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ABSTRACT 
This paper reports an increase in the heat transfer rate density 
by using wrinkled entrance regions in ducts with laminar flow. 
The heat transfer rate density is increased by taking advantage 
of the presence of relatively isothermal fluid in the entrance 
regions. In order to stimulate a more complete thermal 
interaction between walls and fluid, the square entrances are 
wrinkled on the perimeter, at the one-third and the two-third 
positions. The new structure has two degrees of freedom. The 
fluid flow through the ducts is forced by the imposed pressure 
difference across the duct. Numerical simulations document the 
effects of the dimensionless pressure drop on the optimized 
configurations and show a fifteen percent enhancement in heat 
transfer rate density.  
 
INTRODUCTION 

The use of progressively smaller length scales for heat 
transfer in ducts and channels is attracting considerable interest 
[1-17]. The need to install more and more heat transfer rate in a 
fixed volume has led to various new methods and designs. One 
method that is drawing interest is constructal design [1]. The 
method focuses on the generation of optimal flow architecture 
as a mechanism by which systems achieve maximum transport 
density under constraints. Constructal design offers strategies 
for the pursuit of configuration, such that architectural features 
that have been found to be beneficial in the past can be refined 
and incorporated in more complex systems [2 - 4]. 

The constructal design of packages of channels began 
with Bejan and Sciubba [5], which determined the optimal 
spacing for arrays of parallel plates using the intersection of 
asymptotes method. The application was the cooling of 
electronics packages. Optimal spacings for heat and fluid flow 
structures have been developed for several classes of flow 
configurations: stacks of parallel plates, staggered plates, 
cylinders in cross-flow, and pin fins arrays with impinging 
flow. Optimal spacings have been determined for natural 

convection and for forced convection with specified overall 
pressure difference.  Most recently Yilmaz et al. [17] and 
Muzychka [15], determined analytically the optimal duct 
dimensions and maximum heat transfer per unit volume for 
parallel-plates channels, rectangular channels, elliptic ducts, 
circular ducts, polygonal ducts, and triangular ducts. 

In this paper we propose a new concept to improve the 
constructal design for the cooling of a duct. We start with a 
square packing of channels, Fig 1. The size of the square ducts 
is to be selected numerically subject to a fixed pressure drop 
across the packing. The entranced regions of the duct do not 
participate fully in the heat transfer enterprise, because of the 
presence of relatively isothermal (cold) fluid that has not 
interacted thermally with the walls. Next, the duct entrance is 
wrinkled to stimulate a more complete thermal interaction 
between walls and fluid. The new structure has two degrees of 
freedom: the length of the wrinkled entrance, and the length or 
the spacing of the square ducts. These geometric features are 
optimized for maximum volumetric heat transfer density. 
 

 
Figure 1 Packing of channels with square cross-sections 
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NOMENCLATURE 
Be [-] dimensionless pressure drop, Eq. (6) 
D [m] side of square cross-section 
H [m] height of the duct 
k [W/mK] thermal conductivity 
L0 [m] length in the flow direction 
L1 [m] flow length of the the wrinkled section 
P [Pa] pressure 
Pr [-] Prandtl number 

q [W] heat transfer rate 
q′′′  [-] heat transfer rate density 

q  [-] dimensionless heat transfer density 

Re [-] Reynolds number  
T [K] temperature 
Twall [K] wall temperature 
Tmin [K] free-stream temperature 
U [m/s] mean velocity 
u, v, w [m/s] velocity component 
z, y, z [m] cartesian coordinates 
Greek letters 
α [m2/s] thermal diffusivity,  
μ [kg/s m] viscosity,  
γ  [-] convergence criterion 
Subscripts 
L0  length 
max  maximum 
min  minimum 
opt  optimum 
wall  wall 
∞  free-stream 
Superscript 
~  dimensionless 
 

 

 
Figure 2 Entrance of a square channel wrinkled at the 1/3 
and 2/3 positions. 
 
