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ABSTRACT 

 
A three-dimensional numerical study based on the boundary 

element method (BEM) was performed in order to study the 
problem of double-diffusive natural convection within a cubic 
enclosure filled with a fluid-saturated porous media, and 
subjected to horizontal temperature and concentration 
gradients. The fluid-flow within the porous media was modeled 
using space-averaged Navier-Stokes equations, coupled with 
energy and species equations. The used numerical algorithm is 
based on a combination of single domain and sub-domain 
BEM, and solves the velocity-vorticity formulation of the 
governing equations. The influences of the main controlling 
parameters, such as the porous Rayleigh number, Darcy 
number, Lewis number, and the buoyancy coefficient were 
investigated, by focusing on those situations, where the flow-
field becomes 3D. The results for overall heat and solute-
transfer through the porous enclosure are presented in terms of 
Nusselt and Sherwood numbers as functions of the governing 
parameters, and then compared to the numerical benchmarks 
published in literature. 

INTRODUCTION 

 
Problems of double-diffusive natural convection in porous 

media, resulting from the combined actions of temperature and 
concentration buoyancy forces, have been widely investigated 
over recent decades. Various important engineering problems 
within different fields can be modeled as an enclosure filled 
with porous media where the simultaneous occurrence of heat 
and mass-transfer can be investigated. Some practical examples 
of the problem include e.g. heat and moisture transport in 
fibrous insulation, groundwater-flow, contaminant transport 
through water-saturated soil, the heat and mass transfer within 
the mushy zone arising during the solidification of alloys. 
During such processes, complex flow-patterns may be formed,  

NOMENCLATURE 

 
c [-] Geometric coefficient 
c [J/kg K] Heat capacity 
C [mol/m3] Species concentration 
D [m2/s] Mass diffusivity 
Da [-] Darcy number 
g [m/s2] Gravity 
K [m2] Permeability 
L [m] Characteristic length 
Le [-] Lewis number 
n [-] Normal vector 
N [-] Buoyancy coefficient 
p [Pa] Pressure 
Pr [-] Prandtl number 
Ra [-] Rayleigh number 
r [m] Position vector 
Sh [-] Sherwood number 
t [s] Time 
T [K] Temperature 
u* [-] Fundamental solution 
v [m/s] Velocity 
 
Special characters 
α [m2/s] Thermal diffusivity 
β [1/K] Volumetric expansion coefficient 
Γ [-] Boundary 
λ [W/m K] Conductivity 
ν [m2/s] Kinematic viscosity 
ξ [-] Source point 
ρ [kg/m3] Density 
σ [-] Heat capacity ratio 
φ [-] Porosity 
ω [1/s] Vorticity 
Ω [-] Domain 
 
Subscripts 
0  Reference state 
e  Effective 
f  Fluid phase 
P  Porous 
s  Solid phase 
T  Thermal 
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mainly due to the presence of a porous media that adds 
hydraulic resistance, as well as competition between the 
thermal and concentration buoyancy forces. 

The flow in porous enclosures under these circumstances 
was investigated mainly for two-dimensional geometry. 
However, for a certain range of controlling parameters within 
an enclosure imposed at thermal and concentration gradients, 
the flow may become 3D. 

Several different configurations have been studied when 
considering double diffusive natural convection in porous 
enclosures which differ from each other regarding the positions 
of the thermal and concentration gradients. The most 
commonly studied configurations, which can be found in the 
literature are [1], [2]: 

• thermal and concentration gradients are imposed on 
vertical walls and are either aiding or opposing each 
other, 

• thermal and concentration gradients are imposed on 
horizontal walls and are either aiding or opposing each 
other, 

• thermal/concentration gradient is imposed on a vertical 
wall and the concentration/thermal gradient is imposed 
on the horizontal wall. 

