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ABSTRACT

The main goal of the developed theory is to forreikhe
biomechanical conditions (geometrical dimensiois;aelastic
properties of veins and blood fluid flow conditidrad which an
unstable behavior or even the vein collapse camrocthe
above problems are numerically modeled by thediriement
method. The weak formulation of the tube deformat®obased
on the virtual work principle. The mixed formulatiof the
finite element method with the separately interpadgoressure
is used for the structure. The strong coupling athtstructure
and fluid solvers allow us to simulate self-induckdge
deflection oscillations of the tube.

Provided that the Neo-Hook’s material model wasliadp
the analytical formula for the collapse conditiomss found. It
was proved that for the brain vein contraction abe, the
vein collapse can occurs even under normal phygicédbd
condition — the angiosynizesis.

The fluid structure interaction is studied expenitadly on
the special experimental line. The fluid structpfenomenon
is investigated both for the continuous and putgatiow and it
is evaluated by a non-invasive optical. The metisdzhsed on
optical measurements of radial displacement ofpghlsating
tube wall.

The simultaneous clinics observation (histologfalings),
in vitro experiments and numerical modeling givegfisient
data to predict biomechanical conditions of thei@synizesis.

INTRODUCTION
In human biomechanics are the structure changbofi

vessels important in many physiological situatioreg.,
pressure pulse propagation in arteries, collapseghily elastic
bridging brain veins, vein walls oscillations dugipulsating
flow, etc. [1]. Fluid structure phenomenon is higbependent
on the material properties of veins and blood amdemver on
the velocity field structure before and behind theformed
cross-section. The accurate and well-formulatemifiiructure
problem is up to now mainly elaborated for the dyeatate
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flow, for pressure pulse propagation and aneurygaveth [2,
6]. The description of such phenomenon like Koofftsounds
(the sounds heard during measurement of blood ym&ss$s
very difficult and it needs to include the respo$eelevant
part of the all cardiovascular system. The lumped 1
simulations give some chance too [5]. The adequate
explanation is not entirely done up to now. Thenmaiason of
this study is to find some relation betwehn onset of the self-
induced oscillations and the blood flow conditions together
with the material properties of the veins. Such phenomena like
pulse propagation, self-induced oscillations antapse are
clinically well indicated.

In general, two approaches for FSI (Fluid Structure
Interaction) are applied — the monolithic and treetiioned
approach. In the monolithic approach both setscpfagons,
describing the fluid and the structure, are soliggkther as a
single system of equations. The formulation is mftased on
the weak solution of the balance laws in the ALEb{&ary
Lagrangian Eulerian) formulation [6]. The corresging
nonlinear system of algebraic equations is solvegl, ey
Newton’s method. In some numerical realizations @MRES
(General Minimal Residual Method) is applied, toypde good
precondition for the solution of the corresponditigear
systems. However, to save the numerical stab#ityne
additional tricks are needed. For example, thekstdangular
approximations of the Jacobian matrix, obtainechéglecting
selected fluid—structure interaction blocks wereduin [3].
The monolitical approach is more straightforwardnir the
mathematical point of view; nevertheless, it candpproblems
in practice. One is due to the attempt to captuithimv one
discretization procedure the completely differepatgal and
temporal characteristics of the flow and the strtet which
can lead to an ill-conditioned system of equatiohsother
problem is that sometimes it is difficult to te$tetsolvers
separately (flow through rigid tube test, etc.)vbitheless, the
monolitical approach is intensively studied and eom



satisfactory results of numerical simulation shobdreached
[2, 6].

The partitioned approach, which uses two sepa@ters
for fluid and structure, contrary to the monolitligproach, has
to transfer the values between both solvers on gahlevel.

Two ways are possible — the so-called strong cogpli
strategy, where the balance of momentum is reacedach
time level using sub iterations, and the weak cogpstrategy,
sometimes also referred to as the loose coupliagesty, where
both solvers are run only once in each time steprembalance
of forces is guaranteed. The latter approach i&isig only in
cases where the momentum transferred between bhtrs is
small, for example for the pressure pulse propagati
aneurysm growth or in aeroelasticity problems. Tpaper is
concentrated to the strong coupling strategy td fire onset of
self-induced oscillation (generated by a positiredback). The
flow is for simplicity supposed as 1D and the visiiaken as a
3D structure under finite deformations [8].

The analytical, more qualitative analysis elucidatbe
simple relation between elastic modulus of vein #relblood
flow rate. Both numerical simulation and analyticahclusions
are compared with experiments [7].

NOMENCLATURE

o, Jo [1] unit vectors describing fiber directions

a, by [1] shape functions

A A [m?] actual, initial cross-sectional area of the tulesp.
c [ms?] speed of disturbance, sound speed

¢t [1] Finger deformation tensor

C=F"F [1] Green deformation tensor

C,T [0 md elasticity tensors,

dv [m?] volume element

D, Do [m] actual, initial tube diameter, resp.

D [9 m? auxiliary tensor

f [s-] frequency

f [Nm? external surface force

F=0dx/oX [1] the deformation gradient

G [1] Lagrange deformation tensor

h [m] distance between two neighboring nodes

ho [m] thickness of the tube wall

Iy, 12, 13 [1] invariants of tenso€

j = det\F\ [1] determinant of th&
NA [1] anisotropy pseudo-invariant (Gent model)
Im [1] fiber extensibility parameter (Gent model)

k [m?Y] wave number

K stiffness matrix

Ko [Pa] tube stiffness coefficient

I, 1o [m] actual, initial length of flexible tube, resp.

m [ka] mass

M [ka] mass matrix

Nis [1] number of load steps

N, N [1] number of elements, number of element nodes
N [1] node index set

No, Ng [1] number of pressure or displacement unknowns
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p [Pa] static pressure in fluid
P [Pa] pressure computed from displacement
q [m] discretized displacement vector
Q [m*s? flow rate
r [N] vector of external forces
r,9,z cylindrical coordinates
R Ry [m] actual, initial radius of the tube, resp.
Re, Re [1] actual, critical Reynolds number, resp.
s [Jkg*K™Y]  entropy
S [Js] action
SS [1] second Piola-Kirchhoff stress, prestress tenso
resp.
t, to [Pa] Cauchy stress, prestress tensor, resp.
T K1, [s] temperature, time period
T, [N] tube tension
u [m] displacement vector
v [ms? fluid velocity
V, Vo [m?] actual, initial volume, resp.
u [Ikg] internal energy
X, X [m] actual, initial position, resp.
o [1] material exponent
% [rad m"] relative distorsion
5 [1] Kronecker’s delta symbol
€ [1] element index set
&R [1] fluid-structure relaxation parameter
K [Pa] compressibility modulus
A A [1] relative extension, frictional coefficient
u [Pa] shear modulus
Ug [Pas] dynamic viscosity
aniso aniso [Pa]r [l]
Koo Jm Gent anisotropic material parameters
vEp /o [m?s!] kinematic viscosity
P, Po [kg m?] actual, initial density, resp.
T, Tid [s] FSI time step, time step for fluid solver
01,01,0,,0,,3  [rad] fiber orientation angles
Y O md strain energy function (isochoric + volumetric
parts)
[9 m?¥ strain energy function (isochoric, volumetrictatio)
quso ! LIJvuI ! quulz
® [sY angular velocity

