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Abstract

We consider the classical Scramjet test problem for the com-
pressible Euler equations. Our objective is the comparison
of different mesh refinement techniques: on the one hand hi-
erarchical refinement of quadrilateral meshes with hanging
nodes, on the other hand isotropic and anisotropic triangular
meshes. Discretization of the Euler equations written in con-
servative variables is done by a standard discontinuous finite
element (Galerkin) method. In each step of the algorithm, an
error indicator is used to guide the mesh modification. Here
we implemented as criterion for quadrilateral mesh refine-
ment, indicators based on the physical variables jumps, as
they are usually used in practice. Comparison is done with
respect to the resolution of certain physical features, and also
with respect to CPU-time, which appears to be fair, since the
different algorithms are programmed within the same pro-
gram handling the different ingredients in a uniform manner.
For the anisotropic mesh refinement algorithm we use
BAMBG. All other algorithms have been implemented by the
authors in the C++-library Concha.

1 Introduction

Over the past decades, significant advances have been made
in developing the Discontinuous Galerkin Finite Element
Method (DGFEM) for applications in fluid flow and heat
transfer. Certain features of the method have made it at-
tractive as an alternative to other popular methods such as
finite volumes in thermal fluids engineering analyses. The
DGFEM has been used successfully to solve hyperbolic sys-
tems of conservation laws [3, 4, 8, 9]. It makes use of com-
pletely discontinuous finite element spaces and an adequate
variational formulation, especially imposing weak continuity
at interelement boundaries. It was first introduced by Reed
and Hill [17] for the solution of the neutron transport equa-
tion, and its history and recent development have been re-
viewed by Cockburn et al. [1, 2]. The DGFEM method has
several advantages over continuous methods, since it uses
completely discontinuous polynomial bases, it can sharply
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capture discontinuities which are common for hyperbolic
problems and also can make mesh refinement easier in the
presence of hanging nodes. The DGFEM has a simple com-
munication pattern that makes it useful for parallel computa-
tions.

The development of self-adaptive mesh refinement tech-
niques in computational fluid dynamics (CFD) is motivated
by a number of factors. First of all, the physical solutions
often present different types of singularities, such as shocks,
internal and boundary layers, and sharp gradients due to sin-
gularities in the geometry of the computational domain. It is
therefore evident that a uniform mesh refinement is not opti-
mal to capture these features. On the other hand, finding an
efficient local mesh resolution by hand is often impossible,
especially for high accuracy demands and in cases where it
is difficult to predict the location of the singularities, as for
nonlinear shocks. Therefore, automatic mesh refinement al-
gorithms have become necessary. One should emphasize that
the gain in efficiency does not only concern CPU-time but
also memory requirements, as reported in the literature [16].

The typical structure of an adaptive algorithm is the follow-
ing
— Mark — Refine.

Solve —  Estimate

)]

Here, we compare two different techniques. They differ in
the last two steps, the marking and refinement. In the hier-
archical refinement algorithms, the marking decides whether
a cell should be refined. Since certain constraints on the ob-
tained meshes are in general required, the refinement algo-
rithm possibly leads to refinement of additional cells. We
only consider isotropic refinement, that is, all marked cells
are bisected.

In the anisotropic refinement algorithm, a metric-based re-
finement is used [10] (more recently see [11]), which re-
quires in the mark step the interpolation of the indicators.
The two techniques differ considerably: the second one
allows for very economical meshes in the case of lower-
dimensional singularities, as in the case of shocks, and is
therefore expected to outperform the first in terms of mesh
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cells. On the other hand, the hierarchy is lost, and there-
fore, despite the interpolation of solutions from one mesh to
the other, one might expect higher iteration numbers due to
worse initial conditions. In order to analyze only one of these
aspects, we also compare the metric-based anisotropic and
isotropic variants.

In both cases we consider the same ingredients for dis-
cretization, iterative solution, and estimation, which is based
on simple jump indicators. Although more elaborate error
estimators are available in the literature, see for example
[6, 7, 14, 18], we restrict ourselves to the simple indicators
which are commonly used in practice, since the are identical
in the case of isotropic and anisotropic refinement. We use
indicators based on the Mach number, the pressure, and the
density. We perform first of all comparison between these in-
dicators in other to choose the accurate one which will very
well capture the discontinuity phenomena which occur in the
scramjet problem. Second of all, we perform a mesh refine-
ment with our criterion on a hierarchical non conform rectan-
gular grid compares with an isotropic and anisotropic refine-
ment on triangular mesh refinement. Finally we compare the
CPU related to the resolution of the different cases of mesh
refinement.

