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ABSTRACT

In practice, design parameters of a belt conveyor are likely drifting away

from their design values by maintenance, readjustment, retrofit, abrasion and

circumstance change. For the purpose of energy optimization, these parameters

should be estimated through experiments. In this paper, a new energy model of

a DC motor driven belt conveyor is presented. Then, based on an adaptive

observer, a parameter estimation algorithm is derived. In addition, under

a persistent excitation condition, the convergence of the parameters to the

desired values can also be concluded. Compared with the existing methods,

our methods can be implemented by measuring only the feed rate of the belt

conveyor and the angular velocity of the rotor of the DC motor.
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I. Introduction

Belt conveyors have high transfer capacity and

long transfer distance. They are widely used to transfer

bulk material in mining, metallurgical and coal industry.

According to the report in [1], about 10% of the total

maximum power demand in South Africa is to handle

materials, where up to 40% energy cost is borne by

the operational cost of the belt conveyor systems [2].

Therefore, it has great significance to improve energy

efficiency of belt conveyors by reducing the energy

consumption of material handling.
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There are four levels to improve energy efficiency

of a belt conveyor: performance, operation, equipment,

and technology [3]. It is easy to achieve higher energy

efficiency by introducing highly efficient equipment [4,

5, 6, 7, 8]. However, extra investment is needed to

retrofit or replace the equipment. At the operation

level, many methods are proposed to improve energy

efficiency for the belt conveyors [9, 10, 11, 12, 13,

14, 15, 16, 17, 18]. For example, the authors in [17]

proposed an optimal switching control and a variable

speed drive based optimal control to reduce the energy

consumption of belt conveyors. In [18], an analytical

energy model is proposed. It has four coefficients

which can be estimated through the algorithms such

as least square (LSQ) [19] and recursive least square

(RLSQ) [20]. After obtaining the energy model, an

optimization is also done at operational level with

two performance indicators, energy cost and energy

consumption. However, in order to estimate these

four coefficients, power of motor PM , feed rate T

and belt speed V should be measured. Recently,

in order to estimate unknown states and unknown

constant parameters, adaptive observers have made

great progress [21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

In this paper, a new energy model of belt conveyor

with DC motor is introduced. Then, an adaptive

observer is designed for the model. In order to identify

the four coefficients of the energy model , the feed rate

T of the belt conveyor and the angular velocity wm

of the rotor of the DC motor should be measured on-

line. Then, based on the adaptive observer, a parameter

estimation algorithm is derived. In addition, under a

persistent excitation condition, the convergence of the

parameters to the desired values can also be concluded.

Simulation results show the validity of our methods.

This paper is organized as follows. The analytical

energy model of belt conveyors in [18], the model of

a DC motor, and the adaptive observers design are

reviewed in Section II, respectively. In Section III, we

present a new energy model of belt conveyors with

DC motor, an adaptive observer for this model, and

a parameter estimation algorithm. In Section IV, an

example is given to show the validity of our new

methods. Section V presents the conclusion.

II. Preliminaries

2.1. An analytical energy model of belt conveyors

A typical belt conveyor is shown in Fig. 1. As

in [18], an analytical energy model of the belt conveyor

is given as follows

PT − V 2T

3.6
= θ̄1T

2V + θ̄2V + θ̄3
T 2

V
+ θ̄4T, (1)

where PT is the mechanical power, V denotes the the

belt speed (m/s), T is the feed rate (t/h), θ̄1, θ̄2, θ̄3 and θ̄4

are four parameters. In practice, there four parameters

often drift away by maintenance, readjustment, retrofit,

abrasion and circumstance change. For the purpose

of energy optimization, these four parameters are

estimated by both an off-line and an on-line parameter

estimation schemes based on PT , V and T measured

on-line and off-line, respectively in [18].

Fig. 1. Typical profile of belt conveyors.
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2.2. A DC motor

The dynamics of a DC motor are given by [31]




Jm
dωm

dt + bmωm = kpif ia − TL,

Lf
dif

dt + Rf if = ef ,

La
dia

dt + Raia = ea − kcifωm,

(2)

where Jm denotes the mass moment of inertia of the

motor, ωm is its angular velocity, kp is the torque

constant, bm is the damping coefficient, TL is the

presence of some external load, La and Lf are its

inductances, Ra and Rf are its resistances, ia and if

are its currents, kc is proportional constant to the flux

and the angular velocity of the motor, ea and ef are two

separate potentials are used to power the armature and

filed, respectively. The corresponding circuit is shown

in Fig. 2.

