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ABSTRACT
The ability of genetically modified (GM) crops to increase yields and reduce use of pesticides 
is well established. Based on food security needs and the central role of agriculture, Africa 
may stand to benefit from green biotechnology given the low agricultural productivity and 
the looming food crises in most urban areas. However, the adoption of GM crops in Africa 
has been slow and limited to a handful of countries. The primary objective of this paper is to 
evaluate the impact of GM maize adoption in South Africa by looking at wholesale spot prices. 
We apply a threshold autoregressive model to time series data on the price of maize and GM 
adoption rates in South Africa to address the following questions: (1) Does the adoption of GM 
maize excite the growth rate of price of maize in South Africa; (2) Does the error variance of the 
maize price growth rate exhibit regime-switching behaviour to impact the volatility? The results 
show evidence that the adoption of GM maize influences the dynamics of the maize price 
growth rate in South Africa. Further, there is strong evidence that the error variance exhibits 
regime-switching behaviour with the posterior mean for the error variance in the first regime 
about twice as large as that of the second regime. 

Keywords: genetically modified crops, wholesale maize prices, South Africa, threshold 
autoregressive model
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1 INTRODUCTION
The ability of genetically modified1 (GM) crops to increase yields and reduce 
the use of pesticides is well established (National Academies, 2012; Brookes and 
Barfoot, 2012; Benbrook, 2012). According to the recently published report on the 
“Global status of commercialized biotech/GM crops”, developing countries are, 

1	 Genetically modified crops are those that have had specific changes introduced into their DNA 
by genetic engineering techniques or modern biotechnology to carry one or more beneficial 
new traits. The terms genetically modified crops, biotechnology and genetically engineered 
crops are used interchangeably in this paper. “Green biotechnology” refers to application of 
this technology on agriculture as opposed to “blue biotechnology” that refers to medicinal and 
pharmaceutical applications. 
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for the first time in history, growing more GM crops than industrialized countries 
as measured by total area planted (Clive, 2012). For a technology that represents 
the efficiency frontier in food and fibre production, this key milestone positions 
GMO crops as a new tool for improving food security and alleviating poverty in 
developing countries. 

Based on food security needs and the central role of agriculture to economic 
development, Africa may stand to benefit from green biotechnology given the low 
agricultural productivity especially among smallholder farmers and the looming 
food crises in most urban areas. Yet, despite scientific consensus about the safety 
of GM crops, public skepticism about this technology continues to grow. In most 
African countries, public polices and regulations on GM crops are increasingly 
shaped by public opinion, civic organization and pressure groups. Empirical 
evidence from African countries that have commercialized GM crops is crucial 
for an informed dialogue on the economic, environmental and public health 
implication of GM crops adoption in Africa. 

This paper evaluates the effects of GM maize adoption in South Africa. To put 
the analysis into context, we first explore the key trends on green biotechnology 
adoption in Africa. This is followed by a brief discussion of the structure, conduct 
and economic performance of maize production in South Africa. Against this 
background we chronicle the adoption of GM crops in South Africa with a focus 
on maize. The quantitative part of the paper starts with the econometric model, 
followed by a description of the data, and a discussion of the results. The model 
applies the Threshold Autoregressive (TAR) methodology to the growth rate of 
wholesale maize prices in South Africa by evaluating if GM maize adoption rates 
excite grain price series. 

2 ADOPTION OF GM CROPS IN AFRICA
As of 2012, GM crops were being grown in 20 developing countries and eight 
industrial countries conferring beneficial traits such as herbicide tolerance, insect 
resistance and nutritional enhancement (Clive, 2012). Ironically, in the same year 
when developing countries take the lead in GM crop adoption, three European 
countries – Germany, Sweden and Poland – discontinued planting GM crops. This 
anomaly in technology adoption trends perhaps confirms Paarlberg’s (2008) thesis 
that without tangible consumer benefits, citizens in rich countries consider GM 
foods as unnecessary. Developing countries, on the other hand, are increasingly 
looking at GM crops to sustainably feed their ever growing populations. Indeed, 
many tropical crops crucial to the livelihoods of smallholder farmers, such 
as cassava, bananas and papaya, are currently being decimated by diseases for 
which resistance imparted into GM varieties represents the only protection against 
devastating crop losses (GMO Compass, 2006).
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African agriculture is characterized by low productivity. While in Asia, cereal 
yield grew by about 2.3 per cent per year in the past two decades, cereal yield in 
sub-Saharan Africa has been practically stagnant. Furthermore, over the last four 
decades, less than 40 per cent of the gains in cereal production in Africa came 
from increased yields (FAO, 2011). The rest of the increased production resulted 
from expanding cultivated land. Africa’s low agricultural productivity has been 
attributed to a host of factors related to the range and intensity of biophysical 
constraints to plant growth, large agro-ecological variation, the absence of policies 
that encourage crop improvement, very low and declining soil fertility, and the 
underdeveloped state of seed sectors in most countries (DeVries and Toenniessen, 
2001). Increased productivity in these agrarian systems, achievable through green 
biotechnology bears great potential to reducing poverty and improving food 
security.

