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ABSTRACT

The present study deals with the prediction
of heat transfer coefficients for water and
benzene using ANN in a vertical thermosiphon
reboiler. The experimenta data from the
literature were used for training of feed forward
artificia neural network with error back
propagation technique. Different training
algorithms have been applied with different
hidden layers and nodes to train the network. It
was observed that the heat transfer coefficients
predicted was close to the experimental data
within the maximum error of £ 20 %. If more
exhaustive input data were fed then error would
have become still lesser. It has been observed
that some algorithms are very efficient with
respect to training time in comparison to other
algorithms.

Keywords: Neural networks, heat transfer
coefficient, thermosiphon reboiler.

INTRODUCTION

Vertical tube thermosiphon reboilers with a
horizontal or vertical tube configuration are
widely used in petroleum, chemical,
petrochemical and power plant industries. The

vertical tube units consist essentialy of a 1-1
shell and tube heat exchanger placed vertically as
one limb of U shaped circulation system. The
lower end tube channel is connected through a
short tube to another vertical down flow pipe
while the upper end channel to a vapor-liquid
separator. The flow of liquid is induced under
the density difference of liquid at the reboiler
inlet and liquid vapor mixture at the outlet,
which is strongly influenced by heat transfer. A
number of experimenta studies have been
carried out to investigate the effect of important
parameters such as heat flux, inlet liquid
subcooling and liquid submergence on heat
transfer coefficient and circulation rate in a
reboiler tube. Thus there exist a strong
interaction between the heat transfer and fluid
circulation in a thermosiphon reboiler. The
process fluid entering the vertical tubes of the
heat exchanger receives the heat from the heating
medium (usually steam). Due to vaporization in
the tube, the specific volume of the fluid is
increased resulting in its upward movement
while the liquid is siphoned from the adjoining
cold leg. Thus a net flow through the circulation
loop is generated. Asthe sub-cooled liquid enters
the heated section and moves up, it undergoes a
change in its flow pattern. It has been observed
that the various flow patterns developed along



the vertical tube of thermosiphon reboiler depend
upon severa parameters such as heat flux, inlet
liquid subcooling, liquid level in cold leg
(submergence) and the physical properties of the
fluids. These flow patterns affect the hydrostatic
conditions near the heated wall, resulting in
different modes of heat transfer. Thus
hydrodynamics and heat transfer interact with
each other, making the process quite complex.
The heat transfer to the liquid in the reboiler tube
in effect generates a changing two-phase flow
with various regimes spread aong the tube
length. The difference between the hydrostatic
head of the liquid in the cold leg and that of the

NOMENCLATURE

BFGS [-] Broyden, Fletcher, Goldfarb

and Shanno update

C [Jkg °C] Heat capacity

d [m] inside diameter of the tube

F [ka/s| cooling water flow rate

h [W/m?°C] Heat transfer coefficient

k [W/m®°C] Thermal conductivity

L [m] Total length of heated tube

m [kg/q] Circulation rate

My [ka/s] Liquid flow rate from
condenser

q [W/m?  Heat flux

S [%0] Submergence

SCG  [1] Scaled conjugate gradient

T [°C] Temperature

Tcy [°C] Inlet temperature of cooling
water

Tc, [°C] Outlet temperature of
cooling water

T [°C] Inlet liquid temperature to
the tube

T [°C] Outlet liquid temperature
from the tube

Tv [°C] Liquid condensate
temperature in condenser
vessel

Ts [°C] Liquid saturation
temperature in the tube

AT [°C] Degree of subcooling

Z [m] Distance along the test

section

Specia characters

A [J/kg]  Latent heat of vaporization
p [Kg/m3] Density

m [N's/m?] Dynamic viscosity

c [N/m] surfacetension

two-phase mixture in the reboiler tube is
responsible for the circulation rate of the liquid
through the reboiler. The prediction of rate of
liquid circulation and heat transfer is the primary
requirement for the design and efficient
operation of the thermosiphon reboiler. Several
studies [1-13] have been made to predict the heat
transfer during the last two decades, but little
information is available for the application of
ANN in avertical thermosiphon reboiler [14-17].
There exist two distinct regions of heat transfer
over the tube length of a vertical thermosiphon
reboiler such as single phase convection and/or
subcooled boiling followed by saturated boiling.
Some of the investigators have developed
empirical /semi empirical correlations for the
prediction of heat transfer coefficients in the
subcooled and saturated boiling regimes

