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ABSTRACT 
 

The present study deals with the prediction 
of heat transfer coefficients for water and 
benzene   using ANN in a vertical thermosiphon 
reboiler. The experimental data from the 
literature were used for training of feed forward 
artificial neural network with error back 
propagation technique. Different training 
algorithms have been applied with different 
hidden layers and nodes to train the network. It 
was observed that the heat transfer coefficients 
predicted was close to the experimental data 
within the maximum error of ± 20 %. If more 
exhaustive input data were fed then error would 
have become still lesser. It has been observed 
that some algorithms are very efficient with 
respect to training time in comparison to other 
algorithms.  
 
Keywords: Neural networks, heat transfer 
coefficient, thermosiphon reboiler. 
 
INTRODUCTION 
 
    Vertical tube thermosiphon reboilers with a 
horizontal or vertical tube configuration are 
widely used in petroleum, chemical, 
petrochemical and power plant industries.   The 

vertical tube units consist essentially of a 1-1 
shell and tube heat exchanger placed vertically as 
one limb of U shaped circulation system. The 
lower end tube channel is connected through a 
short tube to another vertical down flow pipe 
while the upper end channel to a vapor-liquid 
separator.  The flow of liquid is induced under 
the density difference of liquid at the reboiler 
inlet and liquid vapor mixture at the outlet, 
which is strongly influenced by heat transfer.  A 
number of experimental studies have been 
carried out to investigate the effect of important 
parameters such as heat flux, inlet liquid 
subcooling and liquid submergence on heat 
transfer coefficient and circulation rate in a 
reboiler tube.  Thus there exist a strong 
interaction between the heat transfer and fluid 
circulation in a thermosiphon reboiler. The 
process fluid entering the vertical tubes of the 
heat exchanger receives the heat from the heating 
medium (usually steam). Due to vaporization in 
the tube, the specific volume of the fluid is 
increased resulting in its upward movement 
while the liquid is siphoned from the adjoining 
cold leg. Thus a net flow through the circulation 
loop is generated. As the sub-cooled liquid enters 
the heated section and moves up, it undergoes a 
change in its flow pattern. It has been observed 
that the various flow patterns developed along 



 

the vertical tube of thermosiphon reboiler depend 
upon several parameters such as heat flux, inlet 
liquid subcooling, liquid level in cold leg 
(submergence) and the physical properties of the 
fluids. These flow patterns affect the hydrostatic 
conditions near the heated wall, resulting in 
different modes of heat transfer. Thus 
hydrodynamics and heat transfer interact with 
each other, making the process quite complex.  
The heat transfer to the liquid in the reboiler tube 
in effect generates a changing two-phase flow 
with various regimes spread along the tube 
length. The difference between the hydrostatic 
head of the liquid in the cold leg and that of the 
 
NOMENCLATURE 
 
BFGS [-] Broyden, Fletcher, Goldfarb   
      and  Shanno update 
C [J/kg oC]  Heat capacity 
d  [m]  inside diameter of the tube 
F [kg/s] cooling water flow rate 
h [W/m2 oC] Heat transfer coefficient 
k [W/m oC] Thermal conductivity 
L [m] Total length of heated tube 
m [kg/s] Circulation rate 
MV [kg/s] Liquid flow rate from  
  condenser  
q [W/m2] Heat flux 
S [%] Submergence 
SCG [-] Scaled conjugate gradient 
T [oC] Temperature 
Tc1 [oC] Inlet temperature of cooling  
  water  
Tc2 [oC] Outlet temperature of   
   cooling water 
TL1 [oC] Inlet liquid temperature to  
  the tube 
TL2 [oC] Outlet liquid temperature  
  from the tube 
TV  [oC] Liquid condensate  
  temperature in condenser  
  vessel 
TS [oC] Liquid saturation  
  temperature in the tube 
ΔTsub [oC] Degree of subcooling 
Z [m] Distance along the test  
  section 
 
