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ABSTRACT 
The main goal of the developed theory is to formulate the 

biomechanical conditions (geometrical dimensions, viscoelastic 
properties of veins and blood fluid flow conditions) at which an 
unstable behavior or even the vein collapse can occur. The 
above problems are numerically modeled by the finite element 
method. The weak formulation of the tube deformation is based 
on the virtual work principle. The mixed formulation of the 
finite element method with the separately interpolated pressure 
is used for the structure. The strong coupling of both structure 
and fluid solvers allow us to simulate self-induced large 
deflection oscillations of the tube.  

Provided that the Neo-Hook’s material model was applied 
the analytical formula for the collapse conditions was found. It 
was proved that for the brain vein contraction about 5%, the 
vein collapse can occurs even under normal physiological 
condition – the angiosynizesis. 

The fluid structure interaction is studied experimentally on 
the special experimental line. The fluid structure phenomenon 
is investigated both for the continuous and pulsating flow and it  
is evaluated by  a non-invasive optical. The method is based on 
optical measurements of radial displacement of the pulsating 
tube wall. 

The simultaneous clinics observation (histological findings), 
in vitro experiments and numerical modeling gives sufficient 
data to predict biomechanical conditions of the angiosynizesis. 

INTRODUCTION 
In human biomechanics are the structure changes of blood 

vessels important in many physiological situations; e.g., 
pressure pulse propagation in arteries, collapse of highly elastic 
bridging brain veins, vein walls oscillations during pulsating 
flow, etc. [1]. Fluid structure phenomenon is highly dependent 
on the material properties of veins and blood and moreover on 
the velocity field structure before and behind the deformed 
cross-section. The accurate and well-formulated fluid-structure 
problem is up to now mainly elaborated for the steady state 

flow, for pressure pulse propagation and aneurysma gowth [2, 
6].  The description of such phenomenon like Korotkoff sounds 
(the sounds heard during measurement of blood pressure) is 
very difficult and it needs to include the response of relevant 
part of the all cardiovascular system. The lumped 1D 
simulations give some chance too [5]. The adequate 
explanation is not entirely done up to now. The main reason of 
this study is to find some relation between the onset of the self-
induced oscillations and the blood flow conditions together 
with the material properties of the veins. Such phenomena like 
pulse propagation, self-induced oscillations and collapse are 
clinically well indicated. 

In general, two approaches for FSI (Fluid Structure 
Interaction) are applied – the monolithic and the partitioned 
approach. In the monolithic approach both sets of equations, 
describing the fluid and the structure, are solved together as a 
single system of equations. The formulation is often based on 
the weak solution of the balance laws in the ALE (Arbitrary 
Lagrangian Eulerian) formulation [6]. The corresponding 
nonlinear system of algebraic equations is solved e.g., by 
Newton’s method. In some numerical realizations the GMRES 
(General Minimal Residual Method) is applied, to provide good 
precondition for the solution of the corresponding linear 
systems.  However, to save the numerical stability some 
additional tricks are needed. For example, the block-triangular 
approximations of the Jacobian matrix, obtained by neglecting 
selected fluid–structure interaction blocks were used in  [3].  
The monolitical approach is more straightforward from the 
mathematical point of view; nevertheless, it can bring problems 
in practice. One is due to the attempt to capture within one 
discretization procedure the completely different spatial and 
temporal characteristics of the flow and the structure, which 
can lead to an ill-conditioned system of equations. Another 
problem is that sometimes it is difficult to test the solvers 
separately (flow through rigid tube test, etc.). Nevertheless, the 
monolitical approach is intensively studied and some 
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satisfactory results of numerical simulation should be reached 
[2, 6]. 

  The partitioned approach, which uses two separate solvers 
for fluid and structure, contrary to the monolithic approach, has 
to transfer the values between both solvers on each time level. 

Two ways are possible – the so-called strong coupling 
strategy, where the balance of momentum is reached on each 
time level using sub iterations, and the weak coupling strategy, 
sometimes also referred to as the loose coupling strategy, where 
both solvers are run only once in each time step and no balance 
of forces is guaranteed. The latter approach is suitable only in 
cases where the momentum transferred between both solvers is 
small, for example for the pressure pulse propagation, 
aneurysm growth or in aeroelasticity problems. This paper is 
concentrated to the strong coupling strategy to find the onset of 
self-induced oscillation (generated by a positive feedback). The 
flow is for simplicity supposed as 1D and the vein is taken as a 
3D structure under finite deformations [8]. 

The analytical, more qualitative analysis elucidates the 
simple relation between elastic modulus of vein and the blood 
flow rate. Both numerical simulation and analytical conclusions 
are compared with experiments [7].  

 

NOMENCLATURE 
a0, g0 [1] unit vectors describing fiber directions 
ak, bk [1] shape functions  
A, A0 [m2] actual, initial cross-sectional area of the tube, resp.  
c [m s-1] speed of disturbance, sound speed 

-1c  [1] Finger deformation tensor  

T
=C F F  

[1] Green deformation tensor 

,C C  [J m-3] elasticity tensors,  

dv [m3] volume element 
D, D0 [m] actual, initial tube diameter, resp.  

D  [J m-3] auxiliary tensor  
f [s-1] frequency 
f  [N m-2] external surface force 

/= ∂ ∂F x X  [1] the deformation gradient 
G [1] Lagrange deformation tensor 
h [m] distance between two neighboring nodes 
h0 [m] thickness of the tube wall 
I1, I2, I3 [1] invariants of tensor C 

detj = F  [1] determinant of the F 

J4 [1] anisotropy pseudo-invariant (Gent model) 
Jm [1] fiber extensibility parameter (Gent model) 
k [m-1] wave number 
K  stiffness matrix 
Kp [Pa] tube stiffness coefficient 
l, l0 [m] actual, initial length of flexible tube, resp. 
m [kg] mass 
M [kg] mass matrix 
nLS [1] number of load steps 

eN , N [1] number of elements, number of element nodes 

N  [1] node index set 
Np, Nq [1] number of pressure or displacement unknowns 

p [Pa] static pressure in fluid 
p  [Pa] pressure computed from displacement 

q [m] discretized displacement vector 
Q [m3 s-1] flow rate 
r [N] vector of external forces 

, ,r zϑ   cylindrical coordinates 

R, R0 [m] actual, initial radius of the tube, resp. 
Re, Rekrit [1] actual, critical Reynolds number, resp. 
s [Jkg-1K-1] entropy 
S [Js] action 
S, S0 [1] second Piola-Kirchhoff stress, prestress tensor, 

resp. 
t, t0 [Pa] Cauchy stress, prestress tensor, resp. 
T [K], [s] temperature, time period 
Tz [N] tube tension 
u [m] displacement vector 
v [m s-1] fluid velocity 
V, V0 [m3] actual, initial volume, resp. 
u [Jkg-1] internal energy 
x, X [m] actual, initial position, resp. 
α [1] material exponent 
γ [rad m-1] relative distorsion 
δij [1] Kronecker’s delta symbol 
ε [1] element index set 
εR [1] fluid-structure relaxation parameter 
κ [Pa] compressibility modulus 
λ, λf [1] relative extension, frictional coefficient 
µ [Pa] shear modulus 
µd [Pa s] dynamic viscosity 

