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Abstract
The Helmholtz free energy is essential to the modelling of
multiphase flow with the diffuse interface formalism. In mod-
els where it is a good approximation to let the tempera-
ture be constant and uniform, a simplified calculation of the
Helmholtz free energy is performed, that leaves a number of
functions of temperature unspecified (one per chemical com-
ponent, in case of mixtures). If the model is to include the
energy balance equation, i.e., account for flow with variable
temperature, then the Helmholtz free energy must include
these temperature dependent terms. This paper is an expo-
sition of the determination of such terms, where three types
of molecules are considered: (i) single conformation, (ii) mul-
tiple conformation, and (iii) polar. A specific example for
each case is included: methane, n-pentane, and water. The
Helmholtz free energy of fluid mixtures is also considered.

Nomenclature
Abbreviations

EOS Equation of state
Species Chemical component

Convention

(X)p X to the power p

Latin letters. An asterisk indicates that the symbol always appears with
a superscript indicating the chemical component (and the conformation if
relevant).

a [Pa m6/mol2] *EOS constant
A, Ā [Pa m6] EOS constant
b [m3/mol] *EOS constant
B, B̄ [m3] EOS constant
c [m/s] Speed of light
C [J/mol] *Chemical potential
D [J] *Depth of potential well at ground state
F [J] Helmholtz free energy
F [J/m3] Helmholtz free energy per unit volume
h [J s] Planck constant
I1, I2, I3 [kg m2] *Principal moments of inertia of a molecule

k [J/K] Boltzmann constant
kαβ [.] Binary interaction coefficients
ℓ [.] *Number of atoms in a molecule
L, L̄ [.] See equations (44) and (49)
m [.] *EOS constant. See equation (2)
mv [.] *Number of vibrational modes of a molecule
M [kg] *Molecular mass
n [mol] Number of molecules
N [.] *Number of molecules
NA [1/mol] Avogadro’s number
P [Pa] Pressure
q [.] *Canonical ensemble partition function
Q [.] *Canonical ensemble partition function
R [J/(mol K)] Universal gas constant
S [J/K] Entropy
T [K] Temperature
T̃ [.] Dimensionless temperature
v [m3/mol] Molar volume
V [m3] Volume
V ∗ [m3] Infinite volume
V [m3/mol] *A function of T , and of molecular mechanical

parameters
Y [.] *See equation (50)
z [K] *See equation (38)
Z [K] *See equations (22) and(35)

Greek letters. For the meaning of the asterisk see ”Latin letters” above.

βab [.] In water EOS. ”Association volume.”
ϵab [J] In water EOS. ”Association energy.”
η [.] *Probability of a given conformation
ϑ [K] *See equation (30)
κ [.] Water EOS function of T. See equation (42)
ν [.] Number of chemical components in a mixture
νi [1/cm] *Molecular vibrational frequency of mode i
ρ [mol/m3] *Molar density
σ [.] *Symmetry number of a molecule
τ [K] *See equations (25) and (37)
ωe1 [.] *Degeneracy of electronic ground state

Superscripts

α, β [.] Indicate the chemical component
1, 2, 3 Indicate methane, n-pentane, water, respectively
A, . . . Indicate molecular conformation
ig Ideal gas

Subscripts

a Indicates association term
c Indicates value at critical point
e ”Effective” or ”electronic”, depending on context
pol Polynomial
r Refers to rotational degrees of freedom
t Refers to translational degrees of freedom
v Refers to vibrational degrees of freedom
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1 Introduction
The diffuse interface model presented in [9], for multiphase
flow in porous media of a multicomponent fluid, is in princi-
ple valid for variable temperature. Its applicability was how-
ever restricted to constant and uniform temperatures by the
fact that a number of functions of temperature, one for each
chemical component, were left unspecified in the Helmholtz
free energy density. These functions drop out by differenti-
ation if temperature is assumed constant and uniform. The
manner in which these functions can be determined is pre-
sented in the present paper.

