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ABSTRACT

Only the linear viscous fluid is considered herein
along with the Reynolds decomposition. A uniqueness
theorem is presented for the mean motion equations
which shows that the Reynolds tensor is not uniquely
defined. The mean pressure field is also not unique.
Some implications of this non–uniqueness for the con-
struction of turbulence models are discussed. In par-
ticular, the non–uniqueness allows a gauge field to be
introduced. One such field is Beltrami.

BACKGROUND

Practical engineering computations of turbulent
flows are based upon the mean motion equations and
a turbulence model. As pointed out in [1] there is
no reason to assume that the mean motion equa-
tions, along with a turbulence model, comprise a sys-
tem of equations with nice mathematical properties.
In particular, does such a system possess a solution?
The present study sets out some of the consequences
of the Reynolds decomposition in terms of the non–
uniqueness inherent in the field equations. The non-
uniqueness present in the mean motion equations re-
volves around the construction of a gauge field and
some properties of that field are explored. The main
constraint on the gauge field being its divergence free
nature.

It is well known that there are no complete
uniqueness, existence and regularity results for the
instantaneous Navier–Stokes equations. The papers
contained in the four volumes of [2] summarize many
properties of these equations. However, the proper-
ties of the Reynolds averaged Navier–Stokes equations
have been less well studied. It can be noted that
the large eddy simulation technique (see [3]) has been
studied in more detail and some of those results and
methods apply herein (but the large eddy simulation
method, per se, is not the subject of current interest).

The construction presented below speaks to the

concept of a turbulence model since, if the Reynolds
tensor is not uniquely defined, there is more flexibil-
ity in the development of a turbulence model. This
additional flexibility suggests a mechanism for mod-
eling turbulence control. The process for generating
turbulence control is illustrated, in principle, for the
Boussinesq turbulence model. The mechanical sys-
tems required for the implementation of flow control
are not discussed.

An application is examined which discusses the
question: can a standard turbulence model be modi-
fied to account for the effects of turbulence control?

NOMENCLATURE

x ∈ R
3 coordinate in space of simultaneity.

t ∈ R time and time axis and reals, R .
d/dt material derivative.
v ∈ R

3 instantaneous velocity field.
V ∈ R

3 mean velocity field.
VT ∈ R

3 constant boost velocity in G a.
u ∈ R

3 fluctuating velocity field.
P ∈ R pressure normalized by density.
P , P ′ ∈ R mean and fluctuating pressure.
Q ∈ R gauge pressure.
D ⊂ R

3 spatial domain.
〈a,b〉= aibi ∈ R vector inner product.
〈a,b〉g ≡ ∫

D 〈a,b〉dV global inner product.

〈〈A,B〉〉= trace(ABT ) tensor inner product.
||A|| 2 = 〈〈A,A〉〉 tensor norm.
R = v⊗ v instantaneous kinetic tensor.
R = V⊗V mean kinetic tensor.
w gauge velocity.
G gauge tensor.

|||a|||2 ≡ 〈a,a〉= aiai ∈ R vector norm.
|||a||| 2g =

∫
D 〈a,a〉dV global norm.

RRR = E(u⊗ u) The Reynolds tensor.
E a mean value operator.
W e = {(x, t)} classical space–time.
Ln set of linear operators on R

n.
On group of orthogonal transformations on R

n.
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L = ∇∇∇(v) ∈ L 3 velocity gradient.
D and W symmetric and skew parts of L.
f ∈ R

3 body force.
Q ∈ SO 3 or O 3 rotation operator.
Λ an arbitrary inertial frames.
G a Galilean group on space–time.

REYNOLDS DECOMPOSITION

The simple uniqueness theorem discussed in [4]
can be extended to give some information about the
uniqueness of the mean motion equations used in tur-
bulence computations. This theorem in [4] assumes
regularity in the sense that the instantaneous velocity
gradient tensor, L = ∇∇∇(v), must have bounded eigen-
values. This same constraint will be found below but
now for the mean motion velocity gradient, L = ∇∇∇(V).
At this point in the development, nothing need be said
about the Reynolds tensor RRR = E(u⊗u) derived from
the fluctuating velocity u(x, t). It is important to note
that no turbulence model is required in the uniqueness
theorem. The theorem is simply a property of the
mean motion equations which involves both the mean
velocity vector and properties of the velocity fluctu-
ations. From a cursory inspection, it would appear
that it is the simple fact of introducing a Reynolds de-
composition that induces non–uniqueness. A slightly
deeper consideration, however, shows that there is an-
other interpretation which leads directly to the intro-
duction of a gauge field (the properties of which are
considered in more detail in [5]). The uniqueness the-
orem for the mean motion equations would appear to
be more general than the corresponding result for the
instantaneous equations. This is not, however, the
case as will emerge below. The uniqueness theorem
demands that the mean velocity field be unique but
that non–uniqueness may be admitted in the Reynolds
tensor and in the mean pressure field (as it is for the
instantaneous equations).

