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ABSTRACT

In the present work numerical simulations of un-
steady flows with moving shocks are presented. An
unsteady mesh adaptation method, based on error
equidistribution criteria, is adopted to capture the
most important flow features. The modifications to
the topology of the grid are locally interpreted in terms
of continuous deformation of the finite volumes built
around the nodes. The Arbitrary Lagrangian Eule-
rian formulation of the Euler equations is then apply
to compute the flow variable over the new grid with-
out resorting to any explicit interpolation step. The
numerical results shows an increase in the accuracy
of the solution, together with a strong reduction of
the computational costs, with respect to uniform-grid
computations using a larger number of nodes.

NOMENCLATURE

ρ Density of mass
m Linear momentum vector
Et Total energy per unit volume
P Pressure
M Mach number
u Conservative variables, u = (ρ,m, Et)T

Ω Computational domain
C,∂C Cell and cell boundary
n, τ Cell normal and tangent versor
η, ξ Normal integrated vectors
v Interface velocity of the interface
ν Integrated normal interface velocity
Φ Numerical fluxes along the interface

u∂ Boundary state function
V Cell volume
Vik,Vi,∂ Swept volume
f Two-dimensional Euler fluxes
I
n n× n identity matrix
t Time
E Set of elements of the triangulation
K Set of all nodes of the triangulation
Ki, 6= Set of nodes surrounding the i-th node
hi Cell circumscribing circle radius
mτ , mn tangent/normal versor to m

µ(x) Average value of x
σ(x) Standard deviation of x
H(x) Discrete Hessian matrix

INTRODUCTION

The unsteadiness of the flow field due to the prop-
agation of shock waves results in dynamic loads that
are possibly very different from those obtained in the
steady approximation. This is for example the case of
hydrogen explosions that can possibly breach the con-
tainment vessel of nuclear plants, a major concern dur-
ing the week following the notorius Three Mile Island
accident in the USA in 1979. Other example are given
by the propagation of blast waves or the interaction
of unsteady shock waves with the boundary layer over
airplane wing, that may possible lead to shock-induced
boundary layer separation. The numerical simulation
of two-dimensional supersonic problems with strong
moving shocks can be particularly challenging since,
even with simple geometries, very complex unsteady
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flows can develop [25]. A quite common feature of
such flows is the presence of discontinuities in the
variables separating regions where the flow is sub-
stantially uniform. To reduce the computational bur-
den and improve the overall accuracy of the solution,
mesh adaptation techniques can be adopted to increase
the grid spacing only where it is required [1]. In the
present work a Finite-Volume solver for the Arbitrary
Lagrangian-Eulerian (ALE) formulation of the Euler
equations over two-dimensional adaptive grids [6] is
adopted to perform unsteady flow computations. The
interpretation of the grid modifications as a continu-
ous deformation of the finite volumes, resulting in a
modification of the interface velocities, allows to com-
pute the solution onto the new grid simply integrating
the governing equations, without any explicit interpo-
lation step [12].

GRID ALTERATION STRATEGY

The goal of grid alteration procedures is to locally
modify the grid spacing so that the numerical error is
evenly distributed within the elements of the compu-
tational domain. Therefore, according to the principle
of error equidistribution, nodes will be inserted in the
regions where the error is greater than the domain av-
erage, or deleted where it is smaller.
Since the exact value of the error is obviously un-

known, the numerical error E has to be locally es-
timated. In most applications, error estimators are
either functions of gradient or undivided differences
[2, 9, 14, 17], or functions of the Hessian matrix H
[3,9,10,16,24,26] of a convenient sensor variable which
is representative of the flow features and whose choice
depends on the physical problem. In the present study,
to cope with the presence of shock waves and smooth-
flow regions, the following Mach based nodal estimator
is used

Ei = h2
i

√

E2
i (mτ ,M) + E2

i (mn,MZ),

with

Ei(m,M) =
mTH(M)m

hi mT∇M + 0.12µ(M)

+
mT

∇M

h3
i m

T∇M + 0.12µ(M)hi

(1)