2 Description of the numerical

method

We denote by u the vector of physical variables, i.e. u =
(p,pv,pE) where p, v, and E are the density, the velocity
field, and the total energy. The pressure is related to p and E
by the ideal gas law. We write the system of equations as

uy +div f(u) =0, 2

completed by a set of appropriate boundary conditions.

The discontinuous finite element method is based on a piece-
wise polynomial approximation over a mesh # (either trian-
gular or quadrilateral). The set of cells of /4 is denoted by .7,
and the set of interior sides by .#},; the set of boundary sides
is denoted by Yha . In addition, we denote by Tk the transfor-
mation of a reference cell to the physical cell K (it is linear in
the case of triangles and bilinear in the case of quadrilaterals)
and by R¥ the set of polynomials of either total or maximal
degree k (P for triangles and QF for quadrilaterals). The dis-
continuous finite element space is then defined as

VE={v, e *(Q): v|xeTx € (RN(K)® VK € .4} (3)

The discrete variational formulation now reads: Find uy, € Vj,
such that for all v, € Vj,:

Vv, € Vy, 4

where [}, is linear functional representing the inflow data and
the form ay, is composed of three terms corresponding tho the
mesh cells, interior sides, and boundary sides:

an(un)(vi) = lh(va)

() () = % () (o) + a7 ) () + @ () (o).

®)
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The three terms are given by
Hh . .
@ w) )=~ Y[ fw): Vudx
Kety, K
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9
a,” (up)(vp) = /ya D(u,uy,ns) - vds.
h

Here ® and F are numerical fluxes representing the boundary
conditions and the inter-element continuity. We will through-
out use the HLLC-flux.

For higher-order approximation k > 0, it is well-known that
a shock-capturing term has to be added to the formulation
(4). However, these terms depend on geometrical quantities
such as the diameter or measure of a cells and edges, and
their analysis for anisotropic meshes is not clear nowadays.
For this reason, we have decided to restrict ourselves to the
case k = 0 in order to have a fair comparison between the
isotropic and anisotropic meshes. The discrete equations are
solved by a semi-implicit Euler time-scheme with a Newton-
type linearization.

2.1 The refinement indicator

A posteriori estimates of the discretization errors use the
computed solution to enhance accuracy. There exist works
on the adaptive processes based on error estimates dealing
with hyperbolic problems [14, 15, 12, 18]. Indicators can be
constructed in many different ways. Here we use indicators
which measure locally the jump of the discrete variables of
the computed solutions. This error indicator is obtained by
evaluating the jump (i.e. the absolute difference) of some in-
dicator variable like the Mach number, density or entropy
along an edge.

The main algorithmic steps then become:
- identify the elements to be refined/coarsened;
- make elements to be refined compatible by expanding the

refinement region;

- make elements to be coarsened compatible by reducing the
coarsening region;

- refine/coarsen the mesh;

- correct the location of new boundary points according to

the surface definition data available;
- interpolate the unknowns and boundary conditions.

The aim of the identification of the elements to be refined
is to determine on which sides further gridpoints need to be
introduced, so that the resulting refinement patterns on an
element level belong to the allowed cases listed above, thus
producing a compatible, valid new mesh. Five main steps are
necessary to achieve this goal:

(i) mark elements that require refinement,

(ii) add protective layers of elements to be refined,

(iii) avoid elements that become too small or that have been
refined too often,
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(iv) obtain preliminary list of sides where new points will be
introduced,

(v) add further sides to this list until an admissible refinement
pattern is achieved.

The procedure of refinement is described in the following
way. One computes initially an estimator related to the jump
of the physical variables. One lays out the solutions values
S0 as to obtain a percentage of the total sum. All the ele-
ments whose values are taken into account in the quantity
taken are marked. This marking is carried out on the quad-
rangle mesh. When the elements concerned are marked one
passes at the stage of the refinement which is made of hier-
archical non conform quadrangles. This new grid is inter-
polated for a new calculation. Let’s underline that the algo-
rithm used for the adaptive refinement can be apply to any fi-
nite volume code except particular treatment. In the adaption
process, for both techniques, a solution has been computed
with the background mesh. In order to transfer the solution
on the new mesh generated mesh, one needs to interpolate
the old solution. This transfer solution may be the good ini-
tial guess for the solution on the new mesh. This interpola-
tion is carried out in a P! Lagrange context. The triangular
meshes anisotropic and isotropic are constructed by the soft-
ware Bamg. Bamg is a generator of isotropic or anisotropic
two-dimensional grids. It allows to build a grid starting from
a geometry (a border) or to build a grid adapted on the basis
of a previous grid and giving itself a solution or metric. It
also allows, in this case, to interpolate on the grid created the
solutions, in the case P!, defined on the previous grid [10].
The diagram for computation and refinement can be seen in
figure 1

