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tout ce que tu as fait pour moi.”

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



iii

Title: On some analytic properties of the Jost functions
Student: Yannick Mvondo-She
Supervisor: Professor Pavel Selyshchev
Co-supervisor: Professor Sergei Rakitianski
Department: Physics
Degree: MSc

Abstract

Recently, was developed a new theory of the Jost function, within
which, it was split in two terms involving on one side, single-
valued analytic functions of the energy, and on the other, factors
responsible for the existence of the branching-points. For the
single-valued part of the Jost function, a procedure for the power-
series expansion around an arbitrary point on the energy plane
was suggested. However, this theory lacks a rigorous proof that
these parts are entire functions of the energy. It also gives an
intuitive (not rigorous) derivation of the domain where they are
entire. In the present study, we fill this gap by using a method
derived from the method of successive approximations.

Résumé

Récemment, une nouvelle théorie sur les fonctions de Jost a été
développée, dans laquelle, les fonctions de Jost sont divisée en
deux parties, avec d’une part des fonctions uniformes (univaluées
et analytiques) de l’ energie, et d’ autre part, des facteurs respon-
sables de l’ existence de points de ramification. Une procédure
permettant le développement en série de la partie contenant les
fonctions analytiques de l’ énergie autour d’ un point quelconque
du plan complexe de l’ énergie a notamment été suggérée. Cepen-
dant, cette théorie souffre d’ une preuve rigoureuse de l’ analyt-
icité de ces fonctions. La théorie permet également d’ obtenir,
là encore de facon intuitive, le domaine d’analyticité de ces fonc-
tions. Nous nous proposons donc, à l’ aide d’ une méthode
dérivée de celle des approximations successives de démontrer que
ces fonctions sont analytiques dans un domaine particulier que
nous déterminerons de facon explicite.
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3.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . 42
3.2 Analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Analyticity of the functions Ãl (E,∞) and B̃l (E,∞) 47
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Chapter 1

Introduction

1.1 Historical background

By the past, as a conventional way to treat quantum collision processes,
common practice was to focus on the scattering amplitude of the physical
wave function [1] [2]. Yet, the analysis of non relativistic quantum me-
chanical problems can be done adequately in terms of the Jost functions,
and the Jost solutions of the Schrödinger equation. The Jost function was
introduced in 1947 by Res Jost [3]. It can be described in substance as
a complex function of the total energy of a quantum state, where the en-
ergy is allowed to have not only real but also complex values [4]. The Jost
functions, when defined for all complex values of the momentum possess all
information about a given physical system. An interesting feature in the
Jost function approach is that it allows a simultaneous treatment of bound,
virtual, scattering and resonance states.

Abundant litterature on Scattering Theory has chapters devoted to the Jost
function, where usually it is expressed either via an integral containing the
regular solution [1] [2], or via a Wronskian of the Jost solutions [5]. In all
cases, they are expressed in terms of the wave function. But to make use of
the Jost functions in such a form, one must find the wave function first. This
means that the problem is practically solved and nothing more is needed [6].
Hence in spite of the usefulness of the Jost functions in studying spectral
properties of hamiltonians, for quite some time they were regarded rather as
purely mathematical entities, elegant and useful in formal scattering theory
[7], but with no computational use.

In the early nineteen nineties, linear first-order differential equations for
functions closely related to the Jost solutions were proposed [8]. Based on
the variable-phase approach [9], the equations and their solutions provide
the Jost function at any fixed value of the radial variable r , and its complex

2
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CHAPTER 1. INTRODUCTION 3

conjugate counterpart, which corresponds to the potential truncated at the
point r . An inconvenience though, was that the method was suitable only
for bound and scattering state calculations, meaning, for calculations in the
upper-half of the complex plane and on the real axis. An extension of the
method to the unphysical sheet was proposed in [10], in order to include
the resonant state region. Such development was made by combining the
variable constant method [11], and the complex coordinate rotation method
[12].

