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ABSTRACT 
New fundamental solutions for micropolar fluids have been 

obtained in explicit form by considering Stokes and Oseen 
flows due to a point force and a point couple.  Fundamental 
solutions that do not exist in Newtonian flows have emerged in 
this paper owning to the existence of microrotational velocity 
field in micropolar fluids.  The newly-found fundamental 
solutions, together with the representations that have been 
derived based on Oseen approximation, are believed to be 
useful in seeking for new solutions to microscale flow 
problems.  These flow problems are not trivial, as dealing with 
rheologically complex fluids and the mechanics of fluids at 
microscale, where Newtonian fluid theories have been found to 
be invalid there. 

 
INTRODUCTION 

The physical mechanisms of heat, mass, and momentum 
transport in small-scale units may differ significantly from 
those in macroscale equipment [1,2].  Fundamental and applied 
investigations of microscale phenomena in fluid mechanics are 
motivated by developments in the areas of biological molecular 
machinery, atherogenesis, microcirculation, and microfluidics.  
At scales larger than a micron, the fluid can be treated as a 
continuum, and the flow is governed by the Navier-Stokes 
equation.  The continuum model assumes that the properties of 
the material vary continuously throughout the flow domain.  In 
Newtonian continuum mechanics, the fluid is modeled as a 
dense aggregate of particles, possessing mass, and translational 
velocity.  However, the field equation, such as the Navier-
Stokes equation, does not account for the rotational effects of 
the fluid micro-constituents. 

In the theory of micropolar fluids [3], rigid particles 
contained in a small volume element can rotate about the 
centroid of the volume element.  The rotation is described by an 
independent micro-rotational vector.  Micropolar fluids can 
support body couples and exhibit microrotational effects.  The 
theory of micropolar fluids has shown promise for predicting 
fluid behaviour at microscale.  Papautsky, et al. [1] found that a 

numerical model for water flow in microchannels based on 
theory of micropolar fluids gave better predictions of 
experimental results than those obtained using the Navier-
Stokes equation.  Micropolar fluids can model anisotropic 
fluids, liquid crystals with rigid molecules, magnetic fluids, 
clouds with dust, muddy fluids, and some biological fluids [3].  
In view of their potential application in microscale fluid 
mechanics and non-Newtonian fluid mechanics, it is worth 
exploring new fundamental solutions. 

NOMENCLATURE 
 
c  [kg m s-1] rotational viscosity 

F  [kg m s-2] force 

I  [m2] inertia 

p  [kg m-1 s-2] pressure 

T  [kg m2 s-2] torque 

Uu,  [m s-1] translational velocity 

v  [s-1] rotational velocity 
x  [m] Cartesian axis direction  

 
Special characters 
μ  [kg m-1 s-1] translational viscosity 

ρ  [kg m-3] density 

The fundamental solutions for Stokes flow [4] and Oseen 
flow [5] due to a point force are commonly named as the 
Stokeslet and the Oseenlet.  The fundamental solution due to a 
point force in a steady Stokes flow was first derived by the 
Nobel Laureate, Lorentz, as far back as 1896 [6].  This solution 
is now known by the name Stokeslet, although Stokes never 
knew about it.  The name Stokeslet was coined by Hancock in 
1953 [7].  Obviously, Hancock was unaware of this Lorentz’s 
work.  Had he known about it, he might have opted for 
Lorentzlet instead of Stokeslet.  There are many who believe 
that the steady Hancock-named Stokeslet was derived by 
Ladyzhenskaya in 1961 [8] by using Fourier-transform 
methods.  A number of more appropriate references concerning 
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the steady Stokeslet and Oseenlet can be found in [9].  The 
closed-form fundamental solutions for generalized unsteady 
Stokes and Oseen flows associated with arbitrary time-
dependent translational and rotational motions have been 
derived by Shu & Chwang in 2001 [10]. 

In micropolar fluids, the microrotational fundamental 
solutions due to a point force are the micropolar Stokeslet and 
micropolar Oseenlet, and those due to a point couple are the 
micropolar Stokes couplet and micropolar Oseen couplet.  Such 
fundamental solutions do not exist in Newtonian flow due to 
the absence of microrotational velocity field.  Ramkissoon & 
Majumdar [11] linearized the governing equations of 
micropolar fluids and applied Fourier transforms to obtain the 
three-dimensional micropolar Stokeslet.  Olmstead & 
Majumdar [12] derived the two-dimensional micropolar 
Oseenlet and micropolar Oseen couplet.  In this paper, we 
derive fundamental Stokes and Oseen solutions of micropolar 
flows in three dimensions, so that the point force and point 
couple can be prescribed in any direction.  Corresponding 
results for two-dimensional flows are also presented. 
 