Despite the potential advantages, adoption of GM crops in Africa has been 
slow. At present only four African countries – Burkina Faso, Egypt, Sudan and 
South Africa – have fully commercialized GM crops. Table 1 shows the area 
planted to GM crops in Africa during the 2012 cropping year. 

Table 1: GM crop adoption in Africa (Hectares planted in 2012)

Country/Crop Cotton Soybean Maize Total

Burkina Faso 313 781 0 0 313 781

Egypt 0 0 1000 1 000

South Africa 11 000 450 000 2 430 000 2 891 000

Sudan 20 000 0 0 20,000

Total 344 781 450 000 2 431 000 3 225 781

Source: Compiled from James (2012)

Yet Table 1 does not tell the full story of GM adoption in Africa. Most African 
countries are at various stages of creating the enabling environment for GM crop 
commercialization. Of note, five countries (Cameroon, Kenya, Malawi, Nigeria 
and Uganda) are currently conducting field trials of biotech crops, the final step 
before full approval for commercialization. One level lower on the adoption 
ladder are countries that have put in place the requisite policy and regulatory 
frameworks. Most African countries have signed and ratified the Convention on 
Biological Diversity as well as the Cartagena Protocol on Biosafety (Nang’anyo, 
2006). That said, there is growing public opposition to GM crops in Africa that 
is best described as a fear of the unknown, with little or no scientific merit. For 
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example, in November 2012 the Kenyan government banned all imports of GM 
foods citing public health concerns.

3 MAIZE PRODUCTION AND CONSUMPTION IN 
SOUTH AFRICA

South Africa is a net exporter of maize, producing about 50% of the maize grain 
output in southern Africa. In the 2011/12 cropping season, South Africa produced 
about 6.74 million tonnes of white maize and 5.09 million tonnes of yellow maize 
at an average yield of 4.1t/ha and 4.8t/ha, respectively (Grains SA, 2013). Figure 
1 below shows the total production area planted and average yields for maize 
in South Africa from 1990 to the present. Note that with the possible exception 
of drought years in 1991/92, 1994/95 and 2006/07, increased production was 
primarily due to rising yields while the area under cultivation has declined. 

Figure 1: Maize production in South Africa (Data source – Grains SA, 2013)
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Maize production in South Africa is dominated by commercial growers who 
produce more than 90% of the country’s maize crop (Gouse et al., 2009). While 
maize is grown in all nine provinces of the country the bulk of the production is in 
the Free state, Mpumalanga and North West provinces. The bulk of South Africa’s 
maize production is rain fed. However, the irrigated maize area has more than 
doubled during the past 12 years from 100 000 hectares in 2000/01 to 240 500 
hectares in 2011/12 (USDA/FAS, 2013). Although the cropping calendar varies by 
location and year, the bulk of the planting takes place in November and harvesting 
starts in April. 

In this paper, we seek to measure the impact of GM maize adoption in South 
Africa by looking at the dynamics of prices over the period of adoption. White 
maize is one of the major staple foods in South Africa (particularly for low income 
households) with the gains from adoption of GM maize expected to be seen in low 
prices or reduction in the growth rate of the price. Also, high volatility in prices is 
undesirable to both farmers and final consumers. We also seek to measure if GM 
maize adoption has any impact on volatility in South Africa.