,
aniso aniso

m
Jµ  

[Pa], [1]  
Gent anisotropic material parameters 

/
d

ν = µ ρ  [m2 s-1] kinematic viscosity 

ρ, ρ0 [kg m-3] actual, initial density, resp. 
τ, τfluid [s] FSI time step, time step for fluid solver 
θ1,ϕ1,θ2,ϕ2,β [rad] fiber orientation angles 
ψ  [J m-3] strain energy function (isochoric + volumetric 

parts) 

, ,
iso vol total

ψ ψ ψ

 

[J m-3] strain energy function (isochoric, volumetric, total ) 

ω [s-1] angular velocity 

 

HAMILTONIAN AND VARIATIONAL PRINCIPLES-
BALANCE LAWS  
     The deformation of a solid elastic body can be formulated 
on the base of the Hamiltonian principle 

 ( )
0 0

0

21 u ( , )
( , ), ( , ) ( ) v

2

t

l

t V

t
S u s t t d dt

t

 ∂  = − −φ ∂   
ρ∫ ∫ X

X G X X  (1) 

where ( ) ( )t t=u X, x X, - X  is displacement of material point X  

into position ( , )tx X , vd  is a volume element Figure 1. The 

measure of the deformation in material description is Lagrange 
deformation tensor G , or  

 
uu u u1

( , ) , for  , 1,2,3
2

ji l l
ij

j i i j

G t i j
X X X X

 ∂∂ ∂ ∂
= + + =  ∂ ∂ ∂ ∂ 

X  (2) 

(Einstein summation rule is applied.) Internal energy of 
material point is ( )( , ), ( , )u s t tX G X  and depends on the entropy 

( , )s tX  and on the deformation. ( )φ X  is the density of the 
potential energy. The entropy is not well measurable quantity, 
but can be used as a measure of the process irreversibility. 
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Figure 1 Deformation of a continuum body with initial volume 

0V  into actual volume V . 

The first variation of this functional with respect to the material 
point trajectory ( , )tx X  is   

 0 0

0

( )

( ( , ), ) v , for ( , ) ( , )

u u
, u

u u u

t

t V

l l
l

s l l l

S l t d dt t t

u u s
l t

t t s

=

=

δ ρ δ δ = δ

 ∂ ∂δ ∂ ∂ ∂ ∂ ∂φ   δ − + + δ    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∫ ∫

G

u X X x X u X

G
X

G

 (3)

The body density 0( )ρ X in the reference configuration does not 

depend on the deformation. The volume forces are expressed 

by the gradient / ul−∂φ ∂ , where vector 1 2 3(u ,u ,u )=u  is the 

displacement. Due to the definition of internal energy the 
variation of it is equal 

 
0s

u u
u s T s

s

∂ ∂   δ = δ + δ = δ + δ   ∂ ∂ ρ   G

S
G G

G
 (4) 

where S is the second Piola-Kirchhoff stress tensor. The 
entropy can be split into reversible (i.e., equilibrium) and 
irreversible (i.e., non-equilibrium) parts  
 eq irT s T s T sδ = δ + δ  (5) 

We omit the irreversible part of the entropy for our purpose; it 
results in the neglecting of such irreversible processes, like 
viscoelasticity, thermal conductivity and chemical reactions.    
Including definitions (4) and integrating per partes the variation 
of  (3) can be written in the form  

 
0

0

0 0

0

2
eq

0 0 02

u
u v

t

u
u v 0

u u u

t

l
l

tV

t

l
l

l l lt V

S d

s
T d dt

t

=
∂

δ ρ δ −
∂

∂ ∂ ∂ ∂φρ + + ρ + ρ δ = ∂ ∂ ∂∂ 

∫

∫ ∫
G

S

(6) 

The displacement variation ( ) ( )t tδ = δu X, x X, , which is 

equivalent to the material point trajectory variation, see Figure 
1, is at the beginning and at the end of deformation equal zero, 
i.e., the first integral in the variation (6) is zero. When the 

necessary condition of extreme (6) is valid for each time 

0( , )t t t∈  we obtain the extended virtual work principle 

 0

0 0

2
eq

0 0 02

2

0 2

u
u v=

u u u

u
u v ( , ) v=0

u

l
l

l l lV

l
l

lV V

s
T d

t

d T d
t

∂ ∂ ∂ ∂φρ + + ρ + ρ δ ∂ ∂ ∂∂ 

 ∂ ∂φρ + δ + δψ ∂∂ 

∫

∫ ∫

G
S

G

 (7) 

Applying this virtual work principle, the arbitrary virtual 
displacements δu  are assumed. When they are in directions of 
the displacement of material point X  the balance of 
momentum is satisfied and when they are orthogonal to the 
constraint forces (which is not usually this case, so this 
derivation works only for special cases), the constraint forces 
do no work.  
The function variation 

 eq
0( , ) u

u u l
l ls

s
s T

 ∂   ∂δψ = + ρ δ    ∂ ∂     G

G
G S  (8) 

is the strain energy density change induced by the external 
surface forces and by the internal processes. This strain energy 
density is composed from the pure elastic energy (isentropic 
processes only) and thermal energy generated by thermo-
elasticity.  
The total external surface force 1 2 3( , , )f f f=f  effecting on the 

actual surface V∂  in the actual configuration is  

 

0

0

1

( , ) t ( , ) t ( , )

T ( , , ) v, for T ( , , ) t ( , ),

or ( , ) t ( , ),

where det det , ,

k
i li l li k

lV V V

k
ki ki li

k lV

ji
ij kl

k l

k

l

X
f t da t da j t dA

x

X
t d t j t

X x

XX
S t j t

x x

x
j

X

∂ ∂ ∂

−

∂
= = =

∂

∂∂ =
∂ ∂

∂∂
=

∂ ∂

∂ ∂ ∂= = = =
∂ ∂ ∂

∫ ∫ ∫

∫

x x x

X x X x x

X x

x X
F F F

X x

 (9) 

   
Here t ( , )li tx  it the Cauchy stress tensor and T ( , , )ki tX x is the 

first Piola-Kirchhoff stress and ( , )ijS tX  is the second Piola-

Kirchhoff stress tensor. The corresponding external mechanical 
energy loaded on the body is 

 0( , ) u 0
uik i

k i

S t
X

 ∂ ∂φ+ ρ δ = ∂ ∂ 
X  (10) 

The first term is the influence of the surface force and the 
second term is generated by the external potential energy (e.g., 
gravitational, centrifugal etc.)  The condition is applicable for a 
static analysis only.  
The formula (9) is applied for the formulation of the external 
boundary conditions as well. In our case of the flexible tube the 
most important external force is the static pressure ( , )p tx , i.e., 

t ij ijp= δ .  The condition of the virtual work (7) has to be 

completed by the external mechanical energy  
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0 0

t ( , ) u uk k
li i k lj j k

l lV V

X X
j t dA jp dA

x x
∂ ∂

∂ ∂
δ = δ δ

∂ ∂∫ ∫x  (11) 

which is included as the boundary conditions on the surface 

0V∂ . The balance of the mass is not included up to now. In this 

integral formulation it is necessary to add mass balance as 
the additional constraint to the virtual principle (7). The initial 
density 0( )ρ X changes during deformation to the actual density 