Special characters 
λ [J / kg] Latent heat of vaporization 
ρ [Kg/m3] Density 
μ [N s / m2] Dynamic viscosity 
 σ [N / m] surface tension 
 

two-phase mixture in the reboiler tube is 
responsible for the circulation rate of the liquid 
through the reboiler. The prediction of rate of 
liquid circulation and heat transfer is the primary 
requirement for the design and efficient 
operation of the thermosiphon reboiler. Several 
studies [1-13] have been made to predict the heat 
transfer during the last two decades, but little 
information is available for the application of 
ANN in a vertical thermosiphon reboiler [14-17]. 
There exist two distinct regions of heat transfer 
over the tube length of a vertical thermosiphon 
reboiler such as single phase convection and/or 
subcooled boiling followed by  saturated boiling. 
Some of the investigators have developed 
empirical /semi empirical correlations for the 
prediction of heat transfer coefficients in the 
subcooled and saturated boiling regimes 
  ANN is information –processing paradigm that 
is inspired by the way, the biological nervous 
systems such as the brain processes information. 
It is composed of large number of highly 
interconnected processing elements (neurons) 
working in unison to solve specific problem. It 
has been used in many engineering applications 
[14-29] because of providing better and more 
reasonable solutions. Some examples are: 
Analysis of thermosiphon solar water heaters, 
prediction of wall superheat and circulation rate 
in a reboiler tube, heat transfer data analysis 
among others.  In view of the above it is planned 
to carry out a systematic study to predict the heat 
transfer coefficients using ANN in a vertical 
thermosiphon reboiler using the data from the 
literature [13]. Different training algorithms 
(BFGS and SCG) have been applied with 
different hidden layers and nodes to train the 
network. It was observed that the heat transfer 
coefficients predicted was close to the 
experimental data. If more exhaustive input data 
were fed then error would have become still 
lesser. It is observed that some algorithms are 
very efficient with respect to training time in 
comparison to other algorithms.  
 
EXPERIMENTAL APPARATUS  
The experimental facility consisted of a natural 
circulation reboiler loop with a condenser and 
cooling system, power supply system and 
required instrumentation as shown in  Fig. 1. The 
liquid enters the tube at its bottom end, get 
heated and rises upwards with subsequent 
boiling. The vapour liquid mixture enters the 
separator from where the vapors go to the 
condenser for total condensation. The vapor 
liquid separator is a cylindrical vessel with a 



 

tangential entry of the two-phase mixture in the 
middle. The level of the test liquid in the down 
flow pipe (submergence) is indicated by a glass 
tube level indicator. Further details of reboiler 
loop and operating procedure can be seen 
elsewhere [7, 8,13]. 

Figure  1 Schematic diagram of the experimental 
setup [13] 

1   Test section 
2 Copper clamps 
3 View-port for inlet liquid 
4 Glass tube section 
5 Vapor-liquid separator 
6 Primary condenser 
7 Spiral coil 
8 Secondary condenser 
9 Liquid down-flow pipe 
10 Cooling jacket 
11 Wall thermocouples 

12 Liquid thermocouple 
probes 

13 Liquid level indicator 
14 Condenser down-flow pipe 
15 Removable screwed cap 
16 Feeding funnel 
17 Auxiliary heater 
18 Rotameters 
19 Centrifugal pump 
20 Cold Water Tank 
V1-
V3 

Control Valves 

C1-
C5 

Drain Cocks 

The main unit is a U shaped circulation loop 
made up of two long vertical tubes connected 

together with the bottom by a short horizontal 
stainless tube, while the upper ends are 
connected to a vapor liquid separator and the 
condenser. One of the vertical tubes is 
electrically heated and served as the test section. 
The liquid enters the tube at its bottom end, get  
DATA REDUCTION AND ARTIFICIAL 
NEURAL NETWORKS APPROACH 
 
For determining the circulation rate it is 
necessary to know the effective length of the 
non-boiling or sensible heating region over 
which the liquid temperature varies linearly. The 
lengths of the effective boiling and non-boiling 
zones over the entire heated tube are determined 
from the quantity of net vapor generation as 
obtained from the amount of vapor condensed in 
the condenser. A heat balance around the 
condenser gives. 
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    The rate of liquid circulation caused by 
buoyancy-induced flow is evaluated by making a 
heat balance over the non-boiling section.  