HAMILTONIAN AND VARIATIONAL
BALANCE LAWS

The deformation of a solid elastic body canfdrenulated
on the base of the Hamiltonian principle

ijo [2 0w (X t)) u(s(X,1),G (X 1))-eX )} dvdt (1)

0 VO
whereu(X,t) =x(X,t)- X is displacement of material poiit

PRINCIPLES-

into position x(X,t), dv is a volume element Figure 1. The

measure of the deformation in material descripisobagrange
deformation tenso , or

G, (1) = [au +% dy ay
oX. oX, o0X; oX.
(Einstein summation rule is applied.) Internal eyerof
material point isu(s(X,t)G (X t)) and depends on the entropy
s(X,t) and on the deformationg(X) is the density of the

potential energy. The entropy is not well measwaplantity,
but can be used as a measure of the process bitaligy.

], fori,j=12,%(2)



DEFORMATION
REFERENCE CONFIGURATION | | ACTUAL CONFIGURATION
MATERIAL DESCRIPTION (Xt) | | SPACE DESCRIPTION (x,t)

da=Yda,

df ~XdA, %vmm::j (@,)
&Y V«b) 5J.(@)
Vi

= Q
- x=x(X,f) _t s—dx oV
= u(X,t) N
P= T(x,t) av=Ydv.

T(X,0) v

il
XX
Figure 1 Deformation of a continuum body with initial volem
V, into actual volume/ .

The first variation of this functional with respeotthe material
point trajectoryx(X,t) is

55:”p05| (X, t),X )dvdt, for & (X t) =& X t)

to Vo (3)
6I(X,t):%66u' _ [auj G [a_uj s . 09 s,
ot ot 0G ), 0u, \0s)s duy, aq

The body density, (X) in the reference configuration does not
depend on the deformation. The volume forces apressed
by the gradientdg/ du, , where vectotu = (U, U, , U, ) is the

displacement. Due to the definition of internal rgyethe
variation of it is equal

Su :[a—”j 6s+[ a“] 5G =Ts+->5G (4)

0s /g 0G J Po
where S is the second Piola-Kirchhoff stress tensor. The
entropy can be split into reversible (i.e., equilim) and
irreversible (i.e., non-equilibrium) parts
Tds=Tds,, +T3s, (5)

We omit the irreversible part of the entropy for gurpose; it
results in the neglecting of such irreversible psses, like
viscoelasticity, thermal conductivity and chemicahctions.
Including definitions (4) and integrating per partke variation
of (3) can be written in the form

5s—j N sl -
—Vpo el

o

(6)

t
0°u,  _0G 0s, 10
+S—+p,J—2+p,— |8u, dvdt =0
”{pO ot ou PO gy Pogy |

The displacement variationdu(X,t) =ox(X,t), which is

equivalent to the material point trajectory vanati see Figure
1, is at the beginning and at the end of deformatigual zero,
e., the first integral in the variation (6) israe When the
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necessary condition of extreme (6) is valid for hediome
tO(t,,t) we obtain the extended virtual work principle

0’y _0G 0s, 0]
—L+S—+p T —2+p,— Bu,dv=
J[p" o> oy, Po au, p°aq '

()

Vo
0°u, . 9g
+ 6udv+J.6 ,G dv=0
Jp(atz aulj o+ [ ox

Applying this virtual work principle, the arbitraryirtual

displacementdu are assumed. When they are in directions of

the displacement of material poinX the balance of

momentum is satisfied and when they are orthogonal to the

constraint forces (which is not usually this case, this
derivation works only for special cases), the caist forces
do no work.

The function variation

&u(s,G):Ksa—Gj +poT[aS‘*“j }611. 8)
oy, . oy, .

is the strain energy density change induced byetternal
surface forces and by the internal processes. Sitain energy
density is composed from the pure elastic energgn(ropic
processes only) and thermal energy generated bymthe
elasticity.

The total external surface forde= (f,, f,, f,) effecting on the

actual surfaceV in the actual configuration is

If(xt)da Jt“(xt)da1 th“(xt) CdA =

v v,
Iai T, (Xx,t)dv, for T, (X X t)=
O )
ax. oX
orS (X,t)= ——’t Xt
S X,t)= Jaxk x.t),

where j = de 0% | def| | =X , =X
ox, X x

Here t, (x,t) it the Cauchy stress tensor ag(X,x,t)is the
first Piola-Kirchhoff stress and5; (X,t) is the second Piola-

Kirchhoff stress tensor. The corresponding extenmathanical
energy loaded on the body is

(ax (X,1)+p, ;j"]aui =0 (10)

The first term is the influence of the surface ®rmand the
second term is generated by the external potestiatgy (e.g.,
gravitational, centrifugal etc.) The conditioraigplicable for a
static analysis only.

The formula (9) is applied for the formulation dfetexternal
boundary conditions as well. In our case of thgilfflie tube the
most important external force is the static pressu(x,t), i.e.,

t; = pd;. The condition of the virtual work (7) has to be
completed by the external mechanical energy



[ it t) k5uM [ e, 2 » Yosuda (1)
v, v,

which is included as the boundary conditions on sheace

0V, . The balance of the mass is not included up to. mothis

integral formulation it is necessary to add madarixze as

the additional constraint to the virtual princigl®. The initial

density p,(X) changes during deformation to the actual density

p(xt) by the formula

PP _1-])
Po i

The equation (12) is the formulation tfe balance of mass,

where j = det(F) =p, /p .The change of density is completely

determine by the deformation gradidnbr alternatively by the
Lagrange deformation tensor (2). Finally, to theaist energy
density has to be added the mechanical energy inorgathe

term (1-j)dp, where p is static pressure (its physical
meaning is the density of mechanical energy andesehere
like Lagrange multiplier). The pressurp is included like

another new variable included in the strain enduggtion. As
it is commonly used, the strain enengyis divided in the three

parts

Py = jp, Or (12)

W (T.6) =0 (T.6)+uu(T.6)- B2

forr):—d%j“", j=det(F), B =FF-I

total

(13)

the isochoric party,and the volumetric partp,, and an

additional term, which relates to the presspreand to the
pressurep computed from displacements. The paramater

serves as a penalty parameter and is usually emudhe
compressibility modulus. The final form of the vial work
principle (7) is

0%u. ap |9G
J- Po 2‘6k r |+ o _p-p u,dv=0,
at 3G K oG, a
v , (14)

%
ou,

where 1, (1 )=—p, forj=1,2,3

[P Faotv=o
D

(15)
TemperatureTl is taken as a constant.