The Helmholtz free energy F of a fluid is usually calculated
via the equation expressing pressure P in terms of volume V ,
temperature T , and mole numbers n1, n2, . . . , nν , assuming
there are ν chemical components.1 This equation, called the
”equation of state” or EOS, is well known for most mixtures
of industrial interest, for example hydrocarbons. For the dif-
ferent types of EOS see [3]. The one used here is known as
the Redlich-Kwong EOS, and has the following form for one
mole of fluid consisting of just one species α.

P =
RT

v − bα
− aα

v(v + bα)
+ Pa(T, V ), (1)

where R is the universal gas constant, v is the molar volume,
bα is a constant, and

aα = aαc [1 +mα(1−
√
T/Tα

c ]
2, (2)

where aαc , mα, and Tα
c are constants. Pa is the association

term, which is only present for polar molecules. The EOS of
a mixture is [4]

P =
nRT

V −B
− A

V (V +B)
+ Pa(T, V, n

1, . . . , nν), (3)

where

n =

ν∑
α=1

nα, (4)

A =

ν∑
α,β=1

nαnβ
√
aαaβ(1− kαβ), (5)

B =

ν∑
α=1

bαnα. (6)

In equation (3), Pa is the association term [4], only present
if there are polar species (e.g. water or methanol) in the
mixture. It must go to 0 faster than 1/V as V → ∞, as a
consequence of the requirement that equation (3) must re-
duce to the EOS of an ideal gas, PV = nRT , as V → ∞. It
follows that Fa, defined by

Fa(T, V, n
1, . . . , nν) =

lim
V ∗→∞

∫ V ∗

V

Pa(T, V
′, n1, . . . , nν)dV ′, (7)

exists.
In equation (5), the kαβ are the binary interaction coeffi-

cients, having the properties kαα = 0 and kαβ = kβα. These
and the other constants characterising species α can be found
in published tables.

The Helmholtz free energy F is calculated from the EOS
by integration of

dF = −SdT − PdV +

ν∑
α=1

Cαdnα, (8)

where S is entropy and the Cα are the chemical potentials.
Assuming constant temperature and constant mole numbers
we get

F (T, V, n1, . . . , nν) =

lim
V ∗→∞

[
F (T, V ∗, n1, . . . , nν) +

∫ V ∗

V

P (V ′)dV ′

]
, (9)

where P (V ) is the right-hand side of equation (3), with T
and the nα taken as constant parameters. On the right-hand
side of equation (9), the limit as V ∗ → ∞ of F (T, V ∗, . . .) is
the Helmholtz free energy of an ideal mixture of ideal gases
(chapter 6 in [5], chapter 2 in [8]), i.e.,

lim
V ∗→∞

F (T, V ∗, n1, . . . , nν) =

lim
V ∗→∞

ν∑
α=1

F ig(T, V ∗, nα), (10)

and the Helmholtz free energy of an ideal gas of species α
has the general expression [6]

F ig(T, V ∗, nα) = nαRT ln
nαVα(T )

eV ∗ . (11)

Here e = exp(1) and the Vα(T ) are the functions of T that
were left unspecified in [9]. Their calculation is the main
subject of this paper.

The integral on the right-hand side of (9) can be per-
formed, and one gets

lim
V ∗→∞

∫ V ∗

V

P (V ′)dV ′ = −nRT ln(V −B)

+
A

B
ln

V

V +B
+ nRT lnV ∗ + Fa. (12)

Gathering results (10)–(12) we see that (9) becomes

F (T, V, n1, . . . , nν) =
ν∑

α=1

nαRT ln
nαVα(T )

e(V −B)

+
A

B
ln

V

V +B
+ Fa, (13)

1A superscript will indicate the chemical component, throughout in this paper. Also, species will be used instead of chemical component.
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the infinities, lnV ∗, having cancelled each other.
In the model described in reference [9] the equations de-

scribing multiphase flow are written in terms of the entropy
(T -derivative of F ) and of the spatial gradient of the chemi-
cal potential (nα-derivative of F ). Equation (13) then shows
that one actually needs the first order T -derivatives of the
T lnVα(T )-functions, for (α = 1, . . . , ν), and not the func-
tions themselves. Any constants appearing in any of the
T lnVα(T ) disappear. We return to this during the calcula-
tions of the Vα.