Computation to obtain
converged solutions of the
problem

Postprocess to obtain
physical value (jumps...)

Choise of the indicator to
mark cells to be refined

Marking of cells and
refinement

Interterpolation on the
new mesh obtained

Figure 1: Diagram of the adaptive refinement
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3 Results and discussion

In this section we consider a configuration of compressible
inviscid flow. The case consists of an internal supersonic flow
in a scramjet inlet. It represents a flow in convergent provided
with internal obstacles representing a nozzle. The three parts
of the nozzle are made up of a convergent, a throat and a
divergent. Thus, the flow entering the Scramjet has the pos-
sibility of going either in the convergent ones located above
and below the nozzle or to pass in it. The aim is to obtained
stationary solution of air flow entering at Mach number 3 in
atmospheric standard conditions. This configuration is cho-
sen because it has been approved [13] and shows interesting
physical phenomenon of different nature as shock-boundary
layer interactions, pressure wave-shocks, shock-shock in-
teractions and expansion wave-shock. We will discuss the
choice of the indicator for the adaptive mesh refinement in
the case of the quadrangle grids; and we’ll compare this re-
finement to the anisotropic and isotropic ones.

3.1 Importance and influence of indicator

We recall that the purpose of adaptive refinement is to cap-
ture physical phenomenon in certain regions of the flow
in order to achieve accuracy of the solution of the prob-
lem considered. For this purpose we propose to com-
pare different kind of indicator based on the calculations
of the jumps. We test different indicators: (Rho (R),
pressure (P), Temperature (T), Mach number (M)), over
an initial mesh QuadO for quadrangles. The criterion re-
tained for the refinement is the jump of the indicator se-
lected. One respectively names Quad1_rho, Quadl_pressure,
Quadl_temperature and Quadl_Mach, the various grids ob-
tained after refinement according to indicators rho, pressure,
temperature and the Mach number. The results obtained for
the number of cells and vertices are shown in the following
table 1.

Quadrangles Vertices | Cells
Quad0 1175 1040
Quadl_rho 3023 2708
Quad]1_pressure 3060 2738
Quad]1_temperature 3405 3062
Quad_Mach 3425 3083

Table 1: Comparison of refinement according to the various
indicators

Globally, it is observed that refinements are almost identical
for the indicators R and P and for T and M. However, one
notes a better space distribution of refinement for the grids ,
showing a better capture of physical phenomena (Figure 2).
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Figure 2: Adaptive mesh refinement with the various indica-
tors (a) Rho jump (b) Pressure jump (c) Temperature jump
(d) Mach number jump

The following figure (figure3a) compares the grids obtained
at the end of the fourth iteration by superimposing them, us-
ing two type of indicators. The mesh refinement according to
the Mach number in red is found in background and RAo ones
in black in the foreground. One notices that refinement ac-
cording to the Mach number seems to cover a wider area, in
particular in capturing shocks. However if we invert the su-
perposition of the grids as well as the colors, it is the density
which seems to be well adapted because it covers a broader
field. (figure 3b).

(b)
Figure 3: (a) Superposition of the fourth iteration refinement

of Rho and Mach number (b) Zoom

In figure 4, one superposes the grid obtained after the first
refinement (red) and the one obtained after the fourth refine-

ment iteration (black) with density jump as estimator. These
grids are perfectly encased because of the hierarchical tech-
nique of refinement. It is interesting to note that the first
refinement strongly influences the successive zones of re-
finement. In fact the zones which are not taken into account
in the first refinement are not any further during next mesh-
refinement iterations. The choice of the indicator such as de-
fined as well as the first refinement is of a paramount nature
in the capture of the observable physical phenomena.