MODEL FORMULATION

The fluid-structure interaction problem is not gbfsto solve
analytically in general. Due to its complexity Wave to apply
some numerical method. Usually, the combinatiotheffinite
difference method (used for time dependence) aedfittite
element method (for space dependence) is expldiis T
approach is widely studied for its advantages tuite the
materials that are slightly or entirely incompréssi and
anisotropic. Materials are considered hyperelassigghtly
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compressible and are described by the strain erferggtion
g.
A two-field approximation is used, the problem uokms
being displacement and the separately interpolated presgure
In this paper we use three materials — the-Neokean, the
isotropic Gent and the anisotropic Gent matehié. note that
the strain energy function of all materials in thaper is independent
of invariant |, (the second invariant of the right Cauchy-Greeaistr

tensorC). Firstly, we have to derive expressions for theistra
energy function g of these materials, the corresponding

hydrostatic pressurewith its derivatives, the second Piola-

Kirchhoff stress tensd® and the elasticity tensdr .
Neo-Hookean Model

It is the simplest hyperelastic model desatidey one
parameter (isochoric part) and the simplest mdteriadel
belonging to the Mooney-Rivlin material family. Tharameter
pMhas a straightforward physical meaning; it is equakhe

material shear modulus, which can be proven by stmall
strain limit. The model is defined by the strairesgy function

2

Wiso :‘;m(rsu—sj, Wy =5 (1707 (16)
Isotropic Gent Model

The model is based on the assumption of itwgifiber
extensibility, which holds for some organic matksjasuch as
tissues. The fibers are stretched up to some lengtare their
stiffness starts to grow by several orders of magie. This
behavior is simply modeled by the logarithmic fuoot The
Gent model is often used for its simplicity — ohlyo material
parameters with a straightforward physical meaaimgneeded.
The model is described by the strain energy functio

2
_ W _j3L-3 _K[j2-1
LIJiso - Tmln [1 ‘]n::] wvol _2[2 InJ (17)

Anisotropic Gent Model

We introduce an anisotropic Gent model teatften used
for simulating real artery walls. The model is lhsm the
assumption of limiting fiber extensibility. The fotion
describing anisotropy is deduced directly from thetropic
Gent model. A material is modeled as a compositdaeed
with two families of helical fibers, whose direat®are defined

by two unit vectorsa, andgo. The model consists of the

isotropic Neo-Hookean model with an additional term
describing anisotropy, denoted tpfmis"
[ _ Ky a2
Wigo = In(J 3I1—f_-’.j+t|;"""'SO W, _5(1—) (18)
Let us focus only on this term
2
aniso _ __aniso, anis | J41 _lyatlg
Y= - *Y = 1[@] =5 (19)
m



where Let us now consider that equations (25) and (2€)dafined in

|, =a,[Ca = (aoDao) C, the new unknown configuration (which we now denloyethe
(20) superscriptn+1). Let us approximate all variables in these
lg = 9, ECg (gOD go) C equations by values from the old configuration (ed by no
superscript) using the Taylor theorem
FINITE ELEMENT FORMULATION o™= B+ dp 9G; Ag, p™t=p+op
We shall find the solution of the fluid-struo¢ interaction 0G; oq "’ '
as the extreme conditions (14) and (15) by thedielement il
method. The problem is to calculate a new unknown oy 6L|J 0’y  0G
configuration, induced by a different load vectad) i.e., by ﬁ 6QJ aqjaGrS aq, 4,

the external surface force generated by the fliaa or by the
volume forcer . The set of the linear algebraic equations can oG, | 0G; 9°G;
. , = 9N j

be created either for a steady-state problem ootiertime-step E =g, + 3609 Aqr
of a time-dependent problem. The variation of th&ltstrain : '
energy (14) with respect to the displacemenand a variation o5 n+l P 9%p  0G
of the total strain energy with respect to the gpuesp (15) [E)p] :a—q_ 9G,9G,, 9 rs Aqg, .
have to be zero. The whole initial body volurkg will be Gi ! j0%rs Ok
divided into N, finite elements, which havél global element Let us denote
nodes. The global number of the nodes of the pressu - oy oy

R S = ,C = (27)
approximation i . i oG i 0(3110(3k|
Let us come from the continuous Variable$) to their discrete whereSis the second Piola-Kirchhoff stress tensor @‘Id the

counterparts  ¢,q,,...0y .P,.P,....Py,defined by the elasticity fourth-order tensor.
d If we neglect all second order terms and @ql(itépk,we

1

approximations _ _ ) _ K
get the set of linear algebraic equations whichdinto effect

N, N, the extreme conditions (23)
ul=Zak(xyz Z N (XY.2) ey s
- . 0Gj 3G, cpy 9°Gi
k=1 k=1 (21) J. ijm Jpg dV Aq +
N, 00k 0 0000 '
U3 = D 8w (%Y.2) Gesons
k=1 5 0G.
N, + Ilﬂ&b dviap, = (28)
K 0G; dqg d d
p=> b (xy2)p, (22) v,
k=1
The fluid-structure interaction is dynamic procesmsd the =r - J' spg o G; dv, k=1,.. Nq
- ) i ag
coefﬁmentsql, a, ...,qu O ...,prdepend on the time. Vo,

where b, are the by coefficients for the pressure interpoiat

Steady State Solution for d =1,2,.Nyand r =1,2,..N,, see equations (21), (22).
To show the coupling between displacemeatd pressure

pwe start with the steady problem, which is defibgd Moreover from the condition (24) we have

1 dp 9G; bby
0 ) K =
jMaa‘“ praapJa rc)'uk]dv 0,j=127% (23) IKan ag, BV g, - [ aviap,
v QJ QJ Uy Voe Vo, (29)
- [ PP dv, k=1,..N
jquv 0 (24) Vo,
Vo where we have defined the following two tensors
Approximation (21) and (22) in equations, (14) &bf) gets 1dp dp p-p 0%p
oy p dp |9G; Dy = Cijm KOG 0G,, K 0G;0G,
IETE 2 da V1,8, =0, =122 (25) - (30)
VoL Vo Limn=123 87 =5 -0 P =12
p—p — !
ijképkdv =0 (26) Values of N and\p are given according to the number of the
Vo finite elements and the order of displacement appration

and according to the corresponding pressure appeion.
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Denoting the matrix coefficients bl and external forces by
f , the equations (28) and (29) written for the wheddume

V, = ZVOE can be written in the form:
K, @)aa+K @) =f

T —

K@) +K @) =f

We have obtained the set of linear algebraic eqnatfor the
deformation and pressure incremenks| ,Ap, respectively.

