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3D Path-Following Control for a Model-Scaled Autonomous
Helicopter

Bing Zhu, Member, IEEE, and Wei Huo, Member, IEEE

Abstract—A 3D path-following controller is proposed in this
brief for a 6-DOF model-scaled autonomous helicopter. The ref-
erence path and path-following errors are newly defined by using
implicit expressions. Based on geometric analysis, a new speed
error is designed for singularity avoidance. The proposed control
algorithm is designed by using command filtered backstepping,
such that complicated solutions for derivatives of virtual controls
are circumvented. It is proved that, with the proposed controller,
path-following errors are locally ultimately bounded. Theoretical
results are demonstrated by numerical simulation.

Index Terms—Unmanned helicopter, path-following, nonlinear
control, singularity avoidance, command filtered backstepping.

I. INTRODUCTION
Reference tracking problems for mechanical systems can

be roughly divided into three categories, namely point-
stabilization, trajectory-tracking and path-following. In the first
two categories, closed-loop systems are expected to track
reference points or time-based reference trajectories. Path-
following differs from trajectory-tracking in that no specific
temporal requirements are assigned for the controlled vehi-
cles and reference paths. It has been claimed during recent
years that path-following controllers are more applicable than
trajectory-tracking controllers in some specific areas [1].

Some recent representative theoretical researches on path-
following control of nonlinear systems can be referred to
[2], [3], where path-following controllers are designed for
nonlinear systems with unstable zero dynamics. Path-following
problems are also studied extensively for control of planar
or 3-Dimensional moving vehicles (e.g. wheeled robots [4],
underwater vehicles [5], fixed-wing aerial vehicles [6], [7] and
snake-like robot [8]).

Parameterized path-following is the most prevail formu-
lation of the problem. The reference path is given by a
parameterized curve, and the task is to design an updating law
for the path parameter [3], [5], [9], so that the path-following
problem becomes a ”point-tracking” problem. Updating law
for the path parameter can be regarded as an extra control input
that excludes performance limitations imposed on trajectory-
tracking [1]. Moreover, by using parameterized path-following
control, control singularities can be avoided effectively [6].
However, there exist some drawbacks in parameterized path-
following control. For specific analysis, please see [10].
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Another solution to path-following problem is to design a
controller to stabilize path-following errors defined by implicit
expressions. For 2D (planar) path-following, the reference path
is given by a 2D manifold; while, for 3D path-following, the
reference path is given by intersecting two 3D manifolds [10].
With this approach, the controlled vehicle would enter into an
invariant set enclosing the reference path. The objective is to
follow the entire reference path instead of any moving points.
However, path-following control based on implicit reference
path often suffers from singularities, thus its potential appli-
cations are greatly impeded.

In this paper, a new 3D path-following controller for a 6-
DOF model-scaled helicopter is proposed to overcome the
drawback of singularities. The reference path to be followed
is given by intersecting two 3D manifolds. Local singularities
around the reference path are avoided by using the new
definition of speed error. The path-following controller is
designed with a newly developed technique named command
filtered backstepping [11], [12]. It is proved that, with the pro-
posed controller, path-following errors are locally ultimately
bounded. Simulation results are presented to demonstrate the
theoretical results. Main contributions of this paper include
1) the new formulation of the 3-D path-following errors and
the speed error, 2) the strategy of singularity avoidance based
on geometric analysis, and 3) the application of command
filtered backstepping to circumvent complicated solutions for
derivatives of virtual controls.

This paper is organized as follows: path-following problem
is formulated in Section II; detailed procedures of controller
design are described in Section III; simulation results are
displayed in Section IV; conclusions and future works are
presented in Section V.

II. PROBLEM STATEMENT
A. Notations

In this paper, the notation | · | denotes absolute value for
real numbers; and the notation ∥·∥ denotes Euclidean norm or
induced Euclidean norm for vectors (co-vectors) or matrices,
respectively.

For any continuously differentiable vector function F(x) =
[ f1(x), ..., fm(x)]T : Rn → Rm, where x = [x1, ...,xn]

T ∈ Rn, its
Jacobian matrix is defined by

∂F
∂x

,


∂ f1
∂x1

... ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

... ∂ fm
∂xn

 .

The cross product of co-vectors (row vectors) is defined by
xT × yT , (x× y)T , where x and y are vectors, and the cross
product of vectors x× y is defined conventionally.
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Fig. 1. A simple illustration of the helicopter model, including reference
frames, flapping angles and thrusts generated by rotors

B. Mathematical modeling for model-scaled helicopter

The helicopter model is illustrated by Fig. 1. For mathemati-
cal modeling, we use two traditional reference frames – 1) the
earth reference frame (ERF), and 2) the fuselage reference
frame (FRF). For detailed definitions, please see [13].