Fig. 2. Circuit diagram of separately excited DC motor.

2.3. Adaptive observers

Adaptive observers can be used to estimate

unknown parameters. Now, let us review the adaptive

observers design. Consider the following system in

adaptive observer form [26]




ż = Ā0z + γ(y, u) + b̄βT (y, u, t)θ,

y = C̄0z,
(3)

where z ∈ Rn, y ∈ R, u ∈ Rm, θ ∈ Rp, γ(y, u)

a smooth function mapping R×Rm →Rn, Ā0 =




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0




, b̄ = [b̄1, · · · , b̄n]T ∈ Rn is given

such that the polynomial b̄1s
n−1 + · · ·+ b̄n is Hur-

witz and b̄1 > 0, C̄0 = [1 0 · · · 0], βT (y, u, t)θ =
∑p

i=1 θiβi(y, u, t), βi(y, u, t) (i = 1, · · · , p) are contin-

uous functions and uniformly bounded for every (y, u)

bounded. A global adaptive observer with parameter

convergence is designed in [26] as follows:




˙̂z = Ā0ẑ + K̄C̄0e + γ(y, u) + b̄βT (y, u, t)θ̂,
˙̂
θ = Γβ(y, u, t)C̄0e,

where Γ is any symmetric positive definite matrix, e =

z − ẑ, K̄ = 1
b̄1

(Ā0b̄ + λb̄) with λ an arbitrary positive

real. Since (Ā0, b̄, C̄0) satisfies the strictly positive real

condition, then, for any symmetric definite matrix Q̄,

there exist a symmetric positive definite matrix P̄ , a

positive real d̄ such that [26]

(Ā0 + K̄C̄0)T P̄ + P̄ (Ā0 + K̄C̄0) < −d̄Q̄, P̄ b̄ = C̄T .

III. A new energy model

In this section, we make the following assumption:

the belt is non-slip; T and ωm are measured on-line. We

shall also assume a constant potential ef and assume

that the circuit is operating at steady state so that ef =

ifRf , yielding a constant field current if . Therefore, we

have 



Jm
dωm

dt + bmωm = kT ia − TL,

La
dia

dt + Raia = ea − kbωm,
(4)

where kT = kpif , kb = kcif .

When the DC motor is employed to drive the

conveyor belt, then,

TL = FUr, V = 2πrwm, (5)
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where r is the radius of the rotor and Fu is the peripheral

driving force of the blet conveyor and can be calculated

by the following equation [18]

FU = V T
3.6 + T 2

6.48ρb21
+ {gfQ[L cos δ

+L(1− cos δ)(1− 2QB

Q )] + k3 + CFt}
+k1

T 2

V 2 +
(

gL sin δ+gfL cos δ
3.6 + k2

)
T
V ,

(6)

where f is the artificial friction factor, L is the center-

to-center distance (m), Q = QRO + QRU + 2QB , QRO

is the unit mass of the rotating parts of carrying idler

rollers (kg/m), QRU is the unit mass of the belt of

rotating parts of the return idler rollers (kg/m), QB is

the unit mass of the belt (kg/m), δ is the inclination

angle (O), ρ is the bulk density of materia (kg/m3), b1

is the width between the skirt boards (m), k1, k2, k3

are constants coefficients which relate to the structural

parameters of the belt conveyor, CFt is a constant.

From (5) and (6), we have

TL − 2πr2Twm

3.6 = rT 2

6.48ρb21
+ r{gfQ[L cos δ

+L(1− cos δ)(1− 2QB

Q )] + k3 + CFt}
+k1r

T 2

4π2r2w2
m

+ ( gL sin δ+gfL cos δ
3.6 + k2) T

2πrwm
.

(7)

Let θ1 = r
6.48ρb21

, θ2 = r{gfQ[L cos δ + L(1−
cos δ)(1− 2QB

Q )] + k3 + CFt}, θ3 = k1r
4π2r2 ,

θ4 = ( gL sin δ
3.6

gfL cos δ
3.6 +k2) 1

2πr , θ = [θ1, θ2, θ3, θ4]
T ,

and

ψ(T, wm) =
[

T 2 1 T 2

w2
m

T
wm

]T

.