The elimination of the pressure increments gets dgludal
system of equations for the static deformation.

(31)

Static Condensation of Pressure

Due to the fact that the separately intergolgbressure is
not forced to be continuous between elements, it ba
condensed out on the element level. Then the ghadsetbr of
unknowns contains only displacements, as it iscdse in the

Prestressing
The material can be prestressed in the meerdinitial)

configuration by the Cauchy stress tensgr or equivalently
by the second Piola-Kirchhoff stress tensor (@), i.
th 17 00
iF'f o o ofF"=
0O 0O

e - - 38
FiiF FiiFai FuF s (38)
FoiFai FaiFai

FsiFai
If, on the other hand, the prestraining of the makes given,
then the value of the corresponding prestress dée tfound.
This value can be found for example by a numerical
experiment. Then we use again formula (38).

= Jto_n

sym.

displacement based method. A pressure value can be g yiD FLOW MODEL

reconstructed from displacements whenever needeal |ocal
system of equations (28), (29), constructed on edement,
can be written in the form

Kuqu K lpm =

; ) (32)
Kpfa +K P al
from which we obtain
—_r1 T
p =K [tk 10 (33)
and finally
(K K K T)aa=f -k KF (34)

From the local system of equations (34), given éach
element, the global system of equations is built:
K (a)2q =f ) (35)

3.3. FLUID FLOW INTERACTION- DYNAMIC CASE

The coefficientg) in the displacement approximation (21)
depend on the time. The inertial effects are inetudn the
extended virtual work principle (14) and (15). Tihertia term
has in this approximation form

5uT_[pOUdv = 5qT{IpONTNdv} d=0q9'M g,

T
for M, = I N " Nav
VOe
where matrixM,, is usually called the consistent mass matrix.
Its actual form depends on the matfik, which is defined by
the order of an approximation of a solution on tised finite
element. Adding the inertia term (36) to the glokgtem (35)

we obtain, the system of ordinary differential etipres of the
second order

Mg +K @) =1, (0)=q,.q (0)=q (37)
which, we solve by the widely used Hilber-Hughestdn

method. This method offers second order accuratiyria and
absolute stability.

(36)
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We introduce a mathematical model descrikiimg fluid
flow. The fluid is solved by a separate solver, ethis designed
to cooperate with the structural solver describthg fluid
boundary. The solver is able to cooperate both wtith
structural solver as well as with the rigid bourydeondition.
This allows us to test the fluid solver separatélye model is
based on the following assumptions:

0 The fluid flow is one-dimensional (in space) and

isothermal.

0 The fluid is considered as Newtonian.

0 The artificial compressibility method is used.

o The fluid flows through a tube system depicted in

Figure 2.
The two rigid channels terminate the flexible pgft The
flexible part has length the left rigid part and the right rigid

part have equal Iengtr}). The cross-sectional area of the tube
is denoted byA(x,t), the cross-sectional area of the rigid parts

is denoted byAO. The fluid flows from the reservoir with

Q1 Q2 Qs Qn-1 QN
j2 Ry pI Pu D1 P2 PN-2  PN-1Dd pe Ra Pout
ma— N S—
G 6 D,
ps 2 ° ° ° ' o @ 0

Figure 2 Schematic diagram of the modeled tube system-— (
flow rate discretization points,] - pressure discretization
points)

constant pressure_. The pressures at the beginning and at the
end of the left rigid part are denoted bpl andpu ,
respectively, and analogously the pressure ateélgenhing and



at the end of the right rigid tube is denoted bg and p,_,

respectively. There are two non-reflecting elemérstrictors)

in the system, one at the beginning of the lefdrjgart and the
second one at the end of the right rigid part.

The flexible part of the tube is located within axbwith
constant pressurep_. The pressure at the input to the left

restrictor is denoted by and the pressure at the output from

the right restrictor is denoted bg_ . The tube deformation

(flexible part) is modeled by a full three-dimensional
approach, in contrary to the one-dimensional approach used
in the presented fluid model.

FLOW TROUGH FLEXIBLE TUBE

The model is one-dimensional in space, i.egahntities
depend on tim¢ and the space variabke the values of which
are supposed to be constant across the crosssedtie
standard balance laws have the following form:

0A 0(Av) _

a5 + % - 0, (39)
ov ov 10p_ A¢+S
ot VaxToax s aM (40)

wherep = p(x,t) is the fluid pressure, v = x() is the fluid
velocity, A = A(x;t) is the tube cross-sectioB(x) = TD(X) is the
circumference of the tube arfd[N/kg] is the volume force
representing viscous losses in the tube.

At the end of tube, the flow through the rigid tuljee.,
A(x,t) = A, =const) is solved, see Figure 2. From the equation
(39) follows, that the velocity in the tube is ctardt along the
tube. From the equation (40) we obtain only theethelence of
the flow rate Q(t) = Ayv(t) on the time. The corresponding
ordinary differential equation for the rigid padsito be solved
together with the equations for the middle flexihibe.

The frictional coefficient )\f— if Re< R%and

64
“Re
A, =1.02(log R¢** if Re> Re_ , whereRe, . is the critical

for which the laminar flow becomes
number Re

Reynolds number,
turbulent. The Reynolds

_ Mo _ [o(x)| D
Re(x) = vVoTAX Y
viscosity of the fluid. Our goal is to solve theuatjons (39)
and (40) with respect to velocity v and presqurethere cross-
sectionA is supposed to be knowihe structure solver in
each time step determines its values. To be able to solve the
system with respect to variablpsand v as a system of ODEs,
we use the artificial compressibility method. Thalamce of
mass is

, wherev [m?s'] is the kinematic

oy 0p , 0A , 3(AV)
pc2 at 6t 1)

wherec is the sound velocity in a fluid and it is takékelthe
parameter representing the artificial compressjbilihe speed

of soundc = ,/(dp/p), in the water is 1494 m/s at 26.

