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Abstract

Investigating stochastic portfolio theory with

applications to the South African equity market

B.H. Taljaard

Thesis: MSc Financial Engineering

June 2014

Stochastic Portfolio Theory (SPT) as a methodology aims to move away from
the e�cient market hypothesis which was developed mainly as a way of ex-
plaining the relationship between risk and returns. SPT attempts to explain
stock market behaviour using only the assumption of a logarithmic model of
stocks, which is widely used in derivative pricing and hedging. This provides
a potential tool for portfolio management and an alternative to the commonly
used mean-variance approach of Markowitz. The aim of this dissertation is to
provide an overview of the foundations of Stochastic Portfolio Theory, the con-
sequences for portfolio construction and behaviour and apply these concepts
to the South African Equity Market.
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Chapter 1

Introduction

The goal of most asset managers is to maximise return whilst adhering to cer-
tain constraints. These constraints can come in varied forms, from minimising
portfolio variance or risk to limits on asset class weights and liquidity con-
straints. However, regardless of the restrictions performance is usually relative
to some benchmark.

In the case of equity markets, the typical benchmark is simply referred to as
the market portfolio and is usually a market capitalisation weighted index of
some speci�c stocks. This has bene�ts when we want to understand the over-
all market (or speci�c sector) movements since it weighs the index towards
the shares which have a higher market capitalisation. These shares are there-
fore usually the most liquid shares and constitute a larger part of the overall
market. These portfolios,however, may not necessarily be the most optimal
portfolios to invest in.

Most quantitative techniques attempt to outperform the market portfolio by
selecting stocks along certain factors, see [28] or [42] for an example of this in
the South African market. In fact [53] showed that even randomly selected
portfolios could outperform the market portfolio on average.

The framework around portfolio construction (especially in light of the market
portfolio) is largely a product of Modern Portfolio Theory (MPT). In some
respects MPT began with Markowitz [41], who created a framework where the
portfolio variance was used as a measure of risk and together with expected
returns an e�cient frontier could be found. Optimal investments were those
investments that returned a speci�c expected return for the lowest risk (vari-
ance).

This also introduced the concept of covariance and its e�ects on the overall
portfolio risk. Tobin [54] extended this further by considering a combination
of the risk-free asset and a unique combination of risky assets on the e�cient

1

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1. INTRODUCTION 2

frontier.

Within this framework we still require the expected future returns, covariances
and standard deviations of the assets under review. An attempt to understand
the nature of these expected returns led to the widely used and quoted Capital
Asset Pricing Model (CAPM) by Sharpe [48]. Under CAPM, excess returns
can be expressed into two components, the risk of exposure to the market (sys-
tematic risk) and company speci�c risk (idiosyncratic risk). Since the speci�c
risk can be diversi�ed away, it can be argued that the expected excess return
from the speci�c risk component was necessarily zero and that only the sys-
tematic component provided a consistent return.

This systematic risk component or beta (β) is e�ectively the security's expo-
sure to the market. The CAPM model is e�ectively a factor model with one
factor - the exposure to the market. Since CAPM is a single factor model it is
merely a special case of Arbitrage Pricing Theory (APT) [45] which expresses
the return of an asset in terms of numerous factors. That is, it is a multi-factor
model as opposed to the single-factor of market exposure within the CAPM
framework.

Fama and French ([12] and [13]) extended this idea to consider both value or
growth and size as additional factors driving the returns of stocks. This, in
turn, was extended by Carhart [9] by including momentum as an additional
factor. See [2] and [50] for an application of this to the South African market.

In contrast, Stochastic Portfolio Theory (SPT) is descriptive in nature, in that
it attempts to describe actual observed behaviours in the market. Beginning
with the common Geometric Brownian Motion (GBM) model for stocks, we
show in Section 2.3 that, �rstly, it is the geometric rates of return which deter-
mine long term portfolio (and by extension an individual stock's) behaviour.
This has important implications for portfolio optimisation and we show in
Chapter 3 the empirical di�erences in portfolios formed around arithmetic
and geometric rates of return.

With an understanding of stock and portfolio long-term behaviour under SPT,
we then form portfolios with speci�c characteristics - the most important of
which is the outperformance of a market capitalisation weighted portfolio (mar-
ket portfolio). This is something we consider in Chapter 4.

Research into SPT has primarily been conducted by Fernholz through a series
of published papers which culminated into a book [18]. Further research into
aspects of SPT have also been conducted by [16], [24] and [35] to name a few.

Research into SPT has, however, mainly been applied to US equity markets
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CHAPTER 1. INTRODUCTION 3

in general. However, South African markets are markedly di�erent from those
in the US.

This di�erence is most noticeable in the investment universe of the two mar-
kets. Consider the S&P500 and even the Russell 2000 index, comprising 500
and 2000 of the largest stocks in the US. In South Africa, the equity market
is far smaller and the benchmark All-Share Index contains only between 150
and 170 stocks. Together with the far greater exposure to resources and the
fact that our economy is still a developing economy, the structure of the South
African market is fundamentally di�erent from that of the US. Our interest is
therefore the application of SPT within the South African equity markets.

The aim of this dissertation is, therefore, to provide an overview of key and
foundational concepts of Stochastic Portfolio Theory and, most importantly,
apply these to the South African market. More speci�cally:

1. Explain the basic concepts of SPT,

2. Explain the components (under SPT) of portfolio returns and the con-
sequences for portfolio optimisation,

3. Analyse the long-term behaviour and properties of portfolios (and specif-
ically the market portfolio) under SPT,

4. Provide a theoretical overview of functionally generated portfolios which
are constructed (under SPT) to outperform the market portfolio over
time,

5. Provide empirical results for the key concepts in SPT using historical
South African equity market data, and

6. Highlight key inferences of the South African equity market since 1994
through the application of SPT.

The chapters are broken down as follows:

Chapter 2 focuses on the basic concepts of Stochastic Portfolio Theory by
considering the common GBM model for stocks and extending this to a value
process for portfolios of stocks. We derive growth rate and excess growth rate
concepts within this chapter and show how these (speci�cally the excess growth
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CHAPTER 1. INTRODUCTION 4

rate) relate to portfolio diversi�cation and in turn to portfolio performance.

Chapter 3 applies the concepts considered in Chapter 2 to the South African
market by comparing empirical optimisation results for both an arithmetic re-
turn target and a growth rate (geometric return) target.

Chapter 4 presents the mathematical properties of portfolios and, speci�-
cally, the market portfolio. We show in this chapter how the weights and ex-
cess growth rates are related, which further enhances the relationship between
the excess growth rate and portfolio diversi�cation as explained in Chapter 2.
We also formalise the concept of diversity within this chapter. Chapter 4 also
introduces the concept of functionally generated portfolios which can be used
to construct portfolios with certain characteristics.

Chapter 5 applies the concepts in Chapter 4 to the South African market by
considering the empirical results of certain functionally generated portfolios.
The application of the theory from Chapter 4 to the South African market also
allows us to draw inferences as to the behaviour of the South African stock
market since 1994.
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CHAPTER 1. INTRODUCTION 5

Figure 1.1: Basic structure of this dissertation.
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Chapter 2

Stochastic Portfolio Theory basics

In this chapter we provide an explanation of the stock price process and how
this translates into the basic concepts of Stochastic Portfolio Theory (SPT).
We extend this to consider portfolios of stocks which will provide a foundation
for the following chapters. Within this chapter we highlight the implications
of SPT on portfolio optimisation and how diversi�cation relates to portfolio
growth rates.

2.1 Introduction

We assume a stock X(t) is a function of a drift process, α(t), and some sources
of randomness. These sources of randomness are akin to real world volatility
in stock prices and we make the further assumption that these sources of ran-
domness follow Brownian motions.

A variable y follows a Brownian motion if it exhibits the following two prop-
erties [33]:

Property 1: The change in y, namely ∆y, over a small period of time, ∆t, is

∆y = ε
√

∆t, (2.1.1)

where ε is normally distributed with a mean of zero and a standard deviation
of one.

Property 2: The changes in y over two non-overlapping intervals are inde-
pendent of one another. That is, the change in y over the intervals (t1, t1 +∆t)
and (t2, t2 + ∆t) are independent of one another provided that t2 > t1 + ∆t.

6
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CHAPTER 2. STOCHASTIC PORTFOLIO THEORY BASICS 7

It follows from the �rst property that ∆y is also normally distributed with
mean zero and variance given by:

V ar (∆y) = V ar
(
ε
√

∆t
)
,

= tV ar (ε) ,

= t.

Following on from the above, we therefore have a stock price process for X(t)
dependent on a drift process, denoted by α(t), and on sources of randomness.

Here we de�ne dWν(t) as the ν-th source of randomness, where dWν(t) are
Brownian motions (as described above) for ν = 1, 2, ..., n.

Furthermore, we de�ne ξν(t), for ν = 1, 2, ..., n, as the sensitivity of X(t) on
the ν-th source of randomness, dWν(t). We assume that the processes α(t)
and ξν(t) are measurable and adapted processes.

We can now de�ne the price process for the changes in stock X(t) over a short
period of time, dt, as,

dX(t)

X(t)
= α(t)dt+

n∑
ν=1

ξν(t)dWν(t), t ∈ [0,∞), (2.1.2)

where α(t), ξν and dWν(t) are de�ned as above.

Equation (2.1.2) represents the instantaneous return of X(t) and is a func-
tion of a drift process and some random disturbances. In this instance, α(t)
represents the stock's arithmetic rate of return. Although this rate of return
is used in MPT, we will prove that it is instead the geometric rate of return
(γ(t)) and not the arithmetic rate of return that determines long term portfolio
behaviour (see Proposition (2.3.1)). For other examples of geometric rates of
return within portfolio selection see [16], [11] and [30] amongst others.

We will, therefore, need to transform Equation (2.1.2) from a characterisation
of dX(t) into one for dlogX(t). To make the transformation we use Itô's lemma
on the function F (t) = logX(t). This results in the popular logarithmic model
for the continuous-time stock price processes:

dlogX(t) = γ(t)dt+
n∑
ν=1

ξν(t)dWν(t), (2.1.3)

where ξν and dWν(t) are de�ned as before and γ(t) is de�ned as,

γ(t) =

(
α(t)− 1

2

n∑
ν=1

ξ2ν(t)

)
. (2.1.4)
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CHAPTER 2. STOCHASTIC PORTFOLIO THEORY BASICS 8

γ(t) is the geometric rate of return, referred to as the growth rate of X(t)
in SPT. As mentioned before, we will show later how the growth rate, and
not the arithmetic rate of return, α(t), determines the long term behaviour of
a portfolio of stocks. It is for this reason that SPT concerns itself with the
growth rate, γ(t).

For completeness we present the following de�nition of the stock price process
X(t) along the lines of the same de�nition in [18].

De�nition 2.1.1. Let n be a positive integer. A stock price process X is a
process that satis�es the stochastic di�erential equation

dlogX(t) = γ(t)dt+
n∑
ν=1

ξν(t)dWν(t), t ∈ [0,∞),

where (W1, ...,Wn) is a Brownian motion, γ is measurable, adapted and satis-

�es
∫ T
0
|γ(t)| dt <∞, for all T ∈ [o,∞), a.s. Furthermore, the ξν, ν = 1, ..., n

are measurable, adapted and satisfy

1.
∫ T
0

(ξ21(t) + ...+ ξ2n(t)) dt <∞, T ∈ [0,∞), a.s.,

2. limt→∞ t
−1 (ξ21(t) + ...+ ξ2n(t)) log logt = 0, a.s,

3. ξ21(t) + ...+ ξ2n(t) > 0, t ∈ [0,∞), a.s..

Note that we can integrate (2.1.3) directly, which yields

logX(t) = logX(0) +

∫ t

0

γ(s)ds+

∫ t

0

n∑
i,ν=1

ξi,ν(s)dWν(s), t ∈ [0,∞).

This can also be rearranged into an exponential form

X(t) = X(0)exp

(∫ t

0

γ(s)ds+

∫ t

0

n∑
i,ν=1

ξi,ν(s)dWν(s)

)
, t ∈ [0,∞).

2.2 Portfolios of Stocks

A portfolio's value process

In this section we extend the individual stock price process derived in the pre-
vious section and consider the value process for a portfolio of stocks. We will
then be able to analyse the long-term behaviour of portfolio value processes.
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CHAPTER 2. STOCHASTIC PORTFOLIO THEORY BASICS 9

To begin, let us consider a market M of a family of stocks X1, ..., Xn, each
de�ned by Equation (2.1.3). A portfolio in the market M is a measurable,
adapted vector-valued process π, with π(t) = (π1(t), ..., πn(t)), for t ∈ [0,∞)
and

n∑
i=1

πi(t) = 1, t ∈ [0,∞).

We say a market is nondegenerate if there exists a number ε1 > 0 such that,

xσ(t)xT ≥ ε1‖x‖2, x ∈ <n, t ∈ [0,∞). (2.2.1)

That is, a market is nondegenrate if the variance of the market portfolio is
bounded away from zero.

Furthermore, if there exists a number ε2 > 0 such that,

xσ(t)xT ≤ ε2‖x‖2, x ∈ <n, t ∈ [0,∞), (2.2.2)

we say the market M has bounded variance.

Simply put, we have a marketM , which has n stocks. A valid portfolio within
this market is any combination of the stocks inM such that the weights, πi(t),
sum to one.

The process πi(t) therefore represents the proportion of capital invested in the
i-th stock. Now, let Zπ(t) represent the value of some portfolio with weights
π at time t. Obviously, the amount invested in stock Xi is given by,

πi(t)Zπ(t).

Therefore, if the price Xi changes by dXi(t) then the change in the portfolio
value Zπ(t) is given by

πi(t)Zπ(t)
dXi(t)

Xi(t)
.

and the total change in the portfolio can therefore be expressed by,

dZπ(t)

Zπ(t)
=

n∑
i=1

πi(t)
dXi(t)

Xi(t)
. (2.2.3)

The instantaneous rate of change for the portfolio, Zπ(t), is therefore the
weighted sum of instantaneous changes of the stocks in the portfolio.

To proceed further, however, we will need a de�nition of the covariance process.
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In Section 2.1 the volatility processes of Xi were given by ξiν(t). We can then
de�ne ξ(t) = (ξiν(t))1≤i,ν≤n. That is, ξ(t) is a matrix, where the rows, i, rep-
resent each of the n stocks in the portfolio and the columns, ν, represent the
sensitivity to each of the n sources of randomness. Furthermore, the covari-
ance process σ(t) is de�ned as σ(t) = ξ(t)ξT (t).

Then the cross-variance processes for logXi and logXj is given by

σij(t)dt = d 〈logXi, logXj〉t =
n∑
ν=1

ξivξjv(t), t ∈ [0,∞). (2.2.4)

For i = 1, ..., n, the process σii(t) = d 〈logXi〉t is called the covariance process
of Xi.

We can now use Equation (2.2.3) to derive a price process for the portfolio
Zπ(t) in di�erential form. To do this we set out the following proposition as
in [21].

Proposition 2.2.1. Let π be a portfolio and let,

dlogZπ(t) = γπ(t)dt+
n∑

i,ν=1

πi(t)ξiv(t)dWν(t), (2.2.5)

where

γπ(t) =
n∑
i=1

πi(t)γi(t) +
1

2

(
n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)

)
. (2.2.6)

Then, for any initial value Zπ(0) > 0, (2.2.5) can be integrated directly to
obtain

Zπ(t) = Zπ(0)exp

(∫ t

0

γπ(s)ds+

∫ t

0

n∑
i,ν=1

πi(s)ξiv(s)dWν(s)

)
(2.2.7)

as a solution of (2.2.3), for t ∈ [0,∞).

Proof. To prove this proposition we will begin with Equation (2.2.7) and prove
it, and therefore (2.2.5), are equivalent to Equation (2.2.3).

It follows from (2.2.7) that

dlogZπ(t) = γπ(t)dt+
n∑

i,ν=1

πi(t)ξiv(t)dWν(t).
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We apply Itô's Lemma to Zπ = exp (logZπ(t)) to obtain

dZπ(t) = Zπ(t)dlogZπ(t) +
1

2
d 〈logZπ〉t ,

and therefore, by substituting in dlogZπ(t),

dZπ(t)

Zπ(t)
= γπ(t)dt+

n∑
i,ν=1

πi(t)ξiv(t)dWν(t) +
1

2
Zπ(t)d 〈logZπ〉t ,

where d 〈logZπ〉t is the covariance process of dlogZπ. Since Zπ(t) is a portfolio
of stocks and given the de�nition of the covariance process before, we have

d 〈logZπ〉t =
n∑

i,j=1

πi(t)πj(t)d 〈logXi, logXj〉t =
n∑

i,j=1

πi(t)πj(t)σij(t)dt.

Now by de�nition we have

γπ(t) =
n∑
i=1

πi(t)γi(t) +
1

2

(
n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)

)
,

and therefore,

dZπ(t)

Zπ
=

n∑
i=1

πi(t)γi(t)dt+
1

2

n∑
i=1

πi(t)σii(t)dt+
n∑

i,ν=1

πi(t)εiν(t)dWν(t).

Furthermore, Equation (2.2.4) implies that σii(t) =
∑n

ν=1 ε
2
iv(t) and therefore

by Equation (2.1.3) we have,

dXi(t) =

(
γi(t) +

1

2
σii(t)

)
Xi(t)dt+Xi(t)

n∑
ν=1

εiv(t)dWν(t), for t ∈ [0,∞).

This implies that,
dZπ(t)

Zπ(t)
=

n∑
i=1

πi(t)
dXi(t)

Xi(t)
.

The structure of (2.2.5) is, not surprisingly, very similar to the price process
for an individual stock in Equation (2.1.3). Once again we have a growth
rate process, γπ(t), which is called the portfolio growth rate process. Notice
in (2.2.6), that γπ(t) contains, not only the weighted sum of the individual
growth rates, but also a component containing the portfolio's variance.
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This component is called the excess growth rate process and is represented by
γ∗π(t), where

γ∗π(t) =
1

2

(
n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)

)
. (2.2.8)

The �rst summation is a weighted sum of the individual stock variances whilst
the second summation represents the portfolio's variance. The portfolio vari-
ance will be de�ned as σππ.

Heuristically, γ∗π(t) can be regarded as the bene�ts of diversi�cation in terms of
lowering the variance of the portfolio Zπ(t). Although, it is widely known that
diversi�cation leads to a lower portfolio variance, it is not widely recognised
to have an e�ect on the growth rate of the portfolio.

As an interesting note, we may want to maximise the portfolio growth rate
which would involve maximising, in some part at least, the excess growth rate.
That would involve selecting stocks with large volatilities such that their co-
variance structure allows a portfolio with a much lower overall volatility. In
e�ect, if we consider Equation (2.2.8), we would be maximising the sum of the
individual stock volatilities and minimising the resultant portfolio volatility.
This di�erence, according to (2.2.6), would directly contribute to the portfo-
lio's return.

Equation (2.2.5) can be interpreted as the logarithmic instantaneous return of
the portfolio Zπ(t). However, using De�nition (2.1.1) and Equation (2.2.3) we
can show that,

dZπ(t)

Zπ(t)
=

(
γπ(t) +

1

2
σππ(t)

)
dt+

n∑
i,ν=1

πi(t)ξiv(t)dWν(t). (2.2.9)

This can be interpreted, similarly to the single stock case, as the instantaneous
rate of return of the portfolio π and we can therefore also de�ne the rate of
return process of the portfolio π as,

απ(t) = γπ(t) +
1

2
σππ(t), t ∈ [0,∞). (2.2.10)

Furthermore, if we use De�nition (2.1.1) and Equations (2.2.3) and (2.2.9) we
can prove that,

dlogZπ(t) =
n∑
i=1

πi(t)dlogXi(t) + γ∗π(t)dt. (2.2.11)
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2.3 Long-term behaviour of portfolios

In this section we prove that the long-term behaviour of a portfolio is deter-
mined by the portfolio growth rate, γπ(t). This is in contrast to traditional
theory which focuses on the rate of return, απ(t). This has important consid-
erations for long-term portfolio performance in practice (as we will illustrate
in the next chapter).

To begin, we introduce the concept of martingales as presented in [6]. We refer
the reader to [38] for a complete consideration of both brownian motion and
martingales, but present some results which will be required.

Consider a �ltration {Ft}t≥0 where Ft can be regarded as the information of
observed events up to time t. We say a process X(t) is adapted to the �ltration
Ft if, given the information in Ft, we can observe the value of X(t) at time t.

De�nition 2.3.1. A stochastic process X is called an (Ft)-martingale if the
following conditions hold:

1. X is adapted to the �ltration {Ft}t≥0

2. E[|X(t)|] <∞ for all t ≥ 0.

3. E[X(t)|Fs] = X(s) for all s, t ≥ 0 and with s ≤ t.

The second condition requires the expected value of X(t) to be bounded, while
the third condition requires that the expected value of X at some future point
in time t is X's current value, given the observed information.