As a result, the combination used to recast the Schrödinger equation into
a set of linear first ordered coupled equations for Jost type solutions al-
lowed for a treatment of all possible states in a unified way. Conclusive
tests confirmed the effectiveness of the approach, in particular, in locating
bound states and resonances, through numerical integrations of the derived
equations in order to obtain the Jost functions (Jost matrices in the case of
multichannels) for all momenta of physical interest.

Although the method enjoyed success, it also had drawbacks. One of them
concerned the point k = 0 at which the proposed equations are singular.
The method was thereafter refined by using a procedure taken from [13].
The prescription lies in the fact that within a small region around k = 0,

the Ricatti-Hankel functions h
(±)
l (kr) can be expanded in power series [14],

and each term therein can be factorized in k and r. Similarly, the Jost
functions can be expanded in powers of k with unknown r−dependent coef-
ficients in this region, the coefficients being specified by the resulting system
of k−independent differential equations. This is of a crucial importance in
fields such a Quantum few-Body Theory, especially when it comes to locat-
ing quantum resonances...

Historically, after the advent of Quantum Mechanics, attention to resonance
states was first drawn by nuclear physicists. In particular, we can think of
George Gamow’s seminal work on the α-decay. The role of quantum res-
onances in Solid State and Chemical Physics for instance was understood
much later [15] [16]. More recently, efforts in a Condensed Matter and Molec-
ular Physics oriented research have converged to construct the solutions of
the set of first order differential equations in the form of Taylor-type power
series near an arbitrary point on the Riemann surface of the energy [17], in
a way that is similar to the effective expansion range, but more generalized.

A fundamental point in the expansion of a function, is the analycity of
the given function. For all the aforementionned work, it was given that the
Jost function is analytic at all complex energies and that for the so called
spectral points, it has simple zeros. The spectral points being the energies
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CHAPTER 1. INTRODUCTION 4

at which the system forms bound and resonant states, the location of the
bound states and the resonances is done by calculating the Jost function
and the points of its zeros. Yet, the analytic properties of the Jost functions
suffers a lack of rigorous treatment. A special attention to the problem will
be given here.

1.2 The Jost function

1.2.1 Basic concepts

A range of macroscopic phenomena can be described on the basis of non-
relativistic Quantum Mechanics. Molecular, Atomic, Nuclear and Solid
State phenomena span this range.

At a given time t , the state of a physical system can be described within
the framework of non-relativistic Quantum Mechanics, by a complex-valued
wave function Ψ(~r, t), where the wave function Ψ depends on the time-
parameter t, and on a complete set of variables summarized as ~r. The
physical system can usually be found in a quantum state, which is char-
acterized by a full set of quantum numbers, such as total energy, angular
momentum, etc,... The hermitian operator Ĥ that describes the energy of
a system is the Hamiltonian. It consists of the kinetic energy operator

T̂ =
N∑
i=1

p̂2
i

2mi
, (1.1)

of a system of N spinless particles of mass mi and momentum pi, of a
potential energy operator V̂ , which is in general the function of the N inter-
particles displacement vectors (plus a potential generated by an external
field, if any)

Ĥ = T̂ + V̂ . (1.2)

The hamiltonian of a physical system determines its evolution in time. In
coordinate representation, the evolution of a state is described by a partial
differential equation, the Schrödinger equation

ĤΨ(~r, t) = i}
∂

∂t
Ψ(~r, t). (1.3)

For a time-independent Hamiltonian Ĥ, the wave function

Ψ(~r, t) = exp

(
− i
}
Et

)
ψ (~r) (1.4)
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CHAPTER 1. INTRODUCTION 5

is said to be a solution of the Schrödinger equation (1.3), if and only if ψ (~r)
is an eigenfunction of Ĥ, with eigenvalue E, such that

Ĥψ(~r) = Eψ (~r) . (1.5)

Equation (1.5) is called the time-independent, or stationary Schrödinger
equation. For a point particle in a radially symmetric potential V (~r), in
coordinate representation, the time-independent Schrödinger equation is

