynamic potentials, related to change of a surface 

area of a liquid and it is called the thermodynamic surface 

tension. In addition to surface tension J. Gibbs introduced a 

dividing surface which is termed as a tension surface. It is a 

mathematical surface of a zero thickness to which the forces of 

surface tension are applied. At the thermodynamic description 

of systems with flat interfaces of liquid – vapor the position of 

the tension surface has no importance. For curved interfaces 

there is a problem of a choice of the tension surface. 
For the system consisting of a liquid drop surrounded by 

natural vapor, the value of surface tension depends on the 

choice of the tension surface position. J. Gibbs has suggested 

choosing the tension surface so that the surface tension had the 

minimum value. Thus the model of Gibbs assumes that in 

sphere with radius of the tension surface there is a medium with 

properties of a bulk liquid which is called sometimes 

comparison phase. The chemical potential of this phase 

coincides with the chemical potential of the vapor surrounding 

the sphere. Thus, pressure, density and temperature in the drop 

are equal to the values of pressure, density and temperature in 

the bulk liquid at the same chemical potential. The tension 

surface of the drop generally does not coincide with equimolar 

surface, therefore the part of mass of the system does not 

belong to any of two phases and it is the part of substance 

adsorbed on the interface. The difference between the tension 

surface radius and the equimolar surface radius is determined 

by the parameter e sR R   which is called the Tolman 

length.  
The difference of the pressures between the comparison 

phase and the surrounding vapor obeys the Laplace formula 

 

2l g sP P R  ,                                      (2) 

 

where 
lP  and gP  are the pressures of the liquid in the 

comparison phase and the vapor, respectively. The choice of 

the pressure and density of the liquid in the comparison phase is 

arbitrary. According to this choice values of  ,  
sR , and also 

the equimolar radius 
eR  will be changed. 

Tolman [6] has derived dependence of the surface tension 

on the radius of the tension surface in the form 
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  

 
 

   
 

 .        (3) 

 

Here 
 is the surface tension of a flat interface of liquid - 

vapor. If we assume that const   and 1r  we 

obtain the approximate formula which is true for big drops 

 

 1 1 2 sR     .                                (4) 

  

THE MECHANICAL SURFACE TENSION  
On the other hand, there is a mechanical definition of 

surface tension [7, 8] related to the change of continuous 

profiles of density and pressure by the step ones. The pressure 

tensor of drop has a spherical symmetry  

 

     r r θ θe e (e e e e )N TP r P r P r             (5) 

 

 The mechanical surface tension is expressed through the 

pressure tensor [7, 8]: 

 

      



0

2
rdrPrPRr TNs .                        (6) 

Since in this formula sR  is unknown beforehand, it is 

necessary to have one more equation determining sR . In papers 

[8, 9] it is suggested to use the equation  

 

      



0

rdrPrPrR TNs ,                        (7) 

 

which is derived from the equations of Buff based on the 

mechanical equilibrium conditions of the system of drop – 

vapor. Using the equations (6) and (7), it is possible to calculate 

sR  and  , if we know the profiles of the pressure tensor 

components. 

In advance it is not obvious that the surface tension 

calculated by formulae (6) and (7), will coincide with the 

thermodynamic surface tension used in (1). Here there is a 

problem of relation of the surface tension determined by 

formulae (6) and (7) to Gibbs model of surface tension.  

METHODS OF SIMULATION 
The molecular dynamics method has been long used to 

calculate the surface tension for the flat division surface 

between liquid and gas [10].   It was also used many times to 

calculate the surface tension of the liquid drops [9, 11 - 15]. 

From this point of view the most interesting papers are [9, 11], 

in which the basic methods of molecular dynamics calculations 

of small drops surface tension are developed. At the same time 

all these calculations have been done in a narrow range of 

system parameters and give no possibility of precise 

determination of the dependence of the drops surface tension on 

their radii. Besides, these papers do not concern the problem of 

applicability of the surface tension concept to the droplets of 

small radii. 

In this work, the thermodynamic properties of droplets 

were calculated by the molecular dynamics method. The 

calculations were made for the system containing 60-4500 

molecules in a cubic cell with periodic boundary conditions. 