Figure 4: Superposition of the first and the fourth iteration
refinement with the indicator Rho

We choose for the the continuation of the study the jump of
the Mach number as estimator of the mesh refinement in the
case of quadrangles since it well covers the physical phenom-
ena in the totality of the domain.

3.2 Comparison of the techniques of refine-
ment between anisotropic-isotropic trian-
gles and quadrangles grids

Mesh_test | Vertices | Cells | Segments | Time/iter
Tri0 932 1594 2527 0.1918
Tri_isol 1733 3153 4887 1.0754
Tri_iso2 4744 9040 13785 2.6138
Tri_iso3 12232 | 23891 36124 5.2462
Tri_iso4 32498 | 64303 | 96802 205.02
Tri_anisol 1728 3126 4855 4.3012
Tri_aniso2 | 4663 8827 13491 4.7201
Tri_aniso3 | 12328 | 23960 | 36289 25.2993
Tri_aniso4 | 32366 | 63848 | 96215 462.452
Quad0 1175 1040 2216 0.1255
Quadl 3425 3083 6774 0.3375
Quad?2 9709 8915 19576 0.8744
Quad3 26339 | 24500 | 53666 1.8454
Quad4 67766 | 63599 13827 7.9614

Table 2: Comparison of refinement of anisotropic-isotropic
and non conform quadrangles grids

We choose to perform four successive refinements accord-
ing to algorithm described in the previous section. Being
given that the method of resolution is based on finite ele-
ments method, one asserts as constraint to roughly preserve
the same number of cells at each stage of refinement. This in
order to be able to compare in particular the computing times
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per iteration. The computation is stopped when the conver-
gence of stationary state is reached.

Three types of refinement are tested: An anisotropic and
isotropic refinement for triangles on one hand and on the
other an hierarchical non conform refinement for quadran-
gles. For the three cases, the following constraints are as-
serted :

-The indicator retained is the jump of the Mach number
-The time step is constant and equal to 10™3s

-The convergence is obtained after approximately 90 to 95
iterations

3.2.1 Interest and Influence of refinement: example of
isotropic triangles case

The Figure 5 represents the evolution of the density along
axis of symmetry of the nozzle for the four cases of the mesh

refinement (Tri_isol to Tri_iso4)

. Rho evolution

Rho (kg/m3)
»

== Quad4
— Tri_anisod

3 ) [ [ b 12 4 16

Symmetry axis.

Figure 5: Evolution of density along symmetry axis for
isotropic mesh refinement

One observes two zones of very strong compression. The
first one at x — coordinate 7, relating to the interaction of the
two oblique shock waves resulting from the leading edges of
the two obstacles symmetrically opposite. The second one
is relative to a small fragment of right shock wave located at
x—coordinate 9.3 approximatively in the center of the nozzle
throat. At immediate downstream of the latter, the subsonic
shocked flow undergoes the process of expansion or acceler-
ation of the fluid expected in the divergent of the nozzle.

The capture of the physical phenomena is of as much bet-
ter than the grid contains elements (or nodes) where the gra-
dients are most important . The adaptive mesh refinement
shows here all its interest. The Tri_iso4 grid gives, obviously,
the best result with steep slopes on the level of shocks and a
plate well represented between the first shock (x — coordinate
7.3) and the right shock (x — coordinate 9.2). However, One
notes a relative difference in evolution of the expansion in
case Tri_iso4 compared to the three other first cases. In fact,

692

it appears a point of inflection at the level of the decrease of
the density at the x — coordinate 10.8 approximately . We
will reconsider this difference in what follows.

3.2.2 Comparison between anisotropic and isotropic
grids

Let’s now compare, the results obtained on the cases of the
fourth mesh refinement in triangles isotropic (Tri_iso4) and
anisotropic (Tri_aniso4). Figure 6

Rho evolution

Rho (kgim3)

3 3 5 [ 7 [ [ i T 2 15 1 15 b 7 £ b

Symmetry axis

Figure 6: Comparison between anisotropic and isotropic
mesh refinement

The gradients obtained on the figure 6 are even stiffer with
the anisotropic case and the capture of the peak of densiry
continues to go up. It is also noticed that the phenomenon of
inflection point observed previously is still accentuated with
the appearance of a kind of plate.

In conclusion to this part, we retain that the anisotropic grids
give better results than those obtained by the isotropic grids
as for the capture of the physical phenomena observed.

