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ABSTRACT 
 

The problem of turbulent flow-canopies interaction has been 
extensively studied in literature. Interaction between flow and 
aquatic riparian vegetation is an extremely complex problem.  
Although many studies have attempted to explore it, flow 
through vegetation phenomenon has not yet been fully 
described quantitatively. At the beginning, effects of vegetation 
on turbulent air flow have been studied through wind tunnel 
and fields measurements. Afterwards researcher’s attention has 
been aimed at turbulent characteristics of a water flows 
developing in experimental flumes with vegetated bottom. 
Generally, turbulence characteristics whose changes were 
described were mean velocity, standards deviation, skewness, 
kurtosis. In their studies some researchers deepened the effect 
of vegetation on more specific characteristics of the turbulent 
flow as the integral length scales. The aim of the paper is to 
experimentally study the effects of vegetation density on the 
longitudinal integral length scales of a uniform turbulent flow 
above and inside sparse canopies. Water flume experiments 
were conducted in a channel 8m long and with a square section 
0.40 × 0.40m2. The model of canopies consisted of sparse rigid 
cylinders of the same heights but set in three different aligned 
allocations (squares or rectangles), with three different 
densities. Two different measurement locations were 
considered, in any case in a reach of the channel where the 
uniform flow was attained. In order to measure instantaneous 
velocities an LDA system was used. Experiments were carried 
out by varying the flow rate and the slope of the channel. 
Starting from instantaneous velocity data collected, 
distributions of longitudinal integral length scales were 
determined and analyzed. Finally more correct methodologies 
in order to evaluate integral length scales and to normalize 
them were proposed. 

 

 
INTRODUCTION 

 
The problem of turbulent flow-canopies interaction has been 
extensively studied in literature. In fact, nowadays, vegetation 
is regarded as a means for providing stabilization for banks and 
channels, habitat and food for animals, and pleasing landscapes 
for recreational use. Therefore the preservation of vegetation is 
of great relevance for the ecology of water systems and it is 
important to deepen the problem of turbulent flow-canopies 
physical interaction, that is extremely complex . 

Effects of vegetation on water flow are the following ones: 
decrease of the water velocity and raising of the water levels 
i.e. reduction of flow discharge capacity; deposition of 
suspended sediment; increasing or reducing of local erosion; 
interference with the use of the water for conveyance, 
navigation, swimming and fishing. 

Such effects depend mainly on height, density, distribution, 
stiffness and type of vegetation. These characteristics may 
change with the season, e.g. the flow resistance may increase in 
the growing season and diminish in the dormant season. 

Many of the earlier studies on the hydraulic effects of 
vegetation were concentrated on determining flow resistance 
rather than obtaining a better understanding of the physical 
processes. 

At the beginning, effects of vegetation on turbulent air flow 
were studied through wind tunnel and fields measurements. 
Afterwards researcher’s attention was aimed at turbulent 
characteristics of a water flows developing in experimental 
flumes with vegetated bottom. Generally, turbulence 
characteristics whose changes were considered were mean 
velocity, standards deviation, skewness, kurtosis. In their 
studies some researchers deepened also the effect of vegetation 
on more specific characteristics of the turbulent flow as the 
integral length scales [1] [2] [3] [4] [5] [6] [7]. In particular, 

8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

696



    

integral length scales are estimated from the single-point 
integral time scales by applying Taylor “frozen turbulence” 
hypothesis. The integration is carried out to the time of the first 
zero-crossing of the autocorrelation function. Integral length 
scales are made non dimensional by vegetation height h. This 
methodology has been applied by many researchers in their 
wind tunnel, experimental flume and fields measurements as  
[1] [2]. 

 Brunet et al. [1] carried out experiments in a wind tunnel 
on a model of vegetation made with cylindrical stalks 
modelling cereal stalks, spaced on a uniform square grid. 
Vertical distributions of turbulence statistical quantities of  
velocity field were measured through some triple hot-wire 
probes, suitably set in the flow field. 

Green et al. [2] carried out his experiments in a forest of 
Sikta spruce, near Edinburgh. Measurements were developed 
by some three components anemometer spaced uniformly at 
different heights from about 0.25h to 1.25h, being h the mean 
tree height. 

Measurements of the turbulence statistical quantities within 
and above diverse set of canopies, including models in wind 
tunnel and vegetation in the field are reported by [3]. Moreover, 
in [3] single-point length scales were compared with two-point 
length scales [4] and turned out that the single-point scales 
were smaller than the two-point scales by factors of 2 or more 
especially within the canopy. He scaled integral length scales 
using the vegetation height. He observed that probably the 
single-point approach was fraught with difficulty within 
canopies because of high turbulence intensities. 