ANN is information —processing paradigm that
is inspired by the way, the biological nervous
systems such as the brain processes information.
It is composed of large number of highly
interconnected processing elements (neurons)
working in unison to solve specific problem. It
has been used in many engineering applications
[14-29] because of providing better and more
reasonable solutions. Some examples are
Anaysis of thermosiphon solar water heaters,
prediction of wall superheat and circulation rate
in a reboiler tube, heat transfer data analysis
among others. In view of the above it is planned
to carry out a systematic study to predict the heat
transfer coefficients using ANN in a vertical
thermosiphon reboiler using the data from the
literature [13]. Different training agorithms
(BFGS and SCG) have been applied with
different hidden layers and nodes to train the
network. It was observed that the heat transfer
coefficients predicted was close to the
experimental data. If more exhaustive input data
were fed then error would have become still
lesser. It is observed that some algorithms are
very efficient with respect to training time in
comparison to other algorithms.

EXPERIMENTAL APPARATUS

The experimental facility consisted of a natural
circulation reboiler loop with a condenser and
cooling system, power supply system and
required instrumentation as shown in Fig. 1. The
liquid enters the tube at its bottom end, get
heated and rises upwards with subsequent
boiling. The vapour liquid mixture enters the
separator from where the vapors go to the
condenser for total condensation. The vapor
liquid separator is a cylindrical vessel with a



tangentia entry of the two-phase mixture in the
middle. The level of the test liquid in the down
flow pipe (submergence) is indicated by a glass
tube level indicator. Further details of reboiler
loop and operating procedure can be seen
elsewhere[7, 8,13].
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Figure 1 Schematic diagram of the experimental
setup [13]
Test section
Copper clamps
View-port for inlet liquid
Glass tube section
Vapor-liquid separator
Primary condenser
Spiral coil
Secondary condenser
Liquid down-flow pipe
Cooling jacket
Wall thermocouples
Liquid thermocouple
probes
13  Liquidlevel indicator
14  Condenser down-flow pipe
15  Removable screwed cap
16  Feeding funnel
17  Auxiliary heater
18  Rotameters
19  Centrifuga pump
20  Cold Water Tank
V1- Control Valves
V3
C1l- Drain Cocks
C5
The main unit is a U shaped circulation loop
made up of two long vertical tubes connected
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together with the bottom by a short horizontal
stainless tube, while the upper ends are
connected to a vapor liquid separator and the
condenser. One of the verticad tubes is
electrically heated and served as the test section.
Theliquid enters the tube at its bottom end, get
DATA REDUCTION AND ARTIFICIAL
NEURAL NETWORKSAPPROACH

For determining the circulation rate it is
necessary to know the effective length of the
non-boiling or sensible heating region over
which the liquid temperature varies linearly. The
lengths of the effective boiling and non-boiling
zones over the entire heated tube are determined
from the quantity of net vapor generation as
obtained from the amount of vapor condensed in
the condenser. A heat balance around the
condenser gives.

_ [FCLC (Tcz _T01)]
My = [2+Cs(Ts-T,)] &)

Thus,
z, - M @)
7qd
Zp=L-2Z, 3

The rate of liquid circulation caused by
buoyancy-induced flow is evaluated by making a
heat balance over the non-boiling section.
Q=7rdZzq=mC_ (Ts _TLl) 4
Or,

__ mdgZ ®)

CLl(TS _TLl)

The liquid temperature distribution along the
length of the tube in the non-boiling zone is
caculated assuming a linear relationship as
mentioned below.

