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ABSTRACT 

At present standard rheometers provide sufficiently precise 
measurements characterising behaviour of non-Newtonian 
materials. In practice, this accuracy is not always necessary, 
and the methods providing relatively cheap, fast and sufficient 
measurements of the rheological characteristics are fully 
acceptable. Back extrusion - representing one of these methods 
- is based on plunging of a circular rod into an 
axisymmetrically located circular cup containing the 
experimental sample. Formerly this method was applied for a 
characterisation of power-law, Bingham and Herschel-Bulkley 
fluids. The aim of this contribution is to present a sufficiently 
simple user-friendly procedure how to determine the individual 
rheological parameters appearing in the Vočadlo model 
(sometimes called Robertson-Stiff one) - yield stress, 
consistency parameter and flow behaviour index. 
 
 
INTRODUCTION 

Back extrusion (see Fig.1) represents a method providing 
relatively cheap and sufficient measurements of the rheological 
characteristics, see Steffe and Osorio [1]. This method is often 
used in food industry, e.g. for characterisation of tomato 
concentrate (Alviar and Reid [2]), mustard slurry (Brusewitz 
and Yu [3]), caramel jam (Castro et al. [4]), wheat porridge 
(Gujral and Sodhi [5]), corn starch (Singh et al. [6]), rice (Sodhi 
et al. [7]), raspberry (Sousa et al. [8]), blackberry (Sousa et al. 
[9]), etc. 

The principle of a back-extrusion technique consists in 
penetrating of a circular plunger into an axisymmetrically 
placed circular container with a material studied. For a 
determination of rheological parameters appearing in the 
individual empirical rheological models, knowledge of a 
relation between pressure gradient P and volumetric flow rate q 
through an annulus formed by a plunger and a container is 
substantial. This relation is possible to derive from the relation 

for an axial velocity profile of the material studied in an 
annulus.  

This problem was already solved for a determination of the 
parameters appearing in the following empirical constitutive 
equations: 
− Osorio and Steffe [10] derived an analytical solution for a 

determination of consistency index K and flow behaviour 
index n in the power-law model  

 1nKτ γ γ−= ⋅  (1) 

− The same authors (Osorio and Steffe [11]) generalised their 
approach for the case of the Herschel-Bulkley model (for 
n=1 we obtain the Bingham model as a special case)  

 1
0

nKτ τ γ γ−= +      . (2) 

This enables to take into account viscoplastic materials 
exhibiting a plug-flow region, nevertheless in this model a 
yield stress τ0 represents a strict singular term.      

The aim of this contribution is – using a back-extrusion 
technique - to derive a procedure how to determine the 
parameters in the case of the Vočadlo model. This (sometimes 
called Robertson-Stiff) model (Parzonka and Vočadlo [12]; 
Robertson and Stiff [13]) seems to be more user-friendly 
viscoplastic model involving a term with a yield stress in a 
more appropriate form 
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where K and n represent consistency and flow behaviour 
indices, respectively; τ0 stands for a yield stress. 

    



 
SOLUTION FOR THE VOČADLO MODEL 

The Vočadlo model rewritten in the form corresponding to 
the flow situation in a back extrusion (see Fig.1) is of the form 
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Introducing the following dimensionless transformations 
(for notation see Figs.1,2 and rels.(3,4)) 
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the problem of flow within an annulus can be reformulated in 
the form 
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where λ2 is a dimensionless constant of integration, s=1/n. 

If λi, λo denote the dimensionless boundary values of the 
plug flow region (see Fig.2), then from Eq.(8) it follows that 
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For simplification the following notation will be used in the 

further analysis 
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The solution of the above stated problem provides the 
following expressions for the inner, plug-flow region and outer 
velocity profiles 
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Figure 1  Definition sketch of a back extrusion 
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From the condition of continuity of the velocity profile 
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it follows that λi is a solution of the equation 
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If we compare a volumetric flow rate q through an annulus 
as given by rel.(7) and visually in Fig.1, we get 
 

( )222 R VQ R Vπ π κ=     . (20) 
 
From here it follows that 
 

2 / 2Q κ=       . (21) 

    



As the determination of dimensionless flow rate Q is 
basically similar to that derived in Malik and Shenoy [14] for 
power-law fluids, in the following we only introduce the final 
result 
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Comparing rels.(21,22) we obtain 
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Figure 2  Definition sketch of a back extrusion after 
dimensionless transformations 

Prior to a determination of the empirical constants τ0, K and 
n it is useful to eliminate the member Λs from the relations (19) 
and (23). Using rel.(19) 
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and inserting this relation into rel.(23) we obtain a rather 
cumbersome but algebraically and numerically simple equation 
enabling in the following the determination of flow behaviour 
index n  
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Consequently combining rel.(7) for Λ and rel.(24) we get 
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In the next section this relation will complete a determination 
of the empirical constants τ0, K and n appearing in the Vocadlo 
model. 
 