Most published studies, dealing with double-diffusive 
natural convection in porous media are based on 2D geometry 
and mainly on situations where thermal and concentration 
buoyancy forces are aiding each other e.g. [3], [4], [5]. Only a 
few recent studies have considered 3D geometry. Sezai and 
Mohamad [6] published a study with 3D double-diffusive 
natural convection in porous media, where the thermal and 
concentration buoyancy forces are opposing each other. They 
reported that, under a certain range of controlling parameters 
e.g. the porous Rayleigh number, the Lewis number and the 
buoyancy coefficient, the flow in the cubic enclosure becomes 
3D. Later, Mohamad et al. [7] investigated 3D convection flows 
in an enclosure subjected to opposing thermal and 
concentration gradients, focusing on the influence of the lateral 
aspect ratio. They found that, for a certain range of controlling 
parameters, the aspect ratio had no influence on the rates of 
heat and mass transfer, but strongly influences the flow 
structure. 

This paper presents a numerical method for the simulation 
of double-diffusive natural convection within porous media, 
based on the boundary element method solution. The numerical 
algorithm is based on the combinations of single- domain and 
sub-domain boundary element methods, which solve the 
velocity-vorticity formulation of Navier-Stokes equations, 
written for porous media-flow. The proposed algorithm is based 
on pure fluid and nanofluid simulation codes as obtained by 
Ravnik et al. [8], [9]. 

MATHEMATICAL MODEL 

The governing equations for the problem of double-
diffusive natural convection in porous media are given in terms 
of conservation laws for mass, momentum, energy, and species. 
They are obtained from classical Navier-Stokes equations for 
the pure fluid-flow and are generally written at the microscopic 
level. Macroscopic or volume averaged Navier-Stokes 

equations can be derived by volume averaging over a suitably 
representative elementary volume (REV), and by considering 
the fact that only a part of this volume, expressed with the 
porosity φ , is available for fluid flow [10]. The macroscopic 

conservation equations can be written as: 
• continuity equation: 

0=∇ v
rr

       (1) 

• momentum equation: 
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• energy equation: 

( ) T
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t
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• species equation: 

( ) CDCv
t

C 2∇=∇+
∂
∂ rr

φ     (4) 

The parameters used above are: v
r

 volume averaged 
velocity, φ  porosity, t  time, ρ  density, ν  kinematic viscosity, 

p  pressure, g
v  gravity vector, K  permeability. In the energy 

equation, T  is the temperature, σ  represents the heat capacity 
ratio ( ) fsf ccc )1( φφσ −+= , where 

pfff cc ρ= , and 

psss cc ρ=  are heat-capacities for the fluid and solid phases, 

respectively. 
eλ  is the effective thermal conductivity of the 

fluid-saturated porous media given as 
sfe λφλφλ )1( −+= , 

where 
fλ  and 

sλ  are thermal conductivities for the fluid and 

solid phases, respectively. In the species equation, C  is the 
concentration, and D  the mass diffusivity. 

In the model development, the following assumptions are 
adopted: the fluid flow is steady and laminar, the solid phase is 
homogeneous, isotropic, and non-deformable, the fluid is 
incompressible Newtonian, and in thermal equilibrium with the 
solid phase. The porosity and permeability of the porous 
medium are constant, whilst the density of the fluid only 
depends on the temperature and concentration variations, and is 
described using the Oberbeck-Boussinesq approximation as: 

( ))()(1 000 CCTT CT −−−−= ββρρ    (5) 

where 
Tβ  is the volumetric thermal expansion coefficient, 

Cβ  

is the volumetric expansion coefficient due to the chemical 
species, and the subscript 0  refers to a reference state. 
Furthermore, no internal energy sources are present in the fluid 
saturated porous media. The irreversible viscous dissipation is 
also neglected, whilst no high-velocity flow of highly-viscous 
fluid was considered in the present study. The solid phase of 
porous medium is assumed to be in thermal equilibrium with 
the saturating fluid. 

The momentum equation (2) is also known as the Darcy-
Brinkman equation, with two viscous terms e.g. the Brinkman 
viscous term (third on the r.h.s), and the Darcy viscous term 
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(fourth on the r.h.s.). The Brinkman viscous term is analogous 
to the Laplacian term in classical Navier-Stokes equations for 
pure fluid flow. It expresses the viscous resistance or viscous 
drag force exerted by the solid phase on the flowing fluid at 
their contact surfaces. The non-slip boundary condition on a 
surface which bounds porous media is satisfied with the 
Brinkman term [1]. 