 
 

MODEL 
Consider the three dimensional configuration of an elemental 
channel with a wrinkled perimeter around a square cross-
section. Figure 2 shows the entrance of one square channel 
after each side was wrinkled at the one-third and two-thirds 
positions. The walls of the channels (including the wrinkled 
portions) are maintained at the temperature Tmax. The channel is 
cooled by a single-phase fluid at Tmin, which is forced into the 
channel by a specified pressure difference (ΔP). The coolant is 
modelled as a Newtonian fluid with constant properties. The 
dimensionless equations for the steady-state flow of mass, 
momentum and energy are 
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where 2 2 2 2 2 2 2/ x / y / z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂ , and the dimensionless 
pressure difference is defined as [11, 12]: 
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 The non-dimensionalization of the governing equations is 
based on defining the variables  
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The boundary conditions are 
P 1,     v    w 0,    T  0  at  x 0= = = = =                               (9) 
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We are interested in the geometric arrangement of the 
wrinkled packing for which the overall heat transfer rate per unit 
of flow volume is maximum:  
              

2
0

 total heat transfer rate from walls to stream qq   
volume of one duct L D

′′′ = = (13) 

In dimensionless form, the above definition can be rewritten as               
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 We solved Eqs. (2) - (5) by using a commercial finite 
volume code [18]. The domain was discretized using 
tetrahedral elements, and the governing equations were 
integrated on every control volume. Second order schemes 
were used for the diffusive terms. The pressure-velocity 
coupling was performed with the SIMPLE procedure. 
Convergence was obtained when the normalized residuals for 
the mass and momentum equations were smaller than 10−4, and 
the residual of the energy equation became smaller than 10−8. 

To obtain accurate numerical results, several mesh 
refinement tests were conducted. The monitored quantity was 
the overall heat transfer rate density, which was computed with 
Eq. (14). Convergence was established based on the criterion   

j j 1 jγ    q q q     0.02−= − ≤                                              (15) 

where j is the mesh iteration index, such that j increases when 
the mesh is more refined. When the criterion is satisfied, the j 
−1 mesh is selected as the converged mesh. A mesh size of 
0.005 per unit length in the y and z directions, and a mesh size 
of 0.01 per unit length in the axial direction were found to 
satisfy the criterion chosen in Eq. (15). 
 

 
Figure 3 Effect of the channel size D (smooth) on the heat 
transfer density 
 
RESULTS: CONSTRUCTAL DUCT WITH WRINKLED 
ENTRANCE 
 

We started the optimization procedure by considering 
the case in which the mouth of the square channel is smooth, 
without wrinkles. In this case the only one degree of freedom is 
the duct size, D . Figure 3 shows the selection of the channel 
size and the heat transfer rate density, and indicates that an 
optimal size exists for a channel with a square packing.  
 The optimal square channel was found for a fixed 
dimensionless pressure drop number Be in the range 105 – 108, 
and a Prandtl number of 0.71. These initial results were 
compared with the available literature to validate the numerical 
code. The procedure was repeated several times to cover the 

range 105 ≤ Be ≤ 108. Figure 3 shows that the variation of 
channel sizes reveals a maximum of the heat transfer rate 
density. The figure shows that the optimum size for Be = 105 is 
located between D = 0.24 and 0.25 on the abscissa. 
 

 
Figure 4 The effect of 1L and D  (wrinkled) on the heat 
transfer density. 
 

 
Figure 5 Effect of dimensionless pressure difference on 
the optimized length scales 
 
 To enhance the heat transfer rate density, we wrinkled 
the mouths of the square channel in order to bring the walls 
closer to the unused core fluid. The total volume of the 
wrinkled duct is the same as that of the smooth duct. The new 
structure has two degrees of freedom. The dimensionless length 
of the fold and the side of the square cross-section are defined 
as  

1
1

0

L
L

L
=                                                                                 (16) 