The determination of Vα is given below, for three molecu-
lar types: (i) non polar single conformation (section 2), non
polar multiple conformation (section 3), and polar single con-
formation (section 4).

The numbering, i.e., the allocation of numerical values to
the α’s, depends on the mixture and is done in this paper
as follows: the non polar species are considered first and
numbered by order of increasing molecular mass; the polar
species are then appended and numbered by order of increas-
ing molecular mass: thus for a mixture of methane (CH4),
pentane (C5H12), water (H2O), and methanol (CH3OH),
(where the last two are polar), α is respectively 1, 2, 3, and
4. Since specific examples will be considered in this paper,
it is convenient to have a particular mixture in mind. This
is the mixture of methane, n-pentane, and water. Quantities
pertaining to these three species will be identified by setting
α = 1, 2, 3 respectively.

2 Single conformations

2.1 Generalities

What follows is the determination of the Vα(T )-function for
a species α whose molecules are polyatomic, non polar, and
have a single conformation.

The Helmholtz free energy of an ideal gas of species α has
the general expression (see [6], especially chapters 8 and 9):

F ig(T, V ∗, Nα) = −kT lnQα, (14)

where k is the Boltzmann constant, Nα is the number of
particles, and Qα is the canonical ensemble partition func-
tion for the species. The numerical value of α identifies the
species in a numbering scheme like the one indicated at the
end of section 1.

If the molecules are indistinguishable, and if the number
of available molecular states is much larger than Nα [6], one
can write

Qα =
(qα)N

α

Nα!
, (15)

so that, using Stirlings formula for the factorial (assuming
Nα >> 1) equation (14) becomes

F ig(T, V ∗, Nα) = NαkT ln
Nα

eqα
. (16)

If the Hamiltonian of a molecule can be assumed to be sep-
arable, then

qα = qαt q
α
r q

α
v q

α
e (17)

where

qαt =

(
2πMαkT

h2

) 3
2

V ∗, (18)

qαr =

√
π

σα

(
8π2kT

h2

) 3
2

(Iα1 I
α
2 I

α
3 )

1
2 , (19)

qαv =

mα
v∏

i=1

e−hνα
i /(2kT )

1− e−hνα
i /(kT )

, (20)

qαe = ωα
e1e

Dα/(kT ). (21)

Partition function qαt accounts for the three translational de-
grees of freedom of the molecule, considered as a point. Mα

is the molecular mass and h is Planck’s constant.
The second partition function, qαr , accounts for the rota-

tional degrees of freedom, and Iα1 , Iα2 , and Iα3 are the prin-
cipal moments of inertia of the molecule. The constant σα

is the symmetry number, defined as ”the number of differ-
ent ways in which the molecule can achieve, by rotation, the
same (i.e., counting like atoms as indistinguishable) orienta-
tion in space.” [6] For CO2, H2O, and CH4, σ = 2, 2, and
12, respectively.

The third partition function, qαv , accounts for the energies
of small vibrations of the atoms around their equilibrium po-
sitions, ναi being the frequency of vibration of mode i. For
a molecule of type α with ℓα atoms, there are mα

v modes of
vibration, where mα

v = 3ℓα − 6 for non-linear molecules, and
mα

v = 3ℓα − 5 for linear molecules. (By definition, the mass
centers of the atoms in a linear molecule are on a straight
line. CO2 is an example.)

In the fourth partition function, the constants Dα and
ωα
e1 are due to the nuclear and electronic configuration of

the molecule. Taking the state of zero energy to be the one
where nuclei and electrons are free, −Dα < 0 is the energy
needed to assemble the molecule at ground state, from its
constituent nuclei and electrons. Dα is the depth of the po-
tential well of the ground state, and ωα

e1 is the degeneracy
of the ground state. For most cases, only the ground state
needs be considered since a jump to the next electronic level
usually needs temperatures of about 104 K [6]. For saturated
molecules (CnH2n+2 for hydrocarbons), ωe1 = 1.