 
Velocity-vorticity formulation 

The proposed numerical algorithm is based on the boundary 
element method, which solves the velocity-vorticity 
formulations of Navier-Stokes equations. It can be derived by 
taking the curl of the mass conservation law (1) and of the 
Brinkman momentum equation (2). The vorticity is defined as 
the curl of the velocity field v

vvv
∇=ω  and is solenoidal by the 

definition, 0=∇ω
vv

. The computational scheme is consequently 
decoupled into kinematic and kinetic computational parts. The 
kinematics equation is a vector elliptic partial differential 
equation of the Poisson type, which links the velocity and 
vorticity fields for every point in space and time, and reads as: 

02 =×∇+∇ ωv
vr

v       (6) 

Furthermore, the kinetic part is governed by the vorticity 
transport equation: 
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Non-dimensional equations 

Before all equations can be rewritten in non-dimensional 
form, in the vorticity, energy, and species equations the 
modified vorticity, temperature, and concentration time steps 
have to be introduced as ωφ ttt =→ / , 

Tttt =→ σ , and 

Cttt =→ φ . These are necessary mathematical steps allowing 

for to use of a numerical scheme, as presented in the following 
chapter. 

The non-dimensional forms of governing equations are 
adopted, using the following dimensionless variables: 
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0v  is  the characteristic velocity, r
r

 is the positional vector, and 

L  the characteristic length. Furthermore, 
0T  and 

0C  are the 

characteristic temperature and concentration, T∆  and C∆  are 
the characteristic temperature and concentration differences and 

2
0 /81,9 smg =  is the gravity acceleration. The characteristic 

velocity is given by the expression ( )Lcv pff ρλ=0
. This 

choice for characteristic velocity is common for buoyant flow-
simulations. 

The macroscopic non-dimensional vorticity equation can 
now be written as: 
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with the non-dimensional governing parameters defined as: 
• Pr , Prandtl number: 

α
ν

=Pr        (10) 

where ν  is the kinematic viscosity and α  the thermal 
diffusivity given as 

ff c/λα = . 

• 
TRa  thermal fluid Rayleigh number: 

αν
β 3

0 LTg
Ra T

T

∆
=      (11) 

• Da  Darcy number: 

2
L

K
Da =        (12) 

• N  buoyancy coefficient: 

T

C

Ra

Ra
N =        (13) 

• 
CRa  solutal Rayleigh number: 

αν
β 3

0 LCg
Ra C

C

∆
=      (14) 

The energy conservation equation in non-dimensional form 
can be written as: 

( ) TTv
t

T

f

e

T

2∇=∇+
∂
∂

λ
λrr      (15) 

and finally the species conservation equation in non-
dimensional form reads: 

( ) CLeCv
t

C

C

2∇=∇+
∂

∂ rr      (16) 

where Le  is the Lewis number, given by the expression: 

D
Le

α
=        (17) 

NUMERICAL METHOD 

When considering a domain Ω  with a boundary Γ , a 
fundamental solution of the Laplace equation and the Gauss 
and Greens' theorems are used to write the integral kinematics 
equation without the derivatives of the velocity or vorticity 
fields [11]: 

( ) ( ) ( )

( ) ( ) Ω∇×+Γ∇××=

=Γ∇+

∫∫
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Here ξ
r

 is the source or collocation point, n
r

 is the vector 

normal to the boundary, pointing out of the domain and *u  is 

the fundamental solution: ||4/1* ru
rr

−= ξπ . A tangential form 

of equation (18) is used in order to have a nonsingular system 
of equations for solving the boundary values of vorticity. It is 
obtained by a cross product with a unit normal, yielding: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) Ω∇××+Γ∇×××=

=Γ∇×+×
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The same fundamental solution and a standard BEM 
derivation are used to write the integral forms of the vorticity 
transport equation (9), the energy equation (15), and the species 
equation (16): 
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Here, 
jω  is a vorticity component, 

jq  is a component of the 

vorticity flux, 
Tq  is the heat-flux, and 

Cq  is the species flux. In 

this present study, only steady flow-fields were considered, 
thus the time derivative terms ωω t∂∂ / , 

TtT ∂∂ /  and 
CtC ∂∂ /  

were omitted. 
A combination of subdomain BEM and single-domain BEM 

for the solution of the governing equations was applied. The 
Dirichlet and/or Neumann boundary conditions for velocity, 

temperature and concentration were given. They were used to 
obtain solutions from the kinematics equation (18) for domain 
velocity values, energy equation (21) for the domain 
temperature values, and the species equation (22) for domain 
concentration values. The boundary conditions for vorticity, 
which are needed to solve the vorticity transport equation (20), 
were unknown. The single domain BEM on the tangential form 
of the integral kinematics equation (19) was used to obtain the 
unknown boundary vorticity values. 