The mathematical model of the model-scaled unmanned he-
licopter could be derived by Newton–Euler equations [14][15]:

Ṗ =V, (1)
mV̇ =−mg3 +R(γ)F, (2)

Ṙ(γ) = R(γ)S(ω), (3)
Jω̇ =−S(ω)Jω +Q, (4)

where P , [x,y,z]T and V , [u,v,w]T are position and velocity
of c.g. of the helicopter in ERF, respectively; m denotes the
mass; g3 , [0,0,g]T and g is the gravitational acceleration; γ ,
[ϕ ,θ ,ψ ]T denotes the attitude in ERF; the rotational matrix is
given by

R = [Ri j],

 cθcψ cψsθsϕ − cϕsψ cϕcψsθ + sϕsψ
cθsψ sψsθsϕ + cϕcψ cϕsψsθ − sϕcψ
−sθ cθsϕ cθcϕ

 ,

where c(·) and s(·) are the shorts for cos(·) and sin(·),
respectively; ω , [p,q,r]T represents the angular velocity
in FRF; S(·) denotes the skew-symmetric matrix such that
S(ω)Jω = ω × Jω ; the inertial matrix is given by

J ,

 Ixx 0 −Ixz

0 Iyy 0
−Ixz 0 Izz

 .

Resultant forces and torques in FRF are given by

F =

 Tmsas

−Tmsbs +Tt

Tmcbscas

 , (5)

Q =

 Tmhmsbs +Lbbs +Ttht +Qmsas

Tmlm +Tmhmsas +Maas +Qt −Qmsbs

−Tmlmsbs −Tt lt +Qmcascbs

 , (6)

where Tm, Qm, Tt and Qt represent the thrusts and the
counteractive torques generated by the main rotor and the tail
rotor, respectively; hm, ht , lm, lt are the vertical and horizontal
distances between c.g. of the helicopter and centers of the
rotors, respectively; Lb and Ma are longitudinal and lateral
stiffness coefficient of main rotor blades; as and bs are the
longitudinal and lateral flapping angles, respectively. Since
it is extremely fast compared with the fuselage dynamics,
the flapping dynamics can be neglected in this research.
Expressions for thrusts with respect to collective pitches are
given by [16]

Ti = tciρsiAiΩ2
i R2

i , (7)

tci =
1
4

−ai

4

√
si

2
+

√
a2

i si

32
+

2
3

aiθi

2

, (8)

and expressions for counteractive torques are given by:

Qi = qciρsiAiΩ2
i R3

i , qci =
δd

8
+1.13t

3
2

ci

√
si

2
, (9)

where subscripts (i = m, t) represent main rotor and tail rotor
respectively; θi denotes collective pitch of main or tail rotor;
ρ , si, ai, Ai, Ωi and Ri denote the density of air, the solidity of
rotor disc, slope of lift curve, the area of rotor disc, rotational
rate of rotors and the radius of rotor disc, respectively; δd is
the drag coefficient with a typical value of 0.012 [16]. Motion
of the helicopter is controlled by θm, θt , as and bs.

C. The control objective

The reference path to be followed is a regular curve de-
scribed by implicit expression:

Pr =
{
[xr,yr,zr]

T ∈ R3 | f1(xr,yr,zr) = 0, f2(xr,yr,zr) = 0
}
,

(10)
where f1(x,y,z) and f2(x,y,z) are C∞ functions with respect to
x, y and z. The tangent co-vector of the reference path satisfies

∂ f1

∂P
× ∂ f2

∂P

∣∣∣∣
P=Pr

̸= 0, (11)

where Pr ∈ Pr.
Remark 1: Physically, ∂ f1

∂P and ∂ f2
∂P are normal co-vectors

of manifolds f1 = 0 and f2 = 0, respectively; and the cross
product ∂ f1

∂P × ∂ f2
∂P

∣∣∣
P=Pr

denotes the tangent co-vector of the

reference path. On a regular curve, ∂ f1
∂P and ∂ f2

∂P are unparallel,
and the tangent co-vector is nonzero. Further, the C∞ property
of f1 and f2 implies that ∂ f1

∂P × ∂ f2
∂P is C∞, then it holds that

∂ f1
∂P × ∂ f2

∂P ̸= 0 in the near region of the reference path.
The objective of this research is to design a path-following

controller, such that the controlled helicopter follows the refer-
ence path (10) with a reference speed vr > 0, or mathematically

limt→∞ | f1(x(t),y(t),z(t))|< ε̄1,

limt→∞ | f2(x(t),y(t),z(t))|< ε̄2,

limt→∞ |∥V (t)∥− vr|< ε̄3,

(12)

where ε̄1, ε̄2 and ε̄3 are small positive numbers.
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Remark 2: Reference path given by (10) is an intersection
of two 3D manifolds (e.g., the reference path given in Sec-
tion IV is an intersection of a ball and a plane). Physical
implication of the first two equations in (12) is that, if the
actual position of the controlled vehicle approaches both of
the two manifolds, then it approaches the reference path. The
third equation in (12) implies that actual speed approaches
the reference speed.

III. PATH-FOLLOWING CONTROLLER DESIGN

In this section, detailed controller design procedures for the
model-scaled helicopter are presented. The helicopter model is
simplified into a feed-forward form to facilitate backstepping
design. Path-following errors are defined based on implicit
expressions, and are stabilized by virtual control without sin-
gularities. Control thrust Tm and control torque Q are designed
according to command filtered backstepping [11], [12]. Actual
controls θm, θt , as, and bs are solved from Tm and Q.