According to the last but two paragraph in section 1, con-
stants appearing in T lnVα(T ) are not needed, at least in
models similar to [9]. It is useful, in view of this, and re-
ferring to equations (20) and (21), to isolate such constants
in

Zα = −Dα

k
+

mα
v∑

i=1

hναi
2k

. (22)

The expression for Vα can now easily be found by identify-
ing the two expressions of F ig, (11) and (16). Incidentally,
the dimension of Vα is volume per mole so that Vα/bα is
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dimensionless (bα being the constant with dimension of vol-
ume per mole appearing in the pure component EOS, see
equation (1)). Keeping in mind that Nα = NAn

α, where NA

is Avogadro’s number, one gets:

Vα(T )

bα
=

NAV
∗

bαqα
= eZ

α/T Vα
e (T )

bα
, (23)

where

Vα
e (T )

bα
=

(
τα

T

)3 mα
v∏

i=1

(
1− e−hνα

i /(kT )
)
, (24)

and

τα =
h2

4k

(
NAσ

α

π5bαωα
e1

) 1
3 1

(Mα)
1
2 (Iα1 I

α
2 I

α
3 )

1
6

. (25)

The Helmholtz free energy of a fluid consisting of a single
species, with polyatomic, non polar, and single-conformation
molecules is

F (T, V, nα) = nαRT ln
nαVα(T )

e(V − bα)
+

aα

bα
ln

V

V + bα
, (26)

according to equation (13), and keeping in mind that Fa is
identically equal to zero. For models that are similar to the
model of reference [9], Vα

e can be substituted to Vα in equa-
tion (26).

2.2 The example of methane

The constants appearing in equations (24) and (25) can be
found in the literature [1, 6, 10]. Superscript 1 is used below
to indicate methane.

M1 = 0.016042/NA kg,

σ1 = 12,

ω1
e1 = 1,

b1 = 0.2979× 10−4 m3/mol,

I11 = I12 = I13 = 0.533× 10−46 kgm2,

m1
v = 9,

ν1i = 2914, 1526 (2), 3020 (3), 1306 (3).

The ν1i are the frequencies appearing in equation (24), with
their multiplicities in parentheses, and in units of cm−1.
One obtains hν1i /k in K by multiplying ν1i in cm−1 with
100ch/k ≈ 1.438776, where c is the speed of light in m/s.
One also finds

τ1 = 6.17509K.

A plot of V1
e /b

1 versus T (in K) is shown in figure 1.

Figure 1: Plot of V1
e /b

1 (methane) versus T in K.

3 Multiple conformations

3.1 Generalities
What follows is the determination of the Vα(T )-function for
a species α whose molecules are polyatomic, non polar, and
have many conformations.

We begin with some definitions. Some species exist as mix-
tures of a usually small number of conformations, where the
molecule of conformation A differs from the molecule of con-
formation B by rotations about single bonds. The notation
in this paper is as follows: a conformation is identified by a
capital letter superscript, and the letters are allocated in the
order of decreasing potential-well depths: DαA > DαB > . . .

In general, if species α exists in conformations A, . . . , J ,
. . . , a straightforward generalization of equation (15) is

Qα =

[
(qαA)N

αA

NαA!

]
. . .

[
(qαJ)N

αJ

NαJ !

]
. . . , (27)

where NαJ is the numbers of particles of species α in con-
formation J . The qαJ are given by expressions similar to ex-
pressions (17)–(21), where superscript α is replaced by αJ ,
thus including the conformation. We can write, quite gener-
ally

NαJ = Nα ηαJ , (28)

where Nα is the number of molecules of species α, and ηαJ is
the probability of a molecule of species α being in conforma-
tion J . If DαJ denotes the depth of the potential well of the
ground state of species α in conformation J , we can write

ηαJ =
eD

αJ/(kT )

eDαA/(kT ) + . . .+ eDαJ/(kT ) + . . .
. (29)

The DαJ/k are large, of the order of 107 K, while their dif-
ferences are at most of the order of 103 K. Referring to the
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convention stated in the second paragraph of the present sec-
tion, it is natural to define ϑαJ by

kϑαJ = DαJ −DαA, (30)

so that

ηαJ =
eϑ

αJ/T

1 + . . .+ eϑαJ/T + . . .
. (31)

Using equations (27) and (28) in (14), and keeping in mind
that

∑
J ηαJ = 1, one obtains the following generalization of

(16):

F ig(T, V ∗, Nα) =

NαkT ln

[
Nα

e

(
ηαA

qαA

)ηαA

. . .

