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ABSTRACT

As a result of laminar flows analysis for large Reynolds number
asymptotic theory was developed to describe variety of flows
with relatively large longitudinal gradients where classical
Prandtl’s boundary layer theory should be replaced by another
theory. The most familiar example was associated with the
theory of free interaction which allows to describe flows with
small separated regions. This theory is applicable as well for
many other flows including abrupt change in the boundary
conditions, flows with reattachment etc.

Unsteady free interaction theory allowed to describe long wave
instability processes in the laminar boundary layers. In fact
linearized variant of this theory may be deduced from original
Orr-Sommerfeld equation. At the same time asymptotic theory
may be useful to describe nonlinear instability processes as
well. It is important that boundary condition on the wall
describing relation between pressure change and vertical
velocity is linear and doesn’t change uniformity of the problem.
So it is possible to investigate as well linear stability problems
incorporating early obtained results.

Presented are results of stability analysis describing long wave
disturbances development.

These results may be useful to provide passive boundary layer
flow control along with the buffet onset control.

NOMENCLATURE

u  =tangent speed,
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v =normal speed,

P =pressure disturbance,

Y =Darci coefficient,

0. =wave nuber,

T =time delay coefficient,

w,;,w, =imaginary and real parts of field disturbances

Unless cpecifically stated, all of the variables are assumed to be

for the case of viscous wall layer.

INTRODUCTION

New materials development, in particular porous metal
technology, lead to the opportunity to create new passive
methods of the boundary layer flow control. It may be used to
delay boundary layer separation as well as to delay laminar-
turbulent transition.

Porous metal structure usually is associated with the surface
flow suction (injection) due to pressure difference between
external and internal surfaces of porous metal plate. In many
cases it may be supposed that distributed mass transfer will
exist which will obey Darcy law (or linear dependence between



vertical velocity distribution on the wall and pressure change
distribution).

From mathematical point of view this condition allows to
reconsider many early obtained classical results describing self-
induced boundary layer separation in case of passive control.
This model includes boundary layer equations with an
additional relation determining induced pressure distribution.

PROBLEM FORMULATION

Porous wall structure supposes that pressure difference on the
external and internal sides of porous surface may lead to the
distributed suction (in the regions of relatively high pressure) or
distributed injection. In many cases it may be supposed that
mass transfer obeys the Darcy law (or linear dependence
between vertical velocity on the wall and disturbed pressure
distribution).

In fact this boundary condition allows us to reconsider early
obtained results [1-3] describing self-induced boundary layer
separation for the case of passive flow control.

Using results obtained in [1-4] mathematical problem for flows

near porous walls may be formulated as follows
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Equations presented are expressed in similarity variables
[4].This problem differs from problems describing disturbed
flow near impermeable wall due to condition for the vertical
velocity on the wall [1-4]. In fact such conditions are well
known in fluid mechanics [5]. We will use below generalized
Darcy law with the inclusion so called time delay

v(x,t) =—)p(x,t —7)

That is, normal velocity component changes later than pressure
difference appears. This delay can be explained by a finite mass
of the fluid considered inside a pore.

For small values of self-induced pressure next form of solution

may be considered

u=ytu, v=vy. p=p )

This form of solution gives next form of equations for the first
approximation
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As usual solution may be presented in the normal mode

approximation
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After some transformations dispersion relation may be
deduced. But for numerical analysis it may be possible to use

aforementioned problem formulation.

RESULTS

We can present results as dependencies
W, +iw,= f( a) , where
w=iac



Results have been obtained for different values of parameters
y=0+04, t=0+1.
Results obtained for impermeable wall ( =0 ) coincide with

results obtained in [1].
At first, let's consider the results in case of supersonic regimes.

On the figures 1 and 2 influence of coefficient Y is presented.

It can be concluded that real part of parameter (W doesn’t
change significantly. At the same time velocity of long waves

strongly depends on ) as does imaginary part of (W .
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Figure 1: Relation of Re( w )to «
in case of subsonic regime without
delay.
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Figure 2: Relation of Im( w ) to o
in case of subsonic regime.

Penetrability dependance at t=0

On the next figures 3 and 4 influence of time delay parameter
T is presented. It may be concluded that mainly influenced is
imaginary part of (W
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Figure 3: Relation of Re( w )to «
in case of supersonic regime.
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Figure 4: Relation of Im( w )to «
in case of subsonic regime.

Penetrability dependance at t=0.4

Subsonic regimes were analyzed as well. On subsequent figures
5 and 6 influence of parameter ) is presented with time delay
parameter equal to 0. It can be seen that in case of subsonic
regimes the main parameter affected is imaginary part of W
while real part remains almost unaffected. That is, the
amplification of small waves can be controlled. With small
values of T they tend to be amplified faster.
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Figure 5: Relation of Re( w ) to «.
in case of supersonic regime without
delay.
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Figure 6: Relation of Im( w ) to o
in case of supersonic regime without
delay.

But if we take a look at dispersion relation with higher delay
parameter, we may see a much more interesting picture(fig. 7
and fig. 8).
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Figure 7: Relation of Re( w )to «.
in case of supersonic regime. Delation
parameter is equal to 0.8
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Figure 8: Relation of Im( w )to «
in case of supersonic regime. Delation
parameter is equal to 0.8

It is seen that on figure 7 that the amplification level of
relatively small waves becomes weaker, that is laminar-
turbulent tranzition can be delayed!

Estimated values show that the problem considered can be
applied in case of a real-scale aircraft at it's cruise speeds with a
pored layer of reasonable thickness.

In general results presented show that permeable wall may be
used to influence long waves parameters, providing influence
on the laminar-turbulent transition and real-life applications as
well

CONCLUSION

Generalized theory of long wave instability in the laminar
boundary layer near porous wall is presented. This theory is
based on the asymptotic analysis of Navier-Stokes equations
leading to the so called triple deck disturbed flow structure.
Linearized equations for small disturbances amplitudes may be
reduced to the Airy equation and corresponding dispersion
relation. This relation analysis shows that porous wall condition
for vertical velocity significantly changes wave chracteristics
like amplification factor and so on. In fact such method of
passive boundary layer flow control may be as well used to
prevent boundary layer separation. Corresponding method of
passive boundary layer flow control may be useful as well to
influence buffet onset.
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