The discrete Hessian matrix and the gradient vec-
tor are computed using a finite-element approxima-
tion within the node-pair representation [7,19]. Equa-
tion (1) is a modification of the error estimator pro-
posed by Webster [24].
A triangular element is marked for refinement

if the error is larger than a given threshold, e.g.
1
3

∑

i µ(Ei(M)) + 0.1σ(Ei(M)), where the sum is per-
formed amongst the element nodes. Conversely, the
grid-coarsening threshold is set equal to 0.98µ(E(s)),

to force grid adaptation towards a greater uniformity
in error distribution. The adopted elements refinement
and nodes removal techniques are shown in figure 1.
In order to improve the grid quality, standard

edge-swapping and grid smoothing techniques are also
adopted [20]. A minimum size for the triangles is im-
posed in order to limit the number of nodes/elements
close to flow discontinuities and, conversely, a max-
imum size chosen to limit the coarsening of uniform
flow regions.
In order to perform unsteady computations

with adaptive grids the following predictor-corrector
method is used. At a given time level tn a first-order
accurate (in space) prediction of the solution is com-
puted from the known values of the solution. The grid
adaptation procedure is then carried out, based on the
error estimated with computed prediction. A higher-
order solution is then calculated at the time tn+1 over
the new adapted grid. An area-based error interpo-
lation technique is also implemented to allows more
the one adaptation passage, i.e. allowing for more ele-
ments/nodes to be inserted/removed at each time step.

EDGE-BASED SOLVER FOR ADAPTIVE GRIDS

The Euler equations in an Arbitrary Lagrangian Eu-
lerian (ALE) framework [4, 5] for compressible two-
dimensional flows read

d

dt

∫

C(t)

u+

∮

∂C(t)

[

f(u)−u v
]

·n = 0, ∀C(t) ⊆ Ω(t),

(2)

System (2) is made complete by specifying suitable
initial and boundary conditions [8]. The flux function
is is defined as f(u) =

(

m, m⊗m/ρ+P (u) I2,
[

Et +

P (u)
]

ρ/m
)T

and the term u v = (ρv,m ⊗ v, Etv)T

accounts for the flux contribution due to the movement
of the control volume.
The finite volume discrete counterpart of the Euler

equation (2) is obtained by selecting a finite number
of non overlapping volumes Ci(t) ⊂ Ω(t). In the node-
centered approach considered here, each cell surrounds
a single node i of the triangulation of Ω, as shown in
figure 2. Over each finite volume, equation(2) reads

d[Vi ui]

dt
=−

∑

k∈Ki,6=

∫

∂Cik

[

f(u)− u v
]

·n

−

∫

∂Ci∩∂Ω

[

f(u)− u v
]

·n,

(3)

Where unknown vector is approximated over the cell
by its average value ui = ui(t). In equation (3) the
sum is performed over the finite volumes Ck that share
a portion of their boundary with Ci, i.e. ∂Cik =
∂Ci ∩ ∂Ck 6= ∅, thus the set corresponding set of in-
dexes is Ki, 6= = {k ∈ K : k 6= i|∂Ci ∩ ∂Ck 6= ∅}, see
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Figure 1. Top: refinement pattern by node insertion in the center of mass of an existing element for a domain
(top-left) element and boundary (top-right) element. Bottom: Derefinement pattern by node deletion for a
domain (bottom-left) element and boundary (bottom-right) element.

figure 2. The second term of the right hand side of
equation (3), i.e. ∂Ci ∩ ∂Ω, is given by the boundary
contribution, if any. Each contribution of equation (3)
has to be approximated with a suitable integrated nor-
mal numerical flux, representing the exchange across
the cell interface [13]. E.g. a centered approximation
of the domain fluxes gives

Φ(ui, uk, νik,ηik) = −
f(ui) + f(uk)

2
·ηik+

ui + uk

2
νik,

(4)

where the integrated normal vector and the integrated
normal interface velocity are defined as