 
The outline of the algorithm is as follows: 
• initialization, calculate integrals, set up parameters 
• begin nonlinear loop 

- calculate boundary vorticity values by solving the 
tangential form of the kinematics equation (19) by single 
domain BEM 

- calculate domain velocity values by solving the 
kinematics equation (18) using subdomain BEM 

- solve the energy equation (21)  using the new velocity 
field for domain temperature values by subdomain BEM 

- solve the species equation (22) using the new velocity 
field for domain concentration values by subdomain 
BEM 

- solve vorticity transport equation (20) by subdomain 
BEM for domain vorticity values using the boundary 
values from the solution of the kinematics equation, and 
the new velocity and temperature fields 

- check convergence - repeat steps in the nonlinear-loop 
until the convergence of all field functions is achieved 

• end nonlinear loop 
• output results 
 

In the subdomain BEM method, which is used to solve 
equations (18), (20), (21) and(22) a mesh of the entire domain 
Ω  is made, each mesh element is named as a subdomain. 
Equations are written for all source points on each of the 
subdomains. In order to obtain a discrete version, the integral 
equations shape functions are used to interpolate field functions 
and flux across the boundary and inside of the subdomain. In 
this work, hexahedral subdomains with 27 nodes were used, 
which enabled continuous quadratic interpolation of field 
functions. The boundary of each hexahedron consisted of 6 
boundary elements. On each boundary element the flux was 
interpolated using a discontinuous linear interpolation scheme 
with 4 nodes. The flux definition problems in corners and edges 
could be avoided by using discontinuous interpolation. 
Between subdomains, the functions and their fluxes are 
assumed to be countinious. The resulting linear systems of 
equations were over-determined and sparse. They were solved 
in a least-squares manner. The discretization procedure for the 
single-domain BEM, which is used to solve equation (19), is 
analogous, with the distinction that source points are set into all 
the nodes along the boundary of the entire domain. The 
resulting linear system of equations is full. It is solved by the 
LU decompostion method. This algorithm is proposed for D3  
fluid flow and heat transfer by Ravnik et al. [8]. The algorithm 
for simulations in porous media was expanded during this 
present work. The kinematics eqaution requires no changes, 
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whilst the porous parameters had to be introduced into the 
vorticity transport and energy equations. The Darcy term in the 
vorticity transport equation, which is absent in the pure fluid 
case, is linearly proportional to the unknown vorticity, thus it 
was included within the system matrix. 

TEST CASES 

 
The geometry under consideration was a cube enclosure, as 

shown in Fig.(1), filled with porous media, which was fully 
saturated with incompressible fluid. Left and right vertical 
walls were imposed onto different temperature and 
concentration values, where 

21 TT >  and 
21 CC > , whilst the 

remaining boundaries were adiabatic and impermeable. 
 

 
 

Figure 1 Geometry of the problem with boundary 
conditions 

Natural convection phenomena within the enclosure will 
occur due to the subjected temperature and concentration 
differences on two vertical walls. The density of the heated 
fluid next to the hot wall decreases and the buoyancy will carry 
it upwards. On the other hand, fluid along the cold wall will be 
colder and denser and will travel downwards. Additional 
concentration buoyancy forces are induced due to applied 
concentration differences on the walls, which then cause 
additional movement of the fluid. Both induced buoyancy 
forces can aid or oppose each other, which also influences the 
strength of the fluid's convective motion. The cases where 
solute is transported due to induced temperature gradient (Soret 
effect) or heat is transfered due to concentration gradient 
(Dufour effect) were neglected in this present study. 