(
− }2

2µ
∆r + V (r)

)
ψ(~r) = Eψ(~r). (1.6)

It is possible with the help of the orbital angular momentum L̂, to express

the Laplacian operator ∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
= −~̂p

2

}2 in spherical coordinate

∆ =
∂2

∂r2
+

2

r

∂

∂r
+
−~̂L

2

r2}2
. (1.7)

The square and the z−component of the angular momentum, respectively ~̂L
2

and L̂z being constants of motion, the solutions of the Schödinger equation
(1.5) can be labelled by the good quantum numbers l and m, and the energy
E, to give [1] [2] [5]

ψ(~r) = φl(E, r)Yl,m(θ, ϕ). (1.8)

In equation (1.8), the so-called spherical harmonic function Yl,m(θ, ϕ) is an

eigenfunction of both operators ~̂L
2

and L̂z, while l and m are eigenvalues of

~̂L
2

and L̂z respectively. The solutions of the stationary Schrödinger hence
have a radial part in φl(E, r) and an angular part from the spherical har-
monic function expressed in terms of θ and ϕ, the polar angles of ~r.
Inserting (1.8) into (1.6) leads to an equation for the radial wave function
φl(E, r)

[
− }

2µ

(
d2

dr2
+

2

r

d

dr

)
+
l(l + 1)}2

2µr2
+ V (r)

]
φl(E, r) = Eφl(E, r), (1.9)

that is independent of the azimutal quantum number m.

The ordinary differential equation of second order for the radial wave func-
tion φl(E, r) (1.9) is called the radial Schrödinger equation. It provides a
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CHAPTER 1. INTRODUCTION 6

significant simplification of the partial differential equation (1.6). Yet, with
a little bit more algebra a greater simplification can be obtained by formu-
lating an equation not for φl(E, r), but for ul = rφl, i.e for the radial wave
function of ul(r) defined by

ψ(~r) =
ul(E, r)

r
Yl,m(θ, ϕ). (1.10)

We end up with the following expression of the radial Schrödinger equation

(
− }

2µ

d2

dr2
+
l(l + 1)}2

2µr2
+ V (r)

)
ul(E, r) = Eul(E, r). (1.11)

Equation (1.11) is actually the Schrödinger equation for a single particle of
mass µ moving in a one spatial dimension, in an effective potential consisting
of V (r) plus the centrifugal potential l(l + 1)}2\2µr2

Veff (l, r) = V (r) +
l(l + 1)}2

2µr2
. (1.12)

1.2.2 Boundary conditions

The radial Schrödinger equations (1.9) and (1.11) are defined only for non-
negative values of the radial coordinate r, i.e on the interval r ∈ [0,∞). The
boundary condition imposed on the radial wave function ul(E, r) at r = 0,
can be derived by inserting an ansatz ul(E, r) ∝ rα into equation (1.11).
As long as the potential V (r) is less singular than r−2, the leading term on
the left-hand side of the ansatz is proportional to rα−2, and vanishes only if
α = l+1 or α = −l [18]. The latter option must be discarded, for an infinite
value of ul(E, r → 0) would lead to an infinite contribution to the norm
of the wave function near the origin; a finite value would lead to a delta
function singularity coming from ∆

(
1
r

)
in equation (1.6), which cannot be

compensated by any other term in the equation. The boundary condition
imposed at r = 0 on the radial wave function is thus

ul(E, 0) = 0, for all l. (1.13)

The behaviour of the radial wave function near the origin is given by

ul(E, r) ∝ rl+1, for r → 0 (1.14)

(for potentials that are less singular than r−2).
These conditions remain the same for all types of solutions. However, when
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CHAPTER 1. INTRODUCTION 7

the radial coordinate tends to an infinite value, the boundary condition is
different for the bound, scattering and resonant states. In particular, when
the potential V (r) at large distances is less singular than r−2, and therefore
vanishes fast enough, the radial Schrödinger equation (1.11) becomes

