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Highlights 
 Analytical approach is employed to solve the energy equations with convective boundary condition of the third kind.  
 The wall thickness, Bi and kpf significantly influence the interfacial heat flux, the wall and fluid bulk temperatures. 
 The fluid bulk and wall temperatures decrease with decreasing pipe wall thickness and increasing Bi number and kpf. 
 Increase in the convective heat loss corresponds to a decrease in wall thickness but increase in both Bi and kpf. 
 The thermal entrance length increases with pipe wall thickness while it decreases with increase in both Bi and kpf.  

 
 

ABSTRACT  

Conjugate heat transfer in laminar tube flow with convective boundary conditions is considered analytically. The 
steady state problem involving two-dimensional wall and axial fluid conduction is solved using separation of 
variables for a thick walled cylindrical pipe. The effects of the wall thickness, external Biot number and wall-to-
fluid thermal conductivity ratio are investigated on the heat flux, fluid bulk and wall temperatures. Results are 
presented for the cases when the wall thickness is between 0.1 and 2, Biot number ranging between 0.1 and 10, and 
the ratio of wall-to-fluid thermal conductivity between 3 and 100. These parameters are found to significantly affect 
the heat transfer characteristics at the thermal entrance region, for instance, increase in wall thickness results in 
reduced heat flux while increase in Biot number and the ratio of the wall-to-fluid thermal conductivity result in 
increased heat flux. Decrease in wall thickness, increase in both Biot number and the ratio of the wall-to-fluid 
thermal conductivity correspond to decreased fluid bulk and wall temperature profiles.    

 
Keywords: thick-walled pipe; Biot number; Peclet number; wall-to-fluid thermal conductivity ratio; convective heat 
transfer 

NONMENCLATURE 

Symbols 
A Area (m

2
) 

Bi Biot number 
Cp

 
Specific heat at constant pressure (kJ/kg.

o
C) 

d pipe diameter (m) 
G dimensionless function of axial position in fluid eq  
h heat transfer coefficient (W/m

2
.
o
C) 

J0 Bessel function of first kind, of zero order  
J1 Bessel function of first kind, of unity order  
k thermal conductivity (W/m

o
C) 

L characteristic length of system/ pipe (m) 
Nu Nusselt number, hidi/kf 
Num Modified nusselt number, Uidi/kf 
Pe Peclet number 
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q  dimensionless heat flux 

r radius (m) 
RTotal total thermal resistant (

o
C/W) 

R0 eigenfunction of order zero 
R1 eigenfunction of order unity 
T temperature (

o
C) 

T∞ ambient (free stream condition) temperature (
o
C) 

U overall coefficient of heat transfer (W/m
2
.
o
C) 

 u  is a function of dimensionless radius, 
21    

v velocity (m/s) 
x position in the axial direction (m)  
 
Greek Symbols 

  dimensionless position in axial direction 

  dimensionless pipe thickness 

  dimensionless function of radius in fluid eq. 

  dimensionless function of radius in pipe eq. 


 

ratio of outlet to inlet temperatures 
  dimensionless function of axial position in pipe eq. 

  characteristic eigen values or roots of fluid eq. 

  characteristic eigen  values or roots of pipe eq. 

  dimensionless radius 

  dimensionless temperature 

 
 
 
Subscript 
b bulk  
e exit 
f fluid 
i inner, number of finite roots in pipe eq. 
j number of finite roots in fluid eq. 
m mean 
o outer 
p pipe 
pf pipe wall-to-fluid 
w wall 
k an arbitrary integer 
 

1. INTRODUCTION  

Conjugate heat transfer in circular and rectangular ducts received considerable attention in the last century since the 
formulation of the Graetz problem. For the Graetz problem and subsequent studies, it was common practice to 
impose heat flux or temperature boundary conditions at the fluid-wall interface as well as neglect the duct wall 
conduction in the heat transfer process. In most realistic situations, the boundary conditions at the interface are not 
known initially but depend on the coupling between convection and conduction mechanisms at the interface [1]. It is 
the coupling between convection in the fluid and conduction in the duct that give the problem the name conjugate. 
This heat transfer problem is better analyzed by considering the simultaneous heat transfer inside the fluid and the 
wall. A comprehensive review of studies conducted on heat transfer in conventional ducts was carried out by Shah 
and London [2] and, Shah and Bhatti [3]. They concluded that wall conduction might have a significant effect on 
heat transfer especially in the thermal entrance region. 
In earlier studies on conjugate heat transfer, various analytical and numerical solutions were employed to solve both 
the problems of thermal entrance region with axial conduction term and of fully developed flow. Most of these 
studies have also considered either prescribed heat flux or wall temperature boundary conditions. However, limited 