Natural convection phenomena within a fluid-saturated 
porous medium is expected to be dependent on a number of 
parameters such as porosity, the thermal conductivity and heat 
capacity of the fluid, the solid phases, the viscosity of the fluid 
phase etc.. The wall heat and species fluxes were calculated for 
different values of Darcy number, the Lewis number, the 
buoyancy coefficient, and the porous Rayleigh number, which 
is defined as: 

αν
β KLTg

DaRaRa T
Tp

∆
== 0     (23) 

The overall heat and mass flux through the cavity are 
expressed in terms of the average Nusselt and Sherwood 
numbers, given with eq. (24), where Γ  is the surface through 
which the heat and species fluxes are calculated and n

r
 is the 

unit normal to this surface. 

Γ∇=

Γ∇=

∫

∫

Γ

Γ

dnCSh

dnTNu

rr

rr
,
     (24)  

The calculations were performed on a non-uniform mesh 
with 20820 ××  subdomains and 577,28  nodes. Sub-domains 

were concentrated towards the hot and the cold walls. The 
convergence criteria for all the field functions was 510− , under-
relaxation of vorticity, temperature and concentration values 
were used ranging from 1.0  to 01.0 . 

Firstly, the results are presented for the cases where the 
thermal buoyancy force was the only acting force 

).0( == NLe  Table (1) presents the Nusselt number values for 

the cubic enclosure for 71,0Pr = , 8,0=φ , 1000=PRa  and 

different values of Da . The results were compared to the study 
of authors R.V. Sharma and R.P. Sharma [12], where the D3  
natural convection in a porous box is considered, and the fluid 
flow is modeled with the use of the Darcy-Brinkman-
Forchheimer model. Very good agreement between the results 
was observed for the case of high Darcy number values 

410( −=Da  - )10 2− . Slight differences occurred in the case of 

very low Darcy numbers 510( −=Da  and )10 6− . In this case the 

effect of the Forchheimer term, which is excluded in the model 
of the present study, becomes significant and influences the 
overall heat transfer resulting in lower values of Nusselt 
numbers [12]. 

 

DaRaP /  110−  210−  310−  410−  
present 1.855 3.770 6.922 10.558 

1000 
[12] - 3.99 6.95 10.14 

 

Table 1 Nusselt number values for the D3  natural 
convection in a cube for 1000=PRa , and the different values 

of the Darcy number. The results are compared with the study 
of Sharma and Sharma [12]. 

In addition, Nusselt number values for natural convection 
for 71,0Pr = , 8,0=φ  1000,500,200,100,50=PRa  and 

16 1010 −− << Da  are presented graphically in Fig. (2). It can be 
observed, that the Nusselt number increased with any decrease 
in Da , and increase of 

PRa . The influence of the Darcy 

number was more pronounced at higher values of the porous 
Rayleigh number. At low values of 

PRa  the Nusselt number 

values were near to 1 , the dominant heat transfer mechanism in 
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this case being conduction. With increasing of 
PRa  and the 

decreasing of Da , convection becomes dominant whilst 
conduction was negligible. When the values of Da  were high, 
the Brinkman viscous term in the momentum equation played a 
significant role, and reduced the overall heat-transfer, which 
resulted in smaller values for Nu . With any decrease in Da , 
the influence of the Brinkman viscous term became almost 
negligible ( 410−<Da ). In this case the viscous effects became 
smaller and the inertial effects became significant due to high-
fluid velocity. For low values of the Darcy number, the model 
gave similar results to the classical Darcy model [13]. 

 
Figure 2 Dependence of the Nusselt number on the Darcy 

number for different values of porous Rayleigh number, in this 
case 0,0 == NLe . 

In addition, some results for double-diffusive natural 
convection are presented and compared with available results 
from the literature. Table (2) presents thr Nusslet and Sherwood 
number values for 610−<Da , and the different values of 

PRa , 

Le  and N . A good agreement with the results from the study 
of Mohamad et al. [7] was obtained. 
 