ηik(t) =

∫

∂Cik

n and νik(t) =

∫

∂Cik

v ·n. (5)

Equations (5)(left) and (5)(right) are consistency con-
ditions that have to be exactly satisfied.
Moreover, by assuming a constant interface flux

along the interface, the boundary integral in equation
(3) simplifies to

Φ
∂(ui, νi, ξi) = −f(u∂(ui)) · ξi + u∂(ui) νi, (6)

where the consistency conditions are

ξi(t) =

∫

∂Ci∩∂Ω

n and νi(t) =

∫

∂Ci∩∂Ω

v ·n, (7)

In the presented computations the numerical flux
function of equation (4) is replaced by a Total Vari-
ation Diminishing (TVD) numerical flux [13, 21]. To

this purpose, a flux limiter approach has been followed
and the second order centered approximation is re-
placed by the first order Roe flux near flow disconti-
nuities [18]. The switch is controlled by the limiter
proposed by van Leer [21]. The above high-resolution
version of the scheme requires the definition of an ex-
tended edge data structure that includes also the ex-
tension nodes i⋆ and k⋆, that are needed in the evalu-
ation of the limiter function. As done by Ref. [23], the
extension nodes belong to the two edges best aligned
with i-k.
When dealing with moving/deforming meshes in the

ALE framework an additional constrain is usually en-
forced to prevent spurious oscillations to appear in the
solution. Such constrain is expressed as a conservation
equation for the cell volumes termed Geometric Con-
servation Law (GCL) that can be automatically sat-
isfied if the integrated velocities are computed as the
derivatives of the volumes swept by the corresponding
interfaces, i.e.

νik(t) =
dVik

dt
and νi(t) =

dVi,∂

dt
. (8)

A more general version of equation (3) for adaptive
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Figure 2. Left: edge associated with the finite volume interface ∂Cik = ∂Ci ∩ ∂Ck and metric vector ηik in
two spatial dimensions. The two shaded regions are the finite volumes Ci and Ck; dashed lines indicate the
underlying triangulation. Right: area swept by portion of the interface ∂Cik,e pertaining to element e, made of
nodes i, j and k, during the time interval [tn, tn+1].
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Figure 3. Interpretation of the edge swapping as continuous finite volume deformation. Left: evaluation of the
normal interface velocity (area of the shaded region) for edge i-k that is deleted due to edge-swapping from
edge i-k at time tn into edge j-k at time tn+1. Right: evaluation of the normal interface velocity for edge j-k
that is created due to edge-swapping.

grids is given by











































d

dt
[Vi ui] =

∑

k∈Ki,6=(t)

Φ(ui, uk, νik,ηik)

+ Φ
∂(ui, νi, ξi),

dVi,ik

dt
= νik ,

dVi,∂

dt
= νi ,

∀i ∈ K(t)

∀k ∈ Ki, 6=(t)

(9)

where both the number of nodes, K, and the connectiv-
ity, Ki, 6=, may vary during the the computations. The
ODE system above is solved using a Backward Dif-
ferences Formulæ (BDF) scheme of order either one
or two, as reported in the numerical results section.

At each time level, a dual time-stepping technique is
used to solve the non linear system of equations for
the vector unknown at time n+ 1 [22].
The numerical scheme outline above is used together

with mesh adaptation techniques. The local changes
in grid topology, e.g. edge-swapping and node inser-
tion/deletion, are interpreted as a continuous deforma-
tion of the finite volumes associated to the grid. As an
example, in figure 3 the geometrical interpretation of
edge-swapping in a continuous framework is sketched.
The interface velocities given of equation (8) are thus
computed taking into account the distortion of the fi-
nite volumes caused by such modifications. The so-
lution onto the new, adapted, grid can therefore be
computed simply integrating Eq. (9) without any ex-
plicit interpolation step. Additional flux contributions
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must be taken into account for every removed edge [15]
and additional conservation equations must be inte-
grated for every removed node [12] in order to ensure
the conservativity of the resulting scheme. Such ad-
ditional fluxes and equations can be dropped after a
given number of time steps depending on the time-
integration scheme adopted, e.g. two for a BDF2 and
three a BDF3, since their contribution is identically
equal to zero. The reader is referred to [11, 12] for a
detailed description of the ALE interpretation of grid
adaptation.