A. Model simplification and transformation

The helicopter model (1)–(4) is strongly coupled, and it
should be simplified and transformed to facilitate controller
design. Since the cyclic flapping angles and the tail rotor
thrust are fairly small according to the physical properties
of the helicopter [15], [17], [18], it is reasonable to take
F = [0,0,Tm]

T in (5) for simplification, and it follows that

mV̇ =−mg3 +R3(γ)Tm, (13)

where R3 denotes the third column of R. Approximating (2)
with (13) enables the helicopter model to appear cascaded,
and facilitates backstepping design.

Further, the attitude kinematics can be described by

Ṙ3 = Ṙe3 = RS(ω)e3 =−RS(e3)ω, (14)

where e3 , [0,0,1]T , ∥R3∥ = 1, and R33 depends completely
on R13 and R23. Extracting the first two lines of (14) yields

˙̄R3 =

[
Ṙ13

Ṙ23

]
=

[
−R12 R11

−R22 R21

][
p

q

]
= R̂ω̄, (15)

where R̄3 , [R13,R23]
T , ω̄ , [p,q]T . The yaw kinematics can

be given by [14]

ψ̇ =
sϕ
cθ

q+
cϕ
cθ

r. (16)

Defining γR , [R̄T
3 ,ψ]T , it can be proved that det(∂γR/∂γ) =

cosθ > 0 in case of |θ | < π/2. Consequently, the map from
γ to γR is a local topological homeomorphism according to
inverse function theorem, indicating that (15) and (16) are
capable to represent the attitude kinematics under |θ |< π/2.
In fact, |θ | ≥ π/2 implies an uncontrollable situation, where
gravity of the fuselage cannot be addressed by the main rotor.

Assumption 1: Roll and pitch of the helicopter fuselage
satisfy |ϕ |< π/2 and |θ |< π/2.

The counteractive torque of the tail rotor Qt contributes a
tiny part of M, and is also negligible; consequently, the torques
in (6) can be simplified by

Q = QAτ +QB, (17)

where

QA =

 ht Qm Tmhm +Lb

0 Tmhm +Ma −Qm

−lt 0 −Tmlm

 , QB =

 0
Tmlm
Qm

 ,

and τ , [Tt ,as,bs]
T . Simplification of torques facilitates cal-

culating the actual controls.
In summary, the simplified helicopter model can be ex-

pressed by (1), (13), (15), (16), (4) and (17).

B. Singularity avoidance

In this research, we consider the path-following errors:{
ε1 , f1(x(t),y(t),z(t))

ε2 , f2(x(t),y(t),z(t)).
(18)

It follows that{
ε̇1 =

∂ f1
∂P Ṗ = ∂ f1

∂P V

ε̇2 =
∂ f2
∂P Ṗ = ∂ f2

∂P V
,

{
ε̈1 = H1 +G1V̇

ε̈2 = H2 +G2V̇
, (19)

where, for i = 1,2,

Hi =
∂ 2 fi

∂x2 ẋ2 +
∂ 2 fi

∂y2 ẏ2 +
∂ 2 fi

∂ z2 ż2

+2
∂ 2 fi

∂x∂y
ẋẏ+2

∂ 2 fi

∂y∂ z
ẏż+2

∂ 2 fi

∂ z∂x
żẋ,

Gi =
∂ fi

∂P
.

Remark 3: Typically, the speed error is defined by

ε3 , (V TV − v2
r )/2, (20)

such that ε̇3 =V T V̇ − vrv̇r. Then,

[ε̈1 ε̈2 ε̇3]
T = H +GV̇ = H +G

(
−g3 +

R3Tm

m

)
, (21)

where H = [H1,H2,−vr v̇r]
T and G = [GT

1 ,G
T
2 ,V ]T . As can be

seen, control thrust and attitude appear in (21).
Remark 4: It is obvious that, singularities would occur

when det(G)=
(

∂ f1
∂P × ∂ f2

∂P

)
V = 0. Physically, singularities are

resulted from the following reasons:
S1 The actual speed ∥V∥= 0;
S2 The actual velocity V is perpendicular with tangent

co-vector of the desired path:
(

∂ f1
∂P × ∂ f2

∂P

)
V = 0.

Remark 5: The geometric indication of singularities re-
sulted from S1 and S2 is that, when actual velocity is a zero
vector, or perpendicular to tangent vector of the desired path,
the controller is incapable to decide which direction to turn
the controlled vehicle.