(
d2

dr2
+ k2 − l(l + 1)

r2

)
ul(E, r) = 0, for r →∞ , (1.15)

where k is called the wave number and is related to the energy by
2mE = ~2k2 (and therefore ~~k = ~p, ~p being the momentum). Equation
(1.15) is also called the free radial Schrödinger equation. Its general solution
can be constructed as the linear combination of two linearly independent

solutions h
(±)
l (kr). These solutions are the Ricatti-Hankel functions, which

behave exponentially

h
(±)
l (kr)

r→∞−−−→ ∓ie[±i(kr−l
π
2 )], (1.16)

and the general asymptotic form of ul(E, r) reads

ul(E, r)
r→∞−−−→ ah

(−)
l (kr) + bh

(+)
l (kr), (1.17)

where a and b are arbitrary complex numbers that by an appropriate combi-
nation determine the solution type (bound, scattering or resonant). In fact,
these coefficients are complex functions of the total energy of the system and
differ with the angular momenta. Equation (1.17) can then be rewritten as

ul(E, r)
r→∞−−−→ h

(−)
l (kr)f

(in)
l (E) + h

(+)
l (kr)f

(out)
l (E), (1.18)

with a = f
(in)
l (E) and b = f

(out)
l (E). These two functions are called the

Jost functions. Since h
(−)
l (kr) represents the incoming spherical wave, and

h
(+)
l (kr) the outgoing spherical wave, these two functions are just the am-

plitudes of the corresponding waves.

1.3 Transformation of the Schrödinger equation

At stake here is to show the analytic properties of the Jost function. This is
equivalent to expressing it in such a way that all possible terms that are not
analytically dependent on the energy are given explicitly. This can be done
by transforming the radial Schrödinger equation (1.9) into simple differential
equations of the first order. The radial Schrödinger equation reads
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CHAPTER 1. INTRODUCTION 8

(
d2

dr2
+ k2 − l(l + 1)

r2

)
ul(E, r) = V (r)ul(E, r). (1.19)

Using a systematic method taken from the theory of Ordinary Differential
Equations, and known as the method of Variation of Parameters [11] [19],
we look for the unknown function ul(E, r) in special form

ul(E, r) = h
(−)
l (kr)F

(in)
l (E, r) + h

(+)
l (kr)F

(out)
l (E, r), (1.20)

where F
(in)
l (E, r) and F

(out)
l (E, r) are new unknown functions. This im-

plies that, with the Jost functions as a case of interest, we will look for an
asymptotic-like solution, for it is known that at large distances, where the
potential vanishes, the wave function behaves as a linear combination of the
Ricatti-Hankel functions obeying the equation

(
d2

dr2
+ k2 − l(l + 1)

r2

)
ul(E, r) = 0. (1.21)

So at large distances, these functions are constant.

As indicated in [10], the introduction of two unknown functions F
(in/out)
l

instead of the original unknown function ul implies they cannot be indepen-
dent. Therefore, an arbitrary condition relating them to each other can be
imposed. Conveniently, using ∂r as d

dr , the following equation can be chosen

h
(−)
l (kr)∂rF

(in)
l (E, r) + h

(+)
l (kr)∂rF

(out)
l (E, r) = 0. (1.22)

This condition is known as the Lagrange condition in the method of Varia-
tion of Parameters. Substituting equation (1.20) into equation (1.19), and
using the Lagrange condition and the Wronskian of the Ricatti-hankel func-
tion

h
(−)
l (kr)∂rh

(+)
l (kr) + h

(+)
l (kr)∂rh

(−)
l (kr) = 2ik, (1.23)

yields a coupled system of first order differential equations for the un-
known functions, that are nothing else but an equivalent form of the original
Schrödinger equation [10]


∂rF

(in)
l (E, r) = −

h
(+)
l (kr)

2ik
V (r)