 

 

studies have been done on the problems of convective boundaries, that is, problems involving boundary conditions 
of the third kind [4-6].  
Among the earlier studies on conjugate heat transfer are Mori et al. [7-8], who considered the effect of wall 
conduction between parallel plates and in circular pipes for uniform heat flux and constant surface temperature 
boundary conditions. The effect of axial wall conduction between parallel plates was analyzed for Couette flow by 
Davis and Gill [9]. Faghri and Sparrow [10] in their study on simultaneous wall and fluid axial conduction in 
laminar pipe flow proposed criteria for judging the importance of the axial heat conduction. Like Faghri and 
Sparrow, Zariffeh et al. [11] employed finite difference for their solution while Campo and Rangel [12] used 
analytical methods in their study of conjugate effect of one-dimensional fluid and wall axial conduction. In all these 
studies, extremely thin ducts were assumed.  
With the emerging applications of heat transfer in micro-and mini-channels in micro-electro-mechanical systems 
(MEMS) – in which wall thickness of the duct or pipe is significant, it is however reasonable to view the problems 
of conjugate heat transfer as a two-dimensional wall (radial and axial) conduction. For this reason, a thick-walled 
duct is better used for this analysis. Before the emergence of micro tubes and channels though, some earlier 
researchers on conventional heat transfer in large tubes have extended their analysis to involve two-dimensional wall 
conduction. This found ready applications in high temperature, high pressure conveyance of fluid such as crude oil 
in the deep and ultra-deep offshore environment, etc. Pagiliarini [13] and Barozzi and Pagiliarini [14] investigated 
analytically, flows in thick-walled ducts/pipes with two-dimensional wall conduction. Campo and Shuler [15] 
employed lumped system to analyze the simultaneous wall and fluid axial conduction in laminar pipe flow heat 
transfer. Bilir [16] employed finite difference method to solve the combined effect of two-dimensional wall and 
fluid conductions for low Peclet number (Pe ≤ 20) laminar flow. He considered a thick-walled two regional large 
cylindrical pipe with external constant temperature and a change at a given section. Chung and Sung [17] employed       
direct numerical simulation for turbulent flow in concentric annulus for Re = 8900, Pr = 0.71, radius ratio of 0.1 and 
0.5 and heat flux ratio of 1:10. Results revealed that vortex regeneration between the inner and outer walls caused 
higher thermal structure at the outer walls. In the study of the effect of numerical simulations on the heat transfer of 
a fully developed turbulent pipe flow with isoflux on the wall for Re = 5500, Redjem-Saad et al [18] observed that 
for Pr ≥ 0.2, temperature and turbulent heat flux increased with increasing Pr. Esfahani and Shahabi [19] 
investigated the effect of heat flux distribution on entropy generation. The results indicated that heat flux distribution 
affected the extent of entropy generation and that it could be regulated by varying heat flux distribution or its rate of 
change. Tso et al [20] considered non-Newtonian fully developed laminar heat transfer in fluids between fixed 
parallel plates. The plates were maintained at different constant heat flux. The results showed that that the power 
indices of the fluids and the viscous dissipation affected the heat transfer. Ate et al [21] showed that wall thickness, 
wall-to-fluid thermal conductivity ratio, wall-to-fluid thermal diffusivity, Biot and Peclet numbers significantly 
influence the heat transfer characteristics in a thermally developing laminar flow in a two-dimensional wall and fluid 
conduction. The effect of the thickness of a trapezoidal wall placed between a heat source and a cold fluid was 
investigated on the hot spot temperature of the system [22]. ANSYS FLUENT 12.01 was used to optimize the 
thickness of the plate and it was shown that at the optimum thickness, the hot spot temperature decreased up to 
25.06%. For the six cases of non-uniform heat flux supplied to a circular pipe flow with Prandtl number of 13,400, 
Al-Maliky [23] reported an increase in Nusselt number (for known Prandtl number) and an increase in maximum 
velocity at the center of the fluid as Reynolds number increased. Furthermore, correlations were developed for each 
case.     
For application to micro-tube, Zhang et al. [24] considered conjugate effect of two-dimensional wall conduction and 
fluid axial conduction for simultaneous developing laminar flow and heat transfer in microtube with varying 
dimensionless wall thickness and constant outer surface temperature. Results revealed that the heat transfer process 
was highly responsive to the wall-to-fluid conductivity ratio for the case when it was greater or equal to 25. The role 
of the wall axial heat conduction was found to unify the inner wall surface heat flux. With axial conduction included 
in the convectional size ducts and the uncertainty in the friction factor associated with measurement error addressed 
in the micro-channels, the analysis of the convectional theory are adequate for micro channels [25-27].    
In the present study, the combined effect of two-dimensional wall and fluid conduction is analyzed for low Peclet 
number (Pe = 5) laminar flow heat transfer with convective boundary conditions of the third kind for the thermal 
entrance region problem. Both inner and outer wall surfaces of the circular pipe are subjected to convective heat 
transfer. Separation of variables method was employed to solve the conjugate problem for a circular pipe. 