STOKES AND OSEEN FLOWS OF A MICROPOLAR 
FLUID DUE TO A POINT FORCE 

Consider a point force in an unbounded, quiescent, 
incompressible micropolar fluid.  Without loss of generality, 
the point force is placed at the origin, and the free-stream 
velocity ∞U  is taken to be ( )0,0,∞U .  The resultant fluid 
flow is assumed steady.  Based on the Oseen approximation, 
the governing equations [13] reduce to 
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where ρ  is the fluid density, rI  is the microinertia, μ , rμ , 

rc and mc are the Newtonian, microrotational, and two angular 

viscosities, respectively, and F  is a constant vector.  In the 
equation (3), the divergence of v  is assumed zero, which is 
verified in the latter part of this section.  The pressure, p , 
translational velocity, u , and microrotational velocity, v , are 
required to decay as ∞→x  in an unbounded flow, 

0→p , 0→u , 0→v  as .∞→x  

Suppose that f  is an absolutely integrable function that 

decays at infinity of nℜ .  The n -dimensional complex 
Fourier transform of the function f , is defined by 
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where ξ  is the transformed variable of x , 

nn xx ξξ ++=⋅ L11xξ , and i  is the imaginary unit, 

1−=i . 
The divergence of (2) yields 

[ ],)(2 xFδρ ⋅∇=∇ p              (4) 
which states that p  is harmonic everywhere except at the pole.  
To solve (4) for p , we take the Fourier transform, finding 

( ) ( ) .2ˆ
2

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅−=

−

ξ
πρ

n

ip Fξ  

Taking the inverse Fourier transform, we find 
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Stokes and Oseen flows due to a point force have the same 
pressure field, regardless of whether the fluid is Newtonian or 
micropolar. 

From (3), we have 
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Taking the curl of (2) gives 
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Substituting (6) in (7), we derive a partial differential vector 
equation containing only one unknown, v , 
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To solve partial differential equations of high order, such as 
(8), we may factorize the high order partial differential operator 
into products of lower order [14].  This method was used by 
Olmstead & Majumdar [12].  Formally, it is proposed that 
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where L  is a fourth order partial differential operator, and 1A , 

2A , 1B  and 2B  are constants.  While the method of 
factorization is attractive, a certain relationship between the 
parameters must exist for L  to admit the desired factorization.  
To factorize the differential operator in (8), the following must 
be true: 
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Consequently, it is required that 
2

21 λ−=+ BB , 121 aAA −=+ , 22121 aABBA =+ , 

321 aAA = , 021 =BB . 
We have five equations and only four unknowns.  To expedite 
the solution, the value of 1B  is taken to be zero since 

021 =BB .  Therefore, 
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which gives 
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Hence, the partial differential operator in (10) can be factorized 
into 
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This allows (8) to be rewritten as 
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where 
μ

ρ ∞=
Un02  and 
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02 .  The above 

factorization is valid under the physical constraint of the 
parameters given by (11). 

To solve (12) for v , it is convenient to take the Fourier 
transform. 
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The inverse Fourier transform gives 
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which is the micropolar Oseenlet of v  
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modified Bessel function of the second kind.  Because v  is 
expressed as the curl of the product of a scalar function and the 
constant vector F , the divergence of v  is zero.  Hence, the 
assumption made earlier about the divergence of v  being zero 
is satisfied. 

As 0→∞U , (14) produces the micropolar Stokeslet, 

( )[ ]{ }

⎪
⎪
⎩

⎪⎪
⎨

⎧

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
×∇

=+×∇−
= −

.3n
r
e1

8

,2nrKr
4

r

0

λ

μπ
ρ

λ
μπ
ρ

F

F
v

ln
    (15) 

Equation (15) gives the microrotational velocity in the presence 
of a point force. 

The curl of (3) gives the curl of the curl of u  as 
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using vector identities, (1) and the assumption that the 
divergence of v  is zero.  Taking the Fourier transform, we find 
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Substituting (11) and (13) in the above equation leads to 
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The inverse Fourier transform of this expression yields u  in 
the form 

( )
( )( )

( )
( ) .

m2i
2

2
c

m2in2i
22

a

2
10

22
1

r

r

2
10

2
10

22
1

4

2
n

2
n

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
+

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++

×∇×∇=

−
−

−
−

λξξξ
π

μ

λξξξξξ
π

F

F

F

F

u

 

Finally, we find the translational velocity u  is given by the 
micropolar Oseenlet of u  
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In the limit 0→rμ , the translational velocity and 

microrotational velocity fields decouple.  Then, 00 nm → , 

00 nw → , and the expression (16) of u  simplifies to 
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We see that the Newtonian Oseenlet is recovered. 
In the limit 0→∞U , the micropolar Oseenlet of u  in 

(16) becomes the micropolar Stokeslet of u , 
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The solution of u  for a micropolar fluid is much more 
complicated than that for a Newtonian fluid. 