(41)
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is defined as

The solution of the equations (41) and (40) willdmne in the
variablesQ, p, whereQ = Av is the flow rate. We introduce the

non-dimensional quantit;é =Q/Q,p=p/ P, which we
for simplicity denote again &3, p. The final form of equations

is
op__pc 0Q
ot '%Po[ Qoaxj
0Q _Q(0A ~ dQ Q) 0A Apyop
W"K[EQ’&)+QO(7J Qo “2)
A s
- O%EQ‘Q‘

Let us discretize the system of equations in spaiag a
staggered grid, depicted in Figure 2, with a gritbps
h=1/(N -1). Discretization points for the pressyrare set
between the discretization points for the flow r&e The
continuity equation is discretized ip points, whereas the
balance of momentum is discretizedQmoints. Moreover, we

use the approximatios = SO. We finally get

5 —_ PC

[ ‘QOQ” Q] =1,...N-1p¢ points)

Q). q Q] -
T 1]+Q°[AJ i

2,...N-1Q points

Po

§=- A[

AP PP )\fso
M h B eC

(43)

FLUID-STRUCTURE COUPLING--STRUCTURE MESH
AND BOUNDARY CONDITIONS
We used a structured mesh consisting of lelekents, see

Figure 3. The elements are indexed by triiegk) D¢, where

index sete is defined by
:{(i,j,k); i=L..0,j=1.0; k= 1nk}
The nodes are indexed by tripl(a'sj ,k) O N, where index set
N is defined as follows
N ={(i,j k) i=0

which contains all vertex, mid-side, mid-face anidl4®lement
nodes, used by quadratic element BRICK81, BRICKAd a
BRICK60 skiping some of the indices; BRICK24 usedyo
vertex nodes and BRICK60 uses vertex and mid-siodes
only. The number behind BRICK means the numberhef t
unknown values. The structure mesh is always s#tatdandex
i parameterizes elements in the axial directiorcdse of tube
geometry, index is used in the azimuthal direction and in#lex
in the radial direction.

Let us present two wall shapes — the blockpshand the

tube shape (see Figure 3). For all shapes, thewily
conditions are used



q(0.j k)=(0,0.9
a(2n,j k)=(0p,0.0
where q(0,] k)is the displacement vector at grid poinj k).

Moreover, for the case of the quarter tube theovuaihg
symmetry conditions are used:

}D(i,j,k)DN (44)

q,(.0k) =q, (i, k)= @i j k) ON (45)
In case of the half tube we use
6,(10K) = g (i, k) = Wi KON (46)

Tube imperfections and contact algorithm

Up to now the tube cross-section was ideally cacuUowever,
this configuration does not offer a non-symmetiatuton in
case of (symmetric) pressure loading, as it obsenmveeality.
In FELIB, second and third imperfection mode carrigated

by the small parameter = +(1- R/R;) , (see Figure 3).

The possibility of wall contact is implementedly in the
second collapse mode. In this case, we apriori kiatvthe
tube comes always into contact in plae 0 and that contact
forces have nonzero components only zZdirection. The
contact forces are searched iteratively.

FLUID-STRUCTURE INTERACTION ALGORITHM
The fluid uses a staggered grid, the advantdigehich is
that the fluid pressure valueg,i=1..,N-Jare always

located in the middle of the element. Let usctdibe the
coupling algorithm. The fluid solver needs inforinat about
the cross-sectional area of the deformed tubetargpatial and
time derivatives from the structure solver at ewane instant.
Evaluation of the cross-sectidiix,t) and its derivatives has the
following steps:

1. In order to get values of the cross-section #@sd
spatial derivative irp points with high precision, the
cubic natural spline is constructed from the cross-
sections obtained in previous iteration.

2. The derivative of the cross-section in timedmputed
from cross-sections obtained at three consequeet ti
points, using the Taylor formula. In particularlua

inflow

%’?(xi,tn)at time t=t in point x=xis given by
0A — 3A()q 'tn)_4A()§ In—1)+A()§ In—z) 3
E(Xi-tn)_ 21 +O(T),
i=0,...,

1

which guarantees second order accuracy in time.
Moreover, we define

A(x,t) = A(x ) = A(X o) i = 0,..., D

I

The structure solver needs to calculate the infieenf the fluid
on the elastic tube, we need the fluid pressureictwlis
calculated from the fluid solver. Then using theisture solver
(37) the iteration process of the algorithm on ette level
can start. This fluid structure interaction (FSIyaithm is
written as
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inflow

(Dstructure(p ( X)) !
cpﬂuid (A( X))

flexible part

(47)
p(x)=

rigid part .
. rigid part

20 z
Y
- Yy
=

inflow
—t

L Q1 p1 Qo ps

Qn

flexible part

ho rigid part

2n; —2 2n;

rigid part flexible part

@—1 oordinate system origin

Figure 3 Connection of the fluid and structure grids crddig
the BRICK elements. The figure contains a nodal lperimg.
(above: collapsible channel, middle; quarter tlmdlow: half

tube). Note tha\‘Zni = N -1. The imperfection is introduced by

the small deformation of the initial tube radius,,i(1+€)R; .
where © ,® _are the discretized structure and fluid-
structure’ fluid
solver operators, respectively. We get the impécjtiation
p (X) = chIuid [q)structure(p(x)ﬂ (48)
which can be solved by means of the fixed-pointatiens.
However, the fixed-point iterations converge slovtherefore

different modifications of this method are usegriactice. We
use Steffensen’s method, whose algorithm is wrigten

p, (x) is given,

(pk—l(x)_pk—Z(X))z

Py (x) = pk_l(X)_(pk—l(X)‘pk—z(x))‘(Pk—z(X)—pk_3(x)) if k=3,6.9,..
Priig [q)structur&pk— ;(X))J therwise
k=12,..

It can be proven, that this method converges fdktar fixed-
point iterations, in case that the fixed-point dtéons are



convergent. Let us denote the difference betweencthrent
interface pressurp(x) and this proposed pressup%mp(x) as

the pressure increase in the flulg (x):

Bp (x)=p o, (x)=p(X) (49)

Within one iteration step, the pressure is trametefrom the
fluid to the structure boundary only to a certawdl defined by

the parameter dpMAX and the fluid-structure relaxation

parametee_: Ap () = ¢, x sgn(ap(x)) min(‘Apf (¥, quAx)
where, for the values, =0.5and dp, ,  =1000 P¢Ap  (x)

is the pressure increase in the fluid from thetias¢ step and
Ap(x) is the corrected pressure increase transferrethéo

structure.