 

2. PROBLEM FORMULATION 

The present study examines the effect of two-dimensional (radial and axial) wall and fluid heat conduction in a thick 
walled cylindrical pipe subjected to convective boundary conditions at both the inner and outer surfaces of the pipe. 



 

 

The fluid exchanges heat with the environment through the wall of the pipe with inner and outer radii ri and ro 
respectively. A single regional thick-wall pipe is considered as shown in Fig. 1.  
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Fig. 1. Schematic diagram of the conjugate heat transfer problem. 

 
The problem is analysed for low Peclet numbers (Pe = 5) laminar flow. The fluid and wall are subjected to 

temperature (T0) at the entrance ( 0x ). Heat flows from the fluid to the ambient through the pipe with heat transfer 

coefficient of hi at the inner surface and ho at the outer surface. The outlet fluid (at 1x ) is at ambient temperature. 

The following assumptions were made: the fluid is Newtonian; viscous energy dissipation and internal heat energy 
generation are negligible. The physical properties of the fluid and pipe are constant. The heat transfer coefficients 
are also assumed constant along the surfaces. The study is rather focused on the temperatures and heat flux at the 
thermal entrance region for which the effect of axial fluid conduction is significant. This is important in engineering 
applications of flows with low Peclet numbers.  
The dimensionless forms of the two-dimensional energy equations of the fluid and pipe are presented in the analysis 
below. On the fluid side, the differential equation is    
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On the pipe side, the differential equation is  
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With boundary conditions 
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The fluid bulk temperature, heat flux and Nusselt number may be calculated from  
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The dimensionless parameters of the problem are defined as 
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In dimensionless form, the modified Nusselt number can be expressed as [25]  
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2.1 Analysis of Problem 

The solution of the problem defined by eq. (1) and eq. (3) are obtained analytically via the separation of variables 
method subject to the boundary conditions eqs. (2a-d) and eqs. (4a-d) respectively. The fluid temperature is 

decomposed into both the radial   and axial   components   

      jGjf  ,           (8) 

Introducing eq. (8) into eq. (1) gives two separate differential equations for the axial and radial components as eq. 
(9) and eq. (10) respectively  
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j
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eq. (11) for a finite solution of  
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where, 
j

c
1

 are arbitrary constants. Eq. (10) is satisfied by the following Bessel solution  
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where 
j

D  are constants. Introducing eq. (11) and eq. (12) into eq. (8) gives  
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where, the coefficients jDjcjc 1 . 

Inserting eq. (13) into eq. (2b) and simplifying gives 
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Substituting eq. (13) into eqs. (2c & d) and after some simplifications give  
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After some manipulations, eq. (15) gives 
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Constants 
j

c  in eq. (13) can be obtained by using the boundary condition (2a) and evaluating for orthogonality 
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After the operation, the left hand side of eq. (17b) can be expressed as 
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while, the right hand side of the eq. (17b) can be further simplified as 
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The coefficients 
j

c  can be evaluated when kj   as  
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Inserting the solution of eq. (18) and eq. (19) into eq. (20) and evaluating the result gives the coefficients as  
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Introducing eq. (16a) into eq. (21) and after some manipulations leads to 
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Finally, the fluid temperature is obtained when eq. (22) is introduced into eq. (13) 
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To calculate the bulk temperature, eq. (23) is introduced into eq. (5) and integrated between the limits (0,1) which 
leads to    
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From eq. (3), the solution of the pipe equation can be decomposed into both the radial and axial components thus 
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Introducing eq. (25) into eq. (3) and separating into both axial (eq. 26) and radial (eq. 27) components as 
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where 
i

 are the eigenvalues of the solution of eq. (3). The solution of eq. (26) for

 

a finite pipe temperature profile 

can be expressed as
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where, 
i

a
1

 are constants. Eq. (27) is satisfied by the Bessel solution specified as  
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where
i