We also introduce the concept of stopping times, as per [38].

De�nition 2.3.2. Consider a measurable space (Ω,Ft). A random time T
is a stopping time of the �ltration Ft, if the event {T ≤ t} belongs to the
�ltration Ft, for every t ≥ 0. Here we regard T as the time at which some
event occurs. Therefore, if the time at which the event occurs is less than or
equal to t, we call T a stopping time of Ft.

Further to the above we require some results, the proofs of which can be found
in [38]. We present these results here for completeness.
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Theorem 2.1 (Time-change theorem for martingales). LetM = {Mt,Ft; 0 ≤ t <∞} ∈
M c,loc satisfy limt→∞〈M〉t =∞, a.s. De�ne for each 0 ≤ s <∞, the stopping
time

T (s) = inf {t ≥ 0; 〈M〉t > s} .

Then the time-changed process

Bs ,MT (s), Gs , FT (s); 0 ≤ s <∞

is a standard one-dimensional Brownian motion. In particular, the �ltration
{Gs} satis�es the usual conditions and we have a.s.

Mt = B〈M〉t ; 0 ≤ t <∞.

Furthermore, we reproduce an abridged version of the Law of the Iterated
Logarithm from [38], which describes the behaviour of Brownian motion near
t = 0 and as t→∞, as well as the Strong Law of Large Numbers.

Theorem 2.2 (Law of the Iterated Logarithm). For almost every ω ∈ Ω, we
have

lim
t→∞

Wt(ω)√
2tlog logt

= 1.

Theorem 2.3 (Strong Law of Large Numbers). LetW = {Wt,Ft; 0 ≤ t <∞}
be a standard, one dimensional Brownina motion on (Ω,F , P ). Then, we have
that

lim
t→∞

Wt

t
= 0, a.s.

We will require, Theorems 2.1, 2.2 and 2.3 for the following Lemma (repro-
duced from [18]), which, in turn, is required for Proposition 2.3.1.

Lemma 2.3.1. Let M be a continuous local martingale such that

lim
t→∞

t−2〈M〉tlog logt = 0, a.s. (2.3.1)

Then
lim
t→∞

t−1M(t) = 0, a.s.

Proof. We can construct a one-dimensional Brownian motion W0 independent
of M , and therefore de�ne

M0(t) = M(t) +W0(t), t ∈ [0,∞).
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Then M0 is a continuous local martingale with

〈M0〉t = 〈M〉t + t, t ∈ [0,∞), a.s. (2.3.2)

So we have, by (2.3.1), that

lim
t→∞

t−2〈M0〉tlog logt = 0, a.s. (2.3.3)

From (2.3.2) we see that,

lim
t→∞
〈M0〉t =∞, a.s. (2.3.4)

so the time change theorem for local martingales can be applied to show that
there exists a Brownian motion B such that

B (〈M0〉t) = M0(t), t ∈ [0,∞), a.s. (2.3.5)

Due to (2.3.4) we can apply the law of the iterated logarithm for Brownian
motion which, along with (2.3.5), implies that

lim
t→∞

sup
|M0(t)|√

2〈M0〉tlog log〈M0〉t
= 1, a.s. (2.3.6)

For (2.3.3) to be correct, it would imply that 〈M0〉t increases at a slower rate
than t2, so we can replace logt by log〈M0〉t in (2.3.3), which yields

lim
t→∞

t−2〈M0〉tlog log〈M0〉t = 0, a.s.

Taking the square root of both sides of this equation we have

lim
t→∞

t−1
√
〈M0〉tlog log〈M0〉t = 0, a.s.

Now, taking into account this, we see that for (2.3.6) to hold would require

lim
t→∞

t−1M0(t) = 0, a.s.

Therefore, as an implication of the strong law of large numbers for Brownian
motion, we also have

lim
t→∞

t−1W0(t) = 0, a.s.

We can now proceed to prove, along the same lines as [18], that a portfolio's
long-term behaviour is determined by the portfolio's growth rate process.

Proposition 2.3.1. Let π be a portfolio in the market M with the portfolio
price process Zπ(t) for t ∈ [0,∞). Then,

lim
T→∞

1

T

(
logZπ(T )−

∫ T

0

γπ(t)dt

)
= 0, a.s. (2.3.7)
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Proof. By Proposition (2.2.1) we have,

log

(
Zπ(T )

Zπ(0)

)
=

∫ T

0

γπ(t)dt+

∫ T

0

n∑
i,ν=1

πi(t)ξi,ν(t)dWν(t), for t ∈ [0,∞), a.s.

Now, for t ∈ [0,∞), let

V (T ) = log

(
Zπ(T )

Zπ(0)

)
−
∫ T

0

γπ(t)dt,

=

∫ T

0

n∑
i,ν=1

πi(t)ξi,ν(t)dWν(t).

So V is a continuous martingale with

〈V 〉t =

∫ t

0

σππ(s)ds, t ∈ [0,∞), a.s. (2.3.8)

Now since the portfolio weights π are bounded, condition (2) of De�nition
(2.1.1) implies that

lim
t→∞

t−2σππ(t)log logt = 0, a.s.

We can now apply Lemma (2.3.1) to the process V . So we have, by Lemma
(2.3.1),

lim
T→∞

1

T
V (T ) = 0, a.s.

Now, substituting in V (T ) as de�ned previously yields

lim
T→∞

1

T

(
log

(
Zπ(T )

Zπ(0)

)
−
∫ T

0

γπ(t)dt

)
= 0, a.s.

Since Zπ(0) is merely a constant (representing the starting value of the port-
folio) and not a function of T , we can express this as,

lim
T→∞

1

T

(
logZπ(T )−

∫ T

0

γπ(t)dt

)
= 0, a.s.

Proposition (2.3.1) shows that the growth rate process of a portfolio determines
the long-term behaviour of a portfolio. It is because of this that SPT concerns
itself with the portfolio's growth rate process γπ(t) and not the instantaneous
rate of return, απ(t).
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2.4 Relative returns

Most portfolios and/or stocks are considered relative to some benchmark port-
folio or index. In this section we, therefore, de�ne the covariance and variance
processes of relative returns which will become useful in future sections. Of
particular interest are the relative returns of a portfolio versus that of a bench-
mark, typically a market capitilisation weighted portfolio. This is typically
referred to as alpha (over/under-performance), while the variance of alpha
(relative returns) is referred to as the tracking error, that is, the volatility of
relative returns.

First consider the relative performance of an individual stock, Xi versus a
portfolio Zη. We de�ne the relative return process of Xi versus Zη as,

log(Xi(t)/Zη(t)), t ∈ [0,∞). (2.4.1)

Then the cross-variation (covariance) process for the relative return process
for stocks Xi and Xj is given by,

〈log(Xi/Zη), log(Xj/Zη)〉t = 〈log(Xi), log(Xj)〉t − 〈log(Xi), log(Zη)〉t
− 〈log(Xi), log(Zη)〉t + 〈logZη〉t . (2.4.2)

We de�ne τ ηij(t) as the relative covariance process for stocks Xi and Xj as in
(2.4.2) with

τ η(t) =
(
τ ηij(t)

)
1≤i,j≥n ,

the relative covariance process τ η(t) in matrix form.

Furthermore, we de�ne the process σiη(t) as,

σiη(t) =
n∑
j=1

ηj(t)σij(t), t ∈ [0,∞),

and we therefore have that,

d 〈log(Xi), log(Zη)〉t = σiη(t)dt.

Now we can write Equation (2.4.2) as,

τ ηij(t) = σij(t)− σiη(t)− σjη(t) + σηη(t), t ∈ [0,∞), (2.4.3)

for i, j = 1, ..., n with σηη(t) as the variance process of the portfolio η and
therefore,

σηη(t) = η(t)σ(t)ηT (t), t ∈ [0,∞).
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Then for all i and j we have,

d 〈log(Xi/Zη), log(Xj/Zη)〉t = τ ηij(t)dt, t ∈ [0,∞). (2.4.4)

Equation (2.4.3) is the relative variance process of two stocks, Xi and Xj, both
relative to the portfolio with weights η(t).

We now extend this to consider the relative covariance process of a portfolio
π(t) versus a portfolio η(t). Consider �rst that we have the variance process
of a portfolio π(t), which is given by,

σππ(t) = π(t)σ(t)πT (t), t ∈ [0,∞).

Therefore, to get the relative variance of portfolio π(t) versus portfolio η(t) we
can substitute in the relative covariance of each stock i relative to the portfolio
η(t). That is instead of using σ(t), we use τ η(t) and we therefore have,

τ ηππ(t) = π(t)τ η(t)πT (t).

Furthermore,

π(t)τ η(t)πT (t) = (π(t)− η(t))σ(t) (π(t)− η(t))T = η(t)τπ(t)ηT (t). (2.4.5)

This implies that,

τ ηππ = τπηη.

Therefore if σ(t) is singular then, the relative variance process of two portfolios
is zero if and only if the two portfolios are equal.

Note that in the case where η(t) is the market portfolio, τ ηππ is the tracking
error of the portfolio π(t) relative to the market portfolio.

We can also describe the excess growth rate process γ∗π(t) as a function of the
tracking error. From Equation (2.2.8) and for a portfolio π(t), we have that,

γ∗π(t) =
1

2

(
n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)

)
.

However, we also have that σij(t) = τ ηij(t) for any portfolio η(t) and i, j =
1, .., n. That is, the covariance between stocks Xi and Xj is equivalent to the
covariance between the relative returns of both Xi and Xj to any portfolio
η(t). γ∗π(t) can therefore be expressed as,
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γ∗π(t) =
1

2

(
n∑
i=1

πi(t)τ
η
ii(t)−

n∑
i,j=1

πi(t)πj(t)τ
η
ij(t)

)
. (2.4.6)

We can use any portfolio as a basis for the relative returns in (2.4.6). If we set
η(t) = π(t), that is, consider the covariance of relative returns between stocks
Xi and Xj to the portfolio π(t) we have

γ∗π(t) =
1

2

(
n∑
i=1

πi(t)τ
π
ii(t)−

n∑
i,j=1

πi(t)πj(t)τ
π
ij(t)

)
. (2.4.7)

However, the second summation,
∑n

i,j=1 πi(t)πj(t)τ
π
ij(t) is the portfolio π's rel-

ative return covariance to itself. This is naturally zero and we can therefore
express the above equation as

γ∗π(t) =
1

2

(
n∑
i=1

πi(t)τ
π
ii(t)

)
. (2.4.8)

Equation (2.4.8) implies that the excess growth rate is half the sum of the
weighted individual stocks' tracking error, relative to the portfolio itself. Con-
sider this in the context of diversi�cation. If a stock Xi has a high tracking
error relative to the portfolio π(t) it would imply that the stock Xi has a (rel-
atively) lower covariance to the stocks forming the remainder of the portfolio
π(t) and its contribution would therefore increase the growth rate of the port-
folio, as implied by (2.4.8).

A stock with a lower tracking error to the portfolio π(t) would not have any
signi�cant contribution to the portfolio's growth rate (beyond the stocks own
weighted growth rate contribution) as it would likely generate returns similar
to the portfolio itself.

2.5 Dividends

Up until now, we have not considered dividends. We introduce them here for
completeness.

Consider a dividend rate process δi(s). We assume dividends are paid contin-

uously. Then for a stock Xi with dividends, we can de�ne the total return, X̂i

as,

X̂i(t) = Xi(t)exp

(∫ t

0

δi(s)ds

)
, t ∈ [0,∞). (2.5.1)

It follows then that,
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dlogX̂i(t) = dlogXi(t) + δi(t)dt, t ∈ [0,∞). (2.5.2)

We can then de�ne the augmented growth rate process for a stock Xi as,

ρi(t) = γi(t) + δi(t), t ∈ [0,∞).

Now suppose we have a portfolio, π(t). Then we can de�ne the portfolio
dividend process as,

δπ(t) =
n∑
i=1

πi(t)δi(t), t ∈ [0,∞).

Similar to the the individual stock case, we have

dlogẐπ(t) = dlogZπ(t) + δπ(t)dt, t ∈ [0,∞). (2.5.3)

The dividends increase the total return Ẑπ, but since the dividends are rein-
vested proportionally to the weights of each individual stock, the weights of
the portfolio will remain una�ected.

2.6 Summary

In this section we have introduced the basic concepts of SPT, building up the
individual stock price process in (2.1.3) to a portfolio process in (2.2.5). This
was done in Proposition (2.2.1) which also yielded a portfolio growth rate pro-
cess, γπ(t) and excess growth rate process, γ∗π(t).

The portfolio growth rate is related to the arithmetic rate of return through
(2.2.10). It is this arithmetic return that is used within traditional mean-
variance optimisation. However, we illustrated through Proposition (2.3.1)
that it is the growth rate process, γπ(t), and not the arithmetic rate of return
απ(t), that determines a portfolio's long term behaviour.

We also noted in this chapter that the excess growth rate process, γ∗π(t) is
comprised of the di�erence between the weighted sum of the individual stock
variances and the overall portfolio variance. γ∗π(t) e�ectively captures the
bene�ts of diversi�cation. We further illustrated this point by de�ning the
tracking error (in the context of SPT) and showing that the excess growth
rate is proportional to the weighted sum of the individual stocks' tracking
errors to the portfolio itself.
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Chapter 3

Portfolio optimisation under SPT

In this chapter we consider the practical implications of the theory presented
in the previous chapter. Here we are concerned with portfolio construction (in
the context of SPT) with particular reference to various portfolio optimisations
and in particular mean-variance type optimisations.

This chapter is structured as follows:

� We �rst discuss the implications of the theory presented in the previous
chapter and show why the expected geometric growth rate is more ac-
curate in determining the long term growth rate of a stock or portfolio
than the arithmetic rate of return.

� We then set out our data and methodology that will be used in the next
section and throughout the report.

� We then consider three speci�c portfolio optimisations as applied to the
South African equity market. These are

1. Traditional mean-variance optimisation.

2. Optimisation of portfolio growth rates relative to tracking errors.

3. Optimisation of the excess growth rate.

3.1 Introduction

One of the important �ndings from the previous chapter was that a portfolio's
long term behaviour is determined by the growth rate process γ(t). This was
proven in Proposition (2.3.1). This has important rami�cations for how port-
folio behaviour is analysed. In most of traditional modern portfolio theory, a
portfolio's arithmetic rate of return α(t) is analysed when, as we have shown in

21
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CHAPTER 3. PORTFOLIO OPTIMISATION UNDER SPT 22

the previous chapter, it is the geometric rate of return (γ(t)) that determines
the portfolio's long term behaviour. See [5], [11] and [16] for further examples
of the application of the geometric rates of return to portfolio optimisation.

To illustrate the di�erence between the expected arithmetic rate of return and
the actual long term arithmetic rate of return consider a stock that generates a
return each period of either +25% or -5% with equal probability. Therefore the
expected arithmetic return is given by 0.5 x (0.25 - 0.05) = 10%. However, if we
simulate this stocks returns for, say 100 periods we get an average compounded
periodic growth rate of 8.98%, more than 1% lower than the arithmetic return.

Although we have provided a simulation, the geometric growth rate can be
calculated directly as the arithmetic growth rate less one half of the stock's
variance. In this example we obtain a growth rate of 8.88%. The di�erence
between the simulated growth rate of 8.98% and the calculated 8.88% growth
rate is due to the discrete nature of the simulation versus the continuous time
setting in the direct calculation. Notwithstanding this, however, the expected
arithmetic growth rate clearly overestimates the actual long term growth rate
of the stock.

Figure 3.1: Comparison between expected arithmetic, expected geometric and

simulated compounded annual returns for a stock which returns either +25% or -5%

in each period with an equal probability.

This di�erence can make a signi�cant impact on the results of portfolio opti-
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misation.

3.2 Data and methodology

In this section we set out our data and methodology which will be used in this
and future chapters.

We make use of South African listed stocks from December 1994 to September
2013. Data is obtained from Thompson Reuters Datastream on a monthly
basis. For our purposes we will only require the following �elds:

� Stock closing prices.

� Stock total return indices

� Market capitalisation of individual stocks.

To analyse the accuracy of our data we construct a market capitalisation
weighted index over our sample period and compare this to the actual JSE
All-Share index from October 2002 (circa formation date of the All-Share in-
dex). We �nd that our reconstructed index closely matches that of the actual
All-Share index from October 2002, with annual returns on average within 12
basis points (bps) of each other.

Figure 3.2: Actual and replicated JSE All-Share index from October 2002 to

September 2003.
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All analyses are conducted using R. The source code for this, and later chap-
ters' analyses, is given in the appendix.

3.3 Mean-Variance optimisation

Under traditional mean-variance optimisation (MVO), introduced by Markowitz
[41], we consider reward as the portfolio's expected arithmetic rate of return
and a portfolio's risk as the variance of the portfolio. Under MVO we aim to
determine a portfolio's weights πi(t) for i = 1, .., n and for some t > 0 such
that we minimise the portfolio's level of risk (portfolio variance) for a minimum
level of reward (expected arithmetic return). Alternatively, we could maximise
the level of reward for a certain level of risk. In the analysis that follows we
will deal with the former objective.

Mathematically, we would like to minimise

n∑
i=1

n∑
j=1

πi(t)πj(t)σij(t), (3.3.1)

subject to
n∑
i=1

πi(t)αi(t) ≥ α0, (3.3.2)

and
n∑
i=1

πi(t) = 1, (3.3.3)

with πi(t) ≥ 0 for i = 1, .., n. Here α0(t) is the minimum level of reward (ex-
pected arithmetic rate of return) required.

Now consider the same constraints under SPT. Unlike (3.3.2) in traditional
MVO, SPT makes use of the expected geometric rate of return, γπ(t). In this
case, we would replace the constraint in (3.3.2) with

n∑
i=1

πi(t)γi(t) +
1

2

(
n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t)

)
≥ γ0. (3.3.4)

This can be re-written as

n∑
i=1

πi(t)γi(t) +
1

2

(
n∑
i=1

πi(t)σii(t)

)
≥ γ0 +

1

2

(
n∑

i,j=1

πi(t)πj(t)σij(t)

)
. (3.3.5)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3. PORTFOLIO OPTIMISATION UNDER SPT 25

Equations (3.3.4) and (3.3.5) are not linear in π and therefore conventional
quadratic programming cannot be used. To optimise this we make use of Dif-
ferential Evolution (DE) optimisation as set out in [49].

DE is a stochastic population based minimizer. DE begins by randomly gen-
erating a population, and then generates a new population vector by using the
weighted di�erences between two population vectors to a third vector called
the mutated vector. This mutated vector is then combined with the target
vector. If this combined vector yields a lower cost function than the current
target vector then it replaces the target vector in the next generation.

We apply the DE algorithm using the DEoptim package in R as set out in [1].

To construct a comparison between traditional MVO and MVO under SPT we
construct portfolios under the conditions listed above, over our sample period.

Furthermore, we assume perfect foresight in terms of returns over the next 24
months and make use of rolling forward 24 month stock returns to determine
expected returns (under MPT) and expected growth rates (under SPT). The
covariance matrix is also estimated using 24 month forward stock returns.

The use of forward returns (or assuming perfect foresight) is to only consider
the actual methods and eliminate any biases in the data which may distort
comparisons. As a result, the actual returns achieved by the portfolios pre-
sented here are spurious. The goal of this section is to show that while the
constraints are not linear and traditional optimisation cannot be used, there
are appropriate tools which can be used.

To construct the SPT optimisation we de�ne a cost function. Given a set
of weights π1, .., πn we de�ne a control variable, C1(t) using Equation (3.3.5).
That is,

C1(t) =
n∑
i=1

πi(t)γi(t) +
1

2

(
n∑
i=1

πi(t)σii(t)

)
− γ0 +

1

2

(
n∑

i,j=1

πi(t)πj(t)σij(t)

)
.

(3.3.6)
Given the constraint in (3.3.5), we would like to maximise C1(t) while also
minimising the portfolio variance. To achieve this we de�ne a second control
variable, C2(t), which is given by

C2(t) =
n∑

i,j=1

πi(t)πj(t)σij(t)− 1000min(C1(t), 0). (3.3.7)
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This ensures that if C1(t) is not positive we increase (or penalise) the portfolio
variance (3.3.1) obtained. We multiply by 1000 to ensure that the optimisa-
tion routine rejects C2(t) as a minimum in these cases. Cases where C1(t)
is positive will result in only the portfolio variance being considered by the
optimisation algorithm.

Furthermore, for the optimisation results below we have set a target annualised
return of 15% p.a., with a maximum weight of 15% for each stock. However,
we note that while we present both the MPT and SPT portfolios, their respec-
tive returns are not necessarily comparable since our optimisation is based on
minimising portfolio variance subject to a minimum return. Both portfolios
do achieve this minimum, however, beyond that the returns are spurious.