4 GM MAIZE ADOPTION IN SOUTH AFRICA
South Africa was the first African nation to commercialize GM crops with the 
planting of Bt cotton in 1997. This was followed closely by the commercialization 
of Bt maize (Monsanto 810) in 1998 and herbicide tolerant (HT) cotton and 
soybean in 2000. South Africa established a government committee, South African 
Committee on Genetic Experimentation (SAGENE) to draft biosafety guidelines 
as early as 1978 and field tested its first biotech crop, Bt cotton, in 1990 that was 
first commercialized in 1997. Bt cotton was followed by Bt maize (MON 810) 
commercialized in 1998, herbicide tolerant (HT)2 cotton and soybeans in 2000, the 
dual Bt in cotton (Bollgard II) in 2002, and another insect resistant maize (Bt11) 
in 2003. 

GM crop adoption in South Africa was rapid especially among commercial 
farmers. In the 2011/12 growing season, GM crops were planted on an estimated 
2.3 million hectares of land in South Africa, up slightly from 2.2 million hectares 
in the previous year. Leading this high adoption are maize farmers who planted 
1.873 of 2.6 million hectares (Clive, 2013). The adoption rate for GM maize by 
area planted was approximately 72% shared equally between white and yellow 
maize. Based on 2009/2010 figures GM yellow maize adoption consisted of the 
following events (number in parenthesis representing the percentage for yellow 

2	 Herbicide-tolerant crops are genetically modified to withstand the application of specific 
herbicides that will kill or stunt weed growth, while leaving the crop unharmed.
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maize): Bt (26%), herbicide tolerant (15%), and stacked Bt/Herbicide tolerant 
(20%). Similar figures for white maize are as follows: Bt (60%), herbicide tolerant 
(5%) and stacked Bt/herbicide tolerant (8%) (Clive, 2013). 

This paper uses adoption rates data for GM maize from 1999/00 to 2011/12 
growing seasons as presented in Table 2. Most data sources on the adoption of 
GM maize in South Africa are incomplete and inconsistent. The primary data are 
derived from self-reported seed sales by private companies that are extrapolated 
into the total area planted using either recommended or average seeding rates. 
Three data sources were used to derive adoption rates for GM maize in South 
Africa as given in Table 2. Total areas of GM maize and GM white maize from 
2001/02 until 2011/12 were either sourced directly or derived from ISAAA reports. 
Adoption rates for GM maize prior to 2001 were sourced from Gouse et al. (2009). 
Data on total area planted with maize and the percentage planted with white maize 
was sourced from Grain SA database (Grain SA, 2013). 

Table 2: Adoption rates for GM maize in South Africa

Year
Total (Thousand 
Hectares)

Proportion 
White 
Maize of 
Total

GMO adoption rate (% of land planted

White Maize Yellow Maize All maize

1999/00 3429.40 0.61 0.00 0.23 0.09

2000/01 2673.90 0.58 0.00 5.00 2.21

2001/02 2636.17 0.57 0.40 14.08 6.30

2002/03 2950.71 0.68 3.00 18.51 8.00

2003/04 2940.16 0.61 8.00 17.28 11.60

2004/05 3216.69 0.57 8.00 19.07 12.75

2005/06 1531.41 0.63 29.00 31.11 29.78

2006/07 2641.95 0.61 44.00 50.67 46.63

2007/08 2848.02 0.59 62.00 48.44 56.43

2008/09 2829.88 0.56 56.00 58.60 57.14

2009/10 2510.92 0.61 79.00 68.19 74.79

2010/11 2599.70 0.58 75.00 70.21 73.01

2011/12 2600.00 0.57 71.99 71.97 72.04

Source: Complied from various sources
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5 PRELIMINARY FINDINGS OF GM MAIZE IMPACT IN 
SOUTH AFRICA

Empirical evidence from several studies suggests that there are economic benefits 
to GM crop adoption in South Africa. Brookes and Barfoot (2012) estimate that the 
farm level economic gains to biotech crop adoption in South Africa from inception 
in 1998 to 2010 was US$809 million (R6 179 million) of which US$133 million 
(R1 015 million) is attributed to 2010 alone. The rapid adoption of GM crops in 
South Africa can also be taken as prima facie evidence of economic benefits to 
farmers. Farmers spend more on improved seeds when their characteristics give 
them greater benefits in terms of higher profits, lower costs or greater convenience. 