3.2.3 Technics comparison of adaptive mesh refinement
in triangles and quadrangles

The following figures represent the grids obtained after
the fourth refinement iteration for the anisotropic triangles
(Tri_aniso4) and the quadrangles (Quad4). (see figures 7a,
7b).
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Figure 7: (a) Anisotropic mesh refinement iteration on trian-
gles (fourth mesh refinement iteration) (b) Hierarchical non
conform mesh refinement iteration on quadrangles (fourth
mesh refinement iteration)

The figure (8) shows two results relatively surprising. In fact,
the anisotropic triangles mesh captures well the shocks (more
stiffness in the curve and a maximum value of the higher
density). On the other hand, it would seem that the grid in
quadrangles collects an additional physical phenomena at the
expansion in divergent of the nozzle.

In fact, the monotonous decrease observed on the previous
figures (6, 7) is broken by a break of slope before decreasing
again.

. Rho evolution

— Quadd
—_ 4

Rho (kgim3)
bl

2 1 [ [ b

Symmetry axis

Figure 8: Comparison of the evolution of density between
anisotropic triangles and hierarchical non conform mesh re-
finement

One realizes better this break of slope on the figure of the
Iso-values of the density by zooming in the divergent part of
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the nozzle when adjusting the colors values scale as shown
in figures 9.

272 276 28 284 288
O P T .0
27 29

(b)

272 276 28 284 283
2.7 29

Figure 9: (a) Density iso-values at the downstream of the
divergent of the nozzle (Quad4) (b)Density Iso-values at the
downstream of the divergent of the nozzle (Tri_aniso4) (c)
Corresponding mesh to (a), (d) Corresponding mesh to (b)

These figures of mesh refinement in the two cases, shows
that the density of mesh is more important for the grid in
quadrangles than those in triangles.

3.3 Comparison of the computing time

The figures below represent the average computing times per
iteration obtained for the three types of mesh refinement rep-
resented in table 2. From this table we can make the follow-
ing remarks:

- It takes approximately twice more time to obtain a calcula-
tion using an anisotropic grid compared to an isotropic ones.
( see Figures 10 and table 2)

- The computing times obtained with the grids in quadran-
gles follow approximatively a linear progression while those
obtained with the triangles grids increase in a cubic way. In
fact, the converged solution obtained with Quad4 is at least
68 times faster than that of Tri_aniso4. Moreover, it is noted
that it was necessary to divide the time step by 10 with the
anisotropic triangles computation from the third refinement
to be able to converge to the stationary state.
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number of elements increases. The disadvantage is that the
interpolation P! of the solution is non-conservative.

For the quadrangular mesh refinement based on the jump of
the Mach number as indicator, the advantage is that the in-
terpolation of the solution is conservative and the computing
times are much faster than for the triangle ones. On the other
hand the disadvantage consist in the hierarchical interpola-
tion; at a new iteration, the totality of the cells on the previ-
ous grid is conserved whatever the value of the gradients are.
So the number of cells becomes more important.

In perspectives many different ways can be investigated with
adaptive non conform mesh refinement with quadrangles. In

30000 40000 50000 60000

Nb of Cells : Meshes i

10000 20000

Time/Iter

0 10000 20000 30000 40000 50000

Nb of cells

60000

(b)

Figure 10: (a) Computing times of the three cases of mesh re-
finement (b) Computing time of mesh refinement with quad-
rangles

4 Conclusion and perspectives

We developed a discontinuous Galerkin finite element
method resolution to solve Euler equations. The Galerkin fi-
nite element method has several advantages, and one of them
is the interelement discontinuity as criteria of a posteriori er-
ror estimation for an adaptive algorithm for mesh refinement.
The case of scramjet is chosen due to the complexity of the
phenomenon of waves interactions. The results we presented
show many features concerning the choice of the indicators.
They can capture adequately the physical phenomenon in a
fluid flow especially in the case of many interactions such as
shock-shock, shock-wall. We used two techniques of adap-
tive mesh refinement: isotropic or anisotropic for triangles
with Bamg software and hierarchical non conform for quad-
rangles whom we implemented ourselves.

The advantage of mesh refinement with triangles is that be-
tween two mesh refinements, most of the mesh elements are
in the strong gradients zones and disappear from where the
gradients are weak. Approximately the zones of weak gradi-
ents are reduced in aid of zones of strong gradients where the

70000
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particular, we plan to enhance this criteria in order to improve
43¢ adaptive mesh refinement on multi-grids with the use of
iterative solvers.
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