( )1NB L S LQ dZ q mC T Tπ= = −                           (4) 
Or,                              
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   The liquid temperature distribution along the 
length of the tube in the non-boiling zone is 
calculated assuming a linear relationship as 
mentioned below.   

 1
1

( )S L
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NB

T T ZT T
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−

= +                                      (6) 

 Where, Z ≤ ZNB   
 
The heat transfer coefficients and Nusselt 
numbers were calculated as per details given in 
the literature [8]. 
 
 
RESULTS AND DISCUSSION 
 
 



 

There are several classes of neural network 
architectures, classified according to their 
learning mechanisms in the literature such as: 
single layer feed forward networks, multilayer 
feed forward networks and recurrent networks. A    
multilayer feed forward network as shown in 
Fig. 2 have three input neurons and one output 
neuron. The first and last hidden layer comprises  
of four and two neurons respectively. The nodes 

perform non-linear input-output transformations 
by means of sigmoid activation function. The 
procedures for training and testing the ANN and 
its history can be found in the text by Haykin and 
others [20-29]. Such non-linear mapping enables 
the ANNs to estimate any function without the 
need of an explicit mathematical model of the 
physical phenomenon. To train and test the 
neural networks, input data patterns and 
corresponding targets are required. In developing 
an ANNs model, the available data from the 
literature are divided into two sets: the network 
is trained using the first data set and then it is 
validated with the remaining data as given in the 
Table 1 and 2. The training of the network is 
carried out by comparing the output with the 
target by continuously updating the weights and 
biases of the same. Thus the configuration of the 
ANNs is set by selecting the number of hidden 
layers and the number of nodes in it. The number 
 
 
 
 

Table 1: Training Data for the different ANN 
topologies for water and benzene  

Input S.No. 
Pe Pr Xtt 

Output 
Nu 

 Water 
1 64.76 1.615 0.6378 100.67 
2 162.93 1.585 0.0768 127.52 
3 284.85 1.588 0.2490 177.60 
4 488.35 1.554 0.2479 217.81 
5 64.87 1.647 0.0968 78.27 
6 163.18 1.611 0.0601 130.76 
7 284.78 1.585 0.0834 118.55 
8 334.10 1.644 0.1950 159.17 
9 65.22 1.651 0.0571 110.98 
10 163.46 1.644 0.0607 145.15 
11 285.80 1.651 0.0521 150.00 
12 486.23 1.665 0.1695 209.59 
13 64.98 1.690 0.3261 132.60 
14 163.70 1.679 0.1393 177.36 
15 286.20 1.686 0.2027 174.40 
16 371.02 1.690 0.1676 170.79 
 Benzene 
17 85.00 5.146 0.1588 82.65 
18 546.88 5.169 0.4891 282.25 
19 612.89 5.183 0.2806 330.53 
20 142.06 5.156 0.1922 173.01 
21 371.55 5.171 0.0259 287.80 
22 446.00 5.179 0.0730 286.29 
23 546.47 5.168 0.1819 348.27 
24 143.21 5.179 0.0325 229.29 
25 370.89 5.167 0.1329 374.56 
26 442.55 5.160 0.1708 402.89 
27 546.51 5.168 0.0600 464.31 
28 143.74 5.188 0.0149 289.02 
29 257.36 5.180 0.0444 292.59 
30 445.48 5.175 0.0206 353.86 
31 549.23 5.181 0.0265 383.54 

Table 2: Testing data for the different ANN 
topologies for water and benzene 

Input S.No. 
Pe Pr Xtt 

Output 
Nu 

 Water 
1 196.78 1.565 0.1390 135.57 
2 428.70 1.554 0.0576 213.30 
3 450.53 1.647 0.1658 168.41 
4 347.92 1.637 0.0793 188.21 
5 431.82 1.693 0.2505 186.89 
 Benzene 
6 256.24 5.163 0.3306 204.71 
7 443.76 5.166 0.5384 265.14 
8 255.90 5.162 0.0814 226.55 
9 257.34 5.177 0.0117 313.16 
10 373.55 5.186 0.0460 393.57 

Input 
Layer 

Outputs

Output 
Layer 

    Figure 2  Schematic diagram of multi layer  
feed forward neural network. 
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of nodes in the input and output layer are 
governed by the input and target data. 