( . )tρ x  by the formula 

 0
0

0

1
, or

j
j

j

ρ − ρ −ρ = ρ =
ρ

 (12) 

The equation (12) is the formulation of the balance of mass, 
where ( ) 0det /j = = ρ ρF .The change of density is completely 

determine by the deformation gradient F or alternatively by the 
Lagrange deformation tensor (2). Finally, to the strain energy 
density has to be added the mechanical energy containing the 
term ( )1 j p− δ , where p  is static pressure (its physical 

meaning is the density of mechanical energy and serves here 
like Lagrange multiplier).  The pressure p  is included like 

another new variable included in the strain energy function. As 
it is commonly used, the strain energy ψ  is divided in the three 

parts  

 
( ) ( ) ( ) ( )

( )

2

iso vol

vol

,
total

,

, , , 2

for det , 2 T

p p
T T T

d
p jdj

−ψ = ψ + ψ − κ
ψ= − = = −

G G G

F G F F I
 (13) 

the isochoric part isoψ and the volumetric part volψ , and an 

additional term, which relates to the pressure p and to the 
pressure p  computed from displacements. The parameter κ  

serves as a penalty parameter and is usually equal to the 
compressibility modulus. The final form of the virtual work 
principle (7) is 

0

2

0 2

0

u
+ u v 0,

u

where ( ) for 1,2,3
u

j ij
jk k k

ij ij kV

k
k

Gp p p
r d

G Gt

r j

    ∂ ∂∂ψ − ∂ρ δ + − δ =       ∂ κ ∂ ∂∂    

∂φ= −ρ =
∂

∫

u

(14) 

0

0v
V

p p
pd

−
δ =

κ∫   

     (15) 
Temperature T  is taken as a constant. 

MODEL FORMULATION 
The fluid-structure interaction problem is not possible to solve 
analytically in general.  Due to its complexity we have to apply 
some numerical method. Usually, the combination of the finite 
difference method (used for time dependence) and the finite 
element method (for space dependence) is exploit. This 
approach is widely studied for its advantages to include the 
materials that are slightly or entirely incompressible and 
anisotropic. Materials are considered hyperelastic, slightly 

compressible and are described by the strain energy function 
ψ .  

A two-field approximation is used, the problem unknowns 
being displacement u and the separately interpolated pressure p. 
     In this paper we use three materials – the Neo-Hookean, the 
isotropic Gent and the anisotropic Gent material. We note that 
the strain energy function of all materials in this paper is independent 

of invariant 2I (the second invariant of the right Cauchy-Green strain 

tensor C). Firstly, we have to derive expressions for the strain-
energy function ψ of these materials, the corresponding 

hydrostatic pressure p with its derivatives, the second Piola-

Kirchhoff stress tensor S and the elasticity tensor ℂ . 
Neo-Hookean Model 
     It is the simplest hyperelastic model described by one 
parameter (isochoric part) and the simplest material model 
belonging to the Mooney-Rivlin material family. The parameter 
µ has a straightforward physical meaning; it is equal to the 

material shear modulus, which can be proven by the small 
strain limit. The model is defined by the strain energy function 
  

 ( )
2 2
3 1iso vol

,ln 3 1
2 2

j I j− 
 
 

µ κψ = − ψ = −  (16) 

Isotropic Gent Model 
      The model is based on the assumption of limiting fiber 
extensibility, which holds for some organic materials, such as 
tissues. The fibers are stretched up to some length, where their 
stiffness starts to grow by several orders of magnitude. This 
behavior is simply modeled by the logarithmic function. The 
Gent model is often used for its simplicity – only two material 
parameters with a straightforward physical meaning are needed. 
The model is described by the strain energy function 
  

 

2
2

3 1
iso vol

,
3 1ln 1 ln

2 2 2
m

m

J j I j
j

J

−      
       

µ κ− −ψ = − − ψ = −  (17) 

 
Anisotropic Gent Model 
      We introduce an anisotropic Gent model that is often used 
for simulating real artery walls. The model is based on the 
assumption of limiting fiber extensibility. The function 
describing anisotropy is deduced directly from the isotropic 
Gent model. A material is modeled as a composite reinforced 
with two families of helical fibers, whose directions are defined 

by two unit vectors 
0 0

 and a g . The model consists of the 

isotropic Neo-Hookean model with an additional term 

describing anisotropy, denoted by aniso

iso
ψ   

 ( )
2 2aniso
3 1iso iso vol

,ln 3 1
2 2

j I j− 
 
 

µ κψ = − + ψ ψ = −  (18) 

Let us focus only on this term 

 

2
aniso aniso aniso 4 64
iso m 4aniso

m

,
1ln 1

2
I IJ

J J
J

      
   

+−ψ = −µ − =  (19) 
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where 

 
( )
( )

0 04 0 0

0 06 0 0

:

:

,I

I

= ⋅ = ⊗

= ⋅ = ⊗

a a

g

a Ca C

g Cg g C
 (20) 

FINITE ELEMENT FORMULATION 
     We shall find the solution of the fluid-structure interaction 
as the extreme conditions (14) and (15) by the finite element 
method. The problem is to calculate a new unknown 
configuration, induced by a different load vector (11) i.e., by 
the external surface force generated by the fluid flow or by the 
volume force r . The set of the linear algebraic equations can 
be created either for a steady-state problem or for one time-step 
of a time-dependent problem. The variation of the total strain 
energy (14) with respect to the displacement u, and a variation 
of the total strain energy with respect to the pressure p (15) 
have to be zero. The whole initial body volume 0V  will be 

divided into eN finite elements, which have N global element 

nodes. The global number of the nodes of the pressure 
approximation is pN .  

Let us come from the continuous variables u, p to their discrete 
counterparts 

1 2 1 2
, ,..., , , ,...,

pN Nq
q q q p p p defined by the 

approximations 
 

 

( ) ( )

( )

N N1 2
1 1

3 2N 2N
1

,, , , , ,

, , ,

q q

q

N N

k kk k
k k

N

k k
k

u a x y z q u a x y z q

u a x y z q

+ +
= =

+ +
=

≈ ≈

≈

∑ ∑

∑
 (21) 

 ( )
1

, ,
pN

k k
k

x y z pp b
=

≈∑          (22) 

The fluid-structure interaction is dynamic process and the 

coefficients 
1 2 1 2
, , ..., , , , ...,

p
q

NN
q q q p p p depend on the time.  