While much of this benefit has gone to commercial farmers who grow the 
bulk of GM crops in South Africa, smallholder farmers have also participated. A 
study of smallholder farmers growing GM crops in Mpumalanga, KwaZulu-Natal, 
Eastern Cape and Limpopo provinces in South Africa shows significant gains in 
productivity (Gouse, 2005). For example, over a six-season period from 2002 to 
2005, Bt maize seed yielded 12% more grain on average than conventional maize. 
According to the same study, GM maize performance per unit of land was even 
more impressive, yielding 22% more than conventional maize in 2005/06 season. 
The same study concludes that GM maize had enabled significant cost savings 
on pesticides that offset the higher seed cost. Overall, the net benefit of Bt maize 
for commercial farmers was on average US$24 (R152) per hectare on dry land 
conditions in the North West Province, US $47 (R299) per hectare dry land in 
Mpumalanga, US$85 (R540) per hectare under irrigation in Mpumalanga, and 
US$149 (R947) per hectare under irrigation in the Northern Cape (Gouse, 2005). 

In highlighting the benefit of GM crop adoption, it is important to point 
out four key caveats. First, the benefits of GM crops are not restricted to yield 
maximization. In fact, the most commonly used GM traits, Bt and herbicide 
tolerance, are primarily cost-saving technologies for farmers. Second, while the 
net environmental benefits of biotechnology are still contested, there is strong 
evidence to suggest positive externalities from Bt crops resulting from overall 
decreases in pests. For example, in China, Bt cotton has lowered bollworm 
populations to a level where producers of non-Bt cotton and other crops also 
susceptible to bollworm benefited (Pray et al., 2001). Third, we have to be mindful 
of the dynamic nature of benefit to GM crops. Specifically, recent studies show 
diminishing efficacy of both Bt and herbicide tolerate crops as widespread use 
of the biotechnologies have spurred an increase in “superweeds” and hard-to-
kill insects that are resistant to Bt toxins (Benbrook, 2012). Last, and perhaps 
most importantly in the case of South Africa, there is no evidence to suggest that 
benefits to farmers will translate to lower prices for the consumer. Thus, making 
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the leap from increase production efficiency to improved food security through 
lower prices may be a non sequitur. The modern agribusiness value chain often 
dampens price transmission between wholesale level agricultural commodity 
prices and retail prices of value added food products.

6 ECONOMETRIC MODEL
The Box-Jenkins method of expressing any covariance stationary time series 
as an autoregressive moving average to find the best fit of the series, based on 
present and past innovations, has been widely used in the literature to study many 
important macroeconomic variables. In this section we present a model that is in 
the spirit of the Box-Jenkins method to capture the impact of an outside shock 
on the dynamics of a series. Specifically, we employ the threshold autoregressive 
(TAR) model that is a class of nonlinear time series model, to understand the 
dynamics of the growth rate of the wholesale spot price of maize in South Africa. 
While the simple and popular Box-Jenkins method has been applied on numerous 
times, the nonlinear TAR models have gained popularity in recent years because 
the dynamics of a series might change over a period due to changes in the series 
itself or by exogenous factors.

The model we use in this paper follows the earlier Bayesian treatment of 
TAR models similar to Potter (1995), Geweke and Terui (1993) and Chen and 
Lee (1995). However, in contrast to the Self-Exciting Threshold Autoregressive 
(SETAR) model by Potter (1995) and many similar extensions of the TAR that 
have been useful in empirical work, we use a model with a threshold trigger 
outside itself. A series is said to be self-exciting when changes in the parameters of 
the autoregressive model are a result of changes in the variable itself. For instance, 
there are policies and events that may be solely linked to the series itself that may 
cause a break in the series.3 One of the main advantages of our Bayesian Framework 
is the ability to compare a model with SETAR versus the model we propose in this 
paper that is triggered by an outside series based on the probability of each model. 
We will use the Bayes Factor to compare each of these models to test if our TAR 
model fits the data better than a SETAR model. The model comparison framework 
we adopted is similar to that in Abidoye and Labuschagne (2014) that highlights 
the benefit of the Bayesian model selection and/or averaging. The Bayes Factor 
can be written in likelihood function form as:

3	 As highlighted by an anonymous referee, the South African market changed a lot over the tested 
period. For instance: In 1998 the options started to trade on the South African market, which 
could have an enormous effect in terms of prices and volatility. The South African market started 
to establish a constant demand, with improved exports. All of the above could also have an 
impact on prices and volatility.
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n the s'τ are known, the estimation of the parameters can proceed as a normal linear

ssion model. For example, Tong and Lim (1980) and Tong (1993) apply least squares

itional on d and r chosen using the AIC. In this paper, we treat τ and d as unknown
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hing behaviour. Our TAR model (conditional on d and r) with switching error variance

therefore be:
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Posterior Conditional Distribution of 

:),,|,( dyhp r
rr τβ

One of the benefits of using the Normal-Gamma prior is that the posterior is a 
closed form solution. Using Bayes’s theorem and the properties of the normal-

gamma density, the joint posterior distributions for rβ and 1−
rh (conditional on

 τ and d) is also normal-gamma parameterized as NG ),,,(
2

rrrr sQNG νβ
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rr XXQQ
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rT is the number of observations in the rth regime; )ˆ()ˆ( 1
rrr XyXySSE ββ −−= −

and rβ̂ is the OLS estimate of rβ using data from regime r.

Posterior Conditional Distribution of

 :),|,( ydp τ

We can use the Bayes’ theorem to simplify the joint distribution of τ and d 
such that the posterior conditional distribution of τ and d is:

( ) ( )dpdypydp ,),|(|, τττ ∝
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By calculating the marginal likelihoods ( )),|( dyp τ  for the normal linear
regression model for every possible value of τ and d, we can build up 

the posterior ( )ydp |,τ . Thus, for a given value of τ and d, the standard 
marginal likelihood is:

∫∫= dhddhpdhLdyp βτβτβτ ),|,(),|,(),|(

Given the above, the assumptions of our model imply that 

),|(),|(),|( 21 dypdypdyp τττ =

Where the relevant formula for the marginal likelihood in each regime 
will be:

8 MODEL APPLICATION AND DATA DESCRIPTION
We apply the above model to measure the relationship between the price of South 
African white maize and the adoption of GM maize. South African maize producer 
prices for white maize were obtained from the South African Futures Exchange 
(SAFEX) for the period 2000 to April 2012. The monthly prices are calculated 
by averaging daily prices for a given month. The South African white maize spot 
prices are non-stationary based on the Augmented-Dickey Fuller (ADF) and 
Phillips-Perron tests (the series also has a unit root that is difference stationary). 
However, the growth rate in the price of maize that we are interested in for this 
study is stationary and allows for application of the TAR model. Standard Box-
Jenkins estimation can be applied to understand the dynamics of prices and allows 
for forecasting. The data for the same period on GM maize adoption as captured 
by percentage of area planted was already described in section 4 and presented 
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in Table 2. Figure 2 shows a graph of the series of white maize prices and the 
adoption rate of white maize in South Africa between January 2000 and April 
2012. The graph shows the adoption rate and the price level trending together 
between 2005 and up to late 2009. 

Relating this to our model, we let the GM area planted for white maize be the 
threshold trigger ( dtz − ), and the growth rate of the price of white maize be ty
. We assume that GM maize adoption rates affect wholesale spot market prices 
at harvest time (assumption would be different for futures prices) and therefore 
we include lags to allow for the period between planting and harvesting periods. 
One way to measure the influence of GM maize on welfare in South Africa is by 
looking at the dynamics of the growth rate of prices in the country and evaluate if 
it is excited by the GM maize adoption rate in the country.

Figure 2: Spot price (R) and GMO adoption rate (%) for white maize in South Africa 

9 RESULTS
We fit our TAR model with an outside threshold trigger using the posterior 
distribution highlighted earlier. Conditional on the delay parameter and threshold 
parameter, our posterior for rβ and rh has a convenient form and means and
standard deviations can be calculated using analytical formulas highlighted in the 
model section. We perform posterior inference for every possible combination of 
τ and d.

This paper is primarily interested in applying the threshold autoregressive 
model to time series data on the price of maize in South Africa to address the 
following questions: (1) Does the adoption of GM maize excite the growth rate 
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of price of maize in South Africa; (2) Does the error variance of the maize price 
growth rate exhibit regime-switching behaviour to impact volatility?