To avoid singularities, a new speed error is introduced:

ε3 ,
(

∂ f1

∂P
× ∂ f2

∂P

)
V −

∥∥∥∥∂ f1

∂P
× ∂ f2

∂P

∥∥∥∥vr. (22)

It follows from (18) and (22) that

[ε̈1 ε̈2 ε̇3]
T = H (x,y,z, ẋ, ẏ, ż)+G (x,y,z)V̇ , (23)
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where H = [H1,H2,H3]
T , G = [GT

1 ,G
T
2 ,
(

∂ f1
∂P × ∂ f2

∂P

)T
]T , and

H3 =

[
d
dt

(
∂ f1

∂P
× ∂ f2

∂P

)]
V −

[
d
dt

∥∥∥∥∂ f1

∂P
× ∂ f2

∂P

∥∥∥∥]vr

−
∥∥∥∥∂ f1

∂P
× ∂ f2

∂P

∥∥∥∥ v̇r.

Consequently, det(G ) =
∥∥∥ ∂ f1

∂P × ∂ f2
∂P

∥∥∥2
> 0 holds locally

around the reference path, and singularities resulted from S1
and S2 are avoided.

Remark 6: The first term at the right hand side of (22)
represents the projection of actual velocity onto the desired
path, and the second term is always positive. Geometric
implication of (22) is that the desired direction for velocity
is assigned along the tangent vector of desired path.

Remark 7: By using approach in Appendix B, it can be
proved that, if ε̇1 = 0, ε̇2 = 0 and ε3 = 0, then ∥V∥ = vr,
indicating that (22) does depict the speed error.

C. Command filtered backstepping design

Step 1 (Virtual control to stabilize path-following errors):
Substituting (13) into (21) yields

[ε̈1 ε̈2 ε̇3]
T = H +G (−g3 +

Tm

m
R3)

= H +G

(
−g3 +

Tm

m
[R̄T

3 ,cϕcθ ]T
)

= H +G

(
−g3 +

1
m

αε +
Tm

m
[(R̄3e + ˜̄αε)

T ,0]T
)
,

(24)

where the virtual control is defined by

αε , Tm[ᾱT
ε ,cϕcθ ]T ; (25)

and ᾱε is the reference signal to be tracked by the attitude
subsystem; command filtered reference signal is designed by

ˆ̄αε(s) =
ω2

n

s2 +2ξnωn +ω2
n

ᾱε(s); (26)

reference signal error and attitude tracking error are defined
by ˜̄αε = ˆ̄αε − ᾱε and R̄3e = R̄3 − ˆ̄αε , respectively. In (26), ξn
and ωn are command filter parameters.

Design the virtual control

αε = m
[
g3 +G−1(−H +µε)

]
, (27)

with the stabilizing term is given by

µε =−Kε ε =

 −k11ε̇1 − k12ε1

−k21ε̇2 − k22ε2

−k31ε3

 , (28)

where ε , [ε1, ε̇1,ε2, ε̇2,ε3]
T is the error vector; Kε is a 3×5

matrix; and ki j > 0 are control parameters. Main rotor thrust
can be calculated from (27):

Tm =
eT

3 αε

cϕcθ
. (29)

Substituting (27) and (28) into (24) yields

[ε̈1 ε̈2 ε̇3]
T =−Kε ε +

Tm

m
G [(R̄3e + ˜̄αε)

T ,0]T .

Set L1 =
1
2 εTUε as the Lyapunov candidate, where

U =

 U1 02×2 02×1

02×2 U2 02×1

01×2 01×2 u3

 ,

Ui =

[ 1+ki2
ki1

+ ki1
ki2

1
ki2

1
ki2

1+ki2
ki1ki2

]
,

[
a c

c b

]
,

and u3 = 1/k31 , d. Eigenvalues of Ui are positive, indicating
that L1 > 0. Its derivative can be calculated by

L̇1 =−∥ε∥2 +
Tm

m
ε̄T Ḡ

(
R̄3e + ˜̄αε

)
,

where ε̄ = [cε1 +bε̇1,cε2 +bε̇2,dε3]
T , and

Ḡ =


∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

∂ f1
∂y

∂ f2
∂ z − ∂ f1

∂ z
∂ f2
∂y

∂ f1
∂ z

∂ f2
∂x − ∂ f1

∂x
∂ f2
∂ z

 .

Step 2 (Virtual control to stabilize R̄3e):
Reference signal for attitude kinematics is obtained by

ᾱε = [e1,e2]
T αε

Tm
, (30)

where e1 , [1,0,0]T , e2 , [0,1,0]T ; and ᾱε is to be tracked
by the attitude subsystem.

Select the Lyapunov candidate L2 = cε L1 +
1
2 R̄T

3eR̄3e with
cε > 0. Its derivative can be calculated by

L̇2 =cε L̇1 + R̄T
3e

˙̄R3e = cε L̇1 + R̄T
3e(

˙̄R3 − ˙̄̂αε)

=cε L̇1 + R̄T
3e(R̂ω̄ − ˙̂αε)

=cε L̇1 + R̄T
3e(R̂ᾱR + R̂ω̄e + R̂ ˜̄αR − ˙̄̂αε),

where ᾱR is the virtual control for stabilizing R̄3e; command
filtered virtual control is designed by

ˆ̄αR(s) =
ω2

n

s2 +2ξnωn +ω2
n

ᾱR(s); (31)

command filtered error and attitude tracking error are defined
by ˜̄αR = ˆ̄αR − ᾱR and ω̄e = ω̄ − ˆ̄αR, respectively.