Then, a new energy model of belt conveyor with DC

motor is given as follows




Jm
dωm

dt + bmωm = kT ia − 2πr2Twm

3.6 − ψT (T, wm)θ,

La
dia

dt + Raia = ea − kbωm,

(8)

or

ż = Ãz + B̃u + b̃
ψT (T, wm)

Jm
θ, (9)

where Ã =


 − bm

Jm

kT

Jm

− kb

La
−Ra

La


, B̃ =


 1 0

0 1


, b̃ =


 1

0


, z =


 wm

ia


, u =


 − 2πr2

3.6Jm
Twm

1
La

ea


.

For the conveyors with permanent instruments

for T and wm, the real-time data can be accessed

through the supervisory control and data acquisition

system (SCADA). Therefore, let wm is the output of the

system (8), i.e.,

y = wm = Cz, (10)

where C = [1 0]. We obtain that

rank


 C

CÃ


 = rank


 1 0

− bm

Jm

kT

Jm


 = 2,

which means that (Ã, C) is observable. Then, the

coordinate transformation

z̃ = Q1z =


 1 0

− bm

Jm

kT

Jm


 z

can transform (9), (10) into the following canonical
form [32]




˙̃z1 = z̃2 + a1y − 2πr2

3.6Jm
Twm + 1

Jm
ψT (T, y)θ,

˙̃z2 = a2y − 2Raπr2

3.6LaJm
Twm + kT

JmLa
ea + Ra

LaJm
ψT (T, y)θ,

y = z̃1,

(11)

where a1 = − bm

Jm
− Ra

La
, a2 = −Rabm

LaJm
− kT kb

JmLa
. Let b =

[1, b2]T is a vector such that

s + b2

is a Hurwitz polynomial. Consider the following filter

transformation [26]




x1 = z̃1,

x2 = z̃2 −
∑4

i=1 ηiθi,
(12)

where

η̇i = −b2ηi − b2

Jm
ψi(T, ωm) +

Ra

LaJm
ψi(T, ωm),

(13)
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where ηi(t0) = 0, ψi(T, ωm) is the ith component of

ψ(T, ωm) (i = 1, · · · , 4). It transforms (11) into to the

following system




ẋ1 = x2 + a1ωm − 2πr2

3.6Jm
Twm

+( 1
Jm

ψ(T, ωm) + η)T θ,

ẋ2 = a2ωm − 2Raπr2

3.6LaJm
Twm + kT

JmLa
ea

+b2( 1
Jm

ψ(T, ωm) + η)T θ,

(14)

where η = [η1, η2, η3, η4]T . For the system (14) which

is in adaptive observer form, an adaptive observer can

be designed as follows [26]




˙̂x1 = x̂2 + k1e1 + a1ωm − 2πr2

3.6Jm
Twm

+( 1
Jm

ψ(T, ωm) + η)T θ̂,

˙̂x2 = k2e1 + a2ωm − 2Raπr2

3.6LaJm
Twm

+ kT

JmLa
ea + b2( 1

Jm
ψ(T, ωm) + η)T θ̂,

(15)

and
˙̂
θ = Γ(

1
Jm

ψ(T, ωm) + η)e1, (16)

where e1 = x1 − x̂1, and k1 = b2 + λ, k2 = b2λ, λ > 0,

Γ is any symmetric positive matrix. From (14) and (15),

(16), if follows that




ė1 = e2 − k1e1 + ( 1
Jm

ψ(T, ωm) + η)T θ̃,

ė2 = −k2e1 + b2( 1
Jm

ψ(T, ωm) + η)T θ̃,

(17)

and
˙̃
θ = −Γ(

1
Jm

ψ(T, ωm) + η)e1, (18)

where e = x− x̂, θ̃ = θ − θ̂.

Let us now state and prove the main results of this

paper.

Theorem 1 For the energy model of belt conveyor with

DC motor (8), there exists filter transformation (12),

(13) to transform (8) into (14). Moreover, for the

system (15), (16), if k1 and k2 are selected such that

(A, b, C) satisfies the strictly positive real condition,

where A = A0 + KC, K = [k1, k2]T , then, ‖θ̂(t)− θ‖
is uniformly bounded.

Proof: Using the same method as in [26], we can obtain

the result.

In order to ensure that θ̂(t) converges to the desired

value, the following result is needed.