[
h

(−)
l (kr)F

(in)
l (E, r) + h

(+)
l (kr)F

(out)
l (E, r)

]

∂rF
(out)
l (E, r) = −

h
(−)
l (kr)

2ik
V (r)

[
h

(−)
l (kr)F

(in)
l (E, r) + h

(+)
l (kr)F

(out)
l (E, r)

]
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CHAPTER 1. INTRODUCTION 9

While trying to find the boundary conditions that should be imposed on the

functions F
(in/out)
l (E, r), it must be remembered with the restrictions on the

potential, that the physical solution ul(E, r) must be regular everywhere.
This implies [17] that the wave function ul(E, r) must be zero when r is
zero

ul(E, r)
r→0−−−→ 0, (1.24)

and is proportional to the Ricatti-Bessel function at short distances

ul(E, r) ∝ jl(E, r). (1.25)

It could be argued that it is not the case because h
(+)
l (kr) and h

(−)
l (kr) in

equation (1.20) are singular at r = 0. But their singularities can cancel each
other if they are superimposed with a same coefficient [20]

h
(+)
l + h

(−)
l = 2jl(kr). (1.26)

The condition

ul(E, 0) = 0, (1.27)

can only be achieved if both F
(in/out)
l (E, r) are equal to the same constant

at r = 0

F
(in)
l (E, 0) = F

(out)
l (E, 0). (1.28)

Since we are not concerned about their normalization, we chose any arbitrary
value for the constant. We chose the constant to be 1

2 for ul(E, r) to behave
near the origin as the Ricatti-Bessel function, as prescribed by equation
(1.26)

F
(in)
l (E, 0) = F

(out)
l (E, 0) =

1

2
. (1.29)

In order to express the non-analytic dependencies of the Jost functions in
an explicit form, the ansatz (1.20) can be recast by using either the Ricatti-
Bessel and Ricatti-Newmann functions, jl(kr) and yl(kr), or the Ricatti-
Hankel functions, that are related by

h
(±)
l (kr) = jl(kr)± iyl(kr). (1.30)
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CHAPTER 1. INTRODUCTION 10

This leads to another representation of the physical solution of equation
(1.19) in the form

ul(E, r) = jl(E, r)Al(E, r)− yl(E, r)Bl(E, r), (1.31)

equivalent to the ansatz (1.20), not only at large distances, but everywhere
on the interval r ∈ [0,∞). When r → ∞, the functions Al(E, r) and
Bl(E, r), and similarly F (in/out)(E, r) tend to r-independent constants. In
particular, the asymptotic behaviour of the wave function leads to

ul(E, r)
r→∞−−−→ h

(−)
l (kr)f

(in)
l (E) + h

(+)
l (kr)f

(out)
l (E), (1.32)

where, when comparing equation (1.32) and equation (1.20), we see that
F (in/out)(E, r) converge to the Jost functions when r →∞

lim
r→∞

F
(in)
l (E, r) = f

(in)
l (E), (1.33)

and

lim
r→∞

F
(out)
l (E, r) = f

(out)
l (E). (1.34)

The unknown functions Al(E, r) and Bl(E, r) can be expressed in terms of
F (in/out)(E, r), by using equation (1.30), and making a linear combination
of the system between equation (1.23) and equation (1.24), leading to


Al(E, r) = F

(in)
l (E, r) + F

(out)
l (E, r)

Bl(E, r) = i
[
F

(in)
l (E, r)− F (out)

l (E, r)
]
.

(1.35)

and asymptotically to


Al(E) = f

(in)
l (E) + f

(out)
l (E)

Bl(E) = i
[
f

(in)
l (E)− f (out)

l (E)
]
.

(1.36)

From (1.36), a new expression of F (in/out)(E, r) is found as


F

(in)
l (E, r) =

1

2
[Al(E, r) + iBl(E, r)]

F
(out)
l (E, r) =

1

2
[Al(E, r)− iBl(E, r)] ,

(1.37)
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and from which the Jost functions can be obtained, considering the asymp-
totic behaviour of (1.37), by writing


f

(in)
l (E) =

1

2
[Al(E) + iBl(E)]

f
(out)
l (E) =

1

2
[Al(E)− iBl(E)] .