Design virtual control

ᾱR = R̂−1
(
−kRR̄3e +

˙̄̂αε −
cε Tm

m
ḠT ε̄

)
, (32)

where kR > 0 is the control parameter; invertibility of R̂ can
be proved by calculating det(R̂) = R11R22 −R12R21 ̸= 0.

Derivative of L2 can be calculated by

L̇2 =−cε∥ε∥2 − kR ∥R̄3e∥2
+ R̄T

3eR̂
(
ω̄e + ˜̄αR

)
+

cε Tm

m
ε̄T Ḡ ˜̄αε .

Step 3 (Virtual control for yaw angle):
Reference yaw angle is designed by

ψr = atan2(v,u), (33)

such that head of the helicopter is expected to point forward.
Consider the yaw angle kinematics given by (16), and define

ψe = ψ − ψ̂r, where

ψ̂r(s) =
ω2

n

s2 +2ξnωn +ω2
n

ψr(s). (34)
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Choose the Lyapunov candidate L3 =
1
2 ψ2

e . It follows that

L̇3 =ψe(
sϕ
cθ

q+
cϕ
cθ

r− ˙̂ψr)

=ψe(
sϕ
cθ

q+
cϕ
cθ

αψ − ˙̂ψr +
cϕ
cθ

re +
cϕ
cθ

α̃ψ),

where re , r− α̂ψ ; αψ denotes the virtual control; command
filtered error α̃ψ , α̂ψ −αψ ; command filtered virtual control
is designed by

α̂ψ(s) =
ω2

n

s2 +2ξnωn +ω2
n

αψ(s). (35)

Design the virtual control

αψ =
−sϕ
cϕ

q− cθ
cϕ

(
kψ ψe − ˙̂ψr

)
, (36)

where kψ > 0 is the control parameter. Then,

L̇3 =−kψ ψ2
e +

cϕ
cθ

ψe
(
re + α̃ψ

)
.

Step 4 (Control torque):
Define αR = [ᾱT

R ,αψ ]
T , α̂R = [ ˆ̄αT

R , α̂ψ ]
T and α̃R =

[ ˜̄αT
R , α̃ψ ]

T . Define ωe = [ω̄T
e ,re]

T = ω − α̂R. Select the Lya-
punov candidate L4 = L2 +L3 +

1
2 ωT

e Jωe. It follows that

L̇4 =L̇2 + L̇3 +ωT
e Jω̇e = L̇3 +ωT

e (−S(ω)Jω +Q− J ˙̂αR).

Design the control torque

Q = S(ω)Jω + J ˙̂αR − kω ωe −Gγ γ̄e, (37)

where kω > 0 is the control parameter, and

Gγ =

[
R̂ 02×1

01×2
cϕ
cθ

]
, γ̄e =

[
R̄T

3e

ψe

]
.

The derivative of Lyapunov candidate can be calculated by

L̇4 =− cε∥ε∥2 − kR ∥R̄3e∥2 − kψ ψ2
e − kω ∥ωe∥2

+
cε Tm

m
ε̄T Ḡ ˜̄αε + γ̄T

e Gγ α̃R.
(38)

D. Calculating the actual controls

In previous subsections, control thrust Tm and torque Q are
solved by (29) and (37). Actual controls θm, θt , as, and bs can
be calculated from thrust and torque through following steps.

θm can be obtained from (29):

tcm =
Tm

ρsmAmΩ2
mR2

m
, θm =

3
2

[√
smtcm

2
+

4tcm

am

]
, (39)

and Qm is determined by

qcm =
δ
8
+1.13t

3
2

cm

√
sm

2
, Qm = qcmρsmAmΩ2

mR3
m.

Then, τ = [Tt ,as,bs]
T can be obtained from (17):

τ = Q−1
A (Q−QB). (40)

In (40), invertibility of QA can be proved by

det(QA) =ltQ2
m +(hmlt −ht lm)hmT 2

m +Tmhm (Lblt +Ma(lt −ht)) ,

where Tm > 0, hm ≫ lm and lt ≫ ht , according to physical
structures of typical helicopters.

And the collective pitch of the tail rotor is yielded by

tct =
Tt

ρstAtΩ2
t R2

t
, θt =

3
2

[√
sttct

2
+

4tct

at

]
. (41)

E. Brief summary of control algorithm

The path-following control algorithm designed in this paper
can be summarized in the following steps.

1) Path-following errors are defined by (18) and (23).
2) Virtual control for stabilizing path-following errors are

calculated by (27).
3) Main rotor thrust is obtained by (29), and reference

signal for attitude is calculated by (30). Command
filtered reference signal for attitude is calculated by (26).
Virtual control for attitude is calculated by (32).

4) Reference yaw angle is given by (33); its command
filtered signal is calculated by (34). Virtual control for
yaw is designed by (36).

5) Control torque is designed by (37), where command
filtered signal is given by (31) and (35).

6) Actual controls are obtained through (39), (40) and (41).