Write the instantaneous field equations in an ar-
bitrary inertial frame Λ on W e. Let (x, t) be the asso-
ciated spatial coordinate and time respectively. Then
the instantaneous equations of motion take the form:

∂vi
∂xi

= 0;
∂vi
∂t

+ vj
∂vi
∂xj

+
∂P

∂xi
= ν

∂2vi
∂xj∂xj

+ fi (1a, b)

if f = {fi} denotes a body force per unit mass. Equa-
tion (1a) implies that the term vj ∂vi/∂xj ≡ ∂Rij/∂xj

if Rij = vivj is the kinetic tensor in equation (1b).
Equations (1a,b) represents a boundary value prob-
lem over the bounded fluid domain, D, of interest;
the specific form of this boundary, and the conditions
imposed thereon, are not of concern when energy es-
timates are the main interest. The energy estimate

for equation (1b) provides the inequality (as shown in
Foias, et al. [6], for example):

∂

∂t
|||v||| 2g + νL2

v|||v||| 2g ≤ |||f||| 2g /νL2
v (1c)

for a periodic domain D. Here |||v||| 2g =
∫
D 〈v,v〉dV

is the global norm of the instantaneous velocity field.
This differential inequality can be integrated via the
Gronwall lemma (for which see details in [7]) to give
the inequality:

|||v||| 2g (t) ≤ E |||v||| 2g (0) + |||f||| 2g [1− E] /(νL2
v)

2 (1d)

where E = exp[−νL2
vt] with E → 0 as t → ∞. Hence

the long time limit in equation (1d) gives the estimate:

|||v||| 2g (t) ≤ |||f||| 2g /(νL2
v)

2 as t → ∞ (1e)

Any body force, f(x), present in the equations of mo-
tion is assumed to be independent of time. It is also
assumed, of course, that f(x) is a bounded function
over space. Without a body force being present, there
is an exponential decay of the velocity norm:

|||v||| 2g (t) ≤ exp[−νL2
vt] |||v||| 2g (t = 0)

as t → ∞ and reflects the viscous dissipation due to
the diffusion term ν∇2(v). It can be noted that the
energy estimate for the velocity field is independent
of the pressure field. This finding is directly due to
the imposition of periodic boundary conditions. The
artificial assumption of periodic boundary conditions
removes any real processes at the physical boundaries.
In equation (1c) Lv denotes the constant in a Poincaré
inequality of the form ||L|| 2g ≥ L2

v|||v||| 2g . The above
discussion holds for the instantaneous Navier Stokes
equations while the equivalent result for the mean ve-
locity field is given below. Equation (1c) and its inte-
gral, equation (1d), apply to both laminar and turbu-
lent flow.

The norm estimate is a global result that only pre-
dicts the time evolution of a norm (|||v|||g in this case).
No local information is obtained from these estimates
so that all the details of any turbulence that may be
present in the flow are lost.

Equation (1d) only provides an upper bound to the
norm |||v||| 2g and does not imply that laminar and tur-
bulent flows have the same norm decay rate. As noted
above, the local flow structure is lost in the definition
of the global norm. Predictions that are limited to up-
per bound estimates, only, makes the comparison with
similar estimates for turbulence models somewhat un-
certain. At best there is the inequality:

|||v||| 2g ≤ |||V||| 2g + |||u||| 2g
but no norm estimates are made herein for the velocity
fluctuations u.
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The set of equations (1a,b) are covariant under
the Galilean group with v 
→ Qv and P 
→ P . The ki-
netic tensor, R = {vivj}, then transforms under G a as

R 
→ QRQT . Any decomposition of equations (1a,b)
must respect this covariance.