The numerical procedure starts with a fluaflsimulation,
in which the tube is kept motionless (fixed). Thed-structure
interaction algorithm starts, when the fluid hasonered the
stable Poisseuille flow, only. After that, the filebe tube is
released and iterations start. In practice, thie tigbe situation
is typically simulated beforehand and the final gstee and
flow distributions are stored as the initial conatits.

RESULTS OF NUMERICAL SIMULATION

The actual application of the formulated FSI aigon is

shown as for the static tube collapse as for theahjc fluid-
structure interaction. To show the ability of thmethod, the
convergence of the strong coupling iterations malestrated.

Let us determine the dependence of the relative wross-

section Aleon the transmural pressurp-— pein the tube

middle (x:%] . Both the second and the third collapse mode are

simulated; the tube imperfection is set to 494 (0.04).
The relation between transmural pressure, lwigcoften
used in one-dimensional models and in experiménts,
1
_ a
Ppm} (50)

_ LAY AL
p-pe—Kp[l(AU] ]:AU— K,

The function (50) was used for example by Hayaghignd
with different coefficient a is used further for stability
analysis.

The dependency of the form of the tube collapse thom

transmural pressure far =3/2 is shown in Figure 4. The lost

of the structure stability (changes in the shape¥ lhe
following evolution:

* The first interesting point, marked by a trianghs), (is
when the tube losses its structural stability andhe cross-
section inflexion points appear. The cross sectiatio
significantly falls.

* The second interesting point is when the tube stalits to
be in contact, this point is denoted by a squaje From
this point the cross section ratio decreases slowly
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Figure 4 Static collapse of an elastic tube in the secondem
(denoted by solid line, Jo. = -1.75 kPa, 2p, = -2.25 kPa, 3p,

= -3.5 kPa, 4p, = -6.5 kPa, 5p, = -9.5 kPa), and in the third
mode (denoted by dot-and-dash linep6s= -2.5 kPa, 7p. = -
3.75 kPa, 8;p. = -5.25 kPa, 9p. = -8 kPa). TrianglesA)
denote points where linear stability is lost, sgsafl) denote
points of first contact between tube walls.

Flow Through Flexible Tube — Self-Excited Oscillatbns

The numerical simulation of FSI was providedthe
anisotropic Gent material (model of arteries). Téd@son was to
show the possible differences with respect to sh&ropic
material. As an interesting result was the stableexcited
low-frequency oscillations, see Figure 5. Suchlz@ns were
only observed at the physical experiments up to.now
Moreover, the numerical simulation revealed higigtrency



disturbances, induced probably by the pressure svagegeling
in the fluid between the ends of the tube. Thestudiances
cause sign changes of the flow rate and the preskising an
absolute value of the flow rate, the filtered gtz are
obtained. The pressure and the flow rate distrilmstireveal
self-excited oscillations with a main frequency28fHz, which
is a plausibly realistic estimate of the frequeabyained from
experiments if we take into account that the etégtparameter
1 =10 MPa is by one order higher then the onedal latex
tube used in experiment and moreover and From the
distribution of Reynolds number we can see thasthmilation
runs in the turbulent mode. At this point, let usrtion that
setting the numerical solver appropriately is viemgortant.
Many simulations we tried yielded irregular osdilims
without any main frequency. A sufficiently fine digtization is
also important — on coarse meshes the same tygenafation
was not achieved. (The simulation was run usingl [2{GHz
T7250 processor and needed more than three dagsterge.)

STABILITY ANALYSIS OF THE THIN-WALLED
ARTERIES AND VEINS

The numerical simulation of the flexible tub®@lapse is not,
up to now, suitable to find the relevant quantitiekich this
instability causes. The analytical, even qualigtanalysis is
more suitable for this purpose. To find the comditiof the
structural instability we start with the formulatiof the thin
tube deformation under transmural pressup- Pe (the

difference in pressure between two sides of a wedle¢ Figure
6. The tensionT, in the longitudinal direction induces in

general, the elongatioﬂ\:g—;and the torsiony, which is

defined as a relative distortioyl:% {Emd} . For convenience

the torsion angle t=yR[rad] is applied (.e.,

arctgt = yRz /z=yR).

Under these assumptions the tube deformation is
r=r(R),8=0+yZ,z=\Z (51)

and the corresponding deformation gradient has féfnwill
suppose that the material of the blood vesseldsnpressible,

i.e. j =det|F| = 1, subsequently the following relation between
deformation is valid

or Ar __ . o _R
ﬁd\ﬁ‘l' e 53 T (52)
Material Model of Veins
We apply the Neo-Hook material
t = u(c‘l” —%6”) (53)
3

which is often used for description of well-flexébmaterials
(rubber, wvulcanised rubber, biological tissug). is shear

modulus andc™' is the Finger’s strain tensor
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Figure 5. The self-induced oscillations of the pressure at
x=(3/4)l and of thez displacement ati=(3/2)n,

x=(3/4),j=n, k=0, see Figure 3.

Figure 6 The inflation, torsion and the blood vessel exi@ms
The material point shifts from the positiok = (R,8,Z) due to

the deformation to the positiorn = (r,3,z).

AN
ij—lz%%: 0, (yR)2+(LR)2 VAP
0, VAT, A2
(54)
The | invariant C, of the Green's strain tensor
,j:%:xilj,(orC:FTF)is



Ar R (55)

Finally, the Cauchy stress tensor for the Neo-Hwaklel (53)
is

_ _ RV, (rY?
C(l) —Cll+CZZ+C33—)\2+(yI’)2+[—j +(*)

z RT_“*RZ()‘ )

t,,=l1§ﬁ 3R? ! raztrz:O
_2 2024 12 u()\4r2+R2) — —
b -3H[Vf +R2]_W’ t, WVAr. L, =0 (56)

_ 252 V21| RV (1 _
‘ze‘“y“*‘zz‘“{sA Y3l R =0
Concrete relation between the blood vessel defoom#tross-
section area A) and the boundary conditions, i.e. the

transmural pressure. - p, and tensionT, we find applying

the force balance on the external and internal geaifiaces in
actual state. It can be formulated by Cauchy sti@ssor only,
i.e.,

otk .
ﬁ =0forxOV ... blood vessel, k=r & z

P=p, forxOd 6Vm ... blood vessel internal wi  (57)

p=p forxdov ...blood vessel external w.
e e

Providing thatt™ (r)is the function of radial coordinateonly,
the balance in the radial direction is
% + tr s -0

or r (58)
the balance in the azimuthal direction
10 _
Tza(rztr@)‘o (59)
and the balance in the longitudinal direction
10
?W(”rz) =0 (60)