F. Analysis on closed-loop system

In Section III-A, forces and torques are simplified such that
the helicopter model appears cascaded. Small neglected terms
(or small parasitic terms [14]) of forces and torques can be
denoted by ∆F and ∆Q, which are often discarded [17], [20],
or regarded as bounded disturbances [18], [19], because of
physical restrictions of typical helicopters.

Assumption 2: Small parasitic terms satisfy ∥∆F∥ < ∆̄F
and ∥∆Q∥< ∆̄Q, where ∆̄F and ∆̄Q are small positive numbers.

Proposition 1: Consider the model-scaled helicopter de-
scribed by (1)–(4), with forces and torques given by (5)
and (6). Suppose Assumption 1 and 2 are satisfied. Path-
following errors are defined by (18) and (22). If the controller
is designed according to algorithm presented in Section III-E,
then 1) path-following errors are locally ultimately bounded
with tunable ultimate bounds; 2) the actual speed ∥V∥ ≈ vr.

Proof: Please see Appendix.
Remark 8: It seems that Assumption 2 is strong, because

small parasitic terms ∆F and ∆Q are related to system states,
and boundedness of them requires pre-defined boundedness
of system states. This issue would be addressed in future
research. Practically, ∆F and ∆Q are usually extremely small
according to physical restrictions of typical helicopters, such
as mechanical restrictions of flapping angles and stiffness of
rotor blades. Moreover, selecting appropriate control param-
eters would reduce the bounds of ∆F and ∆Q.

IV. SIMULATION AND DISCUSSION

A simulation example is given to illustrate the path-
following controller. The reference path is a circular curve:{

f1(xr,yr,zr) = x2
r + y2

r + z2
r −25,

f2(xr,yr,zr) = xr + yr + zr,
(42)
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TABLE I
CONTROL PARAMETERS

k11 = k21 = 1.5, k12 = k22 = k31 = 1, kR = 4,
kψ = 0.5, kω = 16, ξn = 0.707, ωn = 16

Control parameters can be tuned larger to reduce ultimate bounds of path-
following errors; however, excessively large control parameters are unrecom-
mended, since they might destroy Assumption 1 and 2.

Fig. 2. The 3D illustration of path-following: the reference path is given
by intersecting x2 +y2 + z2 −25 = 0 and x+y+ z = 0. Actual position of the
helicopter is depicted by the black solid curve.

which is the intersection of a plane and a ball. The reference
speed is given by vr = 1.5(m/s). The complete model intro-
duced in Section II-B is employed as the controlled plant.
Values of aerodynamic parameters are cited from [21].

Applying the control algorithm stated in Section III-E, we
can calculate that

H =


2u2 +2v2 +2w2

0

−2vr · u(2x−y−z)+v(2y−z−x)+w(2z−x−y)√
(y−z)2+(z−x)2+(x−y)2

 ,

G =

 2x 2y 2z

1 1 1
2(y− z) 2(z− x) 2(x− y)

 .

Initial position P(0) = [−7,−3,0]T (m), and initial yaw angle
ψ(0)= 1(rad). The control algorithm is summarized in Section
III-E, and values of control parameters are listed in Table I.
Simulation results are displayed in Fig. 2–4.

As illustrated in Fig. 2 and Fig. 3, the closed-loop system is
capable to follow the reference path with bounded errors. No
singularities occur during simulation. Fig. 4 demonstrates that
path-following errors are bounded, as expected by Proposition
1. Ultimate bounds of the errors are fairly small, indicating that
side-effects resulted from the small parasitic terms ∆F and ∆Q
are negligible. Define the spatial distance from the controlled
vehicle to the reference path by ds = min∥P−Pr∥|Pr∈Pr

.
The spatial distance is illustrated in Fig. 5, which presents
an intuitive explanation for physical meanings of the path-
following. Also displayed in Fig. 5, actual speed approaches
the value of 1.5(m/s). Roll and pitch angles are maintained

0 10 20 30 40 50

−5

0

5

time (s)

x 
(m

)

0 10 20 30 40 50

−5

0

5

time (s)

y 
(m

)

0 10 20 30 40 50

−5

0

5

time (s)

z 
(m

)

Fig. 3. The actual position of the controlled helicopter
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0

20

40

time (s)

ε 1
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−10

−5

0

5

time (s)

ε 2
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−40

−20

0

20

time (s)

ε 3

Fig. 4. Ultimately bounded path-following errors
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0

2

4

6

time (s)

d s (
m

)

0 10 20 30 40 50
0

1

2

3

time (s)

||V
|| 

(m
/s

)

Fig. 5. upper: Spatial distance from the helicopter to the reference path;
lower: Actual speed of the helicopter, approximately 1.5(m/s).

in acceptable ranges, as displayed in Fig. 6. Jumps from π to
−π in Fig. 6 indicate that the measurement range of yaw is
(−π,π), and actual values of yaw angles are added by ±2kπ
until they enter the range. Simulation results demonstrate that
the proposed path-following controller is capable to complete
the pre-defined path-following task.