Introduce the Reynolds decomposition in the
standard form:

v 
→ V+ u; V = E(v) and E(u) = 0 (2)

if u(x, t) denotes the fluctuating velocity field and
V(x, t) is the mean velocity field. Then equation (2)
implies that the instantaneous kinetic tensor decom-
poses as R 
→ R + RRR if R = V ⊗ V is the mean
kinetic tensor. In the equation (2), E represents some
mean value operator whose specific form is not re-
quired herein and RRR = E(u⊗ u) defines the Reynolds
tensor with trace(RRR) = E(〈u,u〉) = 2k if k is the tur-
bulence kinetic energy. The mean velocity was allowed
to be a function of time in the present formulation (as
discussed in [8]). The mean motion equations follow
from equations (1a,b) when equation (2) is introduced.
This gives:

∂Vi

∂xi
= 0 (3a)

∂Vi

∂t
+

∂

∂xj

[
Rij +Rij

]
+

∂P

∂xi
= ν

∂2Vi

∂xj∂xj
+ fi (3b)

and the lack of closure is evident in that no equations
exist to define the components, Rij , of the tensor RRR.
It is again assumed that the body force, f(x), is inde-
pendent of time. Here, P denotes the mean pressure
as a scalar field over domain D. Introduce a statement
of the form:

M(V,RRR, ααα) = 0 (4)

as a turbulence model which is designed to close the
set of equations (3a,b). The vector ααα in the definition
(4) represents a set of model constants. It was the
properties of system (3a,b) and (4) that occupied [1].
In particular energy estimates were presented for the
familiar k ∼ ε turbulence model considered as a special
case of equation (4).

In order to be consistent with Newtonian mechan-
ics, equation (4) must be covariant under the Galilean
group where u 
→ Qu and so:

RRR 
→ QRRRQT while V 
→ QV+VT

model constants in the vector ααα should be independent
of the coordinate frame.

From the epistemological point of view, the de-
composition in equation (2) is unsatisfactory since the
equations (3a,b) are not closed. That is, additional
information must be provided before the Reynolds de-
composition can be meaningful. This information is

no longer part of basic fluid mechanics (which led to
equations (1a,b) — which are closed) and requires
knowledge of the velocity fluctuations. The defini-
tion v = V + u does not provide this information
and only detailed experimental study can repair the
epistemological deficit. It is, of course, this lack of
information that necessitates the introduction of the
turbulence model in equation (4). u(x, t) contains an
infinite amount of information, which can never be re-
covered from the turbulence model in equation (4).

THE THEOREM

First introduce a lemma which will be required in
the theorem. That is (from [4]):

Lemma If div(h) = 0 and if h is a smooth vector field
over the domain D, and if either h ≡ 0 or ξ ≡ 0 on the
boundary ∂D (with ξ a smooth field over D). Then:∫

D 〈h,∇∇∇(ξ)〉dV = 0

PROOF: From the identity:

div(ξ h) = ξ div(h) + 〈h,∇∇∇(ξ)〉 ≡ 〈h,∇∇∇(ξ)〉
as div(H) ≡ 0. Hence:∫

D 〈h,∇∇∇(ξ)〉dV =
∫
∂D 〈ξ h,n〉dA ≡ 0

by Gauss and the given boundary conditions.

With this lemma as background, the uniqueness the-
orem for the constant density mean motion equations
for the linear viscous fluid can be given. Specifically:

Theorem Let (V1,R1R1R1, P 1) and (V2,R2R2R2, P 2) be two
solutions of the same turbulent flow problem (with the
same boundary conditions and body force). Then the
velocity field is unique: V1 = V2. This condition
holds provided that:

R1R1R1 + P 1I = R2R2R2 + P 2I+A(x, t)

with the constraint that: div(A) ≡ 0.

PROOF: The proof follows directly from that given in
[4]. Consider the follows:

1). Place:

a). U = V1 −V2

b). A = (R1R1R1 + P 1I)− (R2R2R2 + P 2I)

Then, from the boundary conditions it follows that
U ≡ 0 on the boundary, ∂D, of the domain D. In ad-
dition div(U) ≡ 0 over the whole of D as a constraint
on the velocity difference field U.

Now write the mean motion equations for both
(V1,R1R1R1, P 1) and (V2,R2R2R2, P 2) and subtract to give
an equation in the U field:

∂U/∂t+∇∇∇(V1)V1 −∇∇∇(V2)V2 = ν∇2(U) − div(A)

which can be re–written as:
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∂U/∂t+∇∇∇(U)V1 +∇∇∇(V2)U

= ν∇2(U) − div(A)
(5)

since the equality:

∇∇∇(V1)V1 ≡ ∇∇∇(U)V1 +∇∇∇(V2)V1.

holds true.