 
Steady State Solution 
     To show the coupling between displacement u and pressure 
p we start with the steady problem, which is defined by  

 

0

u 0, 1, 2,3
u

vij
k k

ij ij kV

Gp p p
r j

G G
d

  
 − 
    

∂∂ψ − ∂ − = =
∂ κ ∂ ∂∫ δ  (23) 

 

 

0

0v
V

p p
pd

−
δ =

κ∫  (24) 

Approximation (21) and (22) in equations, (14) and (15) gets 

 

0

0, 1, 2,3vij

k k k
kij ijV

Gp p p
q r q j

qG G
d

 
 
 
 

∂∂ψ − ∂− − = =∂∂ κ ∂∫ δ δ  (25) 

 

0

0v
k k

V

p p
b p d− δ =κ∫  (26) 

Let us now consider that equations (25) and (26) are defined in 
the new unknown configuration (which we now denote by the 
superscript n+1). Let us approximate all variables in these 
equations by values from the old configuration (denoted by no 
superscript) using the Taylor theorem 

1 1

1
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,

,

,ijn n
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ij r

n
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G
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 
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∂∂= + ∆ = + ∆∂ ∂
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+
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Let us denote 

 
2

,: :
ij ijklij ij kl

S
G G G
ψ ψ∂ ∂= =∂ ∂ ∂ℂ  (27) 

where S is the second Piola-Kirchhoff stress tensor and ℂ is the 
elasticity fourth-order tensor. 

     If we neglect all second order terms and omit ,,
k k

q pδ δ we 

get the set of linear algebraic equations which bring into effect 
the extreme conditions (23)  
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∫

∫
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 (28) 

where db are the by coefficients for the pressure interpolation, 

for  1,2,... pd N= and 1,2,... qr N= , see equations (21), (22).  

Moreover from the condition (24) we have 

 0 0e e

0e

1

, 1,...,

v v

v

ij k d
k rij r

V V

k p
V

d

Gp b b
b q p

G q

p p
b k N

d d

d

−

−

∂∂ ∆ ∆ =κ ∂ ∂ κ

− =κ

      
   
      
∫ ∫

∫
 (29) 

 where we have defined the following two tensors 

 

2

,
1

, , , 1, 2,3, , , 1, 2,3

ijmn ijmn
ij mn ij mn

pg

ij ij
ij

p p p p p
G G G G

p p p
i j m n S S i j

G

∂ ∂ − ∂= − −κ ∂ ∂ κ ∂ ∂

− ∂= = − =κ ∂

ℂD

 (30) 

Values of N and Np are given according to the number of the 
finite elements and the order of displacement approximation 
and according to the corresponding pressure approximation. 
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Denoting the matrix coefficients by K  and external forces by 
f , the equations (28) and (29) written for the whole volume 

e0 0
e

V V=∑  can be written in the form: 

 
( ) ( )

( ) ( )
uu u u

T

u

,
p

p pp p

∆ + ∆ =

∆ + ∆ =

K q q K q p f

K q q K q p f
 (31) 

We have obtained the set of linear algebraic equations for the 
deformation and pressure increments ∆q , ∆p , respectively. 

The elimination of the pressure increments gets the global 
system of equations for the static deformation. 

Static Condensation of Pressure 
     Due to the fact that the separately interpolated pressure is 
not forced to be continuous between elements, it can be 
condensed out on the element level. Then the global vector of 
unknowns contains only displacements, as it is the case in the 
displacement based method. A pressure value can be 
reconstructed from displacements whenever needed. The local 
system of equations (28), (29), constructed on each element, 
can be written in the form  

 
uu u u

T

u

,
p

pp pp

∆ + ∆ =

∆ + ∆ =

K q K p f

K q K p f
 (32) 

from which we obtain 

 ( )1 T
up ppp

−∆ = − ∆Kp K f q  (33) 

and finally 

 ( ) 11 T
uu u u u up pp p p pp p

−−− ∆ = −K K K K q f K K f  (34) 

From the local system of equations (34), given for each 
element, the global system of equations is built: 
 ( ) ( )∆ =qK q f q  (35) 

3.3. FLUID FLOW INTERACTION- DYNAMIC CASE  
       The coefficients q  in the displacement approximation (21)

depend on the time. The inertial effects are included in the 
extended virtual work principle (14) and (15).  The inertia term 
has in this approximation form 

 
{ }T T T T

0e

v v

Tfor v

V

V
V

d d

d0

0 0

=

ρ = ρ =

ρ

∫ ∫

∫

u u q N N q q M q,

  M N N

ɺɺ ɺɺɺɺδ δ δ
 (36)

where matrix VM is usually called the consistent mass matrix. 

Its actual form depends on the matrix N , which is defined by 
the order of an approximation of a solution on the used finite 
element. Adding the inertia term (36) to the global system (35) 
we obtain, the system of ordinary differential equations of the 
second order 

 ( ) ( ) ( )
1 0

, ,0 0= = =+ fMq K q q q q qɺɺ ɺ  (37) 

which, we solve by the widely used Hilber-Hughes-Taylor 
method. This method offers second order accuracy in time and 
absolute stability. 

Prestressing 
     The material can be  prestressed in the reference (initial) 

configuration by the Cauchy stress tensor 
0

t , or equivalently 

by the second Piola-Kirchhoff stress tensor (9), i.e., 
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 
 
 
 
 

 
 
 
 
  
 

= =

=

S F F

 (38) 

If, on the other hand, the prestraining of the material is given, 
then the value of the corresponding prestress has to be found. 
This value can be found for example by a numerical 
experiment. Then we use again formula (38).  

 FLUID FLOW MODEL 
      We introduce a mathematical model describing the fluid 
flow. The fluid is solved by a separate solver, which is designed 
to cooperate with the structural solver describing the fluid 
boundary. The solver is able to cooperate both with the 
structural solver as well as with the rigid boundary condition. 
This allows us to test the fluid solver separately. The model is 
based on the following assumptions: 

o The fluid flow is one-dimensional (in space) and 
isothermal. 

o The fluid is considered as Newtonian. 
o The artificial compressibility method is used. 
o The fluid flows through a tube system depicted in 

Figure 2. 
 The two rigid channels terminate the flexible part [4]. The 
flexible part has length l, the left rigid part and the right rigid 

part have equal length 
0

l . The cross-sectional area of the tube 

is denoted by ( ),A x t , the cross-sectional area of the rigid parts 

is denoted by 
0

A . The fluid flows from the reservoir with  

 

 
 
Figure 2 Schematic diagram of the modeled tube system – (• - 
flow rate discretization points,  - pressure discretization 
points) 

constant pressure 
s

p . The pressures at the beginning and at the 

end of the left rigid part are denoted by   and 
I u

p p , 

respectively, and analogously the pressure at the beginning and 
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at the end of the right rigid tube is denoted by  and 
d E

p p , 

respectively. There are two non-reflecting elements (restrictors) 
in the system, one at the beginning of the left rigid part and the 
second one at the end of the right rigid part. 
The flexible part of the tube is located within a box with 
constant pressure 

e
p . The pressure at the input to the left 

restrictor is denoted by 
in

p and the pressure at the output from 

the right restrictor is denoted by 
out

p . The tube deformation 

(flexible part) is modeled by a full three-dimensional 
approach, in contrary to the one-dimensional approach used 
in the presented fluid model. 