 

STOKES AND OSEEN FLOWS OF A MICROPOLAR 
FLUID DUE TO A POINT COUPLE 

Consider a point couple in an unbounded quiescent, 
incompressible micropolar fluid.  Based on the Oseen 
approximation, the governing equations [13] can be linearized 
as 
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where ( )xTδρ  is the point couple, with T  as a constant 
vector.  Without loss of generality, the point couple is assumed 
to be positioned at the origin.  We begin by taking the 
divergence of (20), which states 

.02 =∇ p  

Because 0→p  as ∞→x , the pressure field p  is such 
that 

.0=p  
This reduces the gradient of p  in (20) to zero. 

To obtain the translational velocity field u , we take the curl 
of (21), 
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where va ×∇= .  Vector identities and (19) were used to 
express the curl of (21) in the above form.  To express (22) in 
terms of u  alone, we make use of (20), which can be rewritten 
as 
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Substituting (23) in (22) leads to 
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Because (24) and (8) are identical in form, we can factorize the 
partial differential operator, as in (12), under the physical 
constraint given by (11).  Then, we can write 
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The inverse Fourier transform of û  yields the micropolar 
Oseen couplet of u  
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It is not surprising that the micropolar Oseen couplet of u  

in (26) is similar to the micropolar Oseenlet of v  in (14), 
except that the former is caused by a point couple while the 
latter is due to a point force. 

In the limit 0→∞U , the micropolar Oseen couplet of u  
in (26) becomes the micropolar Stokes couplet of u , 
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We take the divergence of (21) to evaluate the divergence of 
v  and find 
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where v⋅∇=f , 
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=2 .  To expedite the solution, we take the Fourier 

transform of (28), and find 
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whose inverse Fourier transform is 
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To determine the curl of v , we take the Fourier transform 
of (23) and substitute (25) to find 
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To relate f  to a , we make use of the vector identity: 

,2 av ×∇−∇=∇ f  
whose Fourier transform is 
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We substitute (29) and (30) in the above equation to express v̂  
in terms of variables ( )321 ,, ξξξ , 
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The inverse Fourier transform of v̂  is the micropolar Oseen 
couplet of v  
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where 
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As 0→∞U , (31) gives the micropolar Stokes couplet of 
v  
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(32) 
The three-dimensional micropolar Stokes couplet of v  almost 
agrees with that of Eringen [3], except for wrong sign in the 
first term. 

 

DRAG ON A TRANSLATING SOLID SPHERE IN A 
MICROPOLAR VISCOUS FLOW 

Consider the flow produced by a solid sphere of radius R  
translating with velocity ∞U  in an ambient micropolar fluid of 
infinite expanse.  The flow due to the sphere may be obtained 
in terms of a point force and a potential dipole, both placed at 

the center of the sphere, as in the case of Stokes flow [15,16].  
Hence, the velocity is given by 
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where T  is the vectorial strength of the potential dipole, and 

μ
ρ RURe

2∞=  is the Reynolds number, assumed to be 

small.  Requiring the boundary condition ∞= Uu  at Rr =  
on the surface of the sphere yields two algebraic equations for 
the coefficients F  and T , 
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whose solution is 
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The drag comes exclusively from the point force.  The 
dimensionless drag coefficient is 
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Putting 0=rμ , we recover the result for the classical viscous 
flow 
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DRAG ON A TRANSLATING CIRCULAR CYLINDER IN 
A MICROPOLAR VISCOUS FLOW 

Consider the flow produced by a circular cylinder of radius 
R  translating with velocity ∞U  in an ambient micropolar 
fluid of infinite expanse.  The flow due to the cylinder can be 
obtained in terms of a two-dimensional point force and a two-
dimensional potential dipole, both placed at the center of the 
cylinder, 
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Requiring the boundary condition ∞= Uu  at Rr =  on the 
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surface of the cylinder, we find 
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The drag comes exclusively from the two-dimensional point 
force.  The dimensionless drag coefficient is 
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By putting 0=rμ , the result for the classical two-
dimensional viscous flow is recovered [17]. 
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CONCLUSION 
New fundamental solutions for micropolar fluids have been 

derived in explicit form.  The problem of two- and three-
dimensional, steady, unbounded Stokes and Oseen flows of a 
micropolar fluid due to a point force and a point couple was 
considered.  The new fundamental solutions for Stokes and 
Oseen flows are the two-dimensional micropolar Stokeslet, 
given by (18) and (15), the two- and three-dimensional 
micropolar Stokes couplet, given by (27) and (32), the three-
dimensional micropolar Oseenlet, given by (16) and (14), and 
the three-dimensional micropolar Oseen couplet, given by (26) 
and (31).  These fundamental solutions are possible due to the 
existence of microrotational velocity fields in micropolar fluids.  
The fundamental solutions can generate further fundamental 
solutions by successive differentiation with respect to the 
singular point [15,16].  A summary of available fundamental 
solutions is given in Table 1. 
 