 
PROBLEM SOLUTION 

First, out of three empirical parameters appearing in the 
Vočadlo model, a yield stress τ0 will be determined. This step is 
more or less identical to that introduced by Osorio and Steffe 
[11] for the determination of yield stress in the Herschel-
Bulkley model, for illustration see Fig.6 in Osorio and Steffe 
[11]. 

Let us denote FT a force recorded just before the plunger is 
stopped formed successively by a friction force along the 
plunger Ff, force responsible for fluid flow in the upward 
direction Fu, and buoyancy force Fb  
 

T f u bF F F F= + +  (27) 
 
i.e. after expressing the individual force contributions 
 

( ) ( )22T w F
2F RL R P gL Rπκ τ π κ ρ π κ= + Δ +  (28) 

 

    



where L represents the length of a plunger penetrated into 
liquid; ΔP is a difference between pressures p0 at the entrance 
to annulus and pL at the plunger base; ρF stands for fluid 
density; g is the gravity acceleration. 

When the plunger is stopped (i.e. φ≡0) a static force FT 
attain an equilibrium value  eTF
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From here it follows that 
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force  is experimentally recorded after the plunger is 
stopped. 

eTF

 
For a determination of flow behaviour index n and 

consistency parameter K the following iterative procedure has 
to be used: 

 
1. choice of a pressure gradient P (from rel.(7) for T0 it follows 

that 
( )

02>
1-

P
R

τ
κ

); 

2. determination of T0: 
 A value for dimensionless yield stress T0 follows from 

rel.(7) 
3. determination of Tw: 
 From rels. (27),(28) we obtain  
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 From the experimental data we know a value for FT (force 

recorded just before the plunger is stopped) and hence 
rel.(31) provides a value for Tw.  

4. determination of λ2: 
 Consequently we determine λ2 from rel.(8) written at the 

point ξ=κ: 
 
  (32) (2

wTλ κ κ= + )
 
5. determination of λi, λo: 
 Eqs.(12),(13) provide the values for λi, λo as T0 and λ2 are 

already known. 
6. determination of n: 
 Flow behaviour index n is a solution of Eq.(25) (one 

equation for the one unknown). 
7. determination of K: 
 Consistency parameter K is given by rel.(26). 
8. comparison of a value for Tw given in step 3 with that given 

by the Vočadlo model, rel.(10): 

 If a difference of these values exceeds chosen accuracy the 
whole procedure (steps 1-8) is necessary to repeat. 

The whole procedure is concluded after attaining the chosen 
accuracy of Tw values when - to an a priori calculated yield 
stress τ0 - knowledge of two remaining parameters in the 
Vočadlo model, n and K, completes its full determination.  
 
 
APPLICATION 

As an example the experiment presented in Osorio and 
Steffe [11] is used. They employed 2% aqueous solution of 
Kelset (sodium-calcium alginate) from Kelco Co. (at 240C) for 
which they determined experimental points shear rate vs. shear 
stress using a Haake RV-12 viscometer.  

Application of a procedure introduced in the preceding 
section results in the following values characterising the 
Vočadlo constitutive equation for the aqueous solution of 
Kelset under investigation: 
- τ0=8.53 Pa, determination of this value is independent on a 

choice of the constitutive equation and subjects to a course of 
force vs. plunger penetration function, this is a reason why 
this value was taken over from Osorio and Steffe [11]; 

- n=0.4, K=36.2 Pa1/n.s, these values were optimised by the 
procedure introduced above (using the entry (geometrical and 
kinematical) data introduced in Osorio and Steffe [11]). 

Fig.3 provides a correspondence between experimentally 
determined points using a Haake viscometer and a flow curve 
predicted by the Vočadlo model with the parameters 
determined by a back extrusion process. The agreement seems 
to be good and satisfactory from the practical viewpoint, on 
average there is a 12% systematic discrepancy. 
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Figure 3 Comparison of the experimental data (measured by a 
Haake RV-12 viscometer, see Osorio and Steffe [11, Fig.9]) 
with the Vočadlo model  
a) solid line - optimised parameters τ0=8.53, n=0.394, K=42.3; 
b) dashed line - parameters determined by a back-extrusion 

method τ0=8.53, n=0.4, K=36.2        
 

    



CONCLUSION 
The Vočadlo model in its form eliminates a singularity 

appearing e.g. in the Herschel-Bulkley model. 'Smoothness' of 
the Vočadlo model results in better application to the numerical 
procedures as e.g. a semi-analytical one in back-extrusion 
characterisation of rheological behaviour of various materials. 
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