2). Take the inner product of equation (5) with the
vector U to obtain the equality:

〈∂U/∂t,U〉+ 〈∇∇∇(U)V1,U〉+ 〈∇∇∇(V2)U,U〉
= ν〈∇2U,U〉− 〈div(A),U〉 (A)

Then, as the following three equalities can be verified
directly:

〈U,∇2U〉+ trace[∇∇∇(U)(∇∇∇(U))T ] = div[∇∇∇(U)T U]

〈U,∇∇∇(U)V1〉= 〈V1,∇∇∇(U2)/2〉
〈U,∇∇∇(V2)U〉= 〈U,D2(U)〉

where D2 ∈ S
3
sym is the symmetric part of the V2

velocity gradient tensor, ∂V2/∂x. Equation (A) now
becomes (if U2 = 〈U,U〉):
∂(U2/2)/∂t + 〈V1,∇∇∇(U2/2)〉+ 〈U,D2(U)〉

= ν div[(∇∇∇(U))T U]− 〈U, div(A)〉
− ν trace[∇∇∇(U)(∇∇∇(U))T ]

(B)

which is an exact result. At this point, it is convenient
to establish an inequality by removing terms that are
known to be non–negative. The process is started by
passing to the norm. That is define the global norm
of the velocity difference U(x, t):

||U|| 2g (t) ≡
∫
Dt

U2(t) dV

3). Next, form an equation in norm by integrat-
ing equation (B) over the domain D. Use the above
lemma to show that the integral:∫

D 〈V1,∇∇∇(U2/2)〉dV ≡ 0

However:
∫
D 〈U, div(A)〉dV = 0 only if div(A) ≡ 0

(the condition div(A) ⊥ U at all points in D is not
meaningful).

At the same time:∫
D div[(∇∇∇(U))T U]dV ≡ 0

by Gauss and the boundary conditions. Finally, as:

||∇∇∇(U|| 2g ≡ ∫
D trace[∇∇∇(U)(∇∇∇(U))T ]dV ≥ 0

it follows that the integrated form of equation (B)
reduces to:

1

2

d

dt
||U|| 2g +

∫
D
〈U,D2U〉dV ≤ 0 (C)

which is still exact (up to inequality).

4). Using the estimate from the inequality given
below (with λmin = −γ; γ > 0):

〈U,D2U〉 ≥ −γ U2 ≥ −γ U2/2

there is from equation (C):

d

dt
||U|| 2g − γ

∫
D
U2 dV ≡ d

dt
||U|| 2g − γ||U|| 2g ≤ 0

which integrates to give:

||U|| 2g (t) ≤ ||U|| 2g (t = 0) exp[λmint]

and so must vanish by the initial data (V1 = V2 ⇒
U = 0 at t = 0). Hence U(x, t) = 0 for all x and all
t. Hence:

V1(x, t) ≡ V2(x, t) for all x and all t

That is, the mean velocity field, V, is a unique field
over space for all time.

5). It follows from the above proof that the con-
straint div(A) ≡ 0 implies that A is any symmetric
second order tensor that has zero divergence. Hence
the Reynolds tensor, RRR, is not required to be uniquely
determined nor is the mean pressure, P . The latter
condition is consistent with the result for the instan-
taneous Navier Stokes equations given in [4].

It is only div(RRR) that is significant in the computa-
tion of turbulent flows and the gauge field term A
with div(A) ≡ 0 does not enter into any computa-
tions. Two turbulence models for RRR that differ by a
divergence free symmetric second order tensor give the
same velocity field.

A simple uniqueness result has been obtained for
the mean motion as an extension of that for the in-
stantaneous motion. Here it has to be assumed that
the second order tensor A is arbitrary up to the con-
straint div(A) = 0. An alternative statement of this
constraint is the need for trace(LRRR) ≡ 0. In this sense,
the result is less satisfactory than the result given in
[4]. However, some insight has been obtained into the
structure of the Reynolds decomposition. Both results
depend upon a regularity assumption specified in the
following inequality (see [4]).

An Inequality Let D ∈ S
3
sym, and trace(D) ≡ 0,

then:

〈z,Dz〉 ≥ −γ 〈z, z〉
where −γ (with γ > 0) is the smallest eigenvalue,
λmin, of D.