Our goal is therefore to show that the implementation of an SPT based opti-
misation is possible.

Figure 3.3 shows the log cumulative performance of both the SPT and MPT
portfolios with the universe for both portfolios set at the top 40 stocks by
market capitalisation. Both portfolios have a similar behaviour, although the
MPT portfolio does achieve a greater return over the full sample period. How-
ever, Figure 3.4, showing calendar year returns, highlights that most of this
outperformance is generated by the 2007/2008 performance.

Figure 3.3: Log cumulative performance charts of SPT and MPT returns.
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Figure 3.4: Calendar year returns for the SPT and MPT portfolios..

SPT MPT
CAGR 19.1% 21.6%
Volatility 11.3% 13.8%
Sharpe ratio 1.68 1.56

Table 3.1: Annualised returns and volatility for the SPT and MPT portfolios.

The SPT portfolio, however, does achieve a higher Sharpe ratio in light of its
lower portfolio variance. This is shown in Table 3.3.

3.4 Minimising portfolio tracking error

In Section 2.4 we introduced the concept of relative returns. In practise, most
portfolios are managed in relation to some benchmark portfolio, typically the
market capitalisation weighted index. Therefore, instead of minimising the
portfolio's variance, we may wish to minimise the portfolio's tracking error
relative to the benchmark instead.

We therefore, now aim to minimise the portfolio's tracking error,

n∑
i,j=1

πi(t)πj(t)τij(t), (3.4.1)
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subject to

n∑
i=1

πi(t)γi(t) +
1

2

(
n∑
i=1

πi(t)τii(t)−
n∑

i,j=1

πi(t)πj(t)τij(t)

)
≥ γ0, (3.4.2)

with
∑n

i=1 πi(t) = 1 and πi(t) ≥ 0 for i = 1, .., n.

As in Section 3.3 we can rearrange the constraint in (3.4.2) as,

n∑
i=1

πi(t)γi(t) +
1

2

(
n∑
i=1

πi(t)τii(t)

)
≥ γ0 +

1

2

(
n∑

i,j=1

πi(t)πj(t)τij(t)

)
. (3.4.3)

Notice that the last term in (3.4.3) is half the square of the portfolio tracking
error. If we target a tracking error of 3% per annum, this term is equal to
0.05% or 5bps per year. This is relatively insigni�cant, and therfore for a
small enough tracking error target (say ≤ 4% per annum, see Figure 3.5) we
can ignore this last term.

Figure 3.5: Size of last term in tracking error minimisation return constraint.

The return constraint therefore becomes
n∑
i=1

πi(t)γi(t) +
1

2

(
n∑
i=1

πi(t)τii(t)

)
≥ γ0. (3.4.4)

Equation (3.4.4) is now linear and we can, therefore, make use of conventional
quadratic programming techniques.
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To do this we make use of the solve.QP function in R which implements the
dual method for solving quadratic programming problems as in [29]. Here our
objective is to outperform the market capitalisation weighted portfolio of the
top 40 stocks by a certain percentage per annum while minimising the tracking
error of our portfolio.

The function solve.QP minimises functions of the form,

−dTw +
1

2
wTDw,

with the constraint

AT b ≥ b0.

For this optimisation problem, matrix D represents the relative covariance ma-
trix (relative to the market capitalisation weighted index). We set the matrix
d to zero and construct the matrix A and b such that each stock's weight is
greater than or equal to zero and all weights sum to one. Furthermore, we also
include the criteria (3.4.4) within matrices A and b.

Matrix A therefore takes the form,

A =


1 1 0 · · · 0 γ1 − 0.5τ11
1 0 1 · · · 0 γ2 − 0.5τ22
...

...
...

. . .
...

...
1 0 0 · · · 1 γn − 0.5τnn


and matrix b takes the form

b =
(
1, 0, · · · , 0, γ0

)
.

Expected growth rates of stocks are notoriously di�cult to accurately estimate
and we therefore assume perfect foresight over the next 24 month's stock re-
turns to get results which are independent of growth rate estimation. This
ensures that our results highlight the e�ectiveness of the optimisation routine
independent of the growth rate estimation process.

We show below the results for portfolios targeting 5% and 10% excess returns
together with their respective tracking errors. We �rst display the log cumula-
tive performance for Portfolio 5.0% and Portfolio 10.0%. These are portfolios
optimised to generate 5.0% and 10.0% excess returns, respectively.

We note that while the 5.0% target is achieved, the 10.0% target is not. We
ascribe this to the estimation of expected growth rates, while using perfect
foresight we still need to make use of a window (we use 24 months) which
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Figure 3.6: Log cumulative performance charts of optimised portfolios while min-

imising tracking error.

Portfolio 5.0% Portfolio 10.0% Market cap
CAGR 21.18% 22.22% 14.97%
Tracking error 5.49% 5.65% -

Table 3.2: Compounded annualised growth rate and tracking error for SPT op-

timsed portfolios.

leads to some estimation error in the case of the covariance matrix. Further-
more, a 10.0% outperformance target is reasonably large in the context of
minimising the tracking error and the optimisation routine may not be able to
both limit the size of the tracking error and achieve the outperformance.

The results above are highly sensitive to the estimated covariance matrix and
the estimated growth rates. In our analyse we have used a simple historical es-
timation method but a more robust method (such as a GARCH based method)
would likely lead to better results. Although we have used perfect foresight,
covariance processes are likely to change within the sample period itself.

Instead, what we would like to focus on is the di�erence between using the
constraint in Equation (3.4.4) and using only the di�erence between the arith-
metic return of the individuals stocks less that of the benchmark portfolio.

Note that we only change one variable - replacing excess growth rates with
arithmetic excess returns. Everything else, including the tracking error matrix
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remain the same. That is, this is a direct comparison of the long term di�er-
ence between the use of geometric and arithmetic returns.

Figure 3.7: Log cumulative performance charts of optimised portfolios while min-

imising tracking error using arithmetic excess returns and geometric growth rates.

Target return of 5% per annum over the bechmark portfolio.

Notice how the portfolio optimised under geometric growth rates outperforms
the portfolio under arithmetic expected relative returns even though the same
returns and same optimisation routine is used.

In Figure 3.8 we show the calendar year returns for both portfolios. A large
portion of the outperformance is generated in 2007, however, even excluding
this year's return the geometric portfolio outperforms the arithmetic portfolio
by 50bps per year. This is because the use of arithmetic rates of return in the
optimisation routine overestimate the portfolio return.

Theoretically, the di�erence between the two returns is related through Equa-
tion (3.4.5), which can also be expressed as

γ(t) = α(t)− 1

2
σ2(t). (3.4.5)

Here α(t) represents the arithmetic returns and γ(t) represents the geometric
returns. We show the empirical results versus the expected theoretical results
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Figure 3.8: Calendar year returns for optimised portfolios under geometric and

arithmetic returns

Portfolios maximising Growth rates γπ Arithmetic rates of return απ
CAGR 22.22% 19.91%
Volatility 20.48% 20.69%
Growth rate equivalent - 22.05%
Arithmetic return equivalent 20.12% -

Table 3.3: Comparison of theoretical and empirical growth rates and arithmetic

returns.

in Table 3.3.

3.5 Maximising the excess growth rate

In this section we analyse a portfolio constructed by maximising the excess
growth rate, γ∗π(t).

In Section 2.2 we analysed the portfolio value process and found that the port-
folios growth rate γπ(t) was a combination of the weighted growth rates of each
stock and a second term called the excess growth rate, γ∗π(t). As explained
in Section 2.2, this term is can be regarded as the contribution to the return
from the diversi�cation present in the portfolio.
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In Proposition (2.3.1) we showed that the long term performance of a portfo-
lio is determined by the growth rate process. However, accurately forecasting
growth rates for stocks is di�cult. The excess growth rate, however, is only
a function of the covariance matrix, which is somewhat easier to forecast and
arguably more stable than the returns of individual stocks.

We therefore, analyse a portfolio which tries to maximise the portfolio excess
growth rate process at the end of each month. We use a very simplistic fore-
cast for the covariance matrix by estimating historical covariances over the
previous twenty four months. Furthermore, we also restrict the portfolio to
the top 40 stocks by market cap and set a maximum weight per stock as the
minimum of �fteen percent or �ve times the stock's index weight.

Figure 3.9: Log cumulative performance charts of the market portfolio and a port-

folio which maximises excess growth rate

Figure 3.9 shows the log cumulative performance of the market portfolio and
the portfolio which maximises the excess growth rate (max EGR portfolio).
Although the max EGR portfolio outperforms the market portfolio overall,
there are extended periods where the max EGR portfolio underperforms the
market portfolio.

The periods of under- and outperformance for the max EGR portfolio are clear
in Figure 3.11. The period from 2001 to 2010 show the max EGR portfolio
as underperforming the market portfolio. The outperformance of the market
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Figure 3.10: Calendar year returns for the market portfolio and a portfolio which

maximises excess growth rate

portfolio is largely a result of the post-2008 period.

Figure 3.11: Cumulative return for the portfolio which maximises excess growth

rate relative to the market portfolio

Figure 3.11 seems to suggest that while the max EGR portfolio outperforms
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the market portfolio over our full sample period, it does so in a cyclical man-
ner. This would imply that the bene�ts of diversi�cation change over time.

3.6 Summary

In this chapter we applied the foundational results of SPT (presented in Chap-
ter 2) to portfolio optimisations and compared these results to the traditional
MVO. The key di�erence between optimisation under SPT and traditional
MVO is the use of geometric rates of return. We showed, at least theoretically,
in Chapter 2 that the geometric rates of return determined long term portfolio
behaviour and not arithmetic rates of return.

The implication is that arithmetic rates of return overestimate the expected
portfolio return and we showed in Section 3.1 with a simple simulation that
the geometric growth rate was a much better predictor of future returns over
the long term.

The complication, however, is that the constraints under SPT are not always
linear in the weights π(t) and we therefore cannot use conventional quadratic
programming techniques to solve these constraints. In Section 3.3 we made use
of the Di�erential Evolution algorithm to solve the return constraints under
SPT. We showed that while the constraints are not linear, optimisation under
SPT can, nevertheless, be implemented.

In Section 3.4 we focused on optimisation in relation to the tracking error
of a portfolio relative to the market portfolio. We showed that, for small
enough tracking error targets, we could reduce the constraints and make use
of quadratic programming techniques.

We also highlighted in Section 3.4 how the portfolio under SPT outperformed
the portfolio under MPT over the longer term. The only di�erence between the
two portfolios being the use of geometric rather than arithmetic rates of return.

In Section 3.5 we analysed the portfolio which maximises the excess growth
rate γ∗π. We showed that this portfolio does outperform the market over our
full sample period. However, the relative performance (relative to the market
portfolio) is cyclical in nature, implying that the bene�ts of diversi�cation
change over time.
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Chapter 4

Long-term portfolio behaviour and

functionally generated portfolios

We now turn our attention to the construction of portfolios with speci�c char-
acteristics. In particular we focus on outperforming the market capitalisation
weighted portfolio, a common benchmark for many equity portfolio managers.
In the previous chapters we mentioned the stock market or market capitalisa-
tion weighted portfolio (hereafter referred to as the market portfolio). How-
ever, we did so without explicitly de�ning (at least mathematically) what we
mean by these terms.

Therefore, in this chapter we �rst formalise our understanding of the stock
market and study its long-term behaviour and that of the stocks within the
market. This lays the foundation for the remainder of the chapter which fo-
cuses on functionally generated portfolios and speci�cally on generating port-
folios which outperform the market portfolio.

This chapter is structured as follows:

� In the �rst two sections we introduce some basic concepts regarding the
market portfolio.

� We also show the relationship between growth rates in a market and the
concentration of capital.

� In the third section of this chapter we consider the idea of stock market
diversity and its relationship to growth rates.

� In the last section we introduce the concept of functionally generated
portfolios.

� Furthermore, we analyse the relative performance of a functionally gen-
erated portfolio in functional form. This forms the basis for the empirical
analyses in the next chapter.

36
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4.1 Introduction

When we talk about a market M , we are referring to the collection of stocks
weighted by market capitalisation. Therefore the market portfolio, Zµ, is a
portfolio formed by weighting each stock in the market M by the relative size
of their market capitalisations. More formally let Xi(t) represent the market
capitalisation of stock i at time t. Then the stock market portfolio, Zµ(t), is a
portfolio with weights µ(t) given by

µi(t) =
Xi(t)∑n
i=1Xi(t)

. (4.1.1)

Therefore, by Equation (2.2.3) we have,

dZµ(t)

Zµ(t)
=

n∑
i=1

µi(t)
dXi(t)

Xi(t)
. (4.1.2)

Furthermore, by Proposition (2.2.1), we have

dlogZµ(t) = γµ(t)dt+
n∑

i,ν=1

µi(t)ξiv(t)dWν(t), (4.1.3)

where,

γµ(t) =
n∑
i=1

µi(t)γi(t) +
1

2

(
n∑
i=1

µi(t)σii(t)−
n∑

i,j=1

µi(t)µj(t)σij(t)

)
. (4.1.4)

Note that, by Equation (4.1.3) and by De�nition (2.1.1), we can write

dlogµi(t) = (γi(t)− γµ(t)) dt+
n∑

i,ν=1

(σiν(t)− σµν(t)) dWν(t). (4.1.5)

That is, the change in the market weight of stock i can be expressed as the
di�erence in growth rates and the di�erence in sensitivities, in relation to the
market portfolio.

In order to ensure a logical and orderly market,M , we introduce the de�nition
of a coherent market.

De�nition 4.1.1. The market M is coherent if

lim
t→∞

1

t
logµi(t) = 0, a.s. (4.1.6)

for all i = 1, ..., n.
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Note that logµi(t) < 0 and therefore Equation (4.1.6) will hold as long as no
stock declines too rapidly.

Since µi(t) = Xi(t)
Zµ(t)

, Equation (4.1.6) also implies that

lim
t→∞

1

t
(logXi(t)− logZµ(t)) = 0, a.s. (4.1.7)

That is, over a long enough time horizon and in a coherent market, the time-
weighted average di�erence between the price process of each stock and the
market portfolio will equal zero.

4.2 The stock market

The previous section provided a basis for the concept of a market portfolio
with weights µ(t) and gave a de�nition for a coherent market through De�ni-
tion (4.1.1).

In this section we look at the mathematical properties of the stock market
M in more detail. We look speci�cally at what conditions are required for
a coherent market as given in De�nition 4.1.1 and what this means for the
individual stock growth rates, weights and relative variances. We begin with
the following proposition from [18] which deals with long-term time weighted
average growth rates.

Proposition 4.2.1. Let M denote the market with stocks X1, ..., Xn. Fur-
thermore, the market M is coherent as given in De�nition (4.1.1). Then, the
following conditions are equivalent to the market's coherence:

1. limT→∞
1
T

∫ T
0

(γi(t)− γµ(t)) dt = 0, for i = 1, .., n

2. limT→∞
1
T

∫ T
0

(γi(t)− γj(t)) dt = 0, for i, j = 1, .., n

Proof. We begin by proving that coherence implies (1).

From (4.1.6) we have that

lim
T→∞

1

T
(logXi(T )− logZµ(T )) = 0. (4.2.1)

However, by Proposition (2.3.1) we also have

lim
T→∞

1

T

(
logZµ(T )−

∫ T

0

γµ(t)dt

)
= 0. (4.2.2)
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Furthermore, assume a portfolio π with a weight of 1 in stock i and zero in all
other stocks. Then Proposition (2.3.1) and Equation (2.3.7) implies that

lim
T→∞

1

T

(
logXi(T )−

∫ T

0

γi(t)dt

)
= 0. (4.2.3)

These equations above imply (through substitution) that

lim
T→∞

1

T

∫ T

0

(γi(t)− γµ(t)) dt = 0,

and therefore coherence implies condition (1).

Furthermore, a portfolio comprising a weight of 1 in stock j and zero in all
other stocks instead of the market portfolio. Then Equation (4.2.1) becomes

lim
T→∞

1

T
(logXi(T )− logXj(T )) = 0, (4.2.4)

and therefore the equivalence of condition (2) and (1) follows.

Now we are left to show that condition (2) implies coherence. Therefore,
assume condition (2) holds and that we therefore have

lim
T→∞

1

T

∫ T

0

(γi(t)− γj(t)) dt = 0. (4.2.5)

Furthermore, as before, by Equation (4.2.3) we have

lim
T→∞

1

T

(
logXi(T )−

∫ T

0

γi(t)dt

)
= 0. (4.2.6)

Using, these two equations and setting j = 1 we have,

lim
T→∞

1

T

(
logXi(T )−

∫ T

0

γ1(t)dt

)
= 0. (4.2.7)

Since (4.2.7) holds for all i = 1, .., n, we must also have that

lim
T→∞

1

T

(
max
1≤i≤n

(logXi(T ))−
∫ T

0

γ1(t)dt

)
= 0. (4.2.8)

Now, for t ∈ [0,∞),

Xi(t) ≤ X1(t) +X2(t) + . . .+Xn(t) ≤ n max
1≤i≤n

Xi(t),

and so,

logXi(t) ≤ logZµ(t) ≤ logn+ log

(
max
1≤i≤n

Xi(t)

)
.
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Dividing the above equation by T , taking the limits and noting that limT→∞
1
T
n =

0 we get

lim
T→∞

1

T
logXi(T ) ≤ lim

T→∞

1

T
logZµ(T ) ≤ lim

T→∞

1

T
log

(
max
1≤i≤n

Xi(T )

)
. (4.2.9)

Therefore, using the above Equation (4.2.9), together with Equations (4.2.7)
and (4.2.8) we have

lim
T→∞

1

T

(
logZµ(T )−

∫ T

0

γ1(t)dt

)
= 0. (4.2.10)

Now, using Equations (4.2.10) and (4.2.7) we can write

lim
T→∞

1

T
(logXi(T )− logZµ(T )) = 0. (4.2.11)

This is equivalent to (4.1.6) and therefore condition (2) implies that the market
M is coherent.

Proposition (4.2.1) implies that in a coherent market, the time weighted av-
erage di�erence of the market's growth rate and an individual stock's growth
rate will tend to zero. As an extension then, the time weighted average di�er-
ence between each individual stock's growth rates will also tend to zero over
time.

We now consider the relationships, �rstly, between the relative variances (rel-
ative to the market portfolio) and the stock weights and secondly between the
stock weights and the individual stock excess growth rates.

Lemma 4.2.1. Let π be a portfolio in a nondegenerate market. Then there
exists an ε > 0 such that for i = 1, ..., n

τπii(t) ≥ ε (1− πi(t))2 t ∈ [0,∞), (4.2.12)

and by extension,

τπii(t) ≥ ε (1− πmax(t))2 t ∈ [0,∞), (4.2.13)

where

πmax(t) = max
1≤i≤n

πi(t), t ∈ [0,∞).
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Proof. As per [18], we begin by proving Equation (4.2.12).

Let
x(t) = (π1(t), ..., π(i)− 1, ..., πn(t)) , (4.2.14)

for 1 ≤ i ≤ n and t ∈ [0,∞). Now choose an ε as in (2.2.1) such that

xσ(t)xT ≥ ε‖x‖2, x ∈ <n, t ∈ [0,∞). (4.2.15)

Now, by Equation (2.4.3) we have,

τπii(t) = σii(t)− 2σiπ(t) + σππ(t) = xσ(t)xT ≥ ε‖x‖2. (4.2.16)

However,

‖x‖2 = π2
1 + π2

2 + ...+ (πi − 1)2 + ...+ π2
n,

≥ (πi − 1)2 ,

≥ (1− πi)2 .

Since ε > 0,

ε‖x‖2 ≥ ε (1− πi)2 ,
and therefore, by Equation (4.2.16),

τπii(t) ≥ ε (1− πi)2 .
Since we can choose any weight πi(t) in Equation (4.2.14), we set x(t) such
that x(t) = (π1(t), ..., π(i)− 1, ..., πn(t)), but where πi(t) = πmax(t).

It then follows (from the proof above) that,

τπii(t) ≥ ε (1− πmax(t))
2 t ∈ [0,∞).

We now have a lower bound for the relative variances (to a portfolio), which is
a function of the respective weights and more importantly the largest weight
in the portfolio. If the maximum weight is 1 then the lower bound is zero -
there is only one stock in the portfolio and therefore the relative variance to
that portfolio of that stock is zero. The smaller the maximum weight (a wider
and more diverse portfolio), the larger the lower bound of the relative variances.

We can extend the relation further to consider the relationships between the
weights in a portfolio and the portfolio's returns, speci�cally the excess return
of a portfolio π, γ∗π(t).
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Lemma 4.2.2. Let π be a portfolio with nonnegative weights in a nondegen-
erate market. Then there exists an ε > 0 such that

γ∗π(t) ≥ ε (1− πmax(t))2 t ∈ [0,∞). (4.2.17)

Proof. We prove Lemma 4.2.2 as per [18]. If we select ε∗ as in the last part of
Lemma 4.2.1 so that,

τπii(t) ≥ ε∗ (1− πmax(t))
2 t ∈ [0,∞),

then, since πi(t) ≥ 0 we have,

1

2

n∑
i=1

πi(t)τ
π
ii(t) ≥

1

2
ε∗ (1− πmax(t))

2 t ∈ [0,∞).