Table 1: A list of new fundamental solutions derived in this 
paper 

singularity dimensionality Stokes flow Oseen flow 

point force 
2-D New [12] 

3-D [11] New 

point couple 
2-D New [12] 

3-D New New 

 
These fundamental solutions for micropolar fluids can be 

used as the basic building blocks to construct new solutions of 
microscale flow problems by employing the boundary integral 
method or the singularity method.  It was demonstrated that 
these fundamental solutions can be used to calculate the drag 
coefficients for a translating solid sphere and circular cylinder, 
respectively, in a micropolar fluid at low Reynolds numbers.  

The drag coefficients in a micropolar fluid are greater than 

those in a Newtonian fluid by the factor 
μ
μμ r+

. 

REFERENCES 
 
[1] Papautsky I., Brazzle J., Ameel T., and Frazier A.B., Laminar 

fluid behavior in microchannels using micropolar fluid theory, 
Sensors and Actuators A: Physical, Vol. 73(1-2), 1999, pp. 101-108 

[2] Shu J.-J., Microscale heat transfer in a free jet against a plane 
surface, Superlattices and Microstructures, Vol. 35(3-6), 2004, pp. 
645-656 

[3] Eringen A.C., Microcontinuum field theories II: fluent Media 
(Springer-Verlag New York, Inc.), 2001 

[4] Stokes G.G., On the effect of the internal friction of fluids on the 
motion of pendulums, Transactions of the Cambridge Philosophical 
Society, Vol. 9(2), 1851, pp. 8-106 

[5] Oseen C.W., Über die Stokes'sche formel und über eine 
verwandte aufgabe in der hydrodynamik, Arkiv för Matematik, Vol. 
6(29), 1910, pp. 1-20 

[6] Lorentz H.A., Eene algemeene stelling omtrent de beweging 
eener vloeistof met wrijving en eenige daaruit afgeleide gevolgen, 
Zittingsverslag van de Koninklijke Akademie van Wetenschappen te 
Amsterdam, Vol. 5, 1896, pp. 168–175 (in Dutch). Translated into 
English by Kuiken H.K., A general theorem on the motion of a fluid 
with friction and a few results derived from it, Journal of 
Engineering Mathematics, Vol. 30, 1996, pp. 19–24 

[7] Hancock G.J., The self-propulsion of microscopic organisms 
through liquids, Proceedings of the Royal Society of London Series 
A-Mathematical and Physical Sciences, Vol. 217(1128), 1953, pp. 
96-121 

[8] Ladyzhenskaya O.A., Mathematical problems of the dynamics 
for viscous incompressible fluids (Fizmatgiz), 1961 (in Russian). 
English translation, The mathematical theory of viscous 
incompressible flow (Gordon and Breach), 1963 

[9] Kuiken H.K., H.A. Lorentz: Sketches of his work on slow 
viscous flow and some other areas in fluid mechanics and the 
background against which it arose, Journal of Engineering 
Mathematics, Vol. 30(1-2), 1996, pp. 1-18 

[10] Shu J.-J., and Chwang A.T., Generalized fundamental solutions 
for unsteady viscous flows, Physical Review E, Vol. 63(5), 051201, 
2001 

[11] Ramkissoon H., and Majumdar S.R., Drag on an axially 
symmetric body in the Stokes’ flow of micropolar fluid, Physics of 
Fluids, Vol. 19(1), 1976, pp. 16-21 

[12] Olmstead W.E., and Majumdar S.R., Fundamental Oseen 
solution for the 2-dimensional flow of a micropolar fluid, 
International Journal of Engineering Science, Vol. 21(5), 1983, pp. 
423-430 

[13] Łukaszewicz G., Micropolar fluids: theory and applications 
(Birkhäuser Boston), 1999 

[14] Zwillinger D., Handbook of differential equations (Academic 
Press), 1998 

[15] Pozrikidis C., Boundary integral and singularity methods for 
linearized viscous flow (Cambridge University Press), 1992 

[16] Kohr M., and Pop I., Viscous incompressible flow for low 
Reynolds numbers (WIT Press), 2004 

[17] Lamb H., On the uniform motion of a sphere through a viscous 
fluid, The London, Edinburgh, and Dublin Philosophical Magazine 
and Journal of Science, Vol. 21(6), 1911, pp. 112-121 

522