Afterwards, Novak et al. [5] carried out experiments in a 
wind tunnel on model forest made from artificial Christmas tree 
branches. Instantaneous velocity distributions in the flow field 
were measured through a triple hot-wire probe and the results 
were compared with field experiments described in [2]. He 
measured single-point length scales and scaled them either 
using the vegetation or using the tree spacing, showing that it 
plays a significant role. 

Velasco et al. [6] developed experiments in an experimental 
flume with a gravel bed. In the central zone of the channel was 
set a simulated vegetated zone, with plastic plants directly fixed 
on the gravel bed. In the study of turbulent structures, a 2D and 
a 3D acoustic Doppler velocimeter were used. He measured 
single-point length scales but noticed some incoherence in the 
experimental autocorrelation function, due, in his opinion, to an 
insufficient measurement frequency (25 Hz). He scaled the 
integral length scales using an average transversal distance 
between plants in the bed. 

Nezu et al. [7] developed experiments in an experimental 
flume. The elements of vegetation model were composed of 
rigid strip plates. Instantaneous velocity distributions in the 
flow field were measured through laser Doppler anemometer 
(LDA) and PIV measurements. The integral length scales were 
estimated from the two-points space-time autocorrelation 
function, and he affirmed that no existing data of integral length 
scales obtained with this method for aquatic canopy flows were 
available at that time. He scaled integral length scales using the 
vegetation height 

Recently, another problem concerning the estimation of 
integral length scales has arisen in [8]. 

Integral length scale is important in characterising the 
structure of the turbulence. It is a measure of the longest 
correlation distance between the flow velocity at two points of 
the flow field. Integral length scale of the velocity is generally 
defined by: 

∫
∞= 0 dr)t,r(RL ii       (1) 

where the i subscript denotes the considered direction, the 
double-i subscript in Rii indicates the autocorrelation function 
(i.e. correlation of a velocity component in the i direction with 
itself) defined by: 
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and r is the distance between two points in the flow. The 
autocorrelation function is longitudinal if the distance r is 
considered parallel to i direction, ui,, and transverse if the 
distance r is considered perpendicular to i direction ui, where 
and finally ui is the instantaneous velocity in the i-direction. 

The determination of the integral length scale from equation 
(1) is not straight-forward. The shape of the autocorrelation 
function is such that it generally decreases rapidly to its first 
zero-crossing, after which it may become negative and 
proceeds to oscillate about zero. While equation (1) involves 
the determination of the integral over an infinite domain, the 
domain of the autocorrelation function from experimental or 
numerical data is finite, and consequently there is some 
uncertainty on how best to define the integration domain. 

The integration domain for the determination of the integral 
length as a representative length scale of the turbulence can be 
specified in a number of ways. [8] investigated the following 
four methods: 

• Integrate over the entire available domain; 
• If the autocorrelation function has a negative region, 

integrate only up to the value where the 
autocorrelation function is a minimum, 

• Integrate only up to the first zero-crossing; 
• Integrate only up to the value where the 

autocorrelation function falls to 1/e. 
In this paper, to deepen the effect on longitudinal integral 

length scales of vegetation density, an experimental study was 
conducted in an open channel with model vegetation of fully 
submerged rigid cylinder rods set in regular aligned arrays with 
different densities. 

In particular, two problems are dealt with: evaluating 
integral length scale from autocorrelation function, using 
different time lags (1/e and 1/e2), and scaling integral length 
scale using different scales (i.e. h, height of the cylinder and a, 
average transversal distance between the cylinders that, in case 
of uniform canopies, can be expressed as a=1/(NV)1/2 ). 
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NOMENCLATURE 
h [m] Vegetation height 
d [m] Vegetation diameter 
VD [-] Vegetation density 
NV [m-2] Number of canopies/ m2 
L [m] Integral length scale of the velocity 
Rii [-] Autocorrelation function in the i direction 
xi [m] Position where autocorrelation  function is  

calculated 
τ [m] Space lag in autocorrelation function calculation 
ui [m/s] Velocity component of which autocorrelation 

function is calculated 
t [s] Time instant of  
e [-] Neper’s number  
s [-] Slope of the experimental channel  
Q [m3/s] Fow rate  
hu [m] Uniform flow depth 
Re  [-] Reynolds Number  
τ [s] Time lag of a time-autocorrelation point 
y [m] Distance of a measurement point from the 