PROOF: Since D ∈ S
3
sym, it follows that a similar-

ity transformation, QBQT = D places D in diagonal
form B. So for any bounded vector z ∈ R

3:

〈z,Dz〉= 〈z,QBQT z〉= 〈QT z,BQT z〉
≡ 〈v,Bv〉= Σ(biivivi)

where v = QT z and as B is diagonal. Hence:
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〈z,Dz〉= −γv21 + (Γ1 − γ)v22 + (Γ2 − γ)v23

≡ −γvivi + Γ1v
2
2 + Γ2v

2
3 ≥ −γvivi

as −γ is the smallest eigenvalue of D (so that the
Γi > 0). This inequality is only meaningful if the
constraint |γ| < ∞ is in place. Finally:

〈z,Dz〉 ≥ −γ〈v,v〉= −γ〈z, z〉
as Q ∈ SOn is an isometry.

The development of the above inequality demands the
restriction |γ| < ∞ and hence that the constraints
|〈u,Du〉| < ∞ and so ||D|| < ∞ also apply (in order
for the condition |||u||| < ∞ to apply). This inequality
imposes the regularity condition on the theorem that
was mentioned above.

If the condition
∫
D 〈U, div(A)〉dV = 0 is not im-

posed upon the vector div(A) then the theorem does
not hold and no meaning can be given to the Reynolds
decomposition. Of course,

∫
D 〈U, div(A)〉dV = 0 if

A ≡ O and then there is total uniqueness in that:

RRR1 + P 1I =RRR2 + P 2I

so that if P 1 = P 2 then RRR1 = RRR2. The Reynolds
tensor is unique if the mean pressure field is unique.
The present interest lies in exploring the implications
of the restricted uniqueness implied by the condition
div(A) = 0.

MEANING OF THE THEOREM

The uniqueness theorem in the form presented
above (with div(A) = 0) has a connection to the non–
uniqueness inherent in the mass invariance constraint.
Start from the fluctuating velocity field u(x, t) when
it follows that there exists a solenoidal gauge field w
such that |||w||| < ∞ and:

div(u) = 0 ⇒ div(u +w) = 0 iff div(w) = 0

That is, the fluctuating velocity field u also associates
with a gauge field, w(x, t), resulting from the condi-
tion div(u) = 0. It is clear that the set W = {wi} of
all such gauge fields is an additive group. Here all wi

are finite and solenoidal.

There is no physical meaning attached to the
gauge vector field w(x, t). Indeed, any divergence free
vector field can be adopted for the quantity w(x, t).
Nothing more about the vector w need be said at this
point.

It is natural to construct the tensor gauge field:

G = 2w⊗w− 〈w,w〉I ∈ L 3 (6)

from the velocity field w. It follows from the definition
that:

div(G) = 2ζζζ ×w with ζζζ = curl(w) (6a)

It then follows that the condition div(G) ≡ 0 holds
for any Beltrami field w: the constraint div(G) = 0
is not trivial. Further, it can be noted that equation

(6) produces the equality trace(G) = −〈w,w〉 and
is directly related to the kinetic energy of the gauge
velocity field. The group W does not directly induce
a group structure for the tensor gauge G. However,
the set G = {G} has its own additive group structure.
More details are given in [5].

It is required that the gauge fields be frame indif-
ferent under the Galilean group G a. That is w 
→ Qw
under G a where Q ∈ SO 3 is a coordinate rotation.
Now div(w) is invariant under coordinate rotations.

Then G 
→ QGQT defines the transformation of the
gauge tensor under G a.

The same situation occurs with the mean mo-
tion equations since these equations contain the term
div(RRR) (as in equation (3b) ). A gauge field, G, arises
naturally such that:

div(RRR) = Γ ⇒ div(RRR +G) = Γ iff div(G) = 0

for some function Γ(x, t) which represents the rest of
equation (3b). That is, the non–uniqueness found in
the above theorem can be interpreted as a gauge field.
In this sense the Reynolds tensor is not unique since
only div(RRR) enters the mean linear momentum equa-
tion. The only restriction on the tensor G is that
div(G) is well defined and identically zero. A bound-
edness condition |||w||| < ∞ ⇒ ||G|| < ∞ is also as-
sumed.

Both G and RRR are symmetric second order ten-
sors so that they both have real eigenvalues. How-
ever, the tensor G, being a tensor product, has the
spectrum σ(G) = {0, 0, 〈w,w〉} with the correspond-
ing eigenvectors X1,X2 ∈ span{w}⊥; X1 ⊥ X2 and
X3 ∈ span{w}. There is no such simple structure for
the eigensystem of RRR.