However, by Equation (2.4.8) we have that,

γ∗π(t) =
1

2

n∑
i=1

πi(t)τ
π
ii(t),

and therefore,

γ∗π(t) ≥ ε (1− πmax(t))
2 t ∈ [0,∞),

where ε = ε∗

2
.

Lemma (4.2.2) implies that if the maximum weight is bounded away from one
then the excess growth rate is bounded away from zero. This make sense if we
consider that the excess growth rate of a portfolio is heuristically similar to a
measure of diversi�cation (as described in Section 2.2). The more concentrated
a portfolio is in a few stocks, the less diversi�cation is present in the portfolio
and therefore the lower the excess growth rate will be.

In the next lemma, we show that the converse is also true. That is, in a market
with bounded variance, if γ∗π(t) is bounded away from zero, then the maximum
weight is bounded away from one.

Lemma 4.2.3. Let π be a portfolio in a market with bounded variance such
that for i = 1, .., n, 0 ≤ πi(t) ≤ 1, for all t ∈ [0,∞). Then there exists a
number ε > 0 such that

πmax(t) ≤ 1− εγ∗π(t), t ∈ [0,∞). (4.2.18)

Proof. This proof is a reproduced from [18].

Since the market has bounded variance, we have by (2.2.2),
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xσ(t)xT ≤M‖x‖2, x ∈ <n, t ∈ [0,∞), (4.2.19)

Therefore, for any speci�c stock 1 ≤ i ≤ n,

σii(t) ≤M, t ∈ [0,∞). (4.2.20)

Now de�ne a portfolio η with nonnegative weights η1, .., ηn which, for any
integer k, 1 ≤ k ≤ n, is de�ned as follows

ηi(t) =

{
πi(t)/(1− πk(t)) if i 6= k,
0 if i = k,

(4.2.21)

for t ∈ [0,∞), i = 1, .., n.

This is basically a portfolio with a weight of zero in stock k, and weights
rebalanced so that the sum of the remaining weights is 1. (4.2.20) implies
that,

n∑
i=1

ηi(t)σii(t)− σηη(t) ≤
n∑
i=1

ηiσii(t) ≤M. (4.2.22)

Let

x = (η1(t), .., ηk−1(t),−1, ηk+1(t), .., ηn(t)) . (4.2.23)

Then ‖x‖2 ≤ 2, and by (4.2.19), for k = 1, ..., n, we have

σkk(t)− 2σkη(t) + σηη(t) = xσxT ≤ 2M, (4.2.24)

for t ∈ [0,∞).

Now we use the formula for the excess growth rate of portfolio π, as given by
(2.2.8), and seperate the kth stock's components from the summations using
the weights η as de�ned in (4.2.21). After some manipulation we are able to
identify each of the inequalities we derived above. This is shown below.
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2γ∗π(t) =
n∑
i=1

πi(t)σii(t)−
n∑

i,j=1

πi(t)πj(t)σij(t),

= πk(t)σkk(t) + (1− πk(t))
n∑
i=1

ηi(t)σii(t),

− π2
k(t)σkk(t)− 2πk(t) (1− πk(t))

n∑
i=1

ηi(t)σik(t),

− (1− πk(t))2
n∑

i,j=1

ηi(t)ηj(t)σij(t),

=
(
πk(t)− π2

k(t)
)

(σkk(t)− 2σkη(t) + σηη(t)) ,

+ (1− πk(t))
(∑

+i = 1nηi(t)σii(t)− σηη(t)
)
,

≤ (1− πk(t)) (2M +M) . (4.2.25)

(4.2.25) follows from the inequalities in (4.2.22) and (4.2.24).

Since (4.2.25) holds for any k, 1 ≤ k ≤ n, we can simply choose k as the largest
weight, πmax(t). Rearranging (4.2.25) we then obtain,

πmax(t) ≤ 1− εγ∗π(t), t ∈ [0,∞),

with ε = 2
3M

.

The previous two lemmas highlight the relationship between a portfolio's ex-
cess growth rate and the largest weight in the portfolio. The more concentrated
a portfolio is in one stock the lower the lower bound is on the portfolio's excess
growth rate (by Lemma (4.2.2)).

Conversely, the higher the excess growth rate, the lower the upper bound on
the maximum weight. This ties in with our formula for the excess growth rate
and our interpretation of it as a measure of diversi�cation. Diversi�cation,
therefore, forms an important part of SPT and in the next section we de�ne
it more formally.

4.3 Stock market diversity

Although we have discussed portfolio diversi�cation and its relationship to the
portfolio's excess growth rate, we have yet to formally de�ne the concept of
diversity. In this section we formally de�ne stock market diversity and show
its relationship to the excess growth rate of the market.
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De�nition 4.3.1. The market M is diverse if there exists a number δ > 0
such that

µmax(t) ≤ 1− δ, t ∈ [0,∞). (4.3.1)

M is weakly diverse if

1

T

∫ T

0

µmax(t)dt ≤ 1− δ. (4.3.2)

Therefore, a market is diverse if there is never a time where the stock market
capitalisation is concentrated in a single stock. The market is weakly diverse
if this is true on average over time.

We saw in Section 4.2 and speci�cally in Lemmas (4.2.2) and (4.2.3) how the
excess growth rate and the level of diversi�cation in a portfolio are related.
The next proposition, as set out in [18], provides a more direct comparison
between the two, given our de�nitions above.

Proposition 4.3.1. If the market M is nondegenerate and diverse, then there
is a δ > 0 such that

γ∗µ(t) ≥ δ, t ∈ [0,∞). (4.3.3)

Conversely, if M has bounded variance and there exists a δ > 0 such that
(4.3.3) holds, then M is diverse.

Proof. Suppose M is nondegenerate and diverse, so (from Equation (4.3.1))
there is a δ∗ > 0 such that

µmax(t) ≤ 1− δ∗, t ∈ [0,∞). (4.3.4)

Since M is nondegenerate, by Lemma 4.2.2 we have, for any ε > 0,

γ∗µ(t) ≥ ε (1− µmax(t))
2 , t ∈ [0,∞). (4.3.5)

Therefore, by rearranging Equation (4.3.1) we have

δ∗ ≤ 1− µmax, (4.3.6)

and therefore,

γ∗µ(t) ≥ ε (1− µmax(t))
2 ≥ ε(δ∗)2. (4.3.7)

Therefore,

γ∗µ(t) ≥ δ, (4.3.8)
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with δ = ε(δ∗)2.

Now suppose that M has bounded variance and there exists δ > 0 such that
(4.3.3 holds). Since M has bounded variance, Lemma 4.2.3 implies that we
can choose ε > 0 such that,

µmax(t) ≤ 1− εγ∗µ(t) ≤ 1− εδ. (4.3.9)

Therefore, by De�nition (4.3.1), M is diverse.

Given the expression for the excess growth rate, γ∗µ, it should come as no sur-
prise that there is such a direct relationship between the level of diversi�cation
in the market and the excess growth rate.

4.4 Portfolio generating functions

In the previous sections we have set out de�nitions of the stock market and
conditions needed for a coherent and diverse market. We also derived some
implications these conditions have on stock market weights and the excess
growth rate of the market.

In this section we now focus on portfolio generating functions, that is, func-
tions that systematically generate portfolio weights. Furthermore, within the
context of SPT we are able to analyse the behaviour of these functions and
the portfolio's they generate. In particular we will focus on the implications
of portfolio generating functions which rely on some measure of stock market
diversity, given the importance of diversity as presented in the previous sec-
tions.

We begin with a general de�nition of a portfolio generating function S(x) fol-
lowing along the lines of [18].

De�nition 4.4.1. Let S be a continuous function de�ned on ∆n and let π be
a portfolio. Then S generates π if there exists a measurable process of bounded
variation Θ such that,

log (Zπ/Zµ) = logS(µ(t)) + Θ(t), t ∈ [0, T ]. (4.4.1)

Where ∆n is the set given by,

{x ∈ <n : x1 + ...+ xn = 1, 0 < xi < 1, i = 1, ..., n} .
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The function S in De�nition 4.4.1 is called the generating function of π, while
Θ is called the drift process of S. We can also express Equation 4.4.1 in
di�erential form,

dlog (Zπ/Zµ) = dlogS(µ(t)) + dΘ(t), t ∈ [0, T ]. (4.4.2)

It is important to notice from (4.4.2) that S operates in a relative space, in
this case relative to the market portfolio µ. Furthermore, it is not unreason-
able to assume that the portfolio generating function S is bounded on ∆n.
This implies that the long-term relative performance of the portfolio π gen-
erated by S is determined by the behaviour of Θ(t). In particular, if Θ(t) is
increasing the portfolio π will outperform the market portfolio in the long-run.

Equation (4.4.2) excludes the impact of dividends. However, if we consider
the de�nition of the portfolio process including a continuous dividend rate δπ
in Equation (2.5.3), (4.4.2) becomes

dlog
(
Ẑπ/Ẑµ

)
= dlogS(µ(t)) +

∫ t

0

(δπ(s)− δµ(s)) ds+ dΘ(t), t ∈ [0, T ].

(4.4.3)
Therefore, including dividends, a functionally generated portfolio's perfor-
mance relative to the market portfolio is dependent on the generating function,
drift process and the di�erence in dividend rates.

Given the portfolio generating function S, we require �rstly the resulting
weights and secondly the drift process Θ(t) to determine the relative per-
formance of the generated performance. The following theorem characterises
these components and is reproduced from [22] and [18].

Theorem 4.1. Let S be a positive C2 function de�ned on a neighbourhood
U of ∆n such that for i = 1, ..., n, xiDi logS(x) is bounded on ∆n. Then S

generates the portfolio π with weights

πi(t) =

(
DilogS(µ(t)) + 1−

n∑
j=1

µj(t)DjlogS(µ(t))

)
µi(t), t ∈ [0,∞),

(4.4.4)
for i = 1, ..., n, and drift process

dΘ(t) =
−1

2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t), t ∈ [0,∞). (4.4.5)
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Proof. Recall that the weight process µi(t) is given by Xi(t)/Zµ(t), and there-
fore we can represent the relative covariance process τij(t) as given in Section
2.4 as,

d 〈logµi, logµj〉t = τij(t)dt, t ∈ [0,∞).

Now, applying Itô's Lemma to µi(t) = exp (logµi(t)) we have,

dµi(t) = µi(t)dlogµi(t) +
1

2
µi(t)τii(t)dt. (4.4.6)

and

d 〈µi, µj〉t = µi(t)µj(t)τijdt, t ∈ [0,∞). (4.4.7)

Furthermore, if we apply Itô's Lemma to S and using (4.4.7) we get,

dlogS(µ(t)) =
n∑
i=1

DilogS(µ(t))dµi(t) +
1

2

n∑
i,j=1

DijlogS(µ(t))µi(t)µj(t)τij(t)dt.

Now,

DijlogS(µ(t)) =
DijS(µ(t))

S(µ(t))
−DilogS(µ(t))DjlogS(µ(t)),

so,

dlogS(µ(t)) =
n∑
i=1

DilogS(µ(t))dµi(t) (4.4.8)

+
1

2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t)dt

− 1

2

n∑
i,j=1

DiS(µ(t))DjS(µ(t))µi(t)µj(t)τij(t)dt.

For (4.4.2) to hold, the martingale components of logS(µ(t)) and log (Zπ/Zµ)
must be equal. Equation (2.2.11) implies that,
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dlog (Zπ(t)/Zµ(t)) =
n∑
i=1

πi(t)dlog (Xi(t)/Zµ(t)) + γ∗π(t)dt (4.4.9)

=
n∑
i=1

πi(t)dlogµi(t) + γ∗π(t)dt (4.4.10)

=
n∑
i=1

πi(t)

µi(t)
dµi(t)−

1

2

n∑
i,j=1

πi(t)πj(t)τij(t)dt, (4.4.11)

by Equation (2.2.8), Equation (2.4.3) and the fact that τ
µ(t)
ππ = π(t)τµ(t)πT (t)

as shown in Section 2.4.

Now suppose that

πi(t) = (DilogS(µ(t)) + ϕ(t))µi(t), (4.4.12)

where ϕ(t) is chosen such that
∑n

i=1 πi(t) = 1. Then,

n∑
i=1

πi(t)

µi(t)
dµi(t) =

n∑
i=1

DilogS(µ(t))dµi(t) + ϕ(t)
n∑
i=1

dµi(t) (4.4.13)

=
n∑
i=1

DilogS(µ(t))dµi(t),

since
∑n

i=1 dµi(t) = 0. Hence the martingale components logS(µ(t)) and
log (Zπ/Zµ), that is in Equations (4.4.9) and (4.4.11), respectively are equal.

Furthermore, if we choose ϕ(t) such that,

ϕ(t) = 1−
n∑
i=1

µj(t)DjlogS(µ(t)),

∑n
i=1 πi(t) = 1 is satis�ed. Therefore (4.4.4) is proved and

πi(t) =

(
DilogS(µ(t)) + 1−

n∑
j=1

µj(t)DjlogS(µ(t))

)
µi(t), t ∈ [0,∞).
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If πi(t) satis�es (4.4.12) then,

n∑
i,j=1

πi(t)πj(t)τij(t) =
n∑

i,j=1

DilogS(µ(t))DjlogS(µ(t))µi(t)µj(t)τij(t) (4.4.14)

+ 2ϕ(t)
n∑

i,j=1

DilogS(µ(t))µi(t)µj(t)τij(t) + ϕ2(t)
n∑

i,j=1

µi(t)µj(t)τij(t)

=
n∑

i,j=1

DilogS(µ(t))DjlogS(µ(t))µi(t)µj(t)τij(t),

since µ(t) is in the null space of τ(t) by Equation (2.4.5). Hence,

dlog (Zπ/Zµ) =
n∑
i=1

DilogS(µ(t))dµi(t)−
1

2

n∑
i,j=1

DilogS(µ(t))DjlogS(µ(t))µi(t)µj(t)τij(t)dt.

This equation and (4.4.9) imply that,

dlog (Zπ/Zµ) = dlogS(µ(t))− 1

2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t).

Comparing this to Equation (4.4.2) we see that,

dΘ(t) =
−1

2S(µ(t))

n∑
i,j=1

DijS(µ(t))µi(t)µj(t)τij(t), t ∈ [0,∞),

and therefore, (4.4.5) is proved.

Theorem 4.1 allows us to chracterise the drift process which, for a given gener-
ating function, allows us to determine long-term behaviour for a corresponding
portfolio relative to the market portfolio.

4.5 Summary

In this chapter we have formalised the concept of a coherent and diverse mar-
ket and showed that the level of diversi�cation in the market has a direct
in�uence on the excess growth rate of the market. This is intuitive given the
components of the excess growth rate (see Equation (2.2.8)).

We also introduced the concept of portfolio generating functions and showed
that the relative performance of a portfolio generated by a function S(µ(t)) is
a function of changes in,

� the portfolio generating function itself,
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� di�erences in dividend rates between the resulting portfolio and the mar-
ket portfolio, and

� the drift function of the portfolio.

Furthermore, Theorem 4.1 provided us with a way to determine the resulting
weights from a portfolio generating function and how to calculate the drift pro-
cess to determine long-run behaviour of the portfolio generated by a function
S(µ(t)).
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Chapter 5

Portfolio generating functions:

Empirical performance

In this chapter we consider the empirical performance of speci�c portfolio gen-
erating functions relative to the market portfolio. Given the direct relationship
between market diversity and the growth rate, we spec�cally consider equal
weighted portfolios and portfolios constructed using measures of market diver-
sity such as the entropy function.

The data used in this chapter is the same as that set out in Section 3.1.
Portfolios are balanced at the end of each month. All total return indices
include dividends and the e�ects of any corporate actions (such as special
dividends, spin-o�s, etc). We exclude any transaction costs in our analyses.

5.1 Equal weighted portfolios

The equal weighted portfolio is generated by the function S(µ) = (µ1 · · ·µn)
1
n ,

with the individual weights and drift process given by:

πi =
1

n

and,

dΘ(t) = γ∗π(t)dt

Now since γ∗π(t) ≥ 0, we have an increasing drift function and would therefore
expect the equal weighted portfolio to outperform the market portfolio over
time. However, this ignores the di�erence in dividends between the two port-
folios and any changes in the portfolio generating function itself.

52
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While, the drift is positive, its level can change signi�cantly as γ∗π(t) increases
or decreases. When analysing the relative performance of portfolios we will
therefore consider the three components in Equation (4.4.3). That is,

� Changes in the portfolio generating function S(µ(t)),

� Di�erences in dividends between the two portfolios, and

� The changes in the drift process.

We analyse the performance of two portfolios consisting of the top 40 stocks
ranked by market capitalisation at the beginning of each month. The �rst
portfolio contains equal weights of 2.5%, while the second mimicks the market
portfolio by using market capitalisation weights. The di�erences in the average
weights over our sample period are shown in Figure 5.1.

Figure 5.1: Average weight for each ranked market capitalisation position from

December 1994 - September 2013

The South African equity market is dominated by only a handful of stocks and
this is evident in Figure 5.1. In fact, the top 10 stocks by market cap have, on
average, accounted for 50.2% of the South African equity market.

Figure 5.2 shows the di�erences in the cumulative performance from Decem-
ber 1994 of both portfolios (on a log scale). The equal weighted portfolio
marginally outperforms the market portfolio with a CAGR of 15.2% versus
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Figure 5.2: Log cumulative performance of an equal weighted portfolio versus that

of the market capitalisation weighted portfolio. Both portfolios contain the top 40

stocks by market capitalisation.

14.8% over the period considered here.

Although the cumulative performance appears similar overall there are ex-
tended periods of under- and outperformance by the equal weighted portfolio
over the market portfolio as shown in Figure 5.3. The equal weighted portfolio
seems to su�er during latter stage bull markets (2000-2001 and 2006-2008),
while outperforming during market crashes and the subsequent recovery pe-
riod.

Figure 5.4 highlights the calendar year returns. This illustrates the periods of
market portfolio outperformance over the equal weighted portfolio. The equal
weighted portfolio performs better during periods of negative returns (1997,
1998, 2002 and 2008).

Equation (4.4.3) allows us to decompose the relative return into three compo-
nents. Although measuring these components (speci�cally the estimation of
the excess growth rate) is not perfect, it does give us a general idea of where
the excess returns come from.

Within the context of equal weighted portfolios we interpret the three compo-
nents as follows:
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Figure 5.3: Relative log cumulative performance of the equal weighted and market

portfolios.

Figure 5.4: Calendar year returns for the equal weighted and market portfolios.
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� Relative dividends
We would expect larger stocks to pay out higher amounts of dividends
relative to smaller stocks. This is because smaller stocks should invest
higher amounts back into the company, decreasing the dividend payout
ratio.

� Changes in the portfolio generating function S(µ(t))
S(µ(t)) is e�ectively the nth root of the product of the market capital-
isation weights. Therefore, S(t) is a product of weights which are less
than one. If we have n small weights, as is the case with equal weights
of 1% we obtain a smaller value for S(µ(t)) than if we had a few large
weights with smaller weights in the remaining stocks. This is due to the
product of the weights which are smaller than one.

Consider for example a 100 stock portfolio with equal weights. Here
S(µ(t)) = 0.01. However, if we assume the top �ve stocks each have a
weight of 10% with the remaining 50% spread equally amongst the re-
maining 95 stocks we obtain a value for S(µ(t)) of 0.01122. Therefore,
S(µ(t)) increases as the market becomes more concentrated in a few
stocks. However, in Equation (4.4.3) we consider the log of S(µ(t)) and
since S(µ(t)) is always smaller than one (since the weights are less than
one), we have that dlogS(µ(t)) actually decreases (since logS(µ(t)) < 0)
as the market becomes more concentrated in fewer stocks.

That is, the relative performance of the equal weighted portfolio actu-
ally decreases as the market becomes more concentrated. This makes
intuitive sense since, if the market becomes more concentrated in a few
stocks, it implies that those few stocks outperform the rest of the market.
The equal weighted portfolio is underweight these stocks relative to the
market portfolio and will therefore (all else being equal) underperform
the market portfolio.

� Changes in the drift process
Firstly, the excess growth rate (the drift process for the equal weighted
portfolio) is always greater than zero and therefore always positively
contributes to the relative performance of the equal weighted portfolio.
However, what is in question is the level of contribution, especially in
the face of our previous point on the changes in the portfolio generating
function.