channel bottom 
 

EXPERIMENTAL PLANT AND MEASUREMENT 
CONDITIONS  
 
Water flume experiments were conducted in a channel with 
variable slope 8m long and with a cross section 0.40 × 0.40m2 
(Figure 1).Vegetation covered the whole bottom of the channel 
and consisted of sparse rigid cylinder rods of the same height 
and diameter (h=1.5cm, d=0.4cm) but set in three different 
shapes lways aligned with flow allocation patterns (rectangles 
or squares), with three different densities, 0.024, 0.048, 0.096, 
respectively called MD, SD, DD in the following diagrams. 
The vegetation density was defined as the total roughness 
frontal area per unit ground area. The vegetation was always 
fully submerged. Each type of vegetation was tested with 
different bottom slopes and flow rates, in order to obtain three 
groups of three tests each one characterised by almost the same 
flow depth and by the three considered densities. Therefore, 
nine different hydraulic conditions were tested. A summary of 
the experimental flow conditions is listed in the Table 1. In the 
test section there was in any situation uniform flow. 
 

Figure 1 Experimental flume 

 
 
 

Test VD and NV 
 
 

Bottom 
slope 
s 

Flow 
type 

Flow 
rate 
Q 
(l/s) 

Uniform 
flow 
depth hu 
(cm) 

Reynolds 
number 
Re 

1 0.024 (MD) 
400/m2 

0.03  
(s3) 

Supercr. 33 6.35 330000 

2 0.048 (SD) 
800/m2 

0.02  
(s2) 

Supercr. 22 6.44 220000 

3 0.096 (DD) 
1600/m2 

0.03  
(s3) 

Supercr. 22 6.29 220000 

4 0.024 (MD) 
400/m2 

0.01  
(s1) 

Supercr. 45 7.82 450000 

5 0.048 (SD) 
800/m2 

0.01  
(s1) 

Subcr. 22 7.80 220000 

6 0.096 (DD) 
1600/m2 

0.03  
(s3) 

Supercr. 33 7.71 330000 

7 0.024 (MD) 
400/m2 

0.01 
(s1) 

Supercr. 33 8.53 330000 

8 0.048 (SD) 
800/m2 

0.03  
(s3) 

Supercr. 45 8.55 450000 

9 0.096 (DD) 
1600/m2 

0.01  
(s1) 

Subcr. 22 8.49 220000 

Table 1 
 

The measurement locations can be a very important factor 
when studying the flow structure of a vegetated flow [9]. 
Therefore to compare their effects in the same test section, two 
different measurement locations were chosen: the first one (A) 
at the centre of a rectangle or a square of cylinders, and the 
second one (B) in the middle between two cylinders aligned in 
the flow direction. In each location, about thirty points were 
considered along the two verticals, where instantaneous 
velocity data were measured by an LDA system with frequency 
shifter and frequency tracker. 

Starting from the collected velocity data, distributions of 
longitudinal integral length scales (L), were evaluated through a 
Virtual Instrument of the software called LabView. In 
particular, the integral timescales were assumed corresponding 
to the time lags where the time-autocorrelation function R(τ) 
drops, respectively, to 1/e and 1/e2. Starting from integral 
timescales, longitudinal integral length scales were evaluated 
by applying Taylor “frozen turbulence” hypothesis which is 
applicable if the turbulence intensity of the flow is small. 

Finally, the integral length scales distributions were 
normalized in two different ways: •) by the height of the 
cylinders, h ••) by the average distance between cylinders, a. 
The vertical distances y of the measurement points from the 
bottom of the channel were always scaled by the height of the 
cylinders, h.  
 

PROCESSING AND RESULTS 
 

In Figure 2, 3, 4, 5, some characteristic dimensional 
distribution of longitudinal integral length scales are shown. In 
each figure in ordinates the distances y from the bottom (in 
cm), and in abscissae the integral length scale L (in m) are 
reported. 
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Test 7 was carried out with the lowest density and the 
highest flow depth, while Test 3 was carried out with the 
highest density and the lowest flow depth. In each Test, two 
different measurements location were chosen (A and B). 
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Comparing Figure 2 and Figure 3, longitudinal integral 
length scales significantly grow, increasing the time lag from 
1/e to 1/e2, while the measurement location does not affect their 
distribution. Comparing Figure 4 and in Figure 5, longitudinal 
integral length scales yet grow increasing the time lag from 1/e 
to 1/e2, but the two distributions are significantly affected by 
the measurement location.  