M are arbitrary constants. Therefore, the solution of eq. (3) is given in the form
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where the expansion coefficients iMiaiF 1

 



 

 

Substitute eq. (30) into eq. (4b) and evaluating the result at the boundary condition gives 
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Eq. (13) and eq. (30) are introduced into eq. (4c) to give 
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Eqs. (31a, b) are simplified to give 
 

 
   

 jJpfk

iRjJ

iR





0

1,00
1,0


           (32) 

On introducing eq. (30) into eq. (4d) and simplifying results in 

     1,01,0 iBiRiR          (33) 

After inserting eq. (30) into eq. (4a) leads to  
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It is obvious that the Fi in eq. (34) can be obtained by multiplying both sides of eq. (34) by  kR0  and 

integrating between 1 and 1  i.e.  1,1  where  is the weighted function given in 

     
 


1

1
0

1

00
1

,,,
1

dRdRRF kkii        (35) 

The right hand side of eq. (35) only has a value when ki  , therefore the coefficients of the pipe solution, Fi are 

obtained as follows 
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To obtain the numerator, introducing eq. (30) into eq. (27) and rearranging the resulting equation leads to 
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Integrating both sides of eq. (37) now gives 
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Note that the denominator of eq. (36) can be expressed as 
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Introducing eq. (38) and eq. (39) into eq. (36) enables the expansion coefficient Fi to be calculated as 
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Knowing the coefficients eq. (40) can then be inserted into eq. (30) to obtain the temperature profile for the pipe 
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Eq. (42) is obtained by introducing eq. (32) and eq. (33) into eq. (41) 
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where  
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The dimensionless form of the eigen values/ roots for the pipe temperature solution can be adapted from Ozisik [28] 
as  
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3.0 RESULTS AND DISCUSSION 

Presented in this paper are the results of the study of the effects of pipe wall thickness , Biot number Bi and, the 

ratio of wall-to-fluid thermal conductivity kpf on the bulk and wall temperatures and, heat flux in a laminar flow for a 
thick-walled pipe subjected to convective boundaries at both the inner and outer surfaces of the pipe at the thermal 
entry region. The study was conducted for low Pe of 5, L* = 8, Bi ranging between 0.1 and 10, kpf between 3 and 
100 and wall thickness between 0.1 and 2. Using the range of parameters mentioned earlier, the results were 
simulated in MATLAB 2010a environment. The x-axis in the results was ranged between 0.0 and 0.5 to enable clear 
views of the profiles. 

 
Fig. 2. Effects of g on the fluid bulk temperature for Bi = 1, kpf = 10 and Pe = 5. 

 
Fig. 2 to Fig. 4 reveal the effect of the variables under consideration on the fluid bulk temperature. Fig. 2 shows the 

effect of  on 
b

 for Bi = 1, kpf = 10, Pe = 5 and L* = 8. The result shows that the smaller the thickness of the pipe 

wall, the greater the conduction from the fluid across the pipe wall to the environment. That is, increase in wall 
thickness increases the wall thermal resistance to heat transfer between the fluid and the environment, hence, less 

heat flow leading to a higher temperature profile in a thicker pipe. In Fig. 3, the effect of external Bi on 
b

  is 

investigated for kpf = 10, Pe = 5 and 5.0 . Increase in Bi indicates an increase in the convective heat transfer at the 

external surface of the pipe. The result shows that there is a general decrease in 
b

 with increasing Bi. The effect of 

Bi on 
b

 decreases as it (Bi) increases. Fig. 4 presents the effect of kpf on 
b

 for Pe = 5, Bi = 1, and 5.0 . Large 

kpf corresponds to the case where there is negligible wall resistance as in the case of low conductivity fluid in a metal  



 

 

 
Fig. 3. Effects of external Bi on the fluid bulk temperature for Pe = 5, kpf = 10 and g = 0.5. 

 

 
Fig. 4. Effects of kpf on the fluid bulk temperature for Pe = 5, Bi = 1 and g = 0.5. 

 
pipe or for a very high thermal conductive pipe. For this case, the rate of heat transfer by conduction from the fluid 
is high. For high fluid thermal conductivity as in liquid metal kpf is small thus, the resistance of wall radial heat  
 



 

 

 
Fig. 5. Effects of g on wall temperature for Bi = 1, kpf = 10 and Pe = 5. 
 

 
Fig. 6. Effects of Bi on the wall temperature for Pe = 5, kpf = 10 and g = 0.5. 

 



 

 

 
Fig. 7. Effects of kpf on wall temperature for Pe = 5, Bi = 1 and g = 0.5. 
 