The excess growth rate γ∗π(t), as described in Section 2.2 and in Equation
(2.2.8) is heuristically the level of bene�ts obtained from diversi�cation
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in the respective portfolio. Now if all stocks tend to behave in a very
similar manner (as was the case in the �nancial crisis) then there are less
bene�ts available from diversi�cation.

In general, the excess growth rate will also be a function of the spe-
ci�c portfolio weights. However, since the equal weights remain constant
no matter the market capitalisation of the stock, changes in the excess
growth rate are more likely to be a function of changes in the level of
diversi�cation available in the market.

We now highlight the 12 month changes in the three measures discussed above.
We begin with the relative dividends of the two portfolios. Now since the equal
weighted portfolio is underweight the larger stocks, we can view this as the
relative dividends of small stocks to large stocks. In Figure 5.5 we show the
dividend return of the equal weighted portfolio relative to the market portfolio.

Figure 5.5: Dividend return of the equal weighted portfolio relative to the market

portfolio.

The equal weighted portfolio has returned approximately 2.3% more in divi-
dends than the market portfolio. This would imply that smaller stocks have
paid relatively more dividends than the larger stocks over our sample period.
Most of this di�erence is due to the 2001 to 2009 period.
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Therefore, the dividend di�erential, in the South African equity market at
least, has actually contributed a net positive to the relative return of the equal
weighted portfolio.

We next highlight the rolling 12 month changes in the log of the portfolio gen-
erating function. Most of these changes are relatively small, with rolling 12
month changes oscillating between −4% and +3%. However, we highlight the
1998-2001 period, where the log of the portfolio generating function declines
signi�cantly. Over the is period the equal weighted portfolio, unsurprisingly,
underperforms the market portfolio. That is, in bull markets the South African
equity market appears to become concentrated in fewer stocks.

Figure 5.6: Rolling 12 month change in the log of the portfolio generating function

of the equal weighted portfolio.

We now consider the changes in the drift process, or more speci�cally the
changes in the excess growth rate, as highlighted in Figure 5.7. We estimate
the excess growth rate using 12 month historic covariance matrices at each
month.

Interestingly, Figure 5.7 shows some cyclicality, much like the relative perfor-
mance of the market and equal weighted portfolios. Furthermore, the excess
growth rate shows an overall declining trend over our sample period. This
may explain why the equal weighted portfolio has not outperformed the mar-
ket portfolio by much over our sample period. That is, the South African
equity market has shown less opportunities or bene�ts from the diversi�cation
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Figure 5.7: Equal weighted portfolio excess growth rate (drift process for the equal

weighted portfolio) using rolling 12 month historical covariance matrices.

o�ered by the equal weighted portfolio over time.

Equal weighted Market portfolio
CAGR 15.2% 14.8%
Volatility 19.0% 20.2%
Downside deviation 14.8% 15.4%
Sharpe ratio 0.8 0.73
Sortino ratio 1.01 0.96

Table 5.1: Summary statistics for the equal weighted and market portfolios.

Table 5.1 highlights the marginal improvement in return and risk-adjusted re-
turns that the equal weighted portfolio delivers over the market portfolio. The
bene�ts of SPT, is that we are able to decompose the portfolio generated by
functions into return components by Equation (4.4.3).

Firstly, does Equation (4.4.3) explain the overall return di�erentials between
the equal weighted and market portfolio? In this respect, we �nd that, given
the di�culty of measuring some of the components, that Equation 4.4.3 does
relatively well at explaining the di�erence in market and equal weighted re-
turns. The average di�erence of 0.12% per month is largely a result of the 2008
period, where constantly changing market conditions make estimation of the
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excess growth rate di�cult. The di�erence is, therefore, more likely a result
of measurement error than a problem with Equation (4.4.3).

Figure 5.8: Comparison of the equal weighted and market portfolio expected and

actual total returns.

Figure 5.9 shows the volatility of the three components of relative returns and
highlights that the changes in the log of the portfolio generating function has
been signi�cantly more volatile than the drift process in particular. We believe
this is due to the South African equity market showing less diversi�cation op-
portunities (as highlighted in Figure 5.7) and becoming more concentrated in
fewer stocks.

In our analysis we have excluded transaction costs, but they may have a sig-
ni�cant impact especially for equal weighted portfolios. An equal weighted
portfolio requires constant rebalancing as some stocks outperform the general
market and others underperform. The outperformers need to be sold and the
underperformers need to be bought to bring the portfolio back in to line. This
complication is not an issue for a market portfolio as the weights, by de�nition,
are a direct function of price movements. An analysis of both transaction costs
and the frequency of rebalancing would be a useful extension of our research.
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Figure 5.9: Annualised volatilities of the three components of relative return.

5.2 A large stock biased portfolio

In Section 5.1 we considered the equally weighted portfolio and showed how
this portfolio has only marginally outperformed the market portfolio due to
a declining excess growth rate over time. These equally weighted portfolios
e�ectively decreased the weight in large stocks and increased the weight in
smaller stocks. In this section we consider a portfolio (hereafter referred to as
the large cap portfolio) which actually increases the weight in large stocks and
further downweights the smaller stocks. Theoretically at least, this portfolio
should bene�t from the declining excess growth rate.

This section implements and analyses the weighted average capitalisation port-
folio given in [18]. The large cap portfolio has a portfolio generating function
given by,

S(x) =

(
n∑
i=1

x2i

) 1
2

, (5.2.1)

which yields portfolio weights,

πi(t) =
µ2
i

µ2
1 + µ2

2 + · · ·+ µ2
n

. (5.2.2)

This portfolio has the following, negative, drift process

dΘ(t) = −γ∗π(t)dt. (5.2.3)
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Equation (5.2.3) suggests that the large cap portfolio should underperform the
market portfolio.

Firstly, we present the di�erence in average weights per market capitalisation
rank over our sample period (Figure 5.10). The increased weights in the larger
stocks are clearly evident, with the top �ve stocks accounting for 71% of the
portfolio weights.

Figure 5.10: Average weight for each ranked market capitalisation position from

December 1994 - September 2013. 40 stock portfolio.

As expected, given the implications of a negative drift process (Equation
(5.2.3)), the large cap portfolio does indeed underperform the market portfolio.

The large cap portfolio represents something of an antithesis to the equal
weighted portfolio with the relative returns (Figure 5.12) appearing to be a
negative mirror of those for the equal weighted portfolio. The large cap portfo-
lio, however, does appear to have a negative overall trend to its relative return
chart. This is consistent with the expectations that a large cap portfolio would
underperform the market portfolio over time.

Figure 5.12 also shows the periods of outperformance which coincide with the
underperformance of the equal weighted portfolio. This further illustrates that
large caps have tended to outperform in latter stage bull markets.
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Figure 5.11: Log cumulative performance of the large cap portfolio versus that

of the market capitalisation weighted portfolio. Both portfolios contain the top 40

stocks by market capitalisation.

Figure 5.12: Relative log cumulative performance of the large cap and market

portfolios.
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Figure 5.13: Calendar year returns for the large cap and market portfolios.

Figure 5.13, showing calendar year returns, also illustrates the underperfor-
mance of large caps during negative years.

Figure 5.14: Rolling 12 month changes in the log of the portfolio generating func-

tion.

The changes in the log of the portfolio generating function are shown in Figure
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5.14. This chart is almost an exact opposite of the Figure 5.6 and also illus-
trates the extended periods where the market becomes concentrated in fewer
stocks (1998-2001 for example). This contributes positively to the large cap
portfolio and negatively to the equal weighted portfolio.

Figure 5.15: Annualised volatilities of the three components of relative return.

Figure 5.15 shows the volatility of the di�erent components of return. We �nd,
as in the case of the equal weighted portfolio, that the changes in the log of
the portfolio generating function are the most volatile of the components.

Comparing Figures 5.16 (which shows the negative drift process) and 5.12
highlights that when the excess growth rate increases signifcantly (as in 2008),
the large cap portfolio tends to underperform the market portfolio, consistent
with Equation (5.2.3).

Large cap portfolio Market portfolio
CAGR 14.0% 14.8%
Volatility 22.9% 20.2%
Downside deviation 17.1% 15.4%
Sharpe ratio 0.61 0.73
Sortino ratio 0.82 0.96

Table 5.2: Summary statistics for the large cap and market portfolios.
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Figure 5.16: Large cap portfolio portfolio excess growth rate (negative drift process

for the large cap portfolio) using rolling 12 month historical covariance matrices.

Overall we �nd that the large cap portfolio does underperform the market
portfolio (and by extension the equal weighted portfolio) both on a return and
especially a risk-adjusted return basis.

5.3 The entropy weighted portfolio

In Section 4.3 we discussed stock market diversity and showed how the level of
diversity in a market is directly related to the excess growth rate (Proposition
(4.3.1)). Given this relationship it is natural to consider portfolio generating
functions which are related to measures of diversity.

The �rst of these is the entropy function, a concept used in information the-
ory (amongst other areas) and introduced by Shannon [47]. For our purposes,
entropy can be thought of as the spread of capital among the stock's in our
universe. Low entropy occurs when capital is concentrated in a few stocks,
and vice versa for high entropy.

The entropy function, and consequently the portfolio generating function S(x),
is given by

S(x) = −
n∑
i=1

xilogxi, (5.3.1)
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where we replace the xi with the market weights µi.

This yields weights

πi(t) = −µi(t)logµi(t)
S(µ(t))

, (5.3.2)

and drift process

dΘ(t) =
γ∗µ(t)

S(µ(t))
dt. (5.3.3)

Firstly, since both γ∗µ(t) and S(µ(t)) are positive, the drift process of the
entropy weighted portfolio is positive. Therefore, excluding dividends and
changes in S(µ(t)), the entropy weighted portfolio should outperform the mar-
ket portfolio.

Secondly, it is interesting to note that the drift process of the entropy portfolio
is a function of the excess growth rate of the market portfolio (γ∗µ(t)) and not
the excess growth rate of the entropy portfolio itself (γ∗π(t)), as was the case
in the equal weighted and large cap portfolios.

Figure 5.17: Average weight for each ranked market capitalisation position from

December 1994 - September 2013. 40 stock portfolio.

The entropy portfolio provides a balance between the equal weight and market
portfolio. The portfolio downweights larger stocks and increases the weights
on smaller stocks but not at the same level as the equal weighted portfolio.
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This provides better implementation in the case of the entropy portfolio versus
both the equal weighted and large cap portfolios.

Figure 5.18: Log cumulative performance of the entropy portfolio versus that of the

market capitalisation weighted portfolio. Both portfolios contain the top 40 stocks

by market capitalisation.

Figure 5.18 highlights the performance of the entropy portfolio against that
of the market portfolio. As is the case with the equal weighted portfolio, the
entropy portfolio does outperform the market portfolio over this time period
but only marginally.

The relative outperformance of the entropy portfolio, shown in Figure 5.19,
shows a very cyclical performance relative to the market portfolio, with a slight
upward trend and overall marginal outperformance by the entropy weighted
portfolio.

The drift process of the entropy portfolio, shown in Figure 5.20, has a similar
shape to both the equal weighted and large cap portfolios. The drift process of
the entropy weighted portfolio is merely a scaled version of the excess growth
rates, but once again, shows that the opportunities or bene�ts of diversi�ca-
tion have largely declined over time.

The entropy function itself, that is Equation (5.3.1), highlights the level of di-
versity in a stock market. Figure 5.21 shows the entropy function for the South
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Figure 5.19: Relative log cumulative performance of the entropy and market port-

folios.

Figure 5.20: Drift process for the entropy portfolio.
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African equity market. While the excess growth rates we have shown previ-
ously highlight the declining level of bene�ts from diversi�cation, the entropy
function highlights a more direct consequence. That is, that more weight is
being held in fewer stocks in the South African market and this works against
the relative performance of the entropy weighted portfolio. Therefore, the en-
tropy weighted portfolio has not been able to generate signi�cant excess return.

Figure 5.21: Estimated entropy function for the top 40 stocks in the South African

equity market.

Table 5.3 highlights that the outperformance of the entropy weighted portfolio
over the market portfolio is only marginal both on a return and risk-adjusted
return basis.

Entropy weighted Market portfolio
CAGR 15.0% 14.8%
Volatility 19.6% 20.2%
Downside deviation 15.0% 15.4%
Sharpe ratio 0.77 0.73
Sortino ratio 1.00 0.96

Table 5.3: Summary statistics for the entropy weighted and market portfolios.
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5.4 The diversity weighted portfolio

In the previous section we analysed the entropy function and the resulting
portfolio generating function. We showed that over time the South African
equity market has become less diverse. This has had a negative impact on the
performance of the entropy weighted portfolio. The entropy portfolio, how-
ever, is not very �exible and we therefore present, a second measure of diversity
taken from [22].

This function is given as

Dp(x) =

(
n∑
i=1

xpi

) 1
p

, (5.4.1)

for 0 < p < 1. This function generates weights given by

πi(t) =
µpi (t)

(Dp(µ(t)))p
, (5.4.2)

and with drift process

dΘ(t) = (1− p)γ∗π(t)dt. (5.4.3)

We are now able to vary p in Equation (5.4.1). Values for p closer to zero will
converge to an equal weight portfolio, while p values closer to one converging
to the market portfolio. This is show in Figure 5.22.

Unfortunately, all the portfolios su�er from the same problem as the entropy
weighted portfolio. That is, returns are dimished due to the declining diversity
in the South African equity market. Figures 5.23 and 5.24 highlight relative
cumulative returns of the various portfolios.

Although the p = 0.05 portfolio does the best overall, the excess return is only
marginal and is highly volatile. In fact at some points the p = 0.05 portfolio is
the worst performing portfolio (2001 and 2007 for example). This highlights
that while portfolios weighted away from the market portfolios may outper-
form overall, there are extended periods of signi�cant underperformance.

The e�ects of the declining diversity and lack of diversi�cation bene�ts are
best illustrated in Figure 5.25 which shows the 12 month rolling changes in
logS(µ(t)) for the portfolio with p = 0.25. These large negative changes di-
rectly impact relative returns through Equation (4.4.3). On average the rolling
12 month change is −1.01% per annum, which over our sample period of just
over 18 years could accumulate to over 22%.
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Figure 5.22: Comparison of average weights for di�erent values of p. p = 1 is

clearly the market portfolio, while the smaller p becomes, the closer the weights

become equal.

Figure 5.23: Cumulative log-scale returns of portfolios with various values for p.
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Figure 5.24: Cumulative relative returns of portfolios with various values for p.
Returns are relative to the market portfolio.

Figure 5.25: Rolling 12 month change in logS(µ(t)) for p = 0.25.
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Figure 5.26: Comparison of estimated drift process values for portfolios with p =
0.25 and p = 0.70.

While the negative changes in logS(µ(t)) reduce returns, the lower p valued
portfolios still outperform the higher ones. This is as a result of the higher
drift process which counteracts the changes in logS(µ(t)). We highlight the
di�erences in the drift processes in Figure 5.26. The drift process is 2.5 times
larger for p = 0.25 than for p = 0.70.
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5.5 Summary

In this chapter we analysed the empirical performance of portfolio generating
functions, a concept introduced in Chapter 4. Furthermore, Equation (4.4.2),
allowed us to classify the excess return over the market portfolio as a function
of

� the changes in the log of the portfolio generating function,

� the di�erence in the dividend process of each portfolio, and

� the drift process as de�ned in Theorem 4.1.

We found that portfolios that increase the weights in smaller stocks (and there-
fore decrease the weights in the larger stocks) outperform the market (as the
theory would suggest) but only marginally. This is as a result of the declin-
ing entropy and diversity in the market over our sample period, as measured
through both the entropy function in Equation (5.3.1) and the diversity func-
tion in Equation (5.4.1).

This implies that smaller stocks have not necessarily outperformed the mar-
ket signi�cantly since 1994. This result is supported by research by [2], [50]
and [52], amongst others, which show that the size premium is not signi�cant
in the South African equity market. Our research shows that the outperfor-
mance of a portfolio which places higher weights on smaller stocks (relative to
the portfolio) is cyclical. There are periods of strong outperformance of the
market and periods of strong underperformance which coincide with changes
in the levels of entropy and diversity in the market.

Further to this, we �nd that the equal weighted, entropy weighted and diversity
weighted (with lower values for p) portfolios have very similar (but marginal)
levels of outperformance of the market portfolio. However, although these
portfolios only marginally outperform the market portfolio, a portfolio which
places larger weights in the large stocks performs signi�cantly worse than these
portfolios and the market portfolio.

We �nd that the South African equity market has become concentrated in
fewer stocks over the period 1994 - 2013 and that this limits the outperfor-
mance of the market portfolio by the portfolio generating functions considered
here.
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Chapter 6

Conclusion

The aim of this dissertation was to investigate and explain the basic concepts
of Stochastic Portfolio Theory (SPT) and to apply these results to the South
African equity market.

In Chapter 2 we set out the basic concepts of SPT and analysed the long-term
behaviour and properties of portfolios. At its core SPT assumes a lognormal
model for stock returns and extends this to consider the value process of a
portfolio of stocks. Proposition (2.2.1) shows that the value process of a port-
folio of stocks is similar to that of individual stocks, comprising of a portfolio
growth rate process and sensitivities to various price disturbances, which were
modelled as Brownian motions. Furthermore, in Section 2.3, we showed that
a portfolio's growth rate determines its long-term behaviour.

This result is in contrast to traditional portfolio optimisations which consider
the arithmetic rate of return and not the geometric rate of return (i.e. the
growth rate process). In Section 3.1, we showed in a simulation that expected
geometric rates of return were more accurate in estimating long term returns.
Arithmetic rates of return were shown to over-estimate rates of return.

The constraints in mean-variance optimisation under the excess growth rate
results in constraints which are not linear and we are therefore unable to apply
traditional portfolio optimisation techniques. However, we showed that it is
possible using, for example, the Di�erential Evolution technique (implemented
in R through the DEoptim library) to �nd solutions to these complex optimi-
sations.

When minimising tracking errors, we found that for small tracking errors con-
straints could be reduced to a linear form and therefore traditional quadratic
programming could be utilised. We also showed that, by only changing the
target return from an arithmetic rate of return to a geometric rate of return,
the portfolio's long-term return increased by approximately one half the port-
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folio's variance. This is consistent with the relationship between arithmetic
and geometric rates of return as shown in Equation (2.1.4).

Furthermore, in Chapter 2 we showed that a portfolio's growth rate process,
γπ(t), is a function of the weighted individual stock growth rates processes and
a term referred to as the portfolio excess growth rate, γ∗π(t). This portfolio
excess growth rate is given in Equation (2.2.8) and is the di�erence between
the weighted variances of the individual stocks and the resulting portfolio's
variance.

Heuristically, the excess growth rate can be seen as the bene�ts of diversi�ca-
tion and the inclusion of the excess growth rate in the determination of the
portfolio growth rate implies that diversi�cation has a direct impact on the
portfolio's return. Of interest, therefore, is the maxmimisation of the excess
growth rate in a portfolio in portfolio construction.

In Section 3.5 we analysed a portfolio which attempts to maximise the excess
growth rate of a portfolio. The covariance matrix estimated over the previous
24 months was used as a forecast for the next period. We showed that this
portfolio outperforms the market portfolio over the long term. However, the
portfolio did show extended periods of underperformance relative to the mar-
ket portfolio. Outperformance of the market portfolio appeared to be cyclical
in nature, consistent with results of the equal weighted, entropy weighted and
diversity weighted portfolios in Chapter 5.

A further aim of this dissertation was to provide a theoretical overview of
portfolio generating functions and apply these to the South African equity
market. Portfolio generating functions were introduced in Chapter 4 where
we showed that the relative performance of these portfolios (relative to the
market portfolio) is a function of three components,

� the changes in the log of the portfolio generating function,

� the di�erence in the dividend process of each portfolio, and

� the drift process as de�ned in Theorem 4.1.

In Sections 4.2 and 4.3 we highlighted the importance that the level of market
diversity has on the market's portfolio growth rate. Therefore, given the im-
portance of diversity we analyse portfolio generating functions which make use
of market diversity to generate weights. These portfolio generating functions
allowed us to draw various inferences on the behaviour of the South African
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equity market since 1994.

We found that portfolios which place higher weights on smaller stocks (and
therefore lower weights on the larger stocks) only marginally outperformed the
market portfolio. These portfolios were the equal weighted, entropy weighted
and diversity weighted portfolios as de�ned in Sections 5.1, 5.3 and 5.4 respec-
tively.

We found that the relative performance of these three portfolios (relative to
the market portfolio) behaved in a cyclical manner with periods of underper-
formance and periods of outperformance. This coincides with the �ndings
in Section 3.5 where we considered the portfolio which optimises the excess
growth rate.

This relative performance was found to act in concert with changing levels
of both market entropy (Equation (5.3.1)) and market diversity (Equation
(5.4.1)). In this regard we found that, since 1994, the market entropy and
diversity in the South African equity market has declined and (similar to the
respective portfolios) has shown cyclical behaviour over the past 10 years.