The function A(x, t), with div(A) = 0, from the
above theorem can be decomposed in two components:

A(x, t) = G(x, t) +Q(x, t)I (7)

where Q(x, t) ∈ R represents a gauge pressure field
and G(x, t) ∈ L 3 a Reynolds stress gauge function.
Since div(A) ≡ 0 there must be:

div(G) +∇∇∇(Q) = 0

as a constraint upon the gauge fields. For the specific
application herein, that is in equation (5), express the
tensor G in the form specified in equation (6):

G = 2w⊗w− 〈w,w〉I ≡ 2H− |||w||| 2I
with H = w ⊗ w a simple tensor product. In addi-
tion, to complete this example, assume that the gauge
pressure is a function of time only (as it was for the
instantaneous Navier–Stokes equations in [4]). Then
∇∇∇(Q) = 0 and equation (7) shows that the equality
div(G) = 0 must hold. The result in equation (6a)
then applies and the gauge velocity field, w(x, t), must
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be Beltrami.

There are, of course, alternative forms for the
gauge tensor G that also have a vanishing divergence,
∂Gij/∂xj = 0, but these will not be discussed herein.
Finally, note that:

||G|| 2g =
∫
D trace(GGT )dV ≡ 3

∫
D 〈w,w〉2dV = 3||H|| 2g

as a function of the gauge velocity w only.

Example I A Beltrami Flow

It is well known that Beltrami flows can give rise
to chaotic motion. For example (see [9] for details)
the so–called (Arnold–Beltrami–Childress) ABC flows
have this characteristic for specific values of the coef-
ficients. These flows also have a large measure of pe-
riodicity across space since the velocity field is given
by: ⎛

⎜⎝
v1

v2

v3

⎞
⎟⎠ =

⎛
⎜⎝

Asin[x3] + C cos[x2]

B sin[x1] +Acos[x3]

C sin[x2] +B cox[x1]

⎞
⎟⎠ ≡

⎛
⎜⎝

ζ1

ζ2

ζ3

⎞
⎟⎠

for constants A, B and C. This periodicity is consis-
tent with the periodic boundary conditions assumed in
the energy estimates. Certain ABC flows are directly
integrable (the case C = 0, for example, has a solution
expressible in terms of Jacobi elliptic functions). �

The main interest in this example is the recogni-
tion that Beltrami flows need not be trivial.

THE ENERGY ESTIMATE

In order to study how a turbulence model inter-
acts with the mean motion, it is instructive to con-
struct an energy estimate from equations (3a,b). In-
troduce the vector norms:

|||V||| 2 = 〈V,V〉; |||V||| 2g =
∫
D 〈V,V〉dV

along with the tensor norms:

||RRR|| 2 = trace[RRRRRRT ]; ||RRR|| 2g =
∫
D trace[RRRRRRT ] dV

with |||V||| 2g , essentially, the total kinetic energy of the
mean motion.

Start by taking the inner product of equation (3b)
with the mean velocity. Then integrate over a periodic
domain D to generate the inequality:

1

2

∂

∂t
|||V||| 2g + 〈〈RRR,L〉〉g + νL2

V |||V||| 2g ≤ 〈f,V〉g
where LV denotes the Poincaré constant for the mean
velocity gradient. Or, utilizing a Young inequality al-
lows transformation to the inequality:

∂

∂t
|||V||| 2g + 2〈〈RRR,L〉〉g + νL2

V |||V||| 2g ≤ 1

νL2
V

|||f||| 2g (8)

further progress can be made from equation (8) once
a turbulence model is introduced to identify the inner

product 〈〈RRR,L〉〉g in terms of that model. Except for

the term involving the Reynolds tensor, equation (8)
is identical in form to equation (1c) for the evolution
of the instantaneous velocity norm. Further reduction
produces the differential inequality:

∂

∂t
|||V||| 2g + (ν − ζ)L2

V |||V||| 2g ≤ 2

νL2
V

|||f||| 2g +
1

ζ
||RRR|| 2g (8a)

Here ζ ∈ R is an arbitrary constant subject to the
constraint that (ν − ζ) > 0 (to retain dissipation of
kinetic energy in the absence of a body force). The
Gronwall lemma then produces the estimate:

|||V||| 2g (t) ≤ |||V||| 2g (0)ER + [1− ER]
|||f||| 2g

ν(ν − ζ)L4
V

+R(ζ)

if ER = exp[−(ν− ζ)L2
V t]. The quantity R(ζ) has the

form:

R(ζ) = ζ2
∫ t

0

||RRR|| 2g (τ) exp[−(ν − ζ)L2
V (t− τ)] dτ

No further reduction is possible until a statement is
made about the form of the Reynolds tensor RRR: a
turbulence model (from equation (4)) is required for
that.