FLOW TROUGH FLEXIBLE TUBE 
     The model is one-dimensional in space, i.e. all quantities 
depend on time t and the space variable x, the values of which 
are supposed to be constant across the cross-section. The 
standard balance laws have the following form: 

 
( )

0,
vAA

t x
+ =

∂∂
∂ ∂  (39) 

 
8

v v 1
v vf

f

p S
v

t x x A

λ
−

∂ ∂ ∂+ + =∂ ∂ ρ ∂ �����
 (40) 

where p = p(x,t) is the fluid pressure, v = v(x,t) is the fluid 
velocity, A = A(x,t) is the tube cross-section, S(x) = πD(x) is the 
circumference of the tube and f [N/kg] is the volume force 
representing viscous losses in the tube.  
At the end of tube, the flow through the rigid tube (i.e., 

0( , )A x t A const= = ) is solved, see Figure 2. From the equation  

(39) follows, that the velocity in the tube is constant along the 
tube. From the equation  (40) we obtain only the dependence of 
the flow rate 0( ) v( )Q t A t= on the time. The corresponding 

ordinary differential equation for the rigid part has to be solved 
together with the equations for the middle flexible tube.  

The frictional coefficient 64  Ref
λ = if 

krit
Re Re≤ and 

( ) 2.51.02 log Re
f

−λ =  if 
krit

Re Re ,  > where kritRe is the critical 

Reynolds number, for which the laminar flow becomes 
turbulent. The Reynolds number Re is defined as 

( ) ( ) ( )
( )

0 0v
Re

D Qx x Dx A x== ν ν , where ν  [m2s-1] is the kinematic 

viscosity of the fluid. Our goal is to solve the equations (39) 
and (40) with respect to velocity v and pressure p, where cross-
section A is supposed to be known. The structure solver in 
each time step determines its values. To be able to solve the 
system with respect to variables p and v as a system of ODEs, 
we use the artificial compressibility method. The balance of 
mass is  

 
( )0

2

v
0

AA p A
t t xc

∂∂ ∂ ∂+ + =∂ ∂ ∂ρ
 (41) 

where c is the sound velocity in a fluid and it is taken like the 
parameter representing the artificial compressibility. The speed 

of sound ( )/
s

c p= ∂ ∂ρ in the water is 1494 m/s at 25o C.  

The solution of the equations (41) and (40) will be done in the 
variables Q, p, where Q = Av is the flow rate. We introduce the 

non-dimensional quantity 
0 0

ˆ ˆ/ , /Q Q Q p p p= = , which we 

for simplicity denote again as Q, p. The final form of equations 
is 
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0
0 0
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0 0 0

0 2

,
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f S

p c A Q
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   
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∂ ρ ∂ ∂= − +∂ ρ ∂ ∂

∂ ∂ ∂∂ ∂= − + −∂ ∂ ρ ∂∂ ∂

−
λ

       (42) 

Let us discretize the system of equations in space using a 
staggered grid, depicted in Figure 2, with a grid step 

/ ( 1)h l N= − . Discretization points for the pressure p are set 

between the discretization points for the flow rate Q. The 
continuity equation is discretized in p points, whereas the 
balance of momentum is discretized in Q points. Moreover, we 

use the approximation 
0

S S≈ . We finally get 

2
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    ∂
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  

ρ ∂ −= − + = −
∂

∂ −= − − + −
∂ ∂

λ− − = −ρ

ɺ

ɺ  (43) 

 

FLUID-STRUCTURE COUPLING--STRUCTURE MESH 
AND BOUNDARY CONDITIONS 
     We used a structured mesh consisting of brick elements, see 
Figure 3. The elements are indexed by triples ( ), ,i j k ∈ ε , where 

index set ε is defined by 

 ( ){ }; 1,..., , 1,..., , 1,...,, , i j ki n j n k ni j k = = =ε =  

The nodes are indexed by triples ( ), ,i j k ∈ N , where index set 

N is defined as follows 

 ( ){ }; 0,...,2 , 0,...,2 , 0,...,2, , i j ki n j n k ni j k = = ==N  

which contains all vertex, mid-side, mid-face and mid-element 
nodes, used by quadratic element BRICK81, BRICK24 and 
BRICK60 skiping some of the indices; BRICK24 uses only 
vertex nodes and BRICK60 uses vertex and mid-side nodes 
only. The number behind BRICK means the number of the 
unknown values. The structure mesh is always set so that index 
i parameterizes elements in the axial direction. In case of tube 
geometry, index j is used in the azimuthal direction and index k 
in the radial direction. 
     Let us present two wall shapes – the block shape and the 
tube shape (see Figure 3). For all shapes, the following 
conditions are used 
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( ) ( )

( ) ( ) ( )
0

0, , 0,0,0

2 , , ,0,0
, ,

i

j k

n j k q
i j k

= 


= 
∀ ∈

q

q
N  (44) 

where ( )0, ,j kq is the displacement vector at grid point (i,j,k). 

Moreover, for the case of the quarter tube the following 
symmetry conditions are used: 

 ( ) ( ) ( )
3 2

,0, ,2 , 0 , ,jq i k q i n k i j k= = ∀ ∈N  (45) 

In case of the half tube we use 

 ( ) ( ) ( )
3 3,0, ,2 , 0 , ,jq i k q i n k i j k= = ∀ ∈N  (46) 

 
Tube imperfections and contact algorithm 
Up to now the tube cross-section was ideally circular. However, 
this configuration does not offer a non-symmetric solution in 
case of (symmetric) pressure loading, as it observed in reality. 
In FELIB, second and third imperfection mode can be initiated 

by the small parameter ( )01 /R Rε = ± − , (see Figure 3). 

     The possibility of wall contact is implemented only in the 
second collapse mode. In this case, we apriori know that the  
tube comes always into contact in plane z = 0 and that contact 
forces have nonzero components only in z-direction. The 
contact forces are searched iteratively. 

FLUID-STRUCTURE INTERACTION ALGORITHM 
     The fluid uses a staggered grid, the advantage of which is 
that the fluid pressure values , 1,..., 1

i
p i N= − are always 

located in the middle of the element.     Let us describe the 
coupling algorithm. The fluid solver needs information about 
the cross-sectional area of the deformed tube and its spatial and 
time derivatives from the structure solver at every time instant. 
Evaluation of the cross-section A(x,t) and its derivatives has the 
following steps: 

1. In order to get values of the cross-section and its 
spatial derivative in p points with high precision, the 
cubic natural spline is constructed from the cross-
sections obtained in previous iteration. 

2. The derivative of the cross-section in time is computed 
from cross-sections obtained at three consequent time 
points, using the Taylor formula. In particular, value 

( ),i n
A

x t
t

∂
∂ at time 

n
t t= in point 

i
x x= is given by            

( ) ( ) ( ) ( ) ( )1 2 3 ,
3 , 4 , ,

,
2

0, ..., 2

i n i n i n
i n

i

A x t A x t A x tA
x t O

t

i n

− −− +∂ = + τ∂ τ
=

which guarantees second order accuracy in time.  
Moreover, we define 

             ( ) ( ) ( )2 1 0, , , , 0, ..., 2i i i i
A x t A x t A x t i n− −= = =  

The structure solver needs to calculate the influence of the fluid 
on the elastic tube, we need the fluid pressure, which is 
calculated from the fluid solver. Then using the structure solver 
(37) the iteration process of the algorithm on each time level 
can start. This fluid structure interaction (FSI) algorithm is 
written as  

 
( ) ( )( )
( ) ( )( )

structure

fluid

,x x

x x

= Φ

= Φ

A p

 p A
 (47) 

Figure 3 Connection of the fluid and structure grids created by 
the BRICK elements. The figure contains a nodal numbering. 
(above: collapsible channel, middle; quarter tube, bellow: half 

tube). Note that 2 1
i

n N= − . The imperfection is introduced by 

the small deformation of the initial tube radius, i.e., 0(1 )R± ε . 