(Ts _TLl)Z

NB

Where, Z < Zyg

T =T,+ (6)

The heat transfer coefficients and Nusselt
numbers were calculated as per details given in
the literature [8].

RESULTSAND DISCUSSION



There are several classes of neural network Table 1. Training Data for the different ANN

architectures, classified according to ther topologies for water and benzene
learning mechanisms in the literature such as: S.No. | Input Output
single layer feed forward networks, multilayer Pe | Pr | Xt Nu
feed forward networks and recurrent networks. A Water
multilayer feed forward network as shown in 1 64.76 1615 | 0.6378 | 100.67
Fig. 2 have three input neurons and one output 2 16293 | 1585 | 0.0768 | 12752
neuron. The first and last hidden layer comprises 3 284.85 1.588 0.2490 177.60
of four and two neurons respectively. The nodes 4 48835 | 1554 | 02479 | 21781
o 5 64.87 1.647 | 0.0968 | 78.27
6 163.18 | 1.611 | 0.0601 | 130.76
7 284.78 | 1.585 | 0.0834 | 118.55
8 334.10 | 1.644 | 0.1950 | 159.17
9 65.22 1.651 | 0.0571 | 110.98
10 163.46 | 1.644 | 0.0607 | 145.15
11 285.80 | 1.651 | 0.0521 | 150.00
12 486.23 | 1.665 | 0.1695 | 209.59
Outputs 13 64.98 1.690 | 0.3261 | 132.60
14 163.70 | 1.679 | 0.1393 | 177.36
15 286.20 | 1.686 | 0.2027 | 174.40
16 371.02 | 1.690 | 0.1676 | 170.79
Output Benzene
Layer 17 85.00 5.146 | 0.1588 | 82.65

18 546.88 | 5.169 | 04891 | 282.25

19 612.89 | 5.183 | 0.2806 | 330.53

— Hidden Layers 20 | 142.06 | 5.156 | 0.1922 | 17301
21 37155 | 5171 | 0.0259 | 287.80
Figure2 Schematic diagram of multi layer 22 446.00 | 5.179 | 0.0730 | 286.29
feed forward neural network. 23 546.47 | 5.168 | 0.1819 | 348.27
perform non-linear input-output transformations 24 143.21 | 5179 | 0.0325 | 229.29
by means of sigmoid activation function. The 25 370.89 | 5.167 | 0.1329 | 374.56
procedures for training and testing the ANN and 26 44255 | 5160 | 0.1708 | 402.89
its history can be found in the text by Haykin and 27 54651 | 5.168 | 0.0600 | 464.31
others [20-29]. Such non-linear mapping enables 28 143.74 | 5.188 | 0.0149 | 289.02
the ANNSs to estimate any function without the 29 25736 | 5.180 | 0.0444 | 29259
need of an explicit mathematical model of the 30 44548 | 5175 | 00206 | 353.86
physica phenomenon. To train and test the 31 54923 | 5.181 | 0.0265 | 383.54
neurd  networks, input data patterns and Table 2: Testing data for the different ANN
corresponding targets are required. In developing topologies for water and benzene
an ANNs model, the available data from the SNo. | Input Output
literature are divided into two sets: the network Pe [Pr [Xtt Nu
is trained using the first data set and then it is Water

validated with the remaining data as given in the 19678 T 1565 | 0.1390 | 13557

Table 1 and 2. The training of the network is

carried out by comparing the output with the 428.70 | 1.554 | 0.0576 | 213.30

450.53 | 1.647 | 0.1658 | 168.41

target by continuously updating the weights and

biases of the same. Thus the configuration of the 34792 | 1637 | 00793 | 188.21
ANNSs is set by selecting the number of hidden 431.82 | 1.693 | 0.2505 | 186.89

QR IWIN(F

layers and the number of nodes in it. The number Benzene

256.24 | 5163 | 0.3306 | 204.71

443.76 | 5.166 | 0.5384 | 265.14

255.90 | 5162 | 0.0814 | 226.55

OO|IN|O

257.34 | 5177 | 0.0117 | 313.16

10 373.55 | 5186 | 0.0460 | 393.57




ANN predicted Nusselt No.

of nodes in the input and output layer are
governed by the input and target data.