Among the various kinds of ANNs, the feed 
forward neural network has become very popular 
in engineering applications. Therefore in the 
present work multi layered feed forward network 
with the back propagation algorithm have been 
used. Two different training algorithms have 
been applied with different hidden layers and 
nodes to train the network.        

      Figures 3 to 9 represent comparison between 
experimental and predicted values of Nusselt 
number. As can be seen in Figures 3 and 4 that a 
comparison of predicted versus experimental Nu 
has been made with one, two and three hidden 
layers respectively for 10 nodes in each hidden 
layers. Most of the predicted values are very 
close to the desired line.  Around 95 % data are 
with in maximum error of ± 20 %.  A similar 
comparison is made in Fig. 5 but with 20 nodes 
in all the hidden layers. Thus it is clear that if the 
number of nodes increases in different hidden 
layers than the maximum deviation is less. 
Figures 6 and 7 shows the capability of the 
network to predict the heat transfer coefficient by 
varying   the number of nodes for three hidden 
layers architecture for water and benzene 
respectively. The maximum deviation is 

 

Experimental Nusselt No. 
 

Figure 3 Experimental Nusselt No. versus ANN 
predicted Nusselt No. for 10 nodes in different 

number of the hidden layers for water 
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Experimental Nusselt No. 
 

Figure 4 Experimental Nusselt No.versus ANN 
predicted Nusselt No. for 10 nodes in different 

number of the hidden layers for benzene 
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Figure 5 Experimental Nusselt No. versus ANN 
predicted Nusselt No. for 20 nodes in different 

number of the hidden layers for water 
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Figure 7 Experimental Nusselt No. versus 
ANN predicted Nusselt No. for different 

number of nodes in three hidden layers for
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Figure 8 Experimental Nusselt No.versus ANN 
predicted Nusselt No. using different training 
algorithm and network architectures for water
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Figure 9 Experimental Nusselt No.versus ANN 
predicted Nusselt No. using different training 

algorithm and network architectures for 
benzene 

Experimental Nusselt No. 
 

Figure 6 Experimental Nusselt No. versus ANN 
predicted Nusselt No. for different number of 

nodes in three hidden layers for water 
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Figure 10 Mean absolute deviation of the test 
data for the different training scheme for water 
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Figure 11 Mean absolute deviation of the test 
data for the different training scheme for benzene

observed for the architecture of 10-10-10 hidden 
layers in comparison to other network structures 
for water. However in case of benzene the  
maximum deviation was found for 40-40-40 
hidden layers architecture.    The effect of 
training algorithm has been shown in Figures 8 
and 9.    The Scaled conjugate gradient (SCG) 
algorithm is more error prone in comparison to    
Broyden, Fletcher, Goldfarb and Shanno update 
(BFGS) for both systems. However in each 
algorithm as the number of nodes is increased, 
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the accuracy in the prediction of heat transfer 
coefficient increases. In Figures 10 and 11  the     
mean absolute deviation of the predicted results 
for the various network structures has been 
shown. The performance of the BFGS is superior 
over the SCG algorithm for both fluids. The 
training scheme three (BFGS) with one hidden 
layer of 40 nodes shows the minimum absolute 
deviation of around 10 % for water.  Other 
network topology exhibits MAD in the range of 
13 to 16 % with the exception of 19 % for SCG 
training algorithm of 3 hidden layers of 20 nodes 
each. For benzene the minimum absolute 
deviation of around 9 % was observed for 
training algorithm SCG with three hidden layers 
of 20 each. The maximum MAD is around 39 % 
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for BFGS algorithm with three hidden layers of 
40 nodes each.  
 
      
CONCLUSIONS 
 
The following important conclusions can be 
drawn from the present study. 

1. In the prediction of heat transfer 
coefficient by ANN, the out put from 
training data gives fairly good matching 
for water in comparison to benzene. 

2. With the increase in the number of 
hidden layers, the predictability 
characteristic of the network improves 
for both systems.  

3. As the number of nodes increase, the 
network performance in general 
increases.  
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