From the relations (59) and (60) for the stressdeelements it
follows

1
~—
|
-
1
~—
1

(61)

Mz

r
With respect to the definition of stress tensor) th@ constants
are d9 = dZ =0. The equation (58) is integrated through the
thickness of the blood vessel wall

o
rIl‘l

re
tgg—t
—t _I Ssr rrdr

e’ rrin

dr=t (62)

We denote
(63)

the external and internal pressuvéith respect to the walls
orientation in the external normal direction thegsure has
effect in the opposite direction therefore the sigre minus.
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The forces balance in the radial directionvaing that
there is not distortion, i.ey =0, is

re
-t
p- pe :J.tl%'r rrdr -

r| n

: (64)
Jﬁ gﬁ_A4r2+R2_g[B)2+r2+Aq?2 dr
SR? aAr2 3N 3Rz | T

r|I'1

We introduce the substitutioh = LR and by integration we get

the final relation

2 2 2 2
_H fe Fin 1 Re 1 RO
PP -2[[&] {&) Axl )

in which, we have to apply furthermore the massseovation
law which has for the cylindrical artery the form

R=R+ hO, rg=r.+ h is valid ZTROhO: ermh (66)

h, is the initial thickness of the wall. By the rétats (66)we
eliminate parameter®,,r,,h and neglecting the terms of the

e’

2 2
second ordeE&J (EJ we derive

R) in
RV _ra_ RS
— =V 1+ —_In _
PP Ro ()‘rin] RS ArA
The internal cross-section of the artery beforeodeétion we
denoteAb and after deformatioA, i.e.,

(67)

2 2
A =TR,A=TE (68)
0 in
100 ;
(P=p)R,
wh,oo
compressible Hook’s material
0
incompressible
50 neo-Hook’s material
h=1.1 collapse extension
100 A =1.0
L=09
-150
r=10
-200 |
- 2 -1 0 1 2 3 4

log (A / Ao)

Figure 8 Dependence of the magnitude of the internal and
external pressure differencp— p_within the blood vessel on

the ratio of the arterial cross-sectionsA/Abfor the

compressible Hookean material (black line) and mgressible
Neo-Hookean material (red line).



The final form of the balance of external forcestba internal
and external arterial wall (64) including the ela$brces of the

arterial wall is
vl o (A

B=A/A,. The course of quantit pre)PO characterizing the

inflation or collapse is for the Neo-Hook matel({@a6) obvious
from the Figure 8. From here is evident that fds ttype of
materials the artery (generally tube) can expandotiapse as
well as at the internal pressure drop-off. This plods

acceptable for the description of aneurysm, whiah both
increase and as well as decrease without occuwinghe

growth of internal pressure.

(69)

ANALYSIS OF THE COLLAPSE OF THE BRAIN
BRIDGING VEINS
Provided that the elasticity of vein is giviey the general

formula
_ A
P-p, = q’[ﬂJ

where Ais the actual cross-section amg is some referential
resting cross-section when the blood does not flowthe
momentum equation (40) we replace the pressuregyiaiiom
the constitutive relation (70)

(70)

dp_0bOA  1dp_ o 0A Ao
0x O0A X' pox 0 APx p 0A
The equations (39) and (40) can be reformulate digtions

(71) to the equations foA(x,t), v(x.t) only

2 _A0®
, forc0

(71)

0A  0A ov _
o OV G OA_ A

The right side of the equation (73) representdribgon which
can causes the flow damping only. The flow qualitythe
elastic tube is described by the left side of theations (72),
(73), i.e.,

oA OA  dv _

5 (74)
@4. g.}.&%—o
ot " ox Ay ox

The system of these equations we will linearize, ive assume
that

v(xt) = v, +vi(xt)
A(xt) = A+ A'(xt)

wherev,, Ay are some constant values of the flow rate and the

cross-section. The system of non-linear equati@a} transfer
to the system of linear partial differential eqoas

(75)
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A A
ot "Voax Thax 7O
, (76)
6v'+v 6v'+c0 aA‘_O
ot Voax T ax -

The solution we will assume in the form of the satial
harmonic disturbances
21

R

with the amplitudeA, v, with the time period” and the wave
length A. We are searching the condition at which the
disturbancesA', v'will be determined by the system of linear
algebraic equations

(0-vok) A= Akv' = 0

2n

T k=

(77)

2 (78)
o pr  _
—— KA+ (w-vek)v'=0
AU ( 0 )
nonzero. The condition of existence of nonzerotsmius
(A)_Vok, _kAU
2 2 2
det 2 =lw-wk) -kcc=0 79
L B Gt Al (79)
A
Therefore for the phase velocity of the disturbaiscealid
w —_— —_—
?—votco—_l_ (80)

For collapsing tube i§ - « and for the mean flow velocity
we have the condition

1/2
v —c :(Aoaq’] (81)

0~ 0 p 0A

For the Neo-Hook material (69) the speed of distinde
(pressure pulse) velocity is equal
1/2
)

c = [AO"‘DNH ]1/2 _ {holi(l_
NHO (o OA PRo( A2
1

(82)
_ \/1EI1(T4BELO‘(

10°m10° { 0.95
The magnitude of this velocity corresponds to ¢baditions
existing within the blood vessel. Therefore itéslistic that at
some sudden movement of the head accompanied dpyt sli
shortening of the blood vessel, e.g. only about 5%,
A =0.95.
Experimental set-up
The mock line in the Biomechanical Laboratory of tBzech
Technical University in Prague is equipped with pomer-
controlled SuperPump pulsator, the software costrifie
pressure waveform and the frequency. AdjustabldeByis
resistor can be added to the circuit to adjust $heooth
operation. The specimen is placed in the experiatemamber
where the different external pressure and the gpdeiension
can be applied, see Figure 9. This set-up is useddtecting
the pulse wave velocity in large arteries.

—1J =29 cm/s



Figure 9. Two high-speed CCD cameras completed with
3D correlation system Q-450 can measure pulse weloeity.

The fluid structure phenomenon is investigated bdtle
continuous and pulsating flow is evaluated by noraesive
optical method and verified by the classical pressu
measurement method. The radial displacements gfulsating
tube wall are evaluated optically. A crash test eanwith high
frame rate of 1000 Hz (fps) was used. The frame o&tl000
Hz proved to be sufficient to register the highoedties of the
pulse wave at short distances. Mentioned set-upsatso be
used for static inflation-extension tests of eladtibes with
inner diameters in the range of 3 - 25 mm.