 
Fig. 8. Effects of g on the heat flux for Pe = 5, Bi = 1 and kpf = 10. 

 



 

 

 
Fig. 9. Effects of Bi on the heat flux for Pe = 5, kpf = 10 and g = 0.5. 
 

 
Fig. 10. Effects of kpf on heat flux for Pe = 5, Bi = 1 and g = 0.5. 

 



 

 

conduction is not negligible. The result reveals that 
b

 decreases with increasing kpf. Large value of kpf means that 

the fluid, through pipe wall conduction, loses more heat and so the temperature of the fluid drops as kpf increases. It 
can also be seen that the thermal entrance length becomes smaller as kpf increases.  

On the wall temperature, the effect of  , Bi and kpf are investigated on 
w

 for the same conditions as considered in 

the case of
b

 . Fig. 5 displays the effect of   on
w

  for Bi = 1, kpf = 10, Pe = 5, L* = 8 and 5.0 . Similar to 

Fig. 2, the result reveals that increase in  results in the increase in the thermal resistance to heat flow through the 

pipe wall. However, the effect of conduction through the wall and convection at the outer wall of the pipe is more 

pronounced on 
w

  than on 
b

  that is why there is higher temperature drop on the wall than in the fluid bulk. 

With respect to Bi, the wall temperature decreases with increase in Bi for the case presented in Fig. 6 (Pe = 5, kpf 

= 10 and 5.0 ). Increase in Bi results in increase in `heat transfer rate at the external wall side. This causes in a 

significant drop in the temperature of the pipe. Higher Bi leads to higher temperature gradient between the surfaces 
of the pipe, resulting in a substantial decrease in the wall temperature. As Bi increases, there is a decrease in the 

effect on the interface temperature. Fig. 7 shows the effect of kpf for the case when Bi = 1, Pe = 5 and 5.0 . The 

wall temperature generally decreases from the entrance to the exit of the flow due to the temperature gradient 

resulting from the Bi and kpf. The effect of kpf is more significant on 
w

 than on
b

 .   

The results of the effects of the three variables on the interficial heat flux are given in Figures 8 - 10. The negative 
(heat flux) values are indications that heat is lost from the fluid to the environment via the wall interface. The rate of 
interficial heat flux is inversely proportional to   hence the convective heat loss by the fluid. The thicker the pipe 

the higher the thermal resistance hence the lower the interficial heat loss (Fig. 8) 
  
 

The relationship between Bi and 
w

q is presented in Fig. 9. It shows that increased Bi result in an increase in heat 

loss from fluid to the environment. It can also be seen that the effect on 
w

q  reduces slightly with increasing Bi. 

With respect to the effect of kpf on the heat transfer rate or heat loss, Fig. 10, shows that the rate of heat loss 
increases with kpf. This is because an increase in kpf causes a decrease in the wall thermal resistance. Furthermore, 

the effect of kpf on 
w

q  decreases slightly as kpf increases.  

 

4. CONCLUSIONS 

In the present study, the analysis of the effects of two-dimensional wall conduction and fluid axial conduction for 
laminar flow in a thick-walled pipe subjected to convective boundary conditions of the third kind is presented. Two 
energy equations, one for the fluid and the other for the pipe, were solved using separation of variables method for 
the conjugate heat transfer problem. Results were simulated for pipe thickness ranging between 0.1 and 2.0, Biot 
number between 0.1 and 10.0 and the ratio of pipe wall-to-fluid thermal conductivity between 3.0 and 100.0. The 
effects of three parameters (pipe wall thickness, Biot number and pipe wall-to-fluid thermal conductivity ratio) were 
investigated and the finding summarized as follows: 

1). Bulk and wall temperatures and heat flux are sensitive to the three parameters under investigation. 
2). The fluid bulk and wall temperatures decrease with decreasing pipe wall thickness , increasing Bi number, 

and increasing kpf.  
3). An increase in , leads to the convective heat loss becoming smaller while increase in both Bi and kpf lead to 

increased heat loss to the environment. This is because increase in wall thickness increases the thermal resistance to 
heat transfer between the fluid and the environment leading to a lower interfacial heat loss and a higher temperature 
profiles at the wall and fluid. On the other hand, increase in Bi and kpf correspond to increase in the convective heat 
loss resulting in a larger interfacial heat flux but lower temperature profiles in the wall and fluid.   

4). All the parameters considered are very important at the thermal entry region and have effect on the thermal 
entrance length. However, with increase in pipe wall thickness, the thermal entrance length increases while it 
decreases with increase in both Bi and kpf.  
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