 

THE PROBLEM OF THE TIME LAG IN EVALUATING 
INTEGRAL LENGTH SCALES 

 
Generally in literature, integral length scales are evaluated 

integrating the autocorrelation function till the first “zero 
crossing” of this function. During the experiments a true “zero 
crossing” was not found. Alternatively [8] suggests to integrate 
till the autocorrelation function drops to 1/e. From the 
experimental measurements result that this method determines  
an underestimation of the integral length scale. It is interesting 
to stress that O’Neill, investigating the effects of the spatial 
domain on the integral length scale determination, suggests 
that, in order to obtain accurate integral length scales, the time 
lag must be at least equal to six times larger than the integral 
length scale, whereas [10] suggested that a reasonable lower 
limit is at least eight times larger than the integral length scale. 

In order to deepen the impact of different values of the 
integration domain (1/e and 1/e2) on the longitudinal integral 
length scales, the following comparison were developed. 

In Figure 6 to Figure 8, the distributions of ratios of 
longitudinal integral length scales evaluated for time lag 1/e2 
and longitudinal integral length scales evaluated for time lag 
1/e are reported. 
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It can be observed that longitudinal integral length scales 
values increased about twice (within the canopy) or more, with 
increasing the integration domain from 1/e to 1/e2. The first 
result is that it is not sufficient to assume as integration domain 
1/e because it triggers and underestimates the longitudinal 
integral length scales values.  Moreover, this result seems to be 
qualitatively independent of vegetation density, flow depth and 
measurement location. 

 
 
 

THE PROBLEM OF NORMALIZATION OF INTEGRAL 
LENGTH SCALES  

 
Another problem is the choice of a scale for the integral 

length scales. In literature, the scale commonly used is the 
vegetation height. 

Novak et al. [5] observes that, the vegetation height is 
considered the scale that dominates the real dimensions of the 
big vortices [3]; nevertheless he judged, on the ground of his 
experimental data, that also the canopies spacing plays a 
relevant role in scaling the vortices. In fact, observing his 
diagrams, it can be noted that, using the canopies spacing as 
scale, the experimental points fit better than using canopy 
height. This result supports the use of canopies spacing as 
scale.  

Following this idea, in this paper, integral length scales 
have been scaled either with vegetation height (Figures 9, 10, 
11 in case of time lag 1/e and Figures 15, 16, 17 in case of time 
lag 1/e2), or with vegetation spacing (Figures 12, 13, 14 in case 
of time lag 1/e and Figures 18, 19, 20 in case of time lag 1/e2).  

Comparing the correspondent integral length scales scaled 
with vegetation height h or vegetation spacing a, it can be 
observed that: 

a) In case of time lag 1/e, the distributions scaled with 
vegetation spacing fit better than the correspondent ones scaled 
with vegetation height h. 

b)  In case of time lag 1/e2, the distributions scaled with 
vegetation spacing fit more clearly better than the 
correspondent ones scaled with vegetation height h probably 
due to the more correct evaluation of the integral length scales 
calculated with time leg 1/ e2. 

All that further supports the hypothesis that it would be 
suitable to scale the integral length also with vegetation spacing 
and that it is better to evaluate the integral length using as time 
lag 1/e2 than 1/e. 
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 Figure 11. Tests 7, 8, 9 
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       Figure 13. Tests 4, 5, 6 
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          Figure 14. Tests 7, 8, 9 
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      Figure 18. Tests 1, 2, 3 
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      Figure 19. Tests 4, 5, 6 
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CONCLUSION 
 

The problem of turbulent flow-canopies interaction has 
been extensively studied in literature. Interaction between flow 
and aquatic riparian vegetation is an extremely complex 
problem.  

Although many studies have attempted to explore it, flow 
through vegetation phenomenon has not yet been fully 
described quantitatively. Generally, turbulence characteristics 
whose changes were described were mean velocity, standards 
deviation, skewness, kurtosis. In their studies some researchers 
deepened the effect of vegetation on more specific 
characteristics of the turbulent flow as the integral length 
scales. 

In the paper the effects of vegetation density on the 
longitudinal integral length scales of a uniform turbulent flow 
above and inside sparse canopies is experimentally studied.  

In particular, two problems have been deepened: the 
extension of the integration domain in the evaluation of the 
integral length scales and the possibility of scaling them with a 
quantity alternative to canopy height.  

The results confirm that it is better to evaluate the integral 
length using as time lag 1/e2 than 1/e and that it would be 
suitable to scale the integral length also with vegetation 
spacing. 
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