 

where 
structure fluid

,Φ Φ are the discretized structure and fluid- 

solver operators, respectively. We get the implicit equation 

 ( ) ( )( )structurefluid
x x 

 = Φ Φp p  (48) 

which can be solved by means of the fixed-point iterations. 
However, the fixed-point iterations converge slowly, therefore 
different modifications of this method are used in practice. We 
use Steffensen’s method, whose algorithm is written as 

( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )

0

2
1 2

1
1 2 2 3

fluid structure 1

if  3,6,9,...
 

                                       otherwise  

1, 2, ...

 is given,

k k
k

k k k kk

k

x

x x
x k

x x x x

x

k

x
− −

−
− − − −

−

 − − = − − − 
 

 Φ Φ   

=

=

p

p p
p

p p p p

p

p

It can be proven, that this method converges faster then fixed-
point iterations, in case that the fixed-point iterations are 
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convergent. Let us denote the difference between the current 

interface pressure p(x) and this proposed pressure ( )
prop

xp as 

the pressure increase in the fluid ( )if
x∆p : 

 ( ) ( ) ( )
propf

x x x∆ = −p p p  (49) 

Within one iteration step, the pressure is transferred from the 
fluid to the structure boundary only to a certain level defined by 

the parameter d
MAX

p and the fluid-structure relaxation 

parameter
R

ε : ( ) ( )( ) ( )( ),sgn min df MAXR
x xx p∆ ∆∆ = ε × p pp  

where, for the values 0.5
R

ε = and d 1000 Pa
MAX

p = ( )
f

x∆p  

is the pressure increase in the fluid from the last time step and 
( )x∆p  is the corrected pressure increase transferred to the 

structure. 
     The numerical procedure starts with a fluid flow simulation, 
in which the tube is kept motionless (fixed). The fluid-structure 
interaction algorithm starts, when the fluid has recovered the 
stable Poisseuille flow, only. After that, the flexible tube is 
released and iterations start. In practice, the rigid tube situation 
is typically simulated beforehand and the final pressure and 
flow distributions are stored as the initial conditions. 

RESULTS OF NUMERICAL SIMULATION 
 The actual application of the formulated FSI algorithm is 
shown as for the static tube collapse as for the dynamic fluid-
structure interaction. To show the ability of this method, the 
convergence of the strong coupling iterations is demonstrated. 
Let us determine the dependence of the relative tube cross-

section 
0

/A A on the transmural pressure 
e

p p− in the tube 

middle 
2
l

x
 = 
 

. Both the second and the third collapse mode are 

simulated; the tube imperfection is set to 4% (ε = 0.04). 
     The relation between transmural pressure, which is often 
used in one-dimensional models and in experiments, is  

 

1

00
1 1 e

e p
p

AA p p
p p K

AA K

−−               

−− = − ⇒ = −
α α

 (50) 

The function (50) was used for example by Hayashi [4] and 
with different coefficient α  is used further for stability 
analysis. 
The dependency of the form of the tube collapse on the 
transmural pressure for 3/ 2α =  is shown in Figure 4.  The lost 
of the structure stability (changes in the shape) has the 
following evolution: 
• The first interesting point, marked by a triangle (∆), is 

when the tube losses its structural stability and on the cross-
section inflexion points appear. The cross section ratio 
significantly falls.  

• The second interesting point is when the tube wall starts to 
be in contact, this point is denoted by a square (). From 
this point the cross section ratio decreases slowly. 

 
Figure 4 Static collapse of an elastic tube in the second mode 
(denoted by solid line, 1; pe = -1.75 kPa, 2; pe = -2.25 kPa, 3; pe 
= -3.5 kPa, 4; pe = -6.5 kPa, 5; pe = -9.5 kPa), and in the third 
mode (denoted by dot-and-dash line, 6; pe = -2.5 kPa, 7; pe = -
3.75 kPa, 8; pe = -5.25 kPa, 9; pe = -8 kPa). Triangles (∆) 
denote points where linear stability is lost, squares () denote 
points of first contact between tube walls. 

Flow Through Flexible Tube – Self-Excited Oscillations 
     The numerical simulation of FSI was provided for the 
anisotropic Gent material (model of arteries). The reason was to 
show the possible differences with respect to the isotropic 
material. As an interesting result was the stable self-excited 
low-frequency oscillations, see Figure 5. Such oscillations were 
only observed at the physical experiments up to now. 
Moreover, the numerical simulation revealed high frequency 
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disturbances, induced probably by the pressure waves traveling 
in the fluid between the ends of the tube. These disturbances 
cause sign changes of the flow rate and the pressure. Using an 
absolute value of the flow rate, the filtered quantities are 
obtained. The pressure and the flow rate distributions reveal 
self-excited oscillations with a main frequency of 23 Hz, which 
is a plausibly realistic estimate of the frequency obtained from 
experiments if we take into account that the elasticity parameter 
µ = 10 MPa is by one order higher then the one for real latex 
tube used in experiment and moreover and From the 
distribution of Reynolds number we can see that the simulation 
runs in the turbulent mode. At this point, let us mention that 
setting the numerical solver appropriately is very important. 
Many simulations we tried yielded irregular oscillations 
without any main frequency. A sufficiently fine discretization is 
also important – on coarse meshes the same type of simulation 
was not achieved. (The simulation was run using Intel 2 GHz 
T7250 processor and needed more than three days to converge.) 
 

STABILITY ANALYSIS OF THE THIN-WALLED 
ARTERIES AND VEINS  
     The numerical simulation of the flexible tube collapse is not, 
up to now, suitable to find the relevant quantities, which this 
instability causes. The analytical, even qualitative analysis is 
more suitable for this purpose. To find the condition of the 
structural instability we start with the formulation of the thin 
tube deformation under transmural pressure p p

e
− (the 

difference in pressure between two sides of a wall), see Figure 
6. The tension zT  in the longitudinal direction induces in 

general, the elongation 
z

Z

∂λ =
∂

and the torsion γ, which is 

defined as a relative distortion  
rad
mZ

 
 
 

∂ϑγ = ∂ . For convenience 

the torsion angle  [rad]Rτ = γ  is applied (i.e., 

arctg /Rz z Rτ = γ = γ ). 