(
ηαJ

qαJ

)ηαJ

. . .

]
. (32)

The expression of Vα is found by identifying the two ex-
pressions of F ig, equations (32) and (11). Again using∑

J ηαJ = 1, one gets

Vα

bα
=

∏
J

(
VαJ

bα
ηαJ

)ηαJ

, (33)

where, generalizing equations (22) to (25):

VαJ

bα
= eZ

αJ/T VαJ
e

bα
(34)

with

ZαJ = −DαJ

k
+

mα
v∑

i=1

hναJi

2k
. (35)

VαJ
e

bα
=

(
ταJ

T

)3 mα
v∏

i=1

(
1− e−hναJ

i /(kT )
)
, (36)

ταJ =
h2

4k

(
NAσ

αJ

π5bαωαJ
e1

) 1
3 1

(Mα)
1
2 (IαJ1 IαJ2 IαJ3 )

1
6

. (37)

In analogy with the single-conformation case, we can isolate
terms in Vα that drop out from the flow equations. Keeping
in mind that

∑
J ηαJ = 1, we define

zαJ = ZαJ − ZαA, (38)

and re-write equations (33) and (34) as follows:

Vα

bα
= eZ

αA/T Vα
e

bα
, (39)

where

Vα
e

bα
=

∏
J

(
ez

αJ/T VαJ
e

bα
ηαJ

)ηαJ

. (40)

Note that in the present case, the isolation of terms that
drop out from the flow equations can be done in infinitely
many ways. All, however, lead to the same expression for
the T -derivatives of T lnVα(T ).

The Helmholtz free energy of a fluid consisting of a
single species, with polyatomic, non polar, and multiple-
conformation molecules is given by equation (26) where
Vα(T ) is given by expression (39). For models that are simi-
lar to the model of reference [9], Vα

e (expression (40)) can be
used instead.

3.2 The example of n-pentane

A fluid of n-pentane molecules exists as a mixture of 3 con-
formations, called tt, gt, and gg [13]. In tables 1 and 2 super-
script 2 indicates n-pentane, and A, B, C are used instead
of tt, tg, gg. This agrees (see the values of D2A, D2B , and
D2C in table 1) with the convention stated in the second
paragraph of section 3.1.

The following constants are independent of the conforma-
tion:

M2 = 0.07215/NA kg,

b2 = 0.100701× 10−3 m2/mol,

m2
v = 45,

ω2A
e1 = ω2B

e1 = ω2C
e1 = 1.

Symmetry numbers and principal moments of inertia [12] are
given in table 1, together with the potential well depths [11],
and the resulting ταJ and zαJ . The vibrational frequencies
[11] are given in table 2. A plot of V2

e /b
2 versus T (in K) is

shown in figure 2.

4 Polar molecules

4.1 Generalities

What follows is the determination of the Vα(T )-function for
a species α whose molecules are polyatomic, polar, and have
a single conformation. The Vα(T )-function is independent of
the ability of polar molecules to form clusters since it is de-
termined under the assumption that the fluid is an ideal gas
or, technically, that V → ∞. In fact, the association term
vanishes at that limit. See the example of water in section
4.2 below. It follows that the Vα(T )-function for the case
of polar molecules has the same form as the Vα(T )-function
of methane (assuming single conformation): equations (22)–
(25) are thus applicable.