NUMERICAL RESULTS

In the present section numerical results obtained
with the scheme outlined above are shown. The se-
lected test case is the forward-facing step made famous
by Woodward and Colella [25]. Supersonic conditions
are imposed at the inlet, i.e. M = 3, slip conditions are
imposed on the lower and upper boundaries of the duct
and no conditions are imposed at the outlet. The gas is
ideal and polytropic with a heat capacity ratio of 1.4.
The initial solution is uniform and correspond to the
one imposed at the inlet, namely P = 1.0, v = (3, 0)T

and ρ = 1.4.
Two different computations have been carried out: a

reference one with a uniform fixed grid of 48,324 points
(95,618 triangles) and an adaptive one with an initial
grid of 7,603 points (14,799 triangles). The minimum
allowed size for the adaptive case is set to be 0.005
mesh units, which is roughly twice the spacing of the
fixed grid. To better capture the less intense flow-field
features, e.g. rarefaction fans or weak shocks, the mod-
ifiedWebster error estimator of equation (1) is adopted
together with a multi-passage approach [14] with two
levels. The governing equations are integrated in time
resorting to a second order BDF scheme for the fixed
grid case and a backward Euler scheme for the adap-
tive one. The non-dimensional time-step is equal to
1/300 corresponding to a maximum Courant number
of 1.67 in the fixed grid case and 2.67 in the adaptive
one.
In the figures 4–7 the density distribution obtained

with the adaptive grid is compared with the one com-
puted on the fixed grid and a reference solution [25].
The adapted mesh is also shown for different values
of non-dimensional time. In both the fixed and the
adapted computations the front curved shock is very
well captured and it appears to be sharper than the
shock of the reference case. In the adapted case how-
ever the weaker shocks are not sufficiently highlighted
by the sensor: for example the upper portion of the
shock in figure and the discontinuity reflected by the
lower boundary in figures and are significantly dif-
fused.
Even though the rarefaction fan is only slightly cap-

tured by the adaptation scheme, the overall solution

does not seem to be penalized. Indeed, in all the pre-
sented cases, both the front and the reflected shocks
are curved due to the interaction with the expansion
fan.
As a final remark it has to be noted that the adapted

grid computations resulted to be ten times faster than
the fixed grid ones on a single core machine. More-
over the total number of nodes required in the adap-
tive computation varies from 14% to 25% of the nodes
required in the fixed case. The proposed approach,
thus, allows to significantly decrease the computa-
tional costs with a similar level of accuracy.

CONCLUSION

An automatic mesh adaptation technique, coupled
with an Arbitrary Lagrangian Eulerian description
of the flow equations, was used to simulate the un-
steady flow field around the forward-facing step, a
standard CFD test case proposed by Woodward and
Colella [25]. The flow field features a strong curved
shock propagating upstream and interacting with the
upper wall, where a lambda shock is eventually ob-
served. The adapted-grid solution compares fairly well
with reference results and with a fixed fine grid com-
putation. The computational time required by the
adapted-grid technique is is roughly one order of mag-
nitude smaller than that required by the fixed-grid
computation, thus confirming the suitability of the
present approach to simulate the dynamics of strong
shocks. The weaker shock waves reflecting at the up-
per boundary are less resolved than the stronger ones,
which feature higher gradients of the solution. The
adoption of a multi-passage technique with three lev-
els should help to better capture such weaker shocks.
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Figure 5. Comparison of the density contours with the fixed grid computations and the reference [25] and computational
grid at the non-dimensional time 1.00044.
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Figure 6. Comparison of the density contours with the fixed grid computations and the reference [25] and computational
grid at the non-dimensional time 1.50285.
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Figure 7. Comparison of the density contours with the fixed grid computations and the reference [25] and computational
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