We begin to address these questions by estimating a simple model with one 
lag. Our definition of the delay parameter (d) implies that it is bounded at the top 
by the lag length. This makes sense because the influence of the threshold trigger 
d periods ago can only be important if that period of the series influences the series 
itself. This model estimates an AR (1) model with two regimes triggered by the 
adoption rate of GMO. The posterior properties of rβ and rh  show differences in 
the dynamics of the series in the two regimes. Parameter estimates and diagnostic 
statistics are reported in Table 3. The autoregressive coefficient of price growth 
is estimated at 0.40 (s.d. 0.1060) for the first regime and -0.1462 (0.1969) for 
the second regime. There is strong evidence that the first regime AR parameter 
indicated moderate persistence of shocks. The properties of maize price growth 
rate are characterized as a function of only its own past (depending only on its one 
period lagged value), while the second regime shows that there is little evidence 
that the properties are not characterized as a function of its one period lagged 
value. 

Table 3: Posterior results for the TAR model with switches in error variance

Model A with p=1 (Model Marginal Likelihood = 90.04)

Regime 1 Regime 2

Parameter Mean Std. Dev. Parameter Mean Std. Dev.

10β 0.2981 1.1210 20β 0.8199 0.9547

11β 0.4511 0.1099 21β -0.0156 0.1279

2
1σ 87.6264 14.4223 2

2σ 49.2063 9.9395

The results show evidence that the adoption of GM maize influences the dynamics 
of the maize price growth rate in South Africa. Another important aspect of the 
result is the volatility of the price growth rate. Table 3 also shows that there is 
strong evidence that the error variance exhibits regime-switching behaviour. The 
posterior mean for the error variance in the first regime (87.6264) is about twice as 
large as that of the second regime (49.2063). That is, before the threshold trigger, 
the growth rate in prices was more volatile than after implying that adoption of GM 
food has helped reduce market risk too. Our findings indicate that prices become 
less volatile at certain levels of GMO adoption (given that GM and non-GM maize 
are not perfect substitutes). It should be noted that while the world price of corn 
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also has an influence on the price of maize in South Africa, unless GMO adoption 
and world price is highly correlated, the change in regime picked up by our model 
cannot be attributed to world prices. Abidoye and Labuschagne (2014) show that 
in the long run, 98% of changes in world prices are eventually transmitted to 
South African prices. This implies that a SETAR model will be appropriate to 
capture the influence of World Prices on the growth rate of local prices. We will 
show later a comparison of this model with the one proposed here within our 
Bayesian Framework. Lastly, the posterior for the thresholds (τ ) is presented in 
Figure 3. Appreciable posterior is found for a number of possible thresholds with 
the mode of the posterior roughly at about 44% adoption rate corresponding to 
2006 planting season.4 Interestingly, almost none of the posterior distribution is 
allocated to the adoption rates after the mode.

Figure 3: Posterior distribution of the threshold parameter tau.

The above result tells us that there is some evidence that the adoption of GM 
maize triggered the regime switch observed. However, there is reason to believe 
that it may take longer than one period to induce the regime switch. That is, the 
annual average adoption rate over a period is what will actually induce the regime 
switch and not necessarily the previous month’s adoption rate. In the spirit of this, 
we compare models with different delay parameters using the Bayes Factor to 

4	 The initial buzz of GM adoption seems to have excited the price growth rate with some posterior 
probability support from the data found at about 8% adoption rate. There is also an appreciable 
percentage of the posterior at around the 29% adoption rate, which is also part of 2006 harvest 
season.
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choose the model supported by the data. We use the average rate of adoption as 
the trigger such that the threshold trigger is the average adoption rate of GM over 
the last d months:

d
z

z
p

d dt
dt
∑ = −

− = 1
*

Where *z is the area planted to GM maize for that period. 
Figure 4 plots the posterior of d. Given that values of d imply different threshold 

triggers, there is no point plotting the posterior of the threshold parameterτ . From 
the figure, the posterior allocates most of the probability to 6=d .This indicates 
that what triggers a regime shift is the sustained adoption rate averaged over 6 
months, which are about the average growing season length. Table 4 (Model B) 
presents the autoregressive parameter estimates for this model. The results of 
the switches in the error variance and that the properties of maize price growth 
rate are characterized by its one period lagged value in the first regime are still 
consistent. However, the result also shows that for the second regime, volatility is 
lower (12.74) and the properties of maize price growth rate are characterized by 
its second, eighth and ninth period lags.