4.2 The example of water

According to the numbering scheme stated in the last para-
graph of section 1, superscript 3 indicates water.
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J A B C

σ2J 2 1 1
I2J1 0.439 0.382 0.243
I2J2 0.463 0.409 0.350
I2J3 0.0494 0.0726 0.132
D2J 519061.8638 519058.0492 519054.6312
ϑ2J 0 -458.79 -869.88
τ2J 0.167815 0.130515 0.130740
z2J 0 503.14 972.57

Table 1: Symmetry numbers, principal moments of inertia,
potential well depths, and some derived quantities. See the
main text for the latter.

i ν2Ai ν2Bi ν2Ci

1 4437.46 4446.08 4443.93
2 4436.97 4437.01 4441.56
3 4431.21 4431.93 4433.57
4 4428.81 4430.52 4431.62
5 4380.97 4384.73 4384.88
6 4355.85 4368.64 4375.19
7 4346.35 4351.58 4360.02
8 4344.74 4348.44 4350.22
9 4331.88 4344.87 4348.70
10 4329.61 4328.90 4344.79
11 4320.37 4322.69 4333.15
12 4304.72 4307.10 4314.80
13 2179.77 2175.63 2180.18
14 2167.30 2169.29 2166.41
15 2158.64 2161.31 2162.95
16 2157.42 2157.72 2162.70
17 2154.34 2151.95 2148.28
18 2142.26 2144.50 2146.24
19 2138.15 2136.06 2134.15
20 2036.96 2040.17 2040.74
21 2036.76 2033.72 2033.41
22 2012.37 2011.44 2003.19
23 1975.51 1984.32 1996.17
24 1918.68 1932.38 1966.79
25 1909.26 1915.99 1915.18
26 1868.47 1867.23 1848.16
27 1826.71 1826.45 1824.87
28 1740.44 1719.51 1687.37
29 1673.89 1667.64 1668.15
30 1545.71 1557.04 1576.54
31 1499.00 1488.59 1471.48
32 1494.99 1479.48 1467.74
33 1433.55 1442.39 1443.70
34 1331.17 1315.93 1304.29
35 1258.38 1254.55 1240.22
36 1249.59 1214.31 1211.68
37 1104.10 1107.40 1101.35
38 1055.57 1061.79 1051.64
39 571.27 675.13 677.94
40 570.99 473.53 550.29
41 356.18 410.28 389.15
42 346.54 347.08 386.93
43 256.43 299.39 311.87
44 159.34 179.19 215.23
45 154.29 117.82 90.95

Table 2: The 45 vibrational frequencies of conformations
tt (A), tg (B), and gg (C) of the n-pentane molecule [11].

Figure 2: Plot of V2
e /b

2 (n-pentane) versus T in K.

The EOS of water is written here for completeness, since
it is not needed for the determination of the V3(T )-function.
For an arbitrary number n3 of moles of water in volume V ,
and in the framework of the theory presented in reference
[4], the EOS is

P (T, V, n3) =
n3RT

V − b3n3
− (n3)2a3(T )

V (V + b3n3)

− RT

b3κ(T )

[
1 +

b3n3κ(T )

2(V − 0.475b3n3)

−

√
1 +

b3n3κ(T )

V − 0.475b3n3

 , (41)

where

κ(T ) = 8βab[exp(ϵab/(RT ))− 1], (42)

ϵab and βab being the association energy and association vol-
ume between a site of type a and a site of type b on the water
molecule. They are known constants [4].

It is easily seen that the association term Pa, given by
the second and third lines on the right-hand side of equation
(41), behaves as 1/(V )2 when V → ∞, which agrees with
the statement made in the second sentence following equa-
tion (6). The integration of Pa (see equation (7)) is easily
done, and equation (13) becomes, when specialised to the
case of just one species, water (α = 3):

F (T, V, n3) = n3RT ln
n3V3(T )

e(V − b3n3)

+
a3n3

b3
ln

V

V + b3n3
− 4n3RT

[
1

L
+ ln

L

2
− 1

2

]
, (43)
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where

L = 1 +

√
1 +

b3n3κ(T )

V − 0.475b3n3
. (44)

The water constants necessary to the determination of V3
e (T )

are [2, 7]):

M3 = 0.018015/NA kg,

σ3 = 2,

ω3
e1 = 1,

b3 = 0.145× 10−4 m3/mol,

I31 = 0.10220× 10−46 kgm2,

I32 = 0.19187× 10−46 kgm2,

I33 = 0.29376× 10−46 kgm2,

m3
v = 3,

ν3i = 3755.93, 3657.05, 1594.75 cm−1.