5,0,10 −== NRaP
 1=Le  10=Le  

Nu  1.019 ( 0198.1 ) 1.039 ( 0404.1 ) 
Sh  1.019 ( 0198.1 ) 2.450 ( 4467.2 ) 

2,0,50 −== NLe  1=PRa  10=PRa  

Nu  1.001 ( 0005.1 ) 1.072 ( 0705.1 ) 
Sh  1.952 ( 9517.1 ) 7.388 ( 9861.6 ) 

Table 2 Nusselt and Sherwood number values for the D3  

natural convection in a cube for 610−=Da  and different values 
of porous Rayleigh number, Lewis number and buoyancy 

coefficient. The results were compared to study of Mohamad et 
al. [7] (values in brackets). 

Table (3) presents the results for double-diffusive natural 
convection, where 10=Le , 1=N . Thermal and solutal 
buoyancy forces aided each other, which resulted in higher 
heat-transfer and additional solute transfer through the porous 
enclosure, as can be observed from the values for Nusselt and 
Sherwood numbers. 
 

Da  110−  210−  310−  410−  510−  610−  
Nu  1.086 1.687 2.529 3.164 3.595 3.788 
Sh  2.842 5.624 9.749 14.714 19.107 20.869 

Table 3 Nusselt and Sherwood number values for D3  
natural convection in a cube for 100=PRa , 10=Le , 1=N  

and different values of porous Darcy number. 

In Figures (3), (4) and (5) temperature and concentration 
contures on the plane 5,0=y  for 100=PRa , 10=Le , 1=N  

and 642 10,10,10 −−−=Da  are displayed together with velocity 

vectors. 
 

     
 

Figure 3 Temperature (left) and concentration (right) 
contour plots on the 5,0=y  plane for 100=PRa , 210−=Da , 

10=Le  and 1=N . 
 

    
 

Figure 4 Temperature (left) and concentration (right) 
contour plots on the 5,0=y  plane for 100=PRa , 410−=Da , 

10=Le  and 1=N . 
 

    
 

Figure 5 Temperature (left) and concentration (right) 
contour plots on the 5,0=y  plane for 100=PRa , 610−=Da , 

10=Le  and 1=N . 
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Both fields were observed to be stratified in all cases, where 
layers of fluid with equal temperature and concentration were 
perpendicular to the direction of gravity, which was especially 
obvious within the central part of the cube. The temperature 
and concentration gradients increased with any decrease of the 
Darcy number. A higher Lewis number resulted in higher 
concentration gradients, as shown in the figures. 

 

Figure 6 Iso-surfaces for 500=PRa , 310−=Da  and 

absolute value of velocity component 3=yv . In addition, the 

velocity vectors on the plane 5,0=y  are displayed. 

 

Figure 7 Iso-surfaces for 1000=PRa , 310−=Da  and 

absolute value of velocity component 7=yv . In addition, the 

velocity vectors on the plane 5,0=y  are displayed. 

Figs. (6) and (7) plot the iso-surfaces for the absolute value 
of the y  velocity component. From the flow structure in the 

enclosure (velocity vectors), it can be seen that the flow-field is 
almost D2 . This was due to the fact that the flow-field was 
driven by the temperature and concentration differences 
between the two opposite walls, which caused a large two-
dimensional vortex in the y  plane. The D3  nature of the 

phenomena can be observed in the corners of the domain, as 
shown in Figs. (6) and (7). The extent of the movement of the 
main vortex perpendicular to the plane is small, but it became 
more apparent in the case of higher 

PRa  and lower values of 

Da , in general. 

CONCLUSIONS 

 
Three-dimensional double-diffusive natural convection in a 
cube enclosure filled with saturated porous media was 

examined numerically using the boundary element method. The 
numerical algorithm is based on a combination of the single 
domain and subdomain boundary element methods, which are 
used to solve the velocity-vorticity formulation of macroscopic 
Navier-Stokes equations. Some results for overall heat and 
solute transfer through enclosure are given in terms of Nusselt 
and Sherwood number values. The numerical results indicate, 
that the flow regime, as well as heat and solute transfer, 
strongly depend on the values of the governing non-
dimensional parameters, e.g. the Rayleigh, Darcy and Lewis 
numbers. The 3D nature of the flow field is observed in the 
corners of the enclosure, although the fluid is moving 
predominantly within a single two-dimensional vortex. 
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