It can again be noted that the pressure field does
not contribute to the evolution of the norm (here
|||V|||g). Again, this is a direct consequence of restrict-
ing the domain D to being periodic. The second mo-
ment equation does allow estimates to be made for ||RRR||
without a turbulence model (see [10] for a discussion)
but then there are several other unknown correlations
that enter the equation and so reduce its usefulness.

A SIMPLE TURBULENCE MODEL

As a simple example, consider the Boussinesq
model (see the discussion in [10] for example) wherein
the scalar eddy viscosity, ε, is taken to be a global
positive constant:

Example II The Boussinesq model: RRR = εD
so that ||RRR||g = ε||D||g and

〈〈RRR,L〉〉g = ε〈〈D,L〉〉g ≡ ε||D|| 2g
on using both the Cauchy Schwarz inequality and the
fact that 〈〈D,W〉〉g ≡ 0 if W is the skew part of the

velocity gradient L. Now ||D||g = ||L||g/
√
2, (on using

the Korn inequalities with div(V) = 0, see [11] ).

a). Without the gauge field present.

Here the estimate for |||V|||g becomes (directly from
equation (8) ):

1

2

∂

∂t
|||V||| 2g + ν||L|| 2g + ε||L|| 2g ≤ 1

νL2
V

|||f|||g (9)
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As in equation (1c) relate ||L||g to |||V|||g with the
Poincaré inequality (of constant LV ) to find:

∂

∂t
|||V||| 2g + εTL

2
V |||V||| 2g ≤ 1

νL2
V

|||f ||| 2g
If |||f |||g �= 0 (and is not a function of time) Gronwall
gives the final inequality for this model:

|||V|||g(t) ≤ |||V|||g(0)ET (t) +
|||f |||g

εT νL4
V

[1− ET (t)] (10)

and defines an absorbing set diameter as t → ∞. Here
ET (t) = exp[−εTL

2
V t]. This absorbing set diameter,

|||V|||g(t)|t→∞ ≤ |||f|||g/(εTLV ), depends upon the modi-
fied viscosity εT ≡ (ε+ν) as well as |||f|||g and is smaller
than the corresponding one for a laminar flow (assum-
ing that ε > 0). This result is consistent with the ex-
pectation that the dissipation rate is larger for turbu-
lent flow that for laminar flow. The inadequacy of the
Boussinesq model is also shown in equation (10) since
nothing more that the viscosity coefficient is modified:
nothing like turbulence is modeled.

The result in equation (10) is of the same form as
that obtained in equation (1d) with the natural viscos-
ity ν replaced by the modified viscosity εT . Equation
(10) returns to equation (1d) when ε ≡ 0 (as, indeed,
it should).

b). Including the gauge field.

In this case place RRR = εD+βG (where β ∈ R is some
scalar constant) so that the inner product 〈〈RRR,L〉〉g has
the bound:

〈〈RRR,L〉〉g = ε||D|| 2g + β〈〈G,L〉〉g ≤ ε||L|| 2g /2 + β||G||g||L||g
Adopt the form in equation (6) for the gauge tensor
G assuming that the velocity gauge field w is known.
Then equation (8) extends to become:

∂

∂t
|||V||| 2g + εBL

2
V |||V||| 2g ≤ 1

νL2
V

|||f ||| 2g + 6β2||H|| 2g (11)

The parameter β is arbitrary (within the constraint
ε − β > 0) in equation (11) and can be selected for
convenience. The constant εB = ν + ε − β > 0 was
introduced in equation (11). Now, application of the
Gronwall lemma to equation (11) gives:

|||V||| 2g (t) ≤ |||V||| 2g (0)EB+[1−EB ]
|||f||| 2g

νεBL4
V

+F (β) (12)

if EB = exp[−εBL
2
V t]. The quantity F (β) in equation

(12) has the form:

F (β) = 3β2

∫ t

0

||H|| 2g (τ) exp[−εBL
2
V (t− τ)] dτ (12a)

It remains to select the gauge velocity field w(x, t) to
meet the needs of the application of interest. Since it

was assumed that the gauge velocity was time depen-
dent: w = w(x, t) it follows that the norm ||H||g must
be also and the temporal rate of change of w(x, t) de-
termines the decay in time of the function F (β) in
equation (12a). �
This example is of little practical interest since the
basic turbulence model has little value. However, it
does illustrate the effect that gauge fields may have on
turbulence models and potential applications. There
are now additional parameters β and w to enhance
the flexibility of the model. The constant β, via the
inequality εB = ν + ε − β > 0, determines the global
norm decay rate in the function EB . For example,
in [12] it was shown how turbulence control could be
modeled by means of such a gauge function.