Then

τ3 = 7.029204K,

and a plot of V3
e /b

3 versus T (in K) is shown in figure 3.
The Helmholtz free energy of fluid water is given by equa-

tion (43) where, for models that are similar to the model of
reference [9], V3

e can be used instead of V3.
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Figure 3: Plot of V3
e /b

3 (water) versus T in K.

5 Fluid mixtures
We consider here the Helmholtz free energy for the specific
example mentioned at the end of section 1, namely a fluid
mixture of methane, n-pentane, and water. The general
expression of the Helmholtz free energy is already written

down, see equation (13). It is here specialized to ν = 3.
Also, since fluid mechanics is the final area of application it
is most useful to introduce the Helmholtz free energy density
F = F/V , as a function of T and the molar densities ρ1, ρ2,
ρ3 defined by

ρα = nα/V. (45)

(The familiar mass densities are cumbersome in the present
context because they introduce the molar mass as an extra
factor [9, 10].) It is easily found that

F(T, ρ1, ρ2, ρ3) =
3∑

α=1

RTρα ln
Vα(T )

bα

+
3∑

α=1

RTρα ln
bαρα

e(1− B̄)

+
Ā

B̄
ln

1

1 + B̄
− 2RTρ3

[
1

L̄
+ ln

L̄

2
− 1

2

]
, (46)

where

Ā =
3∑

α,β=1

ραρβ
√
aα(T )aβ(T )(1− kαβ), (47)

B̄ =
3∑

α=1

bαρα, (48)

L̄ = 1 +

√
1 +

b3ρ3κ(T )

1− 0.475B̄
. (49)

As already mentioned, for models that are similar to the one
of reference [9] one can replace the Vα with the correspond-
ing Vα

e . In addition, it is of interest to find effective methods
for calculating

Y α ≡ d

dT

(
T ln

Vα
e (T )

bα

)
, (α = 1, 2, 3). (50)

This is especially relevant for large molecules having many
conformations, as in the example of n-pentane above, where
the numerical calculation of V3

e is relatively time consuming.
Figures 1 to 3 show that the Vα

e are convex and monotoni-
cally decreasing, at least in the range of temperatures consid-
ered. It is thus easy to calculate polynomial approximations
to the functions Y α defined by (50). The following expres-
sions, denoted Y α

pol, are second degree polynomial interpola-
tions, approximating Y α for 300K ≤ T ≤ 600K, and passing
through the points (Ti, Y

α(Ti)), where Ti = 300, 450, 600K.
They are expressed in terms of a dimensionless temperature
T̃ = T/T 3

c , where T 3
c = 647.096K is the critical temperature

of water:

Y 1
pol = 1.2774T̃ 2 − 7.9459T̃ − 11.293, (51)

Y 2
pol = 2.7894T̃ 2 − 30.976T̃ − 20.749, (52)

Y 3
pol = 2.9243T̃ 2 − 8.7813T̃ − 10.823. (53)
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Conclusions
The Helmholtz free energies for three pure species, and for
a mixture of these species, have been presented. The ex-
pressions include the functions of temperature that usually
drop out when modelling flows at constant and uniform tem-
peratures. The determination of the complete temperature
dependence depends on the knowledge of the following nu-
clear parameters, for each species α: the molecular mass,
the symmetry number (σα), the degeneracy of the ground
state electronic energy (ωα

e1), the principal moments of in-
ertia of the molecule (Iα1 , Iα2 , Iα3 ). Most importantly, one
also needs the frequencies of the molecular vibrations, and
the energies (−Dα < 0) that are necessary to assemble the
molecules at their ground states from their constituent nuclei
and electrons. For models that are similar to the model pre-
sented in reference [9], the Dα are only needed for multiple-
conformation molecules, and then only their differences are
necessary, taking the most stable conformation as reference,
for example.
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