It should be noted that theoretical results in this paper
are local, and only singularities resulted from S1 and S2 are
avoided. We acknowledge that, if the initial position is located
excessively far from the reference path, the closed-loop system
would confront singularities resulted from

∥∥∥ ∂ f1
∂P × ∂ f2

∂P

∥∥∥= 0.
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Fig. 6. Attitude of the fuselage during path-following: roll and pitch are
fairly small, indicating that the helicopter flies securely.

V. CONCLUSION
In this brief, a novel 3-D path-following controller is

proposed for a 6-DOF model-scaled helicopter. The reference
path to be followed is described by implicit expressions. Main
theoretical results include the strategy of singularity avoidance
and the application of command filtered backstepping. Both
theoretical proof and simulation example demonstrate that,
with the proposed controller, path-following errors of the
closed-loop system are locally ultimately bounded, while local
singularities are avoided.

Some future works of this research include: 1) extending
the proposed path-following controller to global cases by
researching into geometric properties of reference paths, and
2) relaxing Assumption 2 by considering detailed effects of
parasitic terms.

APPENDIX

A. Proof for boundedness of path-following errors

Consider the small neglected terms ∆F , and ∆Q. The closed-
loop system is now given by

[ε̈1, ε̈2,ε̇3]
T =−Kε ε +

Tm

m
G [(R̄3e + ˜̄αε)

T ,0]T +∆F , (43)

˙̄R3e =− kRR̄3e + R̂ω̄e + R̂ ˜̄αR −
cω Tm

m
ḠT ε̄, (44)

ψ̇e =− kψ ψe +
cϕ
cθ

re +
cϕ
cθ

α̃ψ , (45)

Jω̇e =− kω ωe −Gγ γ̄e +∆Q. (46)

It follows from the theory of command filtered backstep-
ping [12] that, corresponding with (43)–(46), a compensating
system can be constructed:

[ξ̈ε1,ξ̈ε2, ξ̇ε3]
T =−Kε ξε +

Tm

m
G [

(
˜̄αε + ξ̄R

)T
,0]T , (47)

˙̄ξR =−kRξ̄R + R̂ ˜̄αR + R̂ξ̄ω − cω Tm

m
ḠT ξ̄ε , (48)

ξ̇ψ =−kψ ξ̄ψ +
cϕ
cθ

α̃ψ +
cϕ
cθ

ξr, (49)

where ξε , [ξε1, ξ̇ε1,ξε2, ξ̇ε2,ξε3]
T ∈ R5, ξ̄ε = [cξε1 +

bξ̇ε1,cξε2 +bξ̇ε2,dξε3]
T , ξγ , [ξ̄ T

R ,ξψ ]
T ∈ R3, ξ̄R ∈ R2, ξ̄ω =

[0,0]T , ξr = 0. Initial values of ξε and ξ̄R are all zeros.

Lemma 1: There always exists ωn for command filters (26),
(31) and (35), such that states of (47)–(49) are ultimately
bounded with tunable ultimate bounds.

Proof: For command filters, given ξn > 0, T > 0, σε > 0,
σR > 0 and σψ > 0, there always exists ωn(T,σε ,σR,σψ)> 0,
such that, when t > T ,

∥ ˜̄αε(t)∥< ∥ m
Tm

G−1∥σε , ∥ ˜̄αR(t)∥< ∥R̂−1∥σR, ∥α̃ψ(t)∥<
cθ
cϕ

σψ .

Select Lyapunov candidate Lξ = cε
2 ξ T

ε Uξε + 1
2 ξ̄ T

R ξ̄R +
1
2 ξ 2

ψ . It follows that aξ∥ξδ∥2 6 Lξ 6 bξ∥ξδ∥2, where
aξ , min

( cε
2 ∥U∥, 1

2

)
, bξ , max

( cε
2 ∥U∥, 1

2

)
, and ξδ ,[

∥ξε∥,∥ξγ∥
]T . When t > T ,

L̇ξ 6− cε∥ξε∥2 − kR∥ξ̄R∥2 − kψ∥ξψ∥2 + ξ̄ T
ε σε + ξ̄ T

R σR +ξψ σψ

6− (cε −θε)∥ξε∥2 − (kR −θR)∥ξ̄R∥2 −
(
kψ −θψ

)
∥ξψ∥2

−θε∥ξε∥2 −θR∥ξ̄R∥2 −θψ∥ξψ∥2 + ξ̄ T
ε σε + ξ̄ T

R σR +ξψ σψ

6− (cε −θε)∥ξε∥2 − (kR −θR)∥ξ̄R∥2 −
(
kψ −θψ

)
∥ξψ∥2

+
σ2

ε
4θε

+
σ2

R
4θR

+
σ2

ψ

4θψ

6− cξ∥ξδ∥2 +dξ ,

where cξ , min
(
cε −θε ,kR −θR,kψ −θψ

)
, dξ , σ2

ε
4θε

+
σ2

R
4θR

+
σ2

ψ
4θψ

, 0 < θε < cε , 0 < θR < kR, 0 < θψ < kψ .
The Lyapunov candidate and its derivative indicate that

states of (47)–(49) are ultimately bounded:

∥ξδ∥6

√
1

aξ

(
Lξ (T )−

bξ dξ

cξ

)
e
−

cξ
bξ

(t−T )
+

bξ dξ

aξ cξ
. (50)

Ultimate bounds can be tuned by cξ , which is calculated from
control parameters.