 The optimization was executed in the following 
sequence: We first assumed values of D and 1L , using as initial 
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guess the optimal values of D  were obtained when there are no 
wrinkles. The optimization was performed in two nested loops, 
because of the two degrees of freedom, D and 1L . In the inner 

loop, the values of Be, Pr, and D (wrinkled) were specified, 
and 1L was varied until a maximum heat transfer rate density 
was reached. The outer loop required that the inner loop was 
repeated for several values of D , such that all the possible 
combinations of D and 1L were analyzed, as shown in Fig. 4. 
The resulting heat transfer rate density was maximized with 
respect to both D and 1L . The above procedure was repeated 
for Be in the range 105 ≤  Be  ≤  108. 
 Figure 5 shows the behaviour of the optimized length 
scales as the Be number changes. The optimized length scale 
( 1,optL ) increases with the dimensionless pressure drop number. 
The slenderness of the channel also increases in this direction. 
The optimal duct size decreases as the dimensionless pressure 
drop increases. The optimal duct sizes for the wrinkled and 
smooth ducts are almost the same. The results presented in Fig. 
5 are correlated by  

0.24
smooth,opt

0.22
wrinkled,opt

0.068
opt

D 3.27Be

D 2.73Be

L 0.067Be

−

−

≅

≅

=

                                                         (17)              

  This behaviour is in agreement with previous results for 
optimal spacings for square channels [15]. The assumption of 
laminar flow is validated by calculating the Reynolds number 
based on the mean velocity and optimal duct size based on the 
smooth ducts.  

smooth, opt
smooth, opt

ρUD BeRe UD
μ Pr

= =                                       (18) 

Equation (18), shows the relationship between the 
dimensionless pressure drop number Be, the mean velocity, the 
optimal duct size and the Prandtl number.  By determining U  
and smooth,optD  numerically, we find that the Reynolds numbers 
of the flows lie in the laminar regime (Fig. 5). Expressed in 
terms of Re, the results are correlated as 
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−

−

≅

≅

=

                                                       (19) 

 
Figure 6 shows the variation of the maximal heat 

transfer rate density for the wrinkled and the smooth ducts. 
Both increase with the dimensionless pressure difference. 
When Be is in the range 105 – 106, the heat transfer density 
increases by 17 % in going from the optimized smooth duct to 
the optimized wrinkled duct. The increase is 13% for Be in the 
range 107 - 108. The results of Fig. 6 are correlated by   

1/2
max,smooth

1/2
max,wrinkled

q   0.38Be

q    0.45Be

≅

≅
                                                        (20) 

The trend is similar to the results of Muzychka [15] and the 
earlier work on the optimal spacing for convection [1]. The 13 -
17 % increase in heat transfer rate density is consistent with the 

increase achieved in Ref. [3] by inserting shorter (optimal) 
plates in the entrance region of stacks of parallel-plates 
channels.  
 
 

 
Figure 6 Effect of dimensionless pressure difference on 
the heat transfer rate density. 
 
 
 Figure 7  show the temperature distributions of 
optimized wrinkled ducts at several axial locations for Be = 105 
and Pr = 0.71. The figure shows the evolution of the 
temperature distributions as the axial distance increases. The 
temperature ranges between two colours, red ( T =1) and blue 
( T  = 0). As the axial distances increases, the colour at the 
central plane of the wrinkled ducts changes from blue at the 
wrinkled entrance to red at the exit (square).  
 

 
 
Figure 7 The temperature distribution at the optimize 

entrance, midsection and outlet of the wrinkled 
ducts for Be = 105.  

 
CONCLUSION 

In this paper, we described a new design for increasing 
the heat transfer rate density by using wrinkled entrance 
regions in ducts with laminar forced convection. The method 
consists of wrinkling the perimeter of the square entrances, and 
by extending these deformations gradually downstream to a 
length ( 1L ) that is optimized. This new geometry allows a 
more complete heat transfer interaction between the walls and 
the fluid. The results show that the heat transfer rate density 
increases with the imposed pressure difference (Be). In the 
wrinkled geometry the optimal length of the fold increases with 
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Be, in accord with results reported in the literature for multi-
scale packages of parallel plates. The results show an increase 
of 15 % in heat transfer rate density in going from smooth 
ducts to wrinkled ducts. 
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