The declining levels of entropy and diversity in the South African equity mar-
ket imply that the market has become more concentrated in fewer stocks since
1994. This has led to those portfolios which overweight smaller stocks only
marginally outperforming the market as the decline in diversity acts a a head-
wind to outperformance through the changes (declines in this case) in the
portfolio generating function. Comparing these portfolios with the portfolio in
Section 3.5, we �nd that the portfolio which optimises the excess growth rate
shows better outperformance of the market portfolio.

Although the market diversity has declined since 1994, a portfolio which in-
creases weights in the larger stocks does not outperform the market. In fact
such a portfolio, as shown in Section 5.2, signi�cantly underperforms the mar-
ket portfolio. We did, however, note that the large cap portfolio performed
signi�cantly ahead of the market portfolio during the later stages of a bull
market.

Our �ndings allow for various possible avenues for further research.

� Although we have investigated and analysed numerous aspects of SPT,
we have not looked at ranked e�ects and modelling the distribution of
capital. That is, modelling the behaviour of the actual ranks (by market
capitalisation) of stocks and constructing portfolios generated by these
models as in [23] and applying these to the South African equity market.
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� In Section 5.1 and speci�cally in Figure 5.5 we highlighted that divi-
dend returns for the equal weighted portfolio were higher than that of
the market portfolio, implying larger stocks pay lower dividends than
smaller stocks. An investigation into this phenomenon may be useful.

� Both the entropy (Section 5.3) and diversity weighted (Section 5.4) port-
folios showed cyclicality with regards to their returns relative to the mar-
ket portfolio. This was linked to the market level of entropy or diversity
which showed very similar cyclicality in recent years. A possible further
area of research would be to optimise the values of p (in the case of the
diversity weighted portfolio) dependent on a forecast of future levels of
market diversity (assuming this can be modelled). This may tie in with
models of market capitalisation ranks referred to previously.

� In Section 3.5, we optimised the portfolio's growth rate and showed such
a portfolio outperformed the market portfolio. However, in doing so we
used a simplistic historic method for estimating the covariance matrix.
There are other, arguably more accurate, means of estimating the covari-
ance matrix and combining this with the optimisation shown in Section
3.5 would be another area of interest.

� We have shown a clear trend in the South African equity market, in both
Section 3.5 and Chapter 5, which highlights that the market has become
concentrated in fewer stocks since 1994. This has negatively impacted the
performance of equal weighted, entropy and diversity weighted portfolios
over this period. Of interest may be an international study investigating
whether this is the case worldwide or only in South Africa as a result of
the market structure.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendices

80

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Appendix A

R source code

A.1 Importing data

This code imports the data from csv �les.

1 #import a l l data
2

3 #******************************************

4 #l a s t p r i c e
5 #use names ( array ) to get headers
6 outpath = paste0 ( f i l e p a t h , "PX_LAST. csv ")
7 px <− read . csv ( outpath , header=TRUE)
8 dates = as . matrix (px [ , 1 ] ) #s t r i p out dates column
9 px = px [ , 2 : nco l ( px ) ]
10 px = f i xCo l s ( px )
11

12 #*****************************************

13 #Adjusted px
14 outpath = paste0 ( f i l e p a t h , "AdjPX_LAST. csv ")
15 adj . px <− read . csv ( outpath , header=TRUE)
16 adj . px = adj . px [ , 2 : nco l ( adj . px ) ]
17 adj . px = f i xCo l s ( adj . px )
18 adj . px= adj . px [ , colnames (px ) ] #rear range columns to a l i g n with px

matrix
19

20

21

22 #*****************************************

23 #Turnover
24 outpath = paste0 ( f i l e p a t h , "TURNOVER. csv ")
25 turnover <− read . csv ( outpath , header=TRUE)
26 turnover = turnover [ , 2 : nco l ( turnover ) ]
27 turnover = f i xCo l s ( turnover )
28 turnover = turnover [ , colnames (px ) ]
29

30 #*****************************************

31 #Market Cap
32 outpath = paste0 ( f i l e p a t h , "CUR_MKT_CAP. csv ")
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33 mkt . cap <− read . csv ( outpath , header=TRUE)
34 mkt . cap = mkt . cap [ , 2 : nco l (mkt . cap ) ]
35 mkt . cap = f i xCo l s (mkt . cap )
36 mkt . cap = mkt . cap [ , colnames (px ) ]
37

38 #*****************************************

39 #Control v a r i a b l e s
40 outpath = paste0 ( f i l e p a t h , "ConPX_LAST. csv ")
41 con . px <− read . csv ( outpath , header=TRUE)
42 con . px = con . px [ , 2 : nco l ( con . px ) ]
43

44 #*****************************************

45 #Index Members
46 outpath = paste0 ( f i l e p a t h , " Index . csv ")
47 index <− read . csv ( outpath , header=TRUE)
48

49 #****************************************

50 #redoes dates
51 t s . dates = as . Date ( dates ,"%m/%d/%Y")
52

53 #****************************************

54 #ca l c u l a t e s t o t a l r e tu rn s f o r s t o ck s
55 #ca l c u l a t e s t o t a l r e tu rn s f o r s t o ck s
56

57 to t . r e tu rn s = array (0 , dim=dim( adj . px ) )
58 colnames ( to t . r e tu rn s ) = colnames ( adj . px )
59

60 f o r ( k in 1 : nco l ( to t . r e tu rn s ) ) {
61

62 temp . px = as . matrix ( adj . px [ , k ] )
63 temp . pxlag =as . matrix (Lag ( temp . px , k=1) )
64 to t . r e tu rn s [ , k ] = temp . px/temp . pxlag−1
65

66 }
67

68 #any re tu rn s g r e a t e r than 1 are s e t to zero
69 to t . r e tu rn s [ to t . r e tu rn s > 0 . 5 ] = 0
70

71 rm( temp . px )
72 rm( temp . pxlag )

A.2 Section 3.1 simulation

This code generates the simulation in Section 3.1.

1 #This program i l l u s t r a t e s the d i f f e r e n c e between a r i thmet i c and
geometr ic r e tu rn s

2

3

4 prob . up = 0 .5
5 prob . down = 0 .5
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6 re turn . up = 0.25
7 re turn . down = −0.05
8 expected . a r i thmet i c = prob . up* re turn . up + prob . down* re turn . down
9 expected . geometr ic = expected . a r i thmet i c − 0 . 5* ( 0 . 5* var ( c ( re turn .

up , re turn . down) ) )
10

11 number . runs = 1000000
12 cagr . out = array (0 , dim=c (1 , number . runs ) )
13

14 f o r ( k in 1 : number . runs ) {
15 x = run i f (100 ,0 , 1 )
16 temp . r e tu rn s = array (0 , dim=c (1 , l ength (x ) ) )
17 temp . r e tu rn s [ x<=prob . up ] = return . up
18 temp . r e tu rn s [ x>prob . up ] = return . down
19 temp . r e tu rn s = 1+temp . r e tu rn s
20 cumulat ive . r e turn = prod ( temp . r e tu rn s ) ^(1/ l ength ( temp . r e tu rn s ) )

−1
21 cagr . out [ k ] = cumulat ive . r e turn
22 }
23

24 var . outpath = "H:\\MSc F inanc i a l Engineer ing D i s s e r t a t i o n \\Data
ana l y s i s \\Geometric vs Arithmet ic \\"

25

26 h i s t . breaks = as . matrix ( h i s t ( cagr . out ) $breaks [ 1 : l ength ( h i s t .
dens i ty ) ] )

27 h i s t . dens i ty = as . matrix ( h i s t ( cagr . out ) $dens i ty )
28 h i s t . out = cbind ( h i s t . breaks , h i s t . dens i ty )
29 wr i t e . t ab l e ( h i s t . out , paste0 ( var . outpath , "CAGR Hist . csv ") , sep="\t ")
30

31 mean( cagr . out )
32 expected . a r i thmet i c
33 expected . geometr ic

A.3 Section 3.3 MVO optimisation

This code generates the optimisation in section 3.3.

1 #********************************************************************

2 #This program runs the mean−var iance opt imiza t i on as in s e c t i o n
3 .3

3 #Assume only a s e t o f r i s k y a s s e t s
4 #look to ach i eve a c e r t a i n l e v e l o f r e turn and minimis ing r i s k
5

6 #********************************************************************

7

8 #fo r t e s t i n g
9 #re t . mat = data . s e t
10 #cov .mat = m. cov
11
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12 #This func t i on w i l l be used as an ob j e c t i v e func t i on f o r the SPT
opt im i sa t i on

13 SPT. obj <− f unc t i on (wp, cov .mat , r e t . mat , t a r g e t ) {
14 i f (sum(wp) == 0) {
15 wp = wp + 1e−2
16 }
17 wp=wp/sum(wp)
18

19 wp=as . matrix (wp)
20

21 exp . gRates = as . matrix ( colMeans ( r e t . mat)−0.5* diag ( cov .mat) ) #
assume mean re tu rn s w i l l be achieved f o r each stock

22

23 con t ro l 1 = sq r t ( t (wp) %*% cov .mat %*% wp) #we want to minimise
t h i s

24 con t ro l 2 . 1 = t (wp) %*% exp . gRates + 0 . 5* ( t (wp) %*% as . matrix (
sq r t ( d iag ( cov .mat) ) )−con t ro l 1 )

25 con t ro l 2 . 2 = ta rg e t + 0.5* con t ro l 1 #sub j e c t to a minimum return
26 con t ro l 2 = cont ro l 2 . 1 − con t ro l 2 . 2 #th e r f o r e we want t h i s to be

p o s i t i v e
27

28 #so we int roduce a pena l ty ( s u f f i c i e n t l y l a r g e ) in t h i s func t i on
29 out = cont ro l 1 − min( contro l2 , 0 ) *1 e3
30 re turn ( out )
31 }
32

33 #perform re tu rn s on l a s t 24 months o f data
34 s t a r t . pos = 24
35

36 #I n i t i a l i s e some matr i ce s and parameters
37 MPTweights = array (0 , dim=dim( to t . r e tu rn s ) )
38 SPTweights = array (0 , dim=dim( to t . r e tu rn s ) )
39 colnames (MPTweights ) = colnames ( to t . r e tu rn s )
40 colnames ( SPTweights ) = colnames ( to t . r e tu rn s )
41 MPTreturns = array (0 , dim=c (nrow ( to t . r e tu rn s ) ,2 ) )
42 MPTreturns [ , 2 ] = 1
43 SPTreturns = array (0 , dim=c (nrow ( to t . r e tu rn s ) ,2 ) )
44 SPTreturns [ , 2 ] = 1
45

46 ann . t a r g e t = 0.15
47 monthly . t a r g e t = (1 + ann . t a r g e t ) ^(1/12)−1
48 maxweight=0.15
49

50 f o r ( k in 24 : ( nrow ( to t . r e tu rn s )−s t a r t . pos+1) ) {
51

52 #get weights f o r next per iod us ing next 24 months
53 #determine covar iance matrix
54 data . s e t = tot . r e tu rn s [ k : ( k+s t a r t . pos−1) , ]
55 data . s e t = data . s e t [ , in . un ive r s e [ k , ] == 1 ] #check i f in un ive r s e
56 data . s e t = data . s e t [ , colSums ( ! i s . na ( data . s e t ) )==nrow ( data . s e t ) ]

#remove NAs
57
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58 m. cov = makePos i t i v eDe f in i t e ( cov ( data . set , use="pa i rw i s e . complete
. obs ") )

59

60 #need to remove NAs
61 m. cov = m. cov [ rowSums( i s . na (m. cov ) ) != nco l (m. cov ) , ]
62 m. cov = m. cov [ , colSums ( i s . na (m. cov ) ) !=nrow (m. cov ) ]
63

64 #max weight = minimum of maximum or 5*market cap weight
65 temp .maxw = t ( as . matrix ( index . weight [ k , colnames (m. cov ) ] ) )
66 maxw = pmin (5* temp .maxw, rep (maxweight , nco l ( temp .maxw) ) )
67

68 #run opt imiza t i on un t i l a t a r g e t i s reached
69 #th i s i s t r a d i t i o n a l mvo
70 e r e t = as . matrix ( colMeans ( data . s e t [ , colnames (m. cov ) ] ) )
71

72

73 Amat = array (1 , dim=c (nrow (m. cov ) ,1 ) )
74 Amat = cbind (Amat , d iag (1 , nrow (Amat) , nco l (m. cov ) ) )
75 Amat = cbind (Amat , d iag (−1 ,nrow (Amat) , nco l (m. cov ) ) )
76 Amat = cbind (Amat , e r e t )
77

78 dvec = array (0 , dim=c (nrow (m. cov ) ,1 ) )
79

80 bvec = array (0 , dim=c (1 ,2*nrow (m. cov )+2) )
81 bvec [ 1 , 1 ] = 1
82 bvec [ 1 , ( nrow (m. cov )+2) : ( nco l ( bvec )−1)]=−maxw
83 bvec [ 1 , nco l ( bvec ) ] = monthly . t a r g e t
84

85 #use s o l v e . qp to s o l v e f o r t r a d i t i o n a l mvo
86 #lower t a r g e t i f i t cannot be reached
87 mvo1 = try ( s o l v e .QP(m. cov , dvec ,Amat , bvec , 1 ) , s i l e n t=TRUE)
88 i f ( i n h e r i t s (mvo1 , " try−e r r o r ") ) {
89 temp . t a r g e t = monthly . t a r g e t
90 whi le ( i n h e r i t s (mvo1 , " try−e r r o r ") ) {
91 temp . t a r g e t = temp . target −0.01/100 #lower t a r g e t s l ow ly
92 bvec [ 1 , nco l ( bvec ) ] = temp . t a r g e t
93 mvo1 = try ( s o l v e .QP(m. cov , dvec ,Amat , bvec , 1 ) , s i l e n t=TRUE)
94 pr in t ( temp . t a r g e t )
95 }
96 }
97

98 #ext ra c t weights here and save in weights matrix
99 temp .w = as . matrix ( mvo1$solut ion )
100 temp .w[ temp .w<1e−4] = 0
101 temp .w = temp .w/sum( temp .w)
102 temp .w = t ( temp .w)
103 colnames ( temp .w)= colnames (m. cov )
104 MPTweights [ k , colnames ( temp .w) ] = temp .w
105

106 #th i s i s SPT ve r s i on
107 minw = 0
108 N = nco l (m. cov )
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109 lower = rep (minw ,N)
110 upper = maxw
111 rp = array (0 , dim=c (10* nco l ( temp .w) , nco l ( temp .w) ) )
112 rp [ , ] = temp .w
113 controlDE = l i s t ( i n i t i a l p o p = rp , r e l t o l = 0.00000001 , itermax

=5000 , t r a c e=FALSE, s t r a t e gy=6,c=0.8 ,p=0.25 , pa ra l l e lType=1, NP
=10*nco l (m. cov ) )

114 mvo2 = DEoptim( fn = SPT. obj , lower , upper , c on t r o l=controlDE , cov .
mat = m. cov , r e t . mat = data . set , t a r g e t = monthly . t a r g e t )

115

116 #ext ra c t weights
117 temp .w = as . matrix (mvo2$optim$bestmem)
118 temp .w[ temp .w<1e−4] = 0
119 temp .w = temp .w/sum( temp .w)
120 temp .w = t ( temp .w)
121 colnames ( temp .w)= colnames (m. cov )
122 SPTweights [ k , colnames ( temp .w) ] = temp .w
123

124 #determine p o r t f o l i o r e tu rn s here
125 #need to use prev ious months weights with cur rent r e tu rn s
126 i f ( k > ( s t a r t . pos+1) ) {
127

128 #MPT re turn s
129 temp .w = as . matrix (MPTweights [ k−1 , ] )
130 temp . r e t = as . matrix ( to t . r e tu rn s [ k , ] )
131

132 temp .w[ i s . na ( temp .w) ] = 0
133 temp . r e t [ i s . na ( temp . r e t ) ] = 0
134

135 temp . po r t r e t = t ( temp .w) %*% temp . r e t
136 MPTreturns [ k , 1 ] = temp . po r t r e t
137 MPTreturns [ k , 2 ] = MPTreturns [ k−1 ,2] * (1+temp . po r t r e t )
138

139 #SPT re tu rn s
140 temp .w = as . matrix ( SPTweights [ k−1 , ] )
141 temp . r e t = as . matrix ( to t . r e tu rn s [ k , ] )
142

143 temp .w[ i s . na ( temp .w) ] = 0
144 temp . r e t [ i s . na ( temp . r e t ) ] = 0
145

146 temp . po r t r e t = t ( temp .w) %*% temp . r e t
147 SPTreturns [ k , 1 ] = temp . po r t r e t
148 SPTreturns [ k , 2 ] = SPTreturns [ k−1 ,2] * (1+temp . po r t r e t )
149

150 spt . ann = SPTreturns [ k , 2 ]^ (12/ l ength ( which ( SPTreturns [ , 1 ] !=0 ) )
)−1

151 mpt . ann = MPTreturns [ k , 2 ]^ (12/ l ength ( which (MPTreturns [ , 1 ] !=0 ) )
)−1

152

153 pr in t ( paste ("SPT: " , round ( spt . ann*100 , d i g i t s =3) ) )
154 pr in t ( paste ("MPT: " , round (mpt . ann*100 , d i g i t s =3) ) )
155
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156 p lo t ( t s (MPTreturns [ 2 4 : ( k−1) , 2 ] ) )
157 l i n e s ( t s ( SPTreturns [ 2 4 : ( k−1) , 2 ] ) , c o l="red ")
158

159 }
160

161 pr in t ( paste0 ( round (100*k/nrow ( to t . r e tu rn s ) ,1 ) ,"%") )
162

163 }
164

165 #CAGR' s and p o r t f o l i o var iance
166 temp . r e t = MPTreturns [ MPTreturns [ , 1 ] != 0 , ]
167 temp . cagr = temp . r e t [ nrow ( temp . r e t ) ,2 ]^(12/ nrow ( temp . r e t ) )−1
168 temp . var = sd ( temp . r e t [ , 1 ] ) * s q r t (12)
169 pr in t ("MPT output ")
170 temp . cagr
171 temp . var
172

173 temp . r e t = SPTreturns [ SPTreturns [ , 1 ] != 0 , ]
174 temp . cagr = temp . r e t [ nrow ( temp . r e t ) ,2 ]^(12/ nrow ( temp . r e t ) )−1
175 temp . var = sd ( temp . r e t [ , 1 ] ) * s q r t (12)
176 pr in t ("SPT output ")
177 temp . cagr
178 temp . var
179

180 #plo t r e con s t ruc t ed index vs . r epor ted t o t a l r e turn index
181 p lo t ( t s (MPTreturns [ , 2 ] ) )
182 par (new=T)
183 p lo t ( t s ( SPTreturns [ , 2 ] ) , c o l="red ")
184

185

186 wb. path = paste0 ( outPath , " MVO opt im i sa t i on . x l sx ")
187 i f ( f i l e . e x i s t s (wb . path ) ) { f i l e . remove (wb . path ) }
188

189 wb = loadWorkbook (wb . path , c r e a t e=TRUE)
190

191 #output r e tu rn s and ordered weights
192 c r ea t eShee t (wb, " Returns ")
193 writeWorksheet (wb, SPTreturns , " Returns " , startRow = 1 , s t a r tCo l = 1)
194 writeWorksheet (wb, MPTreturns , " Returns " , startRow = 1 , s t a r tCo l = 5)
195

196 saveWorkbook (wb)

A.4 Section 3.4 tracking error optimisation

This code runs the tracking error optimisation in Section 3.4.