Under these assumptions the tube deformation is  
 ( ) , ,r r R Z z Z= ϑ = θ + γ = λ  (51) 

and the corresponding deformation gradient has form We will 
suppose that the material of the blood vessel is incompressible, 
i.e. det 1j = =F , subsequently the following relation between 

deformation is valid 

 1,  i.e. 
r r r R
R R R r

∂ λ ∂⋅ = =∂ ∂ λ  (52) 

 

Material Model of Veins 
     We apply the Neo-Hook material 
 

 (1)1

3
ij ij ijC

t c− 
 
 

= µ − δ  (53) 

which is often used for description of well-flexible materials 
(rubber, vulcanised rubber, biological tissue). µ  is shear 

modulus and 1 ijc−  is the Finger’s strain tensor  

Figure 5. The self-induced oscillations of the pressure at 

( )3/ 4x l=  and of the z- displacement at ( )3/ 2 ,ii n=  

(3 / 4) , , 0jx l j n k= = = , see Figure 3. 

 

Figure 6 The inflation, torsion and the blood vessel extension. 
The material point shifts from the position ( ), ,X R Z= θ due to 

the deformation to the position ( ), ,x r z= ϑ . 
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λ

∂ ∂= = γλ∂ ∂

γλ λ

γ

 (54) 
  
The I. invariant (1)C  of the Green’s strain tensor 

l l

ij i j

x x
C

X X

∂ ∂=
∂ ∂

, (or T=C F F ) is 
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 ( )
2 2

22

(1) 11 22 33

R rC C C C r
Rr

   
  
  

= + + = λ + γ + +λ  (55) 

Finally, the Cauchy stress tensor  for the Neo-Hook model (53) 
is     
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2 2
2 22

2 22 2
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3 3
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z r

z zz zr
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r R rt r t t
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ϑ

ϑϑ ϑ ϑ

ϑ

 
  
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 

 
 
 
 

                

+ λ +γ
= µ − = =λ

µ λ +
= µ γ + − = µγλ =

λ
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 (56) 

Concrete relation between the blood vessel deformation (cross-
section area A ) and the boundary conditions, i.e. the 

transmural pressure 
in e

p p− and tension Tz we find applying 

the force balance on the external and internal vein surfaces in 
actual state. It can be formulated by Cauchy stress tensor only, 
i.e., 
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e e
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 (57) 

Providing that ( )ikt r is the function of radial coordinate r only, 
the balance in the radial direction is 

 0rr rrt t t
r r

ϑϑ∂ −+ =∂  (58) 

the balance in the azimuthal direction  

 ( )2
2

1
0rr t

rr
ϑ

∂ =∂  (59) 

and the balance in the longitudinal direction 

 ( )1
0rzrt

r r
∂ =∂  (60) 

From the relations (59) and (60) for the stress tensor elements it 
follows 
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With respect to the definition of stress tensor (56) the constants 

are 0
z

d d
θ

= = . The equation (58) is integrated through the 

thickness of the blood vessel wall  

 
,e ,in

,d d
e e

in in

r r

rr rr
rr rr

r r

t t t
r t t r

r r
ϑϑ∂ −= − =∂∫ ∫  (62) 

We denote 

 
,e ,in

,
rr e rr

t p t p= − = −  (63) 

 
the external and internal pressure. With respect to the walls 
orientation in the external normal direction the pressure has 
effect in the opposite direction therefore the signs are minus.    

     The forces balance in the radial direction providing that 
there is not distortion, i.e. 0γ = , is 
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 We introduce the substitution 
r

r
R

=ɶ and by integration we get 

the final relation 
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 (65) 

 
in which, we have to apply furthermore the mass conservation 
law which has for the cylindrical artery the form 
 

 
0 0 e in 0 0 in
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R R h r r h R h r h= + = + π = π  (66) 

 

0h  is the initial thickness of the wall. By the relations (66)we 

eliminate parameters e e, ,R r h  and neglecting the terms of the 

second order 
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we derive 
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 (67) 

The internal cross-section of the artery before deformation we 

denote 
0

A and after deformation A, i.e., 

 2

0 0 in

2,A R A r= π = π  (68) 

 

 
Figure 8 Dependence of the magnitude of the internal and 
external pressure difference 

e
p p− within the blood vessel on 

the ratio of the arterial cross-sections 
0

/A A for the 

compressible Hookean material (black line) and incompressible 
Neo-Hookean material (red line).  
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The final form of the balance of external forces on the internal 
and external arterial wall (64) including the elastic forces of the 
arterial wall is 

 0

20 0

1 11 1
e NH

h Ap p R A

               

µ− = −β+ − = Φββλ
 (69) 

 

0= /A Aβ . The course of quantity ( ) 0

0

ep p R
h

−
µ characterizing the 

inflation or collapse is for the Neo-Hook material (56) obvious 
from the Figure 8. From here is evident that for this type of 
materials the artery (generally tube) can expand or collapse as 
well as at the internal pressure drop-off. This model is 
acceptable for the description of aneurysm, which can both 
increase and as well as decrease without occurring of the 
growth of internal pressure.      

ANALYSIS OF THE COLLAPSE OF THE BRAIN 
BRIDGING VEINS 
     Provided that the elasticity of vein is given by the general 
formula 
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A
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− = Φ  (70) 

where A is the actual cross-section and  A0 is some referential 
resting cross-section when the blood does not flow. In the 
momentum equation (40) we replace the pressure gradient from 
the constitutive relation (70) 
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The equations (39) and (40) can be reformulate by relations 
(71) to the equations for ( ) ( ), , v ,A x t x t only 
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The right side of the equation (73) represents the friction which 
can causes the flow damping only. The flow quality in the 
elastic tube is described by the left side of the equations (72), 
(73), i.e.,  
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 (74) 

The system of these equations we will linearize, i.e., we assume 
that 
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where 0 0v , A  are some constant values of  the flow rate and the 

cross-section. The system of non-linear equations (74) transfer 
to the system of linear partial differential equations 
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 (76) 

The solution we will assume in the form of the sequential 
harmonic disturbances 
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with the amplitude , vA , with the time period T and the wave 
length λ. We are searching the condition at which the 
disturbances ', v 'A will be determined by the system of linear 
algebraic equations 
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nonzero. The condition of existence of nonzero solution is 
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Therefore for the phase velocity of the disturbance is valid 
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For collapsing tube is T → ∞  and for the mean flow velocity 
we have the condition 
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For the Neo-Hook material (69) the speed of disturbance 
(pressure pulse) velocity is equal 
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 (82) 

 The magnitude of this velocity corresponds to the conditions 
existing within the blood vessel. Therefore it is realistic that at 
some sudden movement of the head accompanied by slight 
shortening of the blood vessel, e.g. only about 5%, i.e. 

0.95λ = . 
Experimental set-up 
The mock line in the Biomechanical Laboratory of the Czech 
Technical University in Prague is equipped with computer-
controlled SuperPump pulsator, the software controls the 
pressure waveform and the frequency. Adjustable systemic 
resistor can be added to the circuit to adjust the smooth 
operation. The specimen is placed in the experimental chamber 
where the different external pressure and the axial pretension 
can be applied, see Figure 9. This set-up is used for detecting 
the pulse wave velocity in large arteries.  
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Figure 9. Two high-speed CCD cameras completed with 
3D correlation system Q-450 can measure pulse wave velocity.  