Interaction between molecules was specified by the Lennard-

Jones potential  

 

 

     

 

12 6

0 0
12 12 0

12 12

2 3
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12 12 0
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r r
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r r
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u r r r


    
      
     

     

 

(8) 

 

A special procedure was used to obtain an equilibrium 

system composed of a liquid drop in the center of the cell and 

vapor occupying the remaining space. We call such drop 

obtained in numerical experiment real. The size of the drop 

depended on the number of particles in the cell and the mean 

density of the system. The Irving-Kirkwood pressure tensor 

was calculated by formulae of statistical mechanics [8] 
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

  

  


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 


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




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    (9) 

 

Density profiles, chemical potential of the system, 

equimolar radii and surface tension radii of drops, mechanical 

and thermodynamic surface tensions and Tolman length   

were calculated. 

Reduced variables were used: distance - 
0*r r r , 

temperature - 
*T k T  , energy - 

*U U  , density - 

* 3

0r  , time -  
1 2*

0 0t t r m , pressure - 
3

0*p p r  , 

surface tension - 
* 2

0r   , and chemical potential - 

*

0m   . Here   and 
0r  are the Lennard-Jones potential 
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parameters, 
0m  is the molecule mass. Variables labeled by an 

asterisk are dimensional. 

RESULTS OF THE SIMULATIONS 

Figure 1 presents typical profiles of drop density  r . The 

equimolar radii of the drops were calculated according to these 

dependences by the formula [9]  

 3 3

0

1
e

g l

d r
R r d r

d r



 




  .                   (10) 

Here ,l g   are the comparison phase and gas densities 

respectively. 

 
Figure 1 The density profiles for the system, containing N = 

200 molecules in the cell at the temperatures T = 0.65; 0.7; 

0.75; 0.8; 0.85 (from the top) 

 

Figure 2 presents typical profiles of the pressure tensor 

components  NP r  and  TP r  used for calculations of the 

tension surface radius 
sR  and the surface tension  . 

Figure 3 presents the nanodrops mechanical surface tension 

dependences on the equimolar radius eR  for various 

temperatures. One can see, that the mechanical surface tension 

decreases greatly with the eR  decrease and becomes equal to 

zero at a certain eR  = 0R , which depends on temperature. The 

mechanical surface tension approaches the value of the surface 

tension of liquid – vapor flat surface with eR  increase. 

To calculate surface tension of drops according to J. Gibbs 

definition, first, one should know the dependence of chemical 

potential of bulk liquid phase on pressure, and, second, 

chemical potential of vapor. To solve the first problem, we 

have made special series of bulk liquid phase chemical 

potential calculations by molecular dynamics method at the 

temperature T = 0.65. First, we obtained the equilibrium 

system consisting of flat liquid phase layer surrounded by vapor 

from two sides. The layer thickness exceeded the molecules 

interaction radius three times. The computations have shown 

that vapor far from the flat separating surface is an ideal gas, 

i.e. the ideal gas equations p nT  ( n  is vapor concentration) 

holds accurate to 1%. Chemical potential of vapor, and, 

therefore, liquid layer was calculated by formula 

     0 5 2 ln lnT T T p     suitable for classical ideal gas. 

 
Figure 2 The profiles of the pressure tensor components for 

system, containing N = 200 molecules in cell at temperatures T 

= 0.65; 0.7; 0.75; 0.8; 0.85 (from the top). (solid lines are PN, 

dashed lines are PT) 

 

Figure 3 The drop mechanical surface tension dependences (σ) 

on the equimolar radius (Re) for various temperatures (T = 0.65; 

0.7; 0.75; 0.8; 0.85; 0.9; 0.95 from the top). 

 

Then calculations were made of a similar system with two 

repulsing walls on the opposite sides of the cell that served as 

plungers compressing the flat liquid layer. Reducing the cell 

volume, we obtained liquid phases at different pressures. Thus 

the equation of liquid state at a given temperature has been 

obtained. Chemical potential of the liquid phase was calculated 

by the formula 

  

0

0

lP

l

P

d p     .                           (11) 
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Approximation curve of dependences 
lP  and 

l  on 
l  was 

established. 

Chemical potential of vapor has also been calculated by 

formula (11) with 
l  replaced by g  and 

lP  – by gP . 

Equation of vapor state has been obtained from molecular 

dynamics data for equilibrium systems containing liquid drop 

surrounded by its own vapor, i.e., from the calculations of 

surface tension of drops. Vapor pressure and density were taken 

far away from the drop at the distance exceeding the interaction 

radius of molecules. After estimation of the chemical potential 

of the vapor around the drop we equated it to the comparison 

phase chemical potential and got 
lP  and 

l  of the comparison 

phase. We used approximation curve of the dependence of these 

values on liquid chemical potential.  Further, using formula (2) 

and the first equation (6), we calculated   and sR  for 

thermodynamic surface tension. 