Define compensated tracking errors:

νε , ε −ξε , ν̄R , R̄3e − ξ̄R, νψ , ψe −ξψ , νω , ωe −ξω ,

where ξω = [ξ̄ T
ω ,ξr]

T . It follows that

[ν̈ε1, ν̈ε2,ν̇ε3]
T =−Kε νε +

Tm

m
G [ν̄T

R ,0]
T +∆F , (51)

˙̄νR =− kRν̄R + R̂ν̄ω − cω Tm

m
ḠT ν̄ε , (52)

ν̇ψ =− kψ νψ +
cϕ
cθ

νr, (53)

Jν̇ω =− kω νω −Gγ νγ +∆Q, (54)

where ν̄ω , ω̄e − ξ̄ω , and νγ , [ν̄T
R ,νψ ]

T .
Lemma 2: States of (51)–(54) are ultimately bounded with

tunable ultimate bounds.
Proof: Select the Lyapunov candidate

Lν =
cε
2

νT
ε Uνε +

1
2

ν̄T
R ν̄R +

1
2

ν2
ψ +

1
2

νT
ω Jνω . (55)

It follows that aν∥νδ∥2 6 Lν 6 bν∥νδ∥2, where

aν , min
(

cε
2
∥U∥, 1

2
,

1
2
∥J∥

)
, (56)

bν , max
(

cε
2
∥U∥, 1

2
,

1
2
∥J∥

)
, (57)

νδ ,
[
∥νε∥,∥νγ∥,∥νω∥

]T
. (58)
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Derivative of Lyapunov candidate can be calculated by

L̇ν =− cε∥νε∥2 − kR∥ν̄R∥2 − kψ∥νψ∥2 − kω∥νω∥2

+ ν̄T
ε ∆F +νT

ω ∆Q

6− (cε −θε)∥νε∥2 − kγ∥νγ∥2 − (kω −θω)∥νω∥2

−θε∥νε∥2 −θω∥νω∥2 + ∆̄F∥νε∥+ ∆̄Q∥νω∥
6− (cε −θε)∥νε∥2 − kγ∥νγ∥2 − (kω −θω)∥νω∥2

+
∆̄2

F
4θε

+
∆̄2

Q

4θω
6− cν∥νδ∥2 +dν ,

(59)

where kγ , min
(
kR,kψ

)
, cν , min

(
cε −θε , kγ , kω −θω

)
,

dν , ∆̄2
F

4θε
+

∆̄2
Q

4θω
, 0 < θε < cε and 0 < θω < kω . Eqn. (55) and

(59) indicate that νδ is ultimately bounded:

∥νδ∥6
√

1
aν

(
Lν(0)−

bν dν
cν

)
e−

cν
bν t +

bν dν
aν cν

. (60)

Ultimate bounds can be tuned by cν , which is calculated from
control parameters.

Define δ , [∥ε∥,∥R̄3e∥,∥ψe∥,∥ωe∥]T . It is obvious that
∥δ∥ 6 ∥ξδ∥+ ∥νδ∥. Results of Lemma 1 and 2 imply that
δ is ultimately bounded with tunable ultimate bounds; conse-
quently, path-following errors are ultimately bounded.

The stability result of the closed loop system is local, since
the strategy of singularity avoidance is effective locally. If
initial position is located excessively far from the reference
path, the controlled helicopter would encounter singularities.

Remark 9: It seems from (50) and (60) that ultimate
bounds can be tuned arbitrarily small by setting large enough
control parameters; however, excessively large control param-
eters would result in aggressive velocity or attitude, destroying
Assumption 1 and 2.

B. Proof for performance of actual speed

It is proved in Appendix A that, after some setting-time, ε3
is ultimately bounded within small ultimate bounds, indicating(

∂ f1

∂P
× ∂ f2

∂P

)
V ≈

∥∥∥∥∂ f1

∂P
× ∂ f2

∂P

∥∥∥∥vr > 0. (61)

Errors ε1, ε̇1, ε2, and ε̇2 are stabilized within small neighbor-
hoods of zero. It follows from (19) that ∂ f1

∂P V ≈ 0 and ∂ f2
∂P V ≈

0, indicating that V is approximately perpendicular with both(
∂ f1
∂P

)T
and

(
∂ f2
∂P

)T
, thus parallel with

(
∂ f1
∂P × ∂ f2

∂P

)T
. Conse-

quently, with its positiveness indicated by (61),(
∂ f1

∂P
× ∂ f2

∂P

)
V ≈

∥∥∥∥∂ f1

∂P
× ∂ f2

∂P

∥∥∥∥∥V∥. (62)

Considering (61), (62) and Remark 1, we conclude that
∥V∥ ≈ vr, which fulfills the requirement on velocity.
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