APPLICATION TO TURBULENCE CONTROL

Consider a wall mounted microelectromechanical
device (MEMS) which gives an output vector w cor-
responding to some near–wall turbulence velocity (see
[13], [14]). For example, this could be a wall jet such
that w = (0, 0, w3)

T where w3 is that imposed verti-
cal velocity at the wall. For this velocity to be con-
sistent with the above development there is the con-
straint div(w) = 0 so that ∂w3/∂x3 = 0. Hence take
w3 = ws(t) only.

Standard studies of turbulence control adopt vari-
ational methods to obtain a minimum value for some
cost function (see [15] for example). The present study
has a different intent: to what extent can a turbulence
model determine the properties of a control mecha-
nism? A turbulence control strategy is not put for-
ward but, rather, the gauge field is introduced in the
turbulence model as a means of predicting the effects
of such control. This is a very different requirement
to that of finding an optimal control mechanism.

Interest then centers around the possibility of this
wall velocity, w, acting to control the turbulence in
some appropriate way. One possible constraint, in the
context of the present study, is to require that |||V|||g be

forced equal to |||v|||g. Placing |||V|||g = |||v|||g does not, in
any sense, force V(x, t) = v(x, t) locally as a function
of space and time.

The mean motion equations with the turbulence
model of example II and the gauge field of equation
(6) had the norm estimate given above (from equa-
tion (12) ). Combine the mean motion equation (11)
with the corresponding equation for the instantaneous
motion. That is, repeat equation (1c) as:

∂

∂t
|||v||| 2g + νL2

v|||v||| 2g ≤ |||f||| 2g /νL2
v

Assume that both the Poincaré constants Lv and LV
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are identical then, upon subtraction of these two equa-
tions, there is:

∂Γ

∂t
+ εBL

2
v Γ ≤ 6β2||H|| 2g + (β − ε)L2

v|||v||| 2g (t)
where the definition Γ(t) ≡ |||V||| 2g − |||v||| 2g has been in-
troduced and is the algebraic difference between the
two velocity norms. The body force term is included
in this equation through the velocity norm in equa-
tion (1d). As above, ||H|| 2g is a global property of the
gauge velocity field w(x, t). From this equation, an es-
timate for the decay of the function Γ(t) follows from
the Gronwall lemma in the form:

Γ(t) ≤ Γ(0)ED +

∫ t

0

[
6β2||H|| 2g (τ) +K

]
ED(t− τ) dτ

where ED(t) = exp[−(εB − ν)L2
vt] defines the decay

rate for the function Γ(t). Here K = (β − ε)L2
v|||v||| 2g .

As t → ∞ the first term vanishes and the limit
of the second term depends upon the selection of the
tensor H as a function of time. That is:

Γ(∞) ≤ 6β2 lim
t→∞

∫ t

0

||H|| 2g (τ)ED(t−τ) dτ+Ξ(∞) (13)

which can be evaluated once the gauge velocity vector
has been fixed to specify H. The function Ξ(t) de-
pends upon the velocity and body force norms from
equation (1c) and decays to zero, Ξ(t) → 0, as t → ∞.

Example III The gauge field w = const

In this case, ||H|| 2g is a constant (equal to H, say) and
equation (13) integrates to become:

Γ(∞) ≤ 6β2H/(εB − ν)L2
v

and Γ(∞) is bounded by a constant. �
For this example, |||V||| 2g (∞) = Γ(∞) + |||v||| 2g (∞) and
is independent of time (after the transients have de-
cayed). The condition |||V||| 2g = |||v||| 2g as t → ∞ can-
not be satisfied in this example (except in the trivial
case β = 0) when the gauge field is totally absent.
Of course, the use of a simple Boussinesq turbulence
model in this example limits its usefulness.

FINAL COMMENTS

The study herein has made comments concerning
a uniqueness theorem for the well–known mean motion
equations associated with the Reynolds decomposition
v 
→ V + u. This theorem allowed the introduction
of a gauge field for the Reynolds tensor RRR; that is
RRR 
→ RRR +G for some some second order divergence–
free tensor G.

It was shown that this additional gauge func-
tion gives more flexibility to the Boussinesq turbulence
model in that more free model constants are available
for forcing predictions to match experimental data.

As noted above the study needs extending to in-
clude a more useful turbulence model (such as the
k ∼ ε model) for example. This extension will be
reported elsewhere.
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