1 #**************************************************************

2 #This code minimises a p o r t f o l i o ' s t r a ck ing e r r o r r e l a t i v e to
3 #the market cap weighted index as in Sec t i on 3 .4
4 #**************************************************************

5
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6 #perform re tu rn s on the next 24 months o f data
7 s t a r t . pos = 24
8

9 #I n i t i a l i s e some matr i ce s and parameters
10 SPTweights = array (0 , dim=dim( to t . r e tu rn s ) )
11 colnames ( SPTweights ) = colnames ( to t . r e tu rn s )
12 SPTreturns = array (0 , dim=c (nrow ( to t . r e tu rn s ) ,2 ) )
13 SPTreturns [ , 2 ] = 1
14

15 ann . t a r g e t = 0 .1 #outperform market by x% per annum
16 monthly . t a r g e t = (1 + ann . t a r g e t ) ^(1/12)−1
17

18 t e s t = array (0 , dim=c (nrow ( SPTreturns ) ,1 ) )
19

20 f o r ( k in 2 : ( nrow ( SPTweights )−s t a r t . pos+1) ) {
21

22 #get weights f o r next per iod us ing prev 12 months
23 #determine covar iance matrix
24 data . s e t = tot . r e tu rn s [ k : ( k+s t a r t . pos−1) , ]
25 data . s e t = data . s e t [ , in . un ive r s e [ k , ] == 1 ] #check i f in un ive r s e
26 data . s e t = data . s e t [ , colSums ( ! i s . na ( data . s e t ) )==nrow ( data . s e t ) ]

#remove NAs
27 data . s e t = data . s e t [ , colSums ( ! i s . i n f i n i t e ( data . s e t ) )==nrow ( data .

s e t ) ] #remove i n i f i n i t e s
28

29 #now determine r e l a t i v e r e tu rn s
30 temp . index r e t = as . matrix ( index . r e tu rn s [ k : ( k+s t a r t . pos−1) , 1 ] )
31 exces s_returns = func t i on ( rvec ) rvec−temp . index r e t
32 m. ex c e s s r e t = apply ( data . set , 2 , exces s_returns )
33

34 #track ing e r r o r and covar iance matrix f o r s t o ck s
35 m. t r a c k e r r o r = makePos i t i v eDe f in i t e ( cov (m. exc e s s r e t , use="

pa i rw i s e . complete . obs ") )
36 m. cov = makePos i t i v eDe f in i t e ( cov ( data . set , use="pa i rw i s e . complete

. obs ") )
37

38 gamma = as . matrix ( colMeans ( data . s e t ) ) − 0 .5* diag (m. cov )
39 gamma. market = as . matrix (mean( temp . index r e t ) − 0 .5* var ( temp .

index r e t ) )
40

41 c on s t r a i n t = gamma+0.5* diag (m. t r a c k e r r o r ) #th i s i s a geometr ic
r e tu rn s

42 #con s t r a i n t = rowMeans (m. e x c e s s r e t ) # th i s i s an a r i thmet i c
re turn

43

44 #run opt imiza t i on us ing s o l v e .QP
45 #no shorts , weights to sum to 1
46 Amat <− cbind (1 , d iag ( nrow (m. t r a c k e r r o r ) ) , c on s t r a i n t )
47 bvec <− c (1 , rep (0 , nrow (m. t r a c k e r r o r ) ) , monthly . t a r g e t )
48 meq <− 1
49
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50 qp = tryCatch ( s o l v e .QP(m. t ra cke r ro r , rep (0 , nrow (m. t r a c k e r r o r ) ) ,
Amat , bvec , meq) , e r r o r = func t i on ( e ) e )

51 #mpt = tryCatch ( p o r t f o l i o . optim ( t ( c on s t r a i n t ) ,pm=monthly . target ,
r i s k l e s s=FALSE, sho r t s=FALSE, covmat=m. t r a c k e r r o r ) , e r r o r=
func t i on ( e ) e )

52

53 #ext ra c t weights
54 #er r = mpt$message
55 e r r =qp$message
56 i f ( l ength ( e r r ) > 0) {
57 SPTweights [ k , ] = SPTweights [ k−1 ,]
58 pr in t (" Error occurred ")
59 } e l s e {
60 temp .w = as . matrix ( qp$so lu t i on )
61 t e s t [ k ] = qp$value
62 #temp .w = as . matrix (mpt$pw)
63 temp .w[ temp .w<1e−7] = 0
64 temp .w = temp .w/sum( temp .w)
65 temp .w = t ( temp .w)
66 colnames ( temp .w) = colnames (m. cov )
67 SPTweights [ k , colnames ( temp .w) ] = temp .w
68 }
69

70 pr in t ( paste0 ( round (100*k/nrow ( to t . r e tu rn s ) ,1 ) ,"%") )
71

72 }
73

74 SPTreturns = CalcReturnSer i e s ( SPTweights )
75

76 #CAGR' s and p o r t f o l i o var iance
77 temp . r e t = SPTreturns [ SPTreturns [ , 1 ] != 0 , ]
78 temp . cagr = temp . r e t [ nrow ( temp . r e t ) ,2 ]^(12/ nrow ( temp . r e t ) )−1
79 temp . var = sd ( temp . r e t [ , 1 ] ) * s q r t (12)
80 pr in t ("SPT output ")
81 temp . cagr
82 temp . var
83

84 temp . r e t = index . r e tu rn s [ index . r e tu rn s [ , 1 ] != 0 , ]
85 temp . cagr = temp . r e t [ nrow ( temp . r e t ) ,2 ]^(12/ nrow ( temp . r e t ) )−1
86 temp . var = sd ( temp . r e t [ , 1 ] ) * s q r t (12)
87 pr in t (" Index output ")
88 temp . cagr
89 temp . var
90

91 #plo t r e con s t ruc t ed index vs . r epor ted t o t a l r e turn index
92 p lo t ( t s ( SPTreturns [ , 2 ] ) )
93 l i n e s ( t s ( index . r e tu rn s [ , 2 ] ) , c o l="red ")
94

95

96 r e l r e t u r n s = SPTreturns [ ,1 ]− index . r e tu rn s [ , 1 ]
97 sd ( r e l r e t u r n s ) * s q r t (12)
98
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99 wr i t e . t ab l e ( SPTreturns , paste0 ( outPath ,"\\SA Market\\
TE_Optimise_Returns . csv ") , sep="\t ")

100 wr i t e . t ab l e ( index . returns , paste0 ( outPath ,"\\SA Market\\
TE_Index_Returns . csv ") , sep="\t ")

A.5 Section 3.5 maximising the excess growth

rate

This code runs the excess growth rate optimisation in Section 3.5.

1 #********************************************************************

2 #This program runs maximises the exce s s growth ra t e with no
3 #minimum requ i r ed growth ra t e
4 #********************************************************************

5

6 #fo r t e s t i n g
7 #re t . mat = data . s e t
8 #cov .mat = m. cov
9

10 #perform re tu rn s on l a s t 24 months o f data
11 s t a r t . pos = 24
12

13 #I n i t i a l i s e some matr i ce s and parameters
14 SPTweights = array (0 , dim=dim( to t . r e tu rn s ) )
15 colnames ( SPTweights ) = colnames ( to t . r e tu rn s )
16 SPTreturns = array (0 , dim=c (nrow ( to t . r e tu rn s ) ,2 ) )
17 SPTreturns [ , 2 ] = 1
18

19

20 ann . t a r g e t = 0.15
21 monthly . t a r g e t = (1 + ann . t a r g e t ) ^(1/12)−1
22 maxweight=0.15
23

24 f o r ( k in 50 : ( nrow ( to t . r e tu rn s ) ) ) {
25

26 #get weights f o r next per iod us ing next 24 months
27 #determine covar iance matrix
28 data . s e t = tot . r e tu rn s [ ( k−s t a r t . pos+1) : k , ]
29 data . s e t = data . s e t [ , in . un ive r s e [ k , ] == 1 ] #check i f in un ive r s e
30 data . s e t = data . s e t [ , colSums ( ! i s . na ( data . s e t ) )==nrow ( data . s e t ) ]

#remove NAs
31

32 m. cov = makePos i t i v eDe f in i t e ( cov ( data . set , use="pa i rw i s e . complete
. obs ") )

33

34 #need to remove NAs
35 m. cov = m. cov [ rowSums( i s . na (m. cov ) ) != nco l (m. cov ) , ]
36 m. cov = m. cov [ , colSums ( i s . na (m. cov ) ) !=nrow (m. cov ) ]
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37

38 #max weight = minimum of maximum or 5*market cap weight
39 temp .maxw = t ( as . matrix ( index . weight [ k , colnames (m. cov ) ] ) )
40 maxw = pmin (5* temp .maxw, rep (maxweight , nco l ( temp .maxw) ) )
41

42 #run opt imiza t i on un t i l a t a r g e t i s reached
43 #th i s i s t r a d i t i o n a l mvo
44 e r e t = as . matrix ( colMeans ( data . s e t [ , colnames (m. cov ) ] ) )
45

46

47 Amat = array (1 , dim=c (nrow (m. cov ) ,1 ) )
48 Amat = cbind (Amat , d iag (1 , nrow (Amat) , nco l (m. cov ) ) )
49 Amat = cbind (Amat , d iag (−1 ,nrow (Amat) , nco l (m. cov ) ) )
50

51 dvec = −0.5* diag (m. cov )
52

53 bvec = array (0 , dim=c (1 , (2* nrow (m. cov )+1) ) )
54 bvec [ 1 , 1 ] = 1
55 bvec [ 1 , ( nrow (m. cov )+2) : ( nco l ( bvec ) )]=−maxw
56

57 #use s o l v e . qp to s o l v e f o r t r a d i t i o n a l mvo
58 mvo1 = so l v e .QP(m. cov , dvec ,Amat , bvec , 1 )
59

60 #ext ra c t weights here and save in weights matrix
61 temp .w = as . matrix ( mvo1$solut ion )
62 temp .w[ temp .w<1e−4] = 0
63 temp .w = temp .w/sum( temp .w)
64 temp .w = t ( temp .w)
65 colnames ( temp .w)= colnames (m. cov )
66 SPTweights [ k , colnames ( temp .w) ] = temp .w
67

68

69 #determine p o r t f o l i o r e tu rn s here
70 #need to use prev ious months weights with cur rent r e tu rn s
71 i f ( k > ( s t a r t . pos+1) ) {
72

73 #SPT re tu rn s
74 temp .w = as . matrix ( SPTweights [ k−1 , ] )
75 temp . r e t = as . matrix ( to t . r e tu rn s [ k , ] )
76

77 temp .w[ i s . na ( temp .w) ] = 0
78 temp . r e t [ i s . na ( temp . r e t ) ] = 0
79

80 temp . po r t r e t = t ( temp .w) %*% temp . r e t
81 SPTreturns [ k , 1 ] = temp . po r t r e t
82 SPTreturns [ k , 2 ] = SPTreturns [ k−1 ,2] * (1+temp . po r t r e t )
83

84 #pr in t p rog r e s s
85

86 SPT. ann = SPTreturns [ k , 2 ]^ (12/ l ength ( which ( SPTreturns [ , 1 ] !=0 ) )
)−1

87
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88 pr in t ( paste ("SPT: " , round (SPT. ann*100 , d i g i t s =3) ) )
89

90 p lo t ( t s ( SPTreturns [ 2 4 : ( k−1) , 2 ] ) )
91

92 }
93

94 pr in t ( paste0 ( round (100*k/nrow ( to t . r e tu rn s ) ,1 ) ,"%") )
95

96 }
97

98 #CAGR' s and p o r t f o l i o var iance
99 temp . r e t = SPTreturns [ SPTreturns [ , 1 ] != 0 , ]
100 temp . cagr = temp . r e t [ nrow ( temp . r e t ) ,2 ]^(12/ nrow ( temp . r e t ) )−1
101 temp . var = sd ( temp . r e t [ , 1 ] ) * s q r t (12)
102 pr in t ("SPT output ")
103 temp . cagr
104 temp . var
105

106 wb. path = paste0 ( outPath , " max exce s s growth ra t e . x l sx ")
107 i f ( f i l e . e x i s t s (wb . path ) ) { f i l e . remove (wb . path ) }
108

109 wb = loadWorkbook (wb . path , c r e a t e=TRUE)
110

111 #output r e tu rn s and ordered weights
112 c r ea t eShee t (wb, " Returns ")
113 writeWorksheet (wb, SPTreturns , " Returns " , startRow = 1 , s t a r tCo l = 1)
114 writeWorksheet (wb, index . returns , " Returns " , startRow = 1 , s t a r tCo l =

5)
115

116 saveWorkbook (wb)

A.6 Section 5.1 equal weighted portfolio

This code generates the data for the equal weight portfolio in Section 5.1.

1 #****************************************************

2 # Forms the equal weighted p o r t f o l i o
3 #****************************************************

4

5

6 #***************************************************

7 #Calcu la te weights in equal p o r t f o l i o
8 #***************************************************

9 equal . weight = array (0 , dim=dim(mkt . cap ) )
10 colnames ( equal . weight ) = colnames ( index . weight )
11

12 S = array (0 , dim=c (nrow (mkt . cap ) ,2 ) )
13 colnames (S) = c ("S( t ) " ,"Change ")
14

15 equal . order = array (NA, dim=dim(mkt . cap ) )
16 colnames ( equal . order ) = seq (1 , nco l (mkt . cap ) ,1 )
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17

18

19 f o r ( row .num in 1 : nrow ( index . mktcap ) ) {
20

21 #determine equal weights
22 temp . weight = t ( as . matrix ( in . un ive r s e [ row .num , ] ) )
23 temp . weight [ i s . i n f i n i t e ( temp . weight ) ]=0
24 temp . weight [ temp . weight > 0 ] = 1
25

26 equal . weight [ row .num , ] = temp . weight /sum( temp . weight )
27

28 #ranks vs weight comparison
29 equal . order [ row .num, order . index [ row .num , ] ] = equal . weight [ row .

num , ]
30

31 #determine S
32 temp . weights = index . weight [ row .num , ]
33 temp . weights = temp . weights [ temp . weights >0]
34 S . temp = t ( as . matrix ( l og ( temp . weights ) ) )
35 S [ row .num, 1 ] = mean(S . temp)
36 i f ( row .num > 1) {S [ row .num, 2 ] = S [ row .num, 1 ] − S [ row .num−1 ,1]}
37

38 }
39

40 rm( temp . weight )
41 rm(S . temp)
42

43

44 #************************************************

45 #Calcu la te p o r t f o l i o r e tu rn s
46 #************************************************

47 equal . r e tu rn s = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
48 equal . r e tu rn s [ 1 , 2 ] = 1
49

50 equal . d iv = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
51 equal . d iv [ 1 , 2 ] = 1
52

53 EXGRATELAG = 12
54 ex . g ra te = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
55

56 f o r ( k in 2 : nrow ( index . r e tu rn s ) ) {
57

58 #to t a l r e tu rn s
59 temp . weights = as . matrix ( equal . weight [ k−1 , ] )
60 temp . r e tu rn s = as . matrix ( to t . r e tu rn s [ k , ] )
61 temp . r e tu rn s [ i s . na ( temp . r e tu rn s ) ] = 0
62 temp . r e tu rn s [ i s . i n f i n i t e ( temp . r e tu rn s ) ] = 0
63

64 equal . r e tu rn s [ k , 1 ] = t ( temp . r e tu rn s ) %*% temp . weights
65 equal . r e tu rn s [ k , 2 ] = (1+equal . r e tu rn s [ k , 1 ] ) * equal . r e tu rn s [ k

−1 ,2]
66
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67 #dividend return
68 temp . weights = as . matrix ( equal . weight [ k−1 , ] )
69 temp . r e tu rn s = as . matrix ( oth . r e tu rn s [ k , ] )
70 temp . r e tu rn s [ i s . na ( temp . r e tu rn s ) ] = 0
71 temp . r e tu rn s [ i s . i n f i n i t e ( temp . r e tu rn s ) ] = 0
72

73 equal . d iv [ k , 1 ] = t ( temp . r e tu rn s ) %*% temp . weights
74 equal . d iv [ k , 2 ] = (1+equal . d iv [ k , 1 ] ) * equal . d iv [ k−1 ,2]
75

76 var . temp = array (0 , dim=c (1 , nco l ( equal . weight ) ) )
77 covar . temp = array (0 , dim=c ( nco l ( equal . weight ) , nco l ( equal . weight )

) )
78

79 #determine exce s s growth ra t e
80 i f ( k > EXGRATELAG){
81

82 #determine weight var i ance
83 var . temp = t ( as . matrix ( apply ( to t . r e tu rn s [ ( k−EXGRATELAG+1) : k

, ] , 2 , f unc t i on (x ) var (x , na . rm=TRUE) ) ) )
84 covar . temp = cov ( to t . r e tu rn s [ ( k−EXGRATELAG+1) : k , ] , use="

everyth ing ")
85

86 covar . temp [ i s . na ( covar . temp) ] = 0
87 var . temp [ i s . na ( var . temp) ] = 0
88

89 s imple = var . temp %*% temp . weights
90 port . covar = t ( temp . weights ) %*% covar . temp %*% temp . weights
91

92 ex . g ra te [ k , 1 ] = 0 . 5* ( s imple−port . covar )
93

94 i f ( k > EXGRATELAG + 1) {ex . g ra te [ k , 2 ] = ex . g ra te [ k , 1 ] − ex .
g ra te [ k−1 ,1]}

95 }
96

97 }
98 rm( temp . r e tu rn s )
99 rm( temp . weights )
100

101 #to t a l r e l a t i v e outperformance
102 out . p e r f = S [ , 2 ] + ex . g ra te [ , 2 ] + ( equal . d iv [ , 1 ] − index . div [ , 1 ] )
103 mon . outpe r f = equal . r e tu rn s [ , 1 ] − index . r e tu rn s [ , 1 ]
104

105 #get average order weights
106 equal . avgOrder = t ( as . matrix ( colMeans ( equal . order ) ) )
107

108 #output in to ex c e l f i l e
109 wb. path = paste0 ( outPath , " equal weighted p o r t f o l i o . x l sx ")
110 i f ( f i l e . e x i s t s (wb . path ) ) { f i l e . remove (wb . path ) }
111

112 wb = loadWorkbook (wb . path , c r e a t e=TRUE)
113

114 #output r e tu rn s and ordered weights
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115 c r ea t eShee t (wb, " Returns ")
116 writeWorksheet (wb, equal . re turns , " Returns " , startRow = 1 , s t a r tCo l =

1)
117 writeWorksheet (wb, index . returns , " Returns " , startRow = 1 , s t a r tCo l =

5)
118

119 c r ea t eShee t (wb, "Market p o r t f o l i o − Order ")
120 writeWorksheet (wb, mktcap . avgOrder , shee t = "Market p o r t f o l i o −

order ")
121

122 c r ea t eShee t (wb, " Equal p o r t f o l i o − Order ")
123 writeWorksheet (wb, equal . avgOrder , shee t = "Equal p o r t f o l i o − order

")
124

125 #output components o f r e turn
126 c r ea t eShee t (wb, " Components o f re turn ")
127 writeWorksheet (wb, " S" ,"Components o f r e turn " , startRow = 1 , s t a r tCo l

= 1)
128 writeWorksheet (wb, S , " Components o f r e turn " , startRow = 1 , s t a r tCo l =

2)
129 writeWorksheet (wb, " Excess growth ra t e " ,"Components o f re turn " ,

startRow=1, s t a r tCo l=5)
130 writeWorksheet (wb, ex . grate , " Components o f re turn " , startRow=1,

s t a r tCo l=6)
131 writeWorksheet (wb, " Dividends " ,"Components o f re turn " , startRow=1,

s t a r tCo l=9)
132 writeWorksheet (wb, equal . div , " Components o f r e turn " , startRow=1,

s t a r tCo l =10)
133 writeWorksheet (wb, index . div , " Components o f re turn " , startRow=1,

s t a r tCo l =13)
134

135 saveWorkbook (wb)

A.7 Section 5.2 large cap portfolio

This code generates the data for the large cap portfolio in Section 5.2.