 
The fluid structure phenomenon is investigated both the 
continuous and pulsating flow is evaluated by non-invasive 
optical method and verified by the classical pressure 
measurement method. The radial displacements of the pulsating 
tube wall are evaluated optically. A crash test camera with high 
frame rate of 1000 Hz (fps) was used. The frame rate of 1000 
Hz proved to be sufficient to register the high velocities of the 
pulse wave at short distances. Mentioned set-ups can also be 
used for static inflation-extension tests of elastic tubes with 
inner diameters in the range of  3 - 25 mm.  

The investigation of the self-excited oscillations in elastic 
tubes is another purpose of the above equipments. It 
contains hydrodynamic pump that generates continual flow, 
stilling chambers for calming disturbances in the flow in front 
of and behind a specimen (portion of vein used in testing), see 
Figure 10. 

8. COMPARISON WITH EXPERIMENTS 
The experiments were done on a apparatus in Figure 10 with 
latex tubes with shear modulus 0.5µ = MPa of different 

thicknesses and diameters and with distilled water as the fluid. 
The pressure at the inflow p1 and at the outflow p2 of the 
flexible tube and the average fluid flow rate Q were measured. 
Stable self-excited low-frequency oscillations with the 
frequency f were observed, see Table 1.  

In this table D0 is the tube inner diameter, h is the tube 
thickness, L is the original tube length, Lstrained is the 
corresponding prestrained length, pe the outside pressure, the 
pressure drop on the flexible tube and f the frequency of the 

2 1
p p p∆ = − observed self-excited oscillations. The obtained 

frequencies lie in the range of 0.2 - 5.6 Hz. However, not all 
observed oscillations were harmonic and regular, as reported in 
the table above, but some were irregular, without a main 
frequency. It is a quite delicate task to tune the experiment to 
the regime of regular self-excited oscillations. The frequency 
obtained by the numerical simulation for the shear modulus 

10µ = MPa was not regular, but it was close to the frequency23 

Hz . The discrepancy with the experiment is partially caused by 
the different shear modulus by anisotropy (19) and  partially by 
the influence of the boundary conditions. The strong pressure 
pulsation affects partially the flow conditions in the whole 
experimental line. Nevertheless, taking into account the 
extreme sensitivity of this phenomenon, the agreement with 
above experiment is acceptable. 
 

D0 
[mmHg] 

h 
[mm]  

L 
[mm] 

Lstrained 
[mm] 

pe 
[kPa] 

∆∆∆∆p=p2-p1 
[kPa] 

Q 
[L/s] 

f 
[Hz] 

10 0.85 95 - 2.4 0.5-0.7 0.060-0.062 2.5-3 
10 0.85 95 - 3.3 0.4-1 0.065-0.067 2.9-4.3 
10 0.85 95 - 5 0.6-1.2 0.056-0.058 4.3-5.6 
14 1 145 181 0 1-3.5 0.092-0.25 1.9-5.4 
14 1.2 140 175 0 1-5.1 0.143-0.383 1.9-5.6 
20 0.85 172 - 1.9 0.2-1.5 0.095-0.98 0.2-0.6 
20 0.85 172 - 5.8 0.4-4.8 0.093-0.095 0.2-0.6 
20 0.85 172 - 9.8 1-5.4 0.092-0.093 0.2-0.6 

 
Table 1. Experimental data with self-exited oscillations 
performed on the experimental set-up in the Figure 10. 
 

 
Figure 10. Left part-The flexible tube (vein) is placed in the 
pressurized chamber with the pressure ep . Right part –Two 

stilling chambers satisfy nonreflecting conditions.  
 
      The clinical research of the bringing brain veins shows the 
existence of two type of venous brain systems; thin wall and 
thick wall veins. The elastic modulus of these veins is one order 
in magnitude difference.  The high sensitivity of the thin wall 
veins on the blood flow rate and extension or contraction on 
their structural stability was observed.  Moreover, the existence 
of continuing small wall vibration under physiological 
conditions was recognized too.  The shear modulus µ provided 
experimentally in the scope of the small deformations was in 

the range ( ) 42 4 10 Paµ = ÷ ⋅  and Young modulus 

( ) 50.6 1.2 10E = ÷ ⋅  Pa. Due to the high hyperelasticity of the 

vein tissue, the ultimate stress reached the value 72 10 Pa⋅  and 

the specific elongation -3
0/   0.25  10 ml l∆ = ⋅ . Prevailing inner 

diameters were in the range ( ) -30.40 5.85 10 m÷ ⋅  and the 
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lengths ( ) -34 25 10 m÷ ⋅ , the wall thickness of the bridging vein 

was ( ) -30.1  0.2 10 m÷ ⋅ .  

The total collapse of the thin bridging brain veins was observed 
under the flow conditions and can be with sufficient accuracy 
predicted by the formula (82). We can conclude that the 
simultaneous clinics observation (histological findings), in vitro 
experiments and numerical modeling gives sufficient data to 
predict biomechanical conditions of the angiosynizesis (the 
closing of the brain vein). 

9. CONCLUSION 
     This paper open the way to the prediction of the 
biomechanical conditions (geometrical dimensions, viscoelastic 
properties of veins and blood fluid flow conditions) at which an 
unstable behavior or even the vein collapse can occur. It is 
shown the crucial role of the material and geometrical 
parameters of the vein walls with the respect of the fluid-
structure phenomena, like pressure pulse propagation, self-
induced oscillation, aneurysm growth etc. It was found, that  
the Neo-Hook’s material model can be applied for the 
description of steady aneurysm form (volume). The question is 
now how described the tissue remodeling and corresponding 
changes of elastic parameters (e.g., shear modulus, vein radius 
and its wall thickness, etc.)  As an example of this theory the 
conditions of the full collapse were formulated. It was shown, 
that the vein collapse can occurs, even under normal 
physiological condition in the case of the sudden stroke into the 
head.  

The weak formulation is based on the principle of the 
extended virtual work and the further development of this 
approach to the implementation of the tissue remodeling on the 
base of biochemistry is open. The mixed formulation of the 
finite element method with the separately interpolated pressure 
is used for the structure. The above method allows to apply not 
only isotropic material but the anisotropy induced by the 
collagen structure can be taken into account.  

The strong coupling between structure solver and fluid 
solvers allow to simulate large deflection oscillations of the 
structure. The detection of the onset of the stability is one of the 
most important features of this numerical code. 

To compare the simulation with the adequate experiment 
is very difficult in general. The special experimental line was 
designed to fit and to check the accuracy of the simulation [7]. 
Latex tubes with variable inner diameter and wall thickness 
were used as specimens. Moreover, the pulse pressure test was 
performed with the human vein in vitro. The fluid structure 
phenomenon was investigated by the non-invasive optical 
method and verified by the invasive pressure method.  

The special attention is devoted to the biomechanical 
properties of the bringing brain veins: the existence of two type 
of venous brain systems; thin wall and thick wall veins with the 
one order different elastic modulus magnitude the high 
sensitivity of the thin wall veins on the blood flow rate and 
extension or contraction on their structural stability the 
existence of continuing small wall vibration under 
physiological conditions. The simultaneous clinics observation 
(histological findings), in vitro experiments and numerical 

modeling gives sufficient data to predict biomechanical 
conditions of the angiosynizesis. 
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