Lemma 1 Consider the following system




η̇ = A1η + B1
ψ(T,ωm)

Jm
,

ȳ = C1η + D1
ψ(T,ωm)

Jm
,

(19)

where A1 = diag{−b2,−b2,−b2,−b2}, B1 =

diag{−b2 + Ra

La
,−b2 + Ra

La
,−b2 + Ra

La
,−b2 +

Ra

La
,−b2 + Ra

La
}, C1 = I , D1 = I . If there exist T0 > 0,

kp > 0 such that ψ(T, ωm) satisfies the following

persistence excitation condition
∫ t+T0

t

ψ(T (τ), ωm(τ))ψT (T (τ), ωm(τ))dτ > kpI,

(20)

then, there exists k′p > 0 such that

∫ t+T0

t

ȳ(τ)ȳT (τ)dτ > k′pI. (21)

Proof: It follows from (19) that

C1(SI −A1)B1 + D1 = (
s + Ra

La

s + b2
)I,

which implies that the system (19) is stable and

minimal phase. By Lemma 2.6.7 in [33], we obtain the

result.

Theorem 2 For the energy model of belt conveyor with

DC motor (8), there exists filter transformation (12),

(13) to transform (8) into (14). Moreover, for the

system (15), (16), if k1 and k2 are selected such that

(A, b, C) satisfies the strictly positive real condition,

and there exist T0 > 0 and kp > 0 such that the
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condition (20) holds, then, we have lim
t→∞

‖θ − θ̂(t)‖ =

0.

Proof: From (13), we have

ηi(t) = e−b2t

∫ t

t0

eb2τ (− b2

Jm
+

Ra

LaJm
)ψi(T (τ), ωm(τ))dτ.

It is obvious that ψ(T, ωm) is bounded for every

(T, wm) bounded. Therefore, ηi(t) (i = 1, 2, 3, 4) are

bounded for every (T, wm), which implies that

( 1
Jm

ψ(T, ωm) + η) is bounded for every (T,wm)

bounded. Along the trajectory of the system (17),

(18), calculate the derivative of the following Lyapunov

function

V (e) = eT Pe + θ̃T Γ−1θ̃, (22)

we have

dV (e)
dt

∣∣∣
(17),(18)

= eT (AT P + PA)e

+2eT Pb( 1
Jm

ψ(T, y) + η)T θ̃

−θ̃T ( 1
Jm

ψ(T, y) + η)e1 < −deT Qe.

Thus, ‖e(t)‖ and ‖θ̃(t)‖ are uniformly bounded for

any t > t0. Moreover, ( 1
Jm

ψ(T, y) + η) is uniformly

bounded, then, ‖ė(t)‖ is also uniformly bounded. Since

V (e) is a uniformly bounded non-increasing function

lim
t→∞

∫ t

t0

eT (τ)Qe(τ)dτ < V (t0)− V (∞) < V (∞),

By Barbalat Lemma [26], we have

lim
t→∞

‖e(t)‖ = 0. (23)

From (18) and (23), we have

lim
t→∞

˙̃
θ(t) = 0.

Then, there exits a constant θ̃∗ such that

lim
t→∞

θ̃(t) = θ̃∗.

Therefore, for any ε > 0, there exists t1 > 0 such that

‖θ̃(t)− θ̃∗‖ < ε, ∀t > t1. (24)

Now, we will prove that θ̃∗ = 0 by contradiction.

Assume that θ̃∗ 6= 0.

Consider the following function

ϕ(θ̃(t), t) =
1
2
[θ̃T (t + T0)Γ−1θ̃(t + T0)− θ̃T (t)Γ−1θ̃(t)],

which is bounded. The time derivative of ϕ(θ̃(t), t) is

given as

dϕ(θ̃(t),t)
dt = θ̃T (t + T0)Γ−1 ˙̃

θ(t + T0)− θ̃T (t)Γ−1 ˙̃
θ(t)

=
∫ t+T0

t
d
dτ (θ̃T (τ)Γ−1 ˙̃

θ(τ))dτ

= −
∫ t+T0

t

d

dτ
(θ̃T (τ)ȳ(τ)e1(τ))dτ

=
∫ t+T0

t

e1(τ)ȳT (τ)Γȳ(τ)e1(τ)dτ

−
∫ t+T0

t

θ̃T (τ) ˙̄y(τ)e1(τ)dτ

−
∫ t+T0

t

θ̃T (τ)ȳ(τ)(e2(τ)− k1e1(τ))dτ

−
∫ t+T0

t

θ̃T (τ)ȳ(τ)ȳT (τ))θ̃(τ)dτ.