1 #****************************************************

2 # Forms the l a r g e cap p o r t f o l i o
3 #****************************************************

4

5

6 #***************************************************

7 #Calcu la te weights in the l a r g e cap p o r t f o l i o
8 #***************************************************

9 largeCap . weight = array (0 , dim=dim(mkt . cap ) )
10 colnames ( largeCap . weight ) = colnames ( index . weight )
11

12 S = array (0 , dim=c (nrow (mkt . cap ) ,2 ) )
13 colnames (S) = c ("S( t ) " ,"Change ")
14
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15 largeCap . order = array (NA, dim=dim(mkt . cap ) )
16 colnames ( largeCap . order ) = seq (1 , nco l (mkt . cap ) ,1 )
17

18

19 f o r ( row .num in 1 : nrow ( index . mktcap ) ) {
20

21 #determine l a r g e cap weights
22 temp . weight = t ( as . matrix ( index . weight [ row .num , ] ) )
23 temp . weight = temp . weight^2
24

25 largeCap . weight [ row .num , ] = temp . weight /sum( temp . weight )
26

27 #ranks vs weight comparison
28 largeCap . order [ row .num, order . index [ row .num , ] ] = largeCap . weight [

row .num , ]
29

30 #determine S
31 temp . weights = index . weight [ row .num , ]
32 temp . weights = temp . weights [ temp . weights >0]
33 S . temp = t ( as . matrix ( temp . weights ^2) )
34 S [ row .num, 1 ] = 0 .5* l og (sum(S . temp) )
35 i f ( row .num > 1) {S [ row .num, 2 ] = S [ row .num, 1 ] − S [ row .num−1 ,1]}
36

37 }
38

39 rm( temp . weight )
40 rm(S . temp)
41

42

43 #************************************************

44 #Calcu la te p o r t f o l i o r e tu rn s
45 #************************************************

46 largeCap . r e tu rn s = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
47 largeCap . r e tu rn s [ 1 , 2 ] = 1
48

49 largeCap . div = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
50 largeCap . div [ 1 , 2 ] = 1
51

52 EXGRATELAG = 12
53 ex . g ra te = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
54

55 f o r ( k in 2 : nrow ( index . r e tu rn s ) ) {
56

57 #to t a l r e tu rn s
58 temp . weights = as . matrix ( largeCap . weight [ k−1 , ] )
59 temp . r e tu rn s = as . matrix ( to t . r e tu rn s [ k , ] )
60 temp . r e tu rn s [ i s . na ( temp . r e tu rn s ) ] = 0
61 temp . r e tu rn s [ i s . i n f i n i t e ( temp . r e tu rn s ) ] = 0
62

63 largeCap . r e tu rn s [ k , 1 ] = t ( temp . r e tu rn s ) %*% temp . weights
64 largeCap . r e tu rn s [ k , 2 ] = (1+largeCap . r e tu rn s [ k , 1 ] ) * largeCap .

r e tu rn s [ k−1 ,2]
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65

66 #dividend return
67 temp . weights = as . matrix ( largeCap . weight [ k−1 , ] )
68 temp . r e tu rn s = as . matrix ( oth . r e tu rn s [ k , ] )
69 temp . r e tu rn s [ i s . na ( temp . r e tu rn s ) ] = 0
70 temp . r e tu rn s [ i s . i n f i n i t e ( temp . r e tu rn s ) ] = 0
71

72 largeCap . div [ k , 1 ] = t ( temp . r e tu rn s ) %*% temp . weights
73 largeCap . div [ k , 2 ] = (1+largeCap . div [ k , 1 ] ) * largeCap . div [ k−1 ,2]
74

75 var . temp = array (0 , dim=c (1 , nco l ( largeCap . weight ) ) )
76 covar . temp = array (0 , dim=c ( nco l ( largeCap . weight ) , nco l ( largeCap .

weight ) ) )
77

78 #determine exce s s growth ra t e
79 i f ( k > EXGRATELAG){
80

81 #determine weight var i ance
82 var . temp = t ( as . matrix ( apply ( to t . r e tu rn s [ ( k−EXGRATELAG+1) : k

, ] , 2 , f unc t i on (x ) var (x , na . rm=TRUE) ) ) )
83 covar . temp = cov ( to t . r e tu rn s [ ( k−EXGRATELAG+1) : k , ] , use="

everyth ing ")
84

85 covar . temp [ i s . na ( covar . temp) ] = 0
86 var . temp [ i s . na ( var . temp) ] = 0
87

88 s imple = var . temp %*% temp . weights
89 port . covar = t ( temp . weights ) %*% covar . temp %*% temp . weights
90

91 ex . g ra te [ k , 1 ] = 0 . 5* ( s imple−port . covar )
92

93 i f ( k > EXGRATELAG + 1) {ex . g ra te [ k , 2 ] = ex . g ra te [ k , 1 ] − ex .
g ra te [ k−1 ,1]}

94 }
95

96 }
97 rm( temp . r e tu rn s )
98 rm( temp . weights )
99

100 #to t a l r e l a t i v e outperformance
101 out . p e r f = S [ , 2 ] + ex . g ra te [ , 2 ] + ( largeCap . div [ , 1 ] − index . div

[ , 1 ] )
102 mon . outpe r f = largeCap . r e tu rn s [ , 1 ] − index . r e tu rn s [ , 1 ]
103

104 #get average order weights
105 largeCap . avgOrder = t ( as . matrix ( colMeans ( largeCap . order ) ) )
106

107 #output in to ex c e l f i l e
108 wb. path = paste0 ( outPath , " largeCap weighted p o r t f o l i o . x l sx ")
109 i f ( f i l e . e x i s t s (wb . path ) ) { f i l e . remove (wb . path ) }
110

111 wb = loadWorkbook (wb . path , c r e a t e=TRUE)
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112

113 #output r e tu rn s and ordered weights
114 c r ea t eShee t (wb, " Returns ")
115 writeWorksheet (wb, largeCap . returns , " Returns " , startRow = 1 ,

s t a r tCo l = 1)
116 writeWorksheet (wb, index . returns , " Returns " , startRow = 1 , s t a r tCo l =

5)
117

118 c r ea t eShee t (wb, "Market p o r t f o l i o − Order ")
119 writeWorksheet (wb, mktcap . avgOrder , shee t = "Market p o r t f o l i o −

order ")
120

121 c r ea t eShee t (wb, " largeCap p o r t f o l i o − Order ")
122 writeWorksheet (wb, largeCap . avgOrder , shee t = " largeCap p o r t f o l i o −

order ")
123

124 #output components o f r e turn
125 c r ea t eShee t (wb, " Components o f re turn ")
126 writeWorksheet (wb, " S" ,"Components o f r e turn " , startRow = 1 , s t a r tCo l

= 1)
127 writeWorksheet (wb, S , " Components o f r e turn " , startRow = 1 , s t a r tCo l =

2)
128 writeWorksheet (wb, " Excess growth ra t e " ,"Components o f re turn " ,

startRow=1, s t a r tCo l=5)
129 writeWorksheet (wb, ex . grate , " Components o f re turn " , startRow=1,

s t a r tCo l=6)
130 writeWorksheet (wb, " Dividends " ,"Components o f re turn " , startRow=1,

s t a r tCo l=9)
131 writeWorksheet (wb, largeCap . div , " Components o f re turn " , startRow=1,

s t a r tCo l =10)
132 writeWorksheet (wb, index . div , " Components o f re turn " , startRow=1,

s t a r tCo l =13)
133

134 saveWorkbook (wb)

A.8 Section 5.3 entropy weighted portfolio

This code generates the data for the entropy weighted portfolio in Section 5.3.

1 #****************************************************

2 # Forms the entropy weighted p o r t f o l i o
3 #****************************************************

4

5

6 #***************************************************

7 #Calcu la te weights in entropy p o r t f o l i o
8 #***************************************************

9 entropy . weight = array (0 , dim=dim(mkt . cap ) )
10 colnames ( entropy . weight ) = colnames ( index . weight )
11

12 S = array (0 , dim=c (nrow (mkt . cap ) ,2 ) )
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13 colnames (S) = c ("S( t ) " ,"Change ")
14

15 entropy . order = array (NA, dim=dim(mkt . cap ) )
16 colnames ( entropy . order ) = seq (1 , nco l (mkt . cap ) ,1 )
17

18

19 f o r ( row .num in 1 : nrow ( index . mktcap ) ) {
20

21 #determine entropy weights
22 temp . weight = t ( as . matrix ( index . weight [ row .num , ] ) )
23 l og . temp . weight = log ( temp . weight )
24 temp . S = ( temp . weight * l og . temp . weight )
25 temp . S [ i s . nan ( temp . S) ] = 0
26

27 entropy . weight [ row .num , ] = ( temp . S) /sum( temp . S)
28

29 #ranks vs weight comparison
30 entropy . order [ row .num, order . index [ row .num , ] ] = entropy . weight [

row .num , ]
31

32 #determine S
33 S [ row .num, 1 ] = −sum( temp . S)
34 i f ( row .num > 1) {S [ row .num, 2 ] = S [ row .num, 1 ] − S [ row .num−1 ,1]}
35

36 }
37

38 rm( temp . weight )
39 rm( temp . S)
40

41

42 #************************************************

43 #Calcu la te p o r t f o l i o r e tu rn s
44 #************************************************

45 entropy . r e tu rn s = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
46 entropy . r e tu rn s [ 1 , 2 ] = 1
47

48 entropy . div = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
49 entropy . div [ 1 , 2 ] = 1
50

51 EXGRATELAG = 12
52 ex . g ra te = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
53

54 f o r ( k in 2 : nrow ( index . r e tu rn s ) ) {
55

56 #to t a l r e tu rn s
57 temp . weights = as . matrix ( entropy . weight [ k−1 , ] )
58 temp . r e tu rn s = as . matrix ( to t . r e tu rn s [ k , ] )
59 temp . r e tu rn s [ i s . na ( temp . r e tu rn s ) ] = 0
60 temp . r e tu rn s [ i s . i n f i n i t e ( temp . r e tu rn s ) ] = 0
61

62 entropy . r e tu rn s [ k , 1 ] = t ( temp . r e tu rn s ) %*% temp . weights
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63 entropy . r e tu rn s [ k , 2 ] = (1+entropy . r e tu rn s [ k , 1 ] ) * entropy .
r e tu rn s [ k−1 ,2]

64

65 #dividend return
66 temp . weights = as . matrix ( entropy . weight [ k−1 , ] )
67 temp . r e tu rn s = as . matrix ( oth . r e tu rn s [ k , ] )
68 temp . r e tu rn s [ i s . na ( temp . r e tu rn s ) ] = 0
69 temp . r e tu rn s [ i s . i n f i n i t e ( temp . r e tu rn s ) ] = 0
70

71 entropy . div [ k , 1 ] = t ( temp . r e tu rn s ) %*% temp . weights
72 entropy . div [ k , 2 ] = (1+entropy . div [ k , 1 ] ) * entropy . div [ k−1 ,2]
73

74 var . temp = array (0 , dim=c (1 , nco l ( entropy . weight ) ) )
75 covar . temp = array (0 , dim=c ( nco l ( entropy . weight ) , nco l ( entropy .

weight ) ) )
76

77 temp . index . weights = as . matrix ( index . weight [ k−1 , ] )
78

79 #determine d r i f t
80 i f ( k > EXGRATELAG){
81

82 #determine weight var i ance
83 var . temp = t ( as . matrix ( apply ( to t . r e tu rn s [ ( k−EXGRATELAG+1) : k

, ] , 2 , f unc t i on (x ) var (x , na . rm=TRUE) ) ) )
84 covar . temp = cov ( to t . r e tu rn s [ ( k−EXGRATELAG+1) : k , ] , use="

everyth ing ")
85

86 covar . temp [ i s . na ( covar . temp) ] = 0
87 var . temp [ i s . na ( var . temp) ] = 0
88

89 s imple = var . temp %*% temp . index . weights
90 port . covar = t ( temp . index . weights ) %*% covar . temp %*% temp .

index . weights
91

92 ex . g ra te [ k , 1 ] = 0 . 5* ( s imple−port . covar ) /S [ k , 1 ]
93

94 i f ( k > EXGRATELAG + 1) {ex . g ra te [ k , 2 ] = ex . g ra te [ k , 1 ] − ex .
g ra te [ k−1 ,1]}

95 }
96

97 }
98 rm( temp . r e tu rn s )
99 rm( temp . weights )
100

101 #to t a l r e l a t i v e outperformance
102 out . p e r f = S [ , 2 ] + ex . g ra te [ , 2 ] + ( entropy . div [ , 1 ] − index . div

[ , 1 ] )
103 mon . outpe r f = entropy . r e tu rn s [ , 1 ] − index . r e tu rn s [ , 1 ]
104

105 #get average order weights
106 entropy . avgOrder = t ( as . matrix ( colMeans ( entropy . order ) ) )
107
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108 #output in to ex c e l f i l e
109 wb. path = paste0 ( outPath , " entropy weighted p o r t f o l i o . x l sx ")
110 i f ( f i l e . e x i s t s (wb . path ) ) { f i l e . remove (wb . path ) }
111

112 wb = loadWorkbook (wb . path , c r e a t e=TRUE)
113

114 #output r e tu rn s and ordered weights
115 c r ea t eShee t (wb, " Returns ")
116 writeWorksheet (wb, entropy . returns , " Returns " , startRow = 1 , s t a r tCo l

= 1)
117 writeWorksheet (wb, index . returns , " Returns " , startRow = 1 , s t a r tCo l =

5)
118

119 c r ea t eShee t (wb, "Market p o r t f o l i o − Order ")
120 writeWorksheet (wb, mktcap . avgOrder , shee t = "Market p o r t f o l i o −

order ")
121

122 c r ea t eShee t (wb, " entropy p o r t f o l i o − Order ")
123 writeWorksheet (wb, entropy . avgOrder , shee t = " entropy p o r t f o l i o −

order ")
124

125 #output components o f r e turn
126 c r ea t eShee t (wb, " Components o f re turn ")
127 writeWorksheet (wb, " S" ,"Components o f r e turn " , startRow = 1 , s t a r tCo l

= 1)
128 writeWorksheet (wb, S , " Components o f r e turn " , startRow = 1 , s t a r tCo l =

2)
129 writeWorksheet (wb, " Excess growth ra t e " ,"Components o f re turn " ,

startRow=1, s t a r tCo l=5)
130 writeWorksheet (wb, ex . grate , " Components o f re turn " , startRow=1,

s t a r tCo l=6)
131 writeWorksheet (wb, " Dividends " ,"Components o f re turn " , startRow=1,

s t a r tCo l=9)
132 writeWorksheet (wb, entropy . div , " Components o f re turn " , startRow=1,

s t a r tCo l =10)
133 writeWorksheet (wb, index . div , " Components o f re turn " , startRow=1,

s t a r tCo l =13)
134

135 saveWorkbook (wb)

A.9 Section 5.4 diversity weighted portfolio

This code generates the data for the diversity weighted portfolio in Section
5.4.

1 #****************************************************

2 # Forms the Dp weighted p o r t f o l i o
3 #****************************************************

4

5 #p=1
6
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7 #***************************************************

8 #Calcu la te weights in Dp p o r t f o l i o
9 #***************************************************

10 Dp. weight = array (0 , dim=dim(mkt . cap ) )
11 colnames (Dp. weight ) = colnames ( index . weight )
12

13 S = array (0 , dim=c (nrow (mkt . cap ) ,2 ) )
14 colnames (S) = c ("S( t ) " ,"Change ")
15

16 Dp. order = array (NA, dim=dim(mkt . cap ) )
17 colnames (Dp. order ) = seq (1 , nco l (mkt . cap ) ,1 )
18

19

20 f o r ( row .num in 1 : nrow ( index . mktcap ) ) {
21

22 #determine Dp weights
23 temp . weight = t ( as . matrix ( index . weight [ row .num , ] ) )
24

25

26 temp .Dp = ( temp . weight ) ^(p)
27 temp .Dp[ i s . nan ( temp .Dp) ] = 0
28 temp .Dp = sum( temp .Dp) ^(1/p)
29

30 Dp. weight [ row .num , ] = ( temp . weight^p) /( temp .Dp^p)
31

32 #ranks vs weight comparison
33 Dp. order [ row .num, order . index [ row .num , ] ] = Dp. weight [ row .num , ]
34

35 #determine S
36 S [ row .num, 1 ] = temp .Dp
37 i f ( row .num > 1) {S [ row .num, 2 ] = S [ row .num, 1 ] − S [ row .num−1 ,1]}
38

39 }
40

41 rm( temp . weight )
42 rm( temp .Dp)
43

44

45 #************************************************

46 #Calcu la te p o r t f o l i o r e tu rn s
47 #************************************************

48 Dp. r e tu rn s = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
49 Dp. r e tu rn s [ 1 , 2 ] = 1
50

51 Dp. div = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
52 Dp. div [ 1 , 2 ] = 1
53

54 EXGRATELAG = 12
55 ex . g ra te = array (0 , dim =c (nrow ( to t . r e tu rn s ) ,2 ) )
56

57 f o r ( k in 2 : nrow ( index . r e tu rn s ) ) {
58
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59 #to t a l r e tu rn s
60 temp . weights = as . matrix (Dp. weight [ k−1 , ] )
61 temp . r e tu rn s = as . matrix ( to t . r e tu rn s [ k , ] )
62 temp . r e tu rn s [ i s . na ( temp . r e tu rn s ) ] = 0
63 temp . r e tu rn s [ i s . i n f i n i t e ( temp . r e tu rn s ) ] = 0
64

65 Dp. r e tu rn s [ k , 1 ] = t ( temp . r e tu rn s ) %*% temp . weights
66 Dp. r e tu rn s [ k , 2 ] = (1+Dp. r e tu rn s [ k , 1 ] ) * Dp. r e tu rn s [ k−1 ,2]
67

68 #dividend return
69 temp . weights = as . matrix (Dp. weight [ k−1 , ] )
70 temp . r e tu rn s = as . matrix ( oth . r e tu rn s [ k , ] )
71 temp . r e tu rn s [ i s . na ( temp . r e tu rn s ) ] = 0
72 temp . r e tu rn s [ i s . i n f i n i t e ( temp . r e tu rn s ) ] = 0
73

74 Dp. div [ k , 1 ] = t ( temp . r e tu rn s ) %*% temp . weights
75 Dp. div [ k , 2 ] = (1+Dp. div [ k , 1 ] ) * Dp. div [ k−1 ,2]
76

77 var . temp = array (0 , dim=c (1 , nco l (Dp. weight ) ) )
78 covar . temp = array (0 , dim=c ( nco l (Dp. weight ) , nco l (Dp. weight ) ) )
79

80 temp . index . weights = as . matrix ( index . weight [ k−1 , ] )
81

82 #determine d r i f t
83 i f ( k > EXGRATELAG){
84

85 #determine weight var i ance
86 var . temp = t ( as . matrix ( apply ( to t . r e tu rn s [ ( k−EXGRATELAG+1) : k

, ] , 2 , f unc t i on (x ) var (x , na . rm=TRUE) ) ) )
87 covar . temp = cov ( to t . r e tu rn s [ ( k−EXGRATELAG+1) : k , ] , use="

everyth ing ")
88

89 covar . temp [ i s . na ( covar . temp) ] = 0
90 var . temp [ i s . na ( var . temp) ] = 0
91

92 s imple = var . temp %*% temp . index . weights
93 port . covar = t ( temp . index . weights ) %*% covar . temp %*% temp .

index . weights
94

95 ex . g ra te [ k , 1 ] = 0 . 5* ( s imple−port . covar )*(1−p)
96

97 i f ( k > EXGRATELAG + 1) {ex . g ra te [ k , 2 ] = ex . g ra te [ k , 1 ] − ex .
g ra te [ k−1 ,1]}

98 }
99

100 }
101 rm( temp . r e tu rn s )
102 rm( temp . weights )
103

104 #to t a l r e l a t i v e outperformance
105 out . p e r f = S [ , 2 ] + ex . g ra te [ , 2 ] + (Dp. div [ , 1 ] − index . div [ , 1 ] )
106 mon . outpe r f = Dp. r e tu rn s [ , 1 ] − index . r e tu rn s [ , 1 ]
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107

108 #get average order weights
109 Dp. avgOrder = t ( as . matrix ( colMeans (Dp. order ) ) )
110

111 #output in to ex c e l f i l e
112 dp . name = paste0 ("Dp−output \\Dp − " ,p)
113 dp . name = paste0 (dp . name , " − weighted p o r t f o l i o . x l sx ")
114 wb. path = paste0 ( outPath , dp . name)
115 i f ( f i l e . e x i s t s (wb . path ) ) { f i l e . remove (wb . path ) }
116

117 wb = loadWorkbook (wb . path , c r e a t e=TRUE)
118

119 #output r e tu rn s and ordered weights
120 c r ea t eShee t (wb, " Returns ")
121 writeWorksheet (wb,Dp. returns , " Returns " , startRow = 1 , s t a r tCo l = 1)
122 writeWorksheet (wb, index . returns , " Returns " , startRow = 1 , s t a r tCo l =

5)
123

124 c r ea t eShee t (wb, "Market p o r t f o l i o − Order ")
125 writeWorksheet (wb, mktcap . avgOrder , shee t = "Market p o r t f o l i o −

order ")
126

127 c r ea t eShee t (wb, "Dp p o r t f o l i o − Order ")
128 writeWorksheet (wb,Dp. avgOrder , shee t = "Dp p o r t f o l i o − order ")
129

130 #output components o f r e turn
131 c r ea t eShee t (wb, " Components o f re turn ")
132 writeWorksheet (wb, " S" ,"Components o f r e turn " , startRow = 1 , s t a r tCo l

= 1)
133 writeWorksheet (wb, S , " Components o f r e turn " , startRow = 1 , s t a r tCo l =

2)
134 writeWorksheet (wb, " Excess growth ra t e " ,"Components o f re turn " ,

startRow=1, s t a r tCo l=5)
135 writeWorksheet (wb, ex . grate , " Components o f re turn " , startRow=1,

s t a r tCo l=6)
136 writeWorksheet (wb, " Dividends " ,"Components o f re turn " , startRow=1,

s t a r tCo l=9)
137 writeWorksheet (wb,Dp. div , " Components o f r e turn " , startRow=1,

s t a r tCo l =10)
138 writeWorksheet (wb, index . div , " Components o f re turn " , startRow=1,

s t a r tCo l =13)
139

140 saveWorkbook (wb)
141

142 #****************************************************

143 # Provides loop f o r Dp p o r t f o l i o
144 #****************************************************

145

146 s t epS i z e = 0.05
147

148 loopVec = seq ( s t epS i ze , 1 , by=s t epS i z e )
149
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150 f o r ( k in loopVec ) {
151 p=k
152 source ( paste0 ( sourcePath , "SPT − Dp weighted p o r t f o l i o .R") )
153 pr in t ( paste0 (p , " completed . " ) )
154 }
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