 
Figure 4 The dependence of mechanical (□) and 

thermodynamic (+) surface tensions on the equimolar radius 

eR  at the temperature 0.65T   

 

Figure 4 presents the mechanical and thermodynamic 

surface tension dependences on the drop equimolar radius. 

Significant decrease of both mechanical and thermodynamic 

surface tension can be observed with eR  decrease. At a certain 

equimolar radius 0R  both surface tensions go to zero. This 

radius corresponds to the drop, containing about 50 molecules. 

The radius of the surface of tension sR  also goes to zero. With 

the further equimolar radius decrease the surface tension 

becomes negative, though the drop holds stable in the 

conditions of the numerical experiment.  Figure 4 shows that 

the thermodynamic surface tension coincides with the 

mechanical one for relatively big drops containing 2000 and 

more molecules. For drops containing smaller quantity of 

molecules the thermodynamic surface tension exceeds the 

mechanical one up to their disappearance at 0eR R . 

 

DISCUSSION OF RESULTS 
It has been established in our papers [16-18] that the 

dependence of the nanodrops mechanical surface tension on the 

equimolar radius is a universal function relative to the 

temperature, at which the numerical experiment is conducted 

(see Figure 5). It has been found that approximation of this 

dependence by the polynomial of the ratio 
0 eR R  can be 

expressed as follows: 

 

    

 

2

0 0

3

0

1 0.519 0.426

0.907

e e e

e

R R R R R

R R

      

 


. (12) 

 

 
Figure 5 The dependence of the ratio of the mechanical surface 

tension of the drop to the surface tension of the flat surface 

liquid-vapour (σ/σ∞) on the ratio of the equimolar radius of the 

drop to R0 for various temperatures (T = 0.65(◦); 0.7(◊); 

0.75(+); 0.8(□); 0.85(×); 0.9(•); 0.95(+)). Solid line is the 

dependence (12). 

 

In addition, the drop equimolar radius 0R , at which   = 0, 

greatly depends on the temperature and becomes infinite in the 

point is equal 1.199 (see Figure 6). The approximation of the 

dependence of 0R  on the temperature can be expressed by the 

fit  

 

0

0.963
0.768

1.199
R

T
 


.                            (13) 

 

The surface tension of the flat dividing surface liquid – vapor 

  also depends on the temperature and becomes zero in the 

same point.  

The thermodynamic surface tension dependence on the 

equimolar radius eR  is the same in its quality as that for 

mechanical surface tension, though it differs a little in its 

quantity. For relatively large drops the surface tension 

approaches the value of the surface tension of the flat dividing 

surface liquid – vapor. For quite small drops the surface tension 
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becomes zero or even negative. But the drop does not evaporate 

at that time. Though the drop will evaporate after all, if we 

increase the number of molecules in the simulation cell at the 

same pressure, because that leads to the increase of fluctuations 

of the force, acting on the nanodrop from the vapor. That’s why 

the state of a nanodrop with a negative surface tension can be 

considered as a metastable one in respect of small fluctuations. 

 
Figure 6 The dependence of R0 on the temperature. Solid line 

is the dependence (13) 

 

 
Figure 7 The thermodynamic surface tension (□) and surface 

tension calculated by Tolman formula (3) (solid line) as a 

function of the 
sR  at the temperature 0.65T  . 

 

On the other hand, the negative surface tension and the 

negative radius of tension surface sR  have no physical 

meaning and become formal mathematical parameters of the 

model. Apparently, it testifies that the notion of surface tension 

which is used in macroscopic theory can not be applied to such 

small drops. The limit of applicability of the surface tension 

concept to the droplets changes from about 50 molecules at T = 

0.65 to about 300 molecules at T = 0.95. 

Figure 7 shows disagreement between the thermodynamic 

surface tension calculated by molecular dynamics method and 

surface tension calculated by Tolman formula (3). It is possibly 

that the Tolman equation does not adequate for the small 

droplets. 

CONCLUSION  
Thus, it has been established that both mechanical and 

thermodynamic surface tensions decrease greatly with the 

decrease of tension surface radius 
sR  and become equal to zero 

at a certain 
0eR R . A universal dependence of mechanical 

surface tension is observed, i.e., the dependence of   on the 

temperature is expressed by the dependence of parameters 
 

and 
0R  on the temperature. The value of the thermodynamic 

surface tension coincides with value of the mechanical surface 

tension for relatively large nanodrops (> 2000 molecules) and 

exceeds it for relatively small nanodrops (< 2000 molecules).   

The notion of surface tension which is used in macroscopic 

theory can not be applied to small droplets with equimolar 

radius less then
0R . 
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