Figure 4: Posterior Distribution of Delay Parameter
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Table 4: Posterior results for the TAR model with switches in error variance

Model B with p=9. Model Marginal Likelihood = 221340

Regime 1 Regime 2

Parameter Mean Std. Dev. Parameter Mean Std. Dev.

10β 0.1392 0.9159 20β 4.5262 1.238

11β 0.3389 0.0926 21β -0.2972 0.1931

12β 0.0042 0.0985 22β 0.0025 0.1581

13β 0.023 0.0998 23β 0.1272 0.1317

14β 0.0493 0.1011 24β 0.1766 0.1161

15β -0.1047 0.1012 25β 0.0513 0.1152

16β -0.0303 0.102 26β -0.0223 0.1183

17β 0.0805 0.1014 27β 0.1034 0.113

18β -0.0065 0.0978 28β -0.2242 0.1153

19β 0.0114 0.0929 29β 0.3013 0.1143

2
1σ 76.8629 10.2339 2

2σ 12.7347 5.0789

Finally, in order to test if the above model is a good fit for the data compared with a 
SETAR model and a model without thresholds, we look at the marginal likelihood 
for the different models in the spirit of the Bayes Factor. The marginal likelihood 
below (Table 5) shows that the heterogeneous TAR model with GM adoption as 
the trigger better fits our data than a model that assumes that changes in the series 
are caused by things related to itself. Thus, while there is some evidence that 
changes in the South African market for maize occurred in the time period, the 
evidence is stronger that these changes in the growth rate of the prices is as a result 
of GM adoption.
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Table 5: Classes of Models and Corresponding Marginal Likelihood for p=9

Model Marginal Likelihood

Heterogeneous TAR with GM Adoption Trigger 221340

Homogenous TAR with GM Adoption Trigger 2612.4

Heterogonous TAR with SETAR 5.19

Homogenous TAR with SETAR 2.599

Linear AR NO threshold 4.2429e-241

10 SUMMARY AND CONCLUSIONS
GM crops have been extensively tested and found to be as safe as conventional 
crops. They are being adopted worldwide because of their benefits to farmers and 
society. Despite the potential advantages, adoption of GM crops in Africa has been 
slow. South Africa represents the vanguard of GM crop adoption in Africa with 
full commercialization of GM cotton, soybean and maize. Given the polarized 
public views on the potential role of GM crops in alleviating food security and 
possible environmental effects, other African nations (and the rest of the world) 
are closely monitoring South Africa as a case study. This paper informs the public 
debate and policy dialogue by examining the empirical evidence on the effects of 
GM maize adoption in South Africa. 

 In this paper we evaluated the impact of GM crop adoption on wholesale 
maize prices in South Africa. A threshold autoregressive model was applied to 
time series data on wholesale price and GM adoption rates of maize in South 
Africa for the period between January 2000 and April 2012. Our results show that 
the adoption of GM maize in South Africa has had an impact on the dynamics of 
wholesale maize price growth rate in the country. Our analysis shows a regime 
switch in the 2006/07 growing season when adoption rates for GM white maize 
reached 44% of the area planted. Further, the analysis shows strong evidence that 
the error variance exhibits regime-switching behaviour with the posterior mean 
for the error variance in the first regime about twice as large as that of the second 
regime. Simply put, the growth rate in prices was stabilized by GM adoption, 
thereby reducing price risk. We speculate that the increased stability comes from 
increased integration with key exporters such as USA, Brazil and Argentina that 
have also adopted GM maize.
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We are careful not to make further inference on consumer welfare. Assuming 
perfectly competitive markets, we expect these beneficial price effects to be 
transmitted to consumers in the long-run. However, in the South African context, 
the welfare gains on consumers are a non sequitur for two reasons. First, 
South Africa has a highly industrialized food processing system wherein food 
commodities often represent a small percentage of the value added final consumer 
product. Second, there have been many instances of anti-competitive behaviour 
within the country’s grains and milling industries that could delay or prevent 
symmetric transmission of price signals from wholesale through retail levels. For 
other African nations seeking to draw lessons from the South African example, 
we conclude that adoption of GM maize has had a stabilizing effect on wholesale 
prices ceteris paribus. 
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