The investigation of the self-excited oscillatianselastic
tubes is another purpose of the above equipmerits. |
contains hydrodynamic pump that generates contirfleab,
stilling chambers for calming disturbances in tloavfin front
of and behind a specimen (portion of vein usedsting), see
Figure 10.

8. COMPARISON WITH EXPERIMENTS
The experiments were done on a apparatus in FibQreith
latex tubes with shear modulug =0.5MPa of different

thicknesses and diameters and with distilled wasethe fluid.
The pressure at the inflow; and at the outflowp, of the
flexible tube and the average fluid flow r&@evere measured.
Stable self-excited low-frequency oscillations witthe
frequency f were observed, see Table 1.

In this table Dy is the tube inner diameteh is the tube
thickness, L is the original tube lengthlLsyaineq is the
corresponding prestrained lengfh, the outside pressure, the
pressure drop on the flexible tube anthe frequency of the

Ap = p, - plobserved self-excited oscillations. The obtained

frequencies lie in the range of 0.2 - 5.6 Hz. Hogrewnot all
observed oscillations were harmonic and regularepsrted in
the table above, but some were irregular, withoumain
frequency. It is a quite delicate task to tune ékperiment to
the regime of regular self-excited oscillations.eThequency
obtained by the numerical simulation for the sheerdulus
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K =10MPa was not regular, but it was close to the fraqgu23

Hz . The discrepancy with the experiment is pdstiehused by
the different shear modulus by anisotropy (19) gadtially by
the influence of the boundary conditions. The sirpnessure
pulsation affects partially the flow conditions the whole
experimental line. Nevertheless, taking into actoudhe

extreme sensitivity of this phenomenon, the agregmeéth

above experiment is acceptable.

Do h L Lstrained Pe Ap:pZ'pl Q f
[mmHg] | [mm] | [mm] | [mm] | [kPa] | [kPa] [L/s] [Hz]

10 0.85] 95 - 2.4 0.5-0.7] 0.060-0.062.5-3

10 0.85| 95 3.3 0.4-1 | 0.065-0.0p2.9-4.3

10 0.85| 95 - 5 0.6-1.2| 0.056-0.058.3-5.6

14 1 145| 181 0 1-35 | 0.092-026 1.9-54

14 1.2 | 140 175 0 1-5.1 | 0.143-0.38B.9-5.6

20 0.85| 172 - 1.9 0.2-1.5] 0.095-0.98 0.210.6

20 0.85| 172 5.8 0.4-4.8] 0.093-0.09%5.2-0.6

20 0.85| 172 9.8 1-5.4 | 0.092-0.008.2-0.6

Table 1.Experimental data with self-exited oscillations
performed on the experimental set-up in the Fidixe

Figure 10. Left part-The flexible tube (vein) is placed ireth
pressurized chamber with the pressyse Right part —Two
stilling chambers satisfy nonreflecting conditions.

The clinical research of the bringing bra&ins shows the
existence of two type of venous brain systems; tiatl and
thick wall veins. The elastic modulus of these gd&mone order
in magnitude difference. The high sensitivity bé tthin wall
veins on the blood flow rate and extension or amtton on
their structural stability was observed. Moreovbg existence
of continuing small wall vibration under physiologl
conditions was recognized too. The shear modulpsovided
experimentally in the scope of the small deformaiovas in

the range p=(2+4)A¢ Pe and Young modulus
E=(0.6+1.216 Pa. Due to the high hyperelasticity of the
vein tissue, the ultimate stress reached the val& Pz and
the specific elongatiod | /I, = 0.2501C . Prevailing inner
diameters were in the rangf0.40+ 5.85)010 n and the



lengths (4+ 25) [1.0° m, the wall thickness of the bridging vein

was (0.1 + 0.201G n.

The total collapse of the thin bridging brain veivas observed
under the flow conditions and can be with suffitiancuracy
predicted by the formula (82). We can conclude ttre

simultaneous clinics observation (histological firgk), in vitro

experiments and numerical modeling gives sufficidata to

predict biomechanical conditions of the angiosysize(the

closing of the brain vein).

9. CONCLUSION

This paper open the way to the prediction loé t
biomechanical conditions (geometrical dimensiois;aelastic
properties of veins and blood fluid flow conditidrad which an
unstable behavior or even the vein collapse camurodt is
shown the crucial role of the material and georatri
parameters of the vein walls with the respect & fluid-
structure phenomena, like pressure pulse propagatelf-
induced oscillation, aneurysm growth etc. It waanid, that
the Neo-Hook’s material model can be applied foe th
description of steady aneurysm form (volume). Thestgion is
now how described the tissue remodeling and cooredipg
changes of elastic parameters (e.g., shear modegirs radius
and its wall thickness, etc.) As an example o$ tiieory the
conditions of the full collapse were formulatedwias shown,
that the vein collapse can occurs, even under rlorma
physiological condition in the case of the suddeoks into the
head.

The weak formulation is based on the principle hod t
extended virtual work and the further developmehtthos
approach to the implementation of the tissue reitmgien the
base of biochemistry is open. The mixed formulatadnthe
finite element method with the separately interpadgpressure
is used for the structure. The above method allowegpply not
only isotropic material but the anisotropy inducby the
collagen structure can be taken into account.

The strong coupling between structure solver anil fl
solvers allow to simulate large deflection oscitiats of the
structure. The detection of the onset of the stghd one of the
most important features of this numerical code.

To compare the simulation with the adequate exprtm
is very difficult in general. The special experirtedriine was
designed to fit and to check the accuracy of theukition [7].
Latex tubes with variable inner diameter and whltkness
were used as specimens. Moreover, the pulse pestesstrwas
performed with the human vein in vitro. The fluittusture
phenomenon was investigated by the non-invasivecalpt
method and verified by the invasive pressure method

The special attention is devoted to the biomeclanic
properties of the bringing brain veins: the exisgenf two type
of venous brain systems; thin wall and thick walins with the
one order different elastic modulus magnitude thighh
sensitivity of the thin wall veins on the blood lorate and
extension or contraction on their structural sigbilthe
existence of continuing small wall vibration under
physiological conditions. The simultaneous clinidservation
(histological findings), in vitro experiments andimerical
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modeling gives sufficient data to predict biomedbah
conditions of the angiosynizesis.
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