Note that ˙̄y(τ) = ( 1
Jm

ψ̇(T (τ), y(τ)) + η̇(τ)) is uni-

formly bounded for every (T,wm) bounded, and

lim
t→∞

e(t) = 0, and (21), (24) hold, then, there exists

M > 0 such that when t > t1, we have

dϕ(θ̃(t),t)
dt < M

∫ t+T0

t
(e2

1(τ) + e2(τ)2)dτ

− ∫ t+T0

t
θ̃∗T ȳ(τ)ȳT (τ)θ̃∗dτ

−2
∫ t+T0

t
θ̃∗T ȳ(τ)ȳT (τ)(θ̃(τ)− θ̃∗)dτ

− ∫ t+T0

t
(θ̃(τ)− θ̃∗)T ȳ(τ)ȳT (τ)(θ̃(τ)− θ̃∗)dτ

< M
∫ t+T

t
(e2

1(τ) + e2(τ)2)dτ

−k′p
2 θ̃∗T θ̃∗ < −k′p

4 θ̃∗T θ̃∗,∀t > t1,

which contradicts the bounbedness of ϕ(θ̃(t), t).

Therefore, lim
t→∞

θ̃(t) = 0. The proof is completed.
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IV. Simulation Results

We test the proposed adaptive parameter

estimation (13), (15), (16) by simulation

with parameters b2 = 4.0, λ = 3, Γ =

diag{180, 180, 180, 180} and with four coefficients

θ1 = 1, θ2 = 0.3, θ3 = 3.5, θ4 = 2.1, for a DC motor,

whose parameters are: kT = 0.1, kb = 0.1, bm = 0.4,

Jm = 0.05 Kgm2, Ra = 15 Ohm, La = 1.0 H,

r = 0.01 m, ea = 380 V. The initial condition of (14),

(15), and (16) are given by (0.01, 0.7), (0.8, 0.2) and

(0.1, 0.1, 0.1, 0.1), respectively. It should be noted that

it is difficult to check the inequality (20) holds. In

practice, if the feed rate T does not change much,

a complete determination of all the parameters is

impossible. In order to estimate all the parameters, one

should sufficiently disturbing the feed rate T during the

period of estimation. In this example, we choose the

feed rate T = 0.09(8 + 5 sin(10t + 1) + 2 cos(−5t +

2) + sin(20t)) + 0.3(8.6 + 2 cos(−5t + 2) + sin(15t +

0.4) + sin(20t) + 4 sin(t))|(sin(4t + 0.5))| kg/s

(0 ≤ t ≤ 60s). The simulation results are shown

in Fig. 3-Fig. 6.

0 2 4 6 8 10 12 14 16 18 20
−10
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0
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Fig. 3. Trajectory of θ̃1.
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Fig. 4. Trajectory of θ̃2.
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Fig. 5. Trajectory of θ̃3.
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Fig. 6. Trajectory of θ̃4.

To test the algorithm against measurement noise, a

band limited white noise is added to y1. The results are

demonstrated in Fig. 7-Fig. 10.
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Fig. 7. Trajectory of θ̃1 with band limited white noise.
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Fig. 8. Trajectory of θ̃2 with band limited white noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 9. Trajectory of θ̃3 with band limited white noise.
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Fig. 10. Trajectory of θ̃4 with band limited white noise.

Practically, the parameters may drift away during

the belt conveyor operates. For example, θ1 = 1.2, θ2 =

0.3, θ3 = 3.5, θ4 = 2.3, using the same initial conditions

and the feed rate T , we implement the adaptive identifer

for 30s. Fig. 11- Fig. 14 show the simulation results.
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Fig. 11. Trajectories of θ1 and θ̂1.
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Fig. 12. Trajectories of θ2 and θ̂2.
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Fig. 13. Trajectories of θ3 and θ̂3.
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Fig. 14. Trajectories of θ4 and θ̂4.

V. Conclusion

In this paper, a new energy model of a belt

conveyor driven by a DC motor was presented, which

lumped all the parameters into four coefficients. Then,

an adaptive observer was designed to estimate the

unknown parameters. In addition, under a persistent

excitation condition, the convergence of the parameters

to the desired values could also be concluded.

Compared with the existing methods, our methods

could be implemented by measuring only the feed rate

of the belt conveyor and the angular velocity of the rotor

of the DC motor.
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