Among the various kinds of ANNs, the feed
forward neural network has become very popular
in engineering applications. Therefore in the
present work multi layered feed forward network
with the back propagation algorithm have been
used. Two different training algorithms have
been applied with different hidden layers and

nodes to train the network.
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Figur e 3 Experimental Nusselt No. versus ANN
predicted Nusselt No. for 10 nodes in different
number of the hidden layers for water

Figures 3 to 9 represent comparison between
experimental and predicted values of Nusselt
number. As can be seen in Figures 3 and 4 that a
comparison of predicted versus experimental Nu
has been made with one, two and three hidden
layers respectively for 10 nodes in each hidden
layers. Most of the predicted values are very
close to the desired line. Around 95 % data are
with in maximum error of £ 20 %. A similar
comparison is made in Fig. 5 but with 20 nodes
in all the hidden layers. Thusit is clear that if the
number of nodes increases in different hidden
layers than the maximum deviation is less.
Figures 6 and 7 shows the capability of the
network to predict the heat transfer coefficient by
varying the number of nodes for three hidden
layers architecture for water and benzene
respectively. The maximum deviation is

ANN predicted Nusselt No.
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Figure 4 Experimental Nusselt No.versus ANN

predicted Nusselt No. for 10 nodes in different

number of the hidden layers for benzene
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Figure5 Experimental Nusselt No. versus ANN
predicted Nusselt No. for 20 nodes in different
number of the hidden layers for water
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Figure 6 Experimental Nusselt No. versus ANN
predicted Nusselt No. for different number of
nodes in three hidden layers for water
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Figure 7 Experimental Nusselt No. versus
ANN predicted Nusselt No. for different
number of nodes in three hidden laversfor
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Figure 8 Experimental Nusselt No.versus ANN
predicted Nusselt No. using different training
alaorithm and network architectures for water
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Figure 9 Experimental Nusselt No.versus ANN
predicted Nusselt No. using different training
algorithm and network architectures for
benzene



Mean absolute deviation [%]

observed for the architecture of 10-10-10 hidden
layers in comparison to other network structures
for water. However in case of benzene the
maximum deviation was found for 40-40-40
hidden layers architecture. The effect of
training algorithm has been shown in Figures 8
and 9. The Scaled conjugate gradient (SCG)
algorithm is more error prone in comparison to
Broyden, Fletcher, Goldfarb and Shanno update
(BFGS) for both systems. However in each

algorithm as the number of nodes is increased,
30
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Figure 10 Mean absolute deviation of the test
datafor the different training scheme for water

the accuracy in the prediction of heat transfer
coefficient increases. In Figures 10 and 11 the
mean absolute deviation of the predicted results
for the various network structures has been
shown. The performance of the BFGS is superior
over the SCG agorithm for both fluids. The
training scheme three (BFGS) with one hidden
layer of 40 nodes shows the minimum absolute
deviation of around 10 % for water. Other
network topology exhibits MAD in the range of
13 to 16 % with the exception of 19 % for SCG
training algorithm of 3 hidden layers of 20 nodes
each. For benzene the minimum absolute
deviation of around 9 % was observed for
training algorithm SCG with three hidden layers
of 20 each. The maximum MAD is around 39 %
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Figure 11 Mean absolute deviation of the test
datafor the different training scheme for benzene

for BFGS algorithm with three hidden layers of
40 nodes each.

CONCLUSIONS

The following important conclusions can be
drawn from the present study.

1. Inthe prediction of heat transfer
coefficient by ANN, the out put from
training data gives fairly good matching
for water in comparison to benzene.

2. With theincrease in the number of
hidden layers, the predictability
characteristic of the network improves
for both systems.

3. Asthe number of nodesincrease, the
network performance in general
increases.
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