(1.38)

A new system of firt order differential equations equivalent to the system
between equations (1.23) and (1.24), and to equation (1.19) is obtained for
the new unknown functions Al(E, r) and Bl(E, r), and reads [20]


∂rAl(E, r) = −yl(kr)

k
V (r) [jl(kr)Al(E, r)− yl(kr)Bl(E, r)]

∂rBl(E, r) = −jl(kr)
k

V (r)
[
jl(kr)Al(E, r)− yl(kr)B

(
lE, r)

]
.

(1.39)

Following from equation (1.29), the system has the physical boundary con-
ditions

Al(E, 0) = 1, Bl(E, 0) = 0. (1.40)

What was showed here is a simple procedure to express the Jost functions
for finite range potentials. For such potentials, when large enough values of
r are reached, or if the potential is cut off at a certain (large) value of r, the
functions do not change anymore, and eventually give us the Jost functions.

1.3.1 Factorization

The main goal being to show that the Jost function can be split into two
parts, one of which is analytic and can therefore be expressed in power-series
expansion, a further transformation of equation (1.39) is required to explic-
itly separate the non-analytic factors. Using the fact that the Ricatti-Bessel
and Ricatti-Neumann functions can be represented by absolutely convergent
series [20]


jl(kr) =

(
kr

2

)l+1 ∞∑
n=0

(−1)n
√
π

Γ
(
l + 3

2 + n
)
n!

(
kr

2

)2n

= kl+1j̃l(E, r)

yl(kr) =

(
2

kr

)l ∞∑
n=0

(−1)n+l+1

Γ
(
−l + 1

2 + n
)
n!

(
kr

2

)2n

= k−lỹl(E, r).

(1.41)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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The factorized functions j̃l(E, r) and ỹl(E, r) are obtained. These functions
have the advantage that they do not depend on odd powers of k, and thus
are single-valued functions of the energy E. Using equation (1.41) [20],
it is possible to express Al(E, r) and Bl(E, r) as a linear combination of
products momenta factors and new functions Ãl(E, r) and B̃l(E, r), such
that equation (1.39) can be transformed. If we write


jl(kr) = kl+1j̃l(E, r)

yl(kr) = k−lỹl(E, r),

equation (1.39) becomes


∂rAl(E, r) = −k

−lỹl(kr)

k
V (r)

[
kl+1j̃l(kr)Al(E, r)− k−lỹl(kr)Bl(E, r)

]
∂rBl(E, r) = −k

l+1j̃l(kr)

k
V (r)

[
kl+1j̃l(kr)Al(E, r)− k−lỹl(kr)B

(
lE, r)

]
,

or again


∂rAl(E, r) = − ỹl(kr)

kl+1
V (r)

[
j̃l(kr)k

l+1Al(E, r)− ỹl(kr)k−lBl(E, r)
]

∂rBl(E, r) = −klj̃l(kr)V (r)
[
j̃l(kr)k

l+1Al(E, r)− ỹl(kr)k−lBl(E, r)
]
,

which in turn gives


kl+1∂rAl(E, r) = −ỹl(kr)V (r)

[
j̃l(kr)k

l+1Al(E, r)− ỹl(kr)k−lBl(E, r)
]

k−l∂rBl(E, r) = −j̃l(kr)V (r)
[
j̃l(kr)k

l+1Al(E, r)− ỹl(kr)k−lBl(E, r)
]
,

or
∂r
[
kl+1Al(E, r)

]
= −ỹl(kr)V (r)

[
j̃l(kr)k

l+1Al(E, r)− ỹl(kr)k−lBl(E, r)
]

∂r
[
k−lBl(E, r)

]
= −j̃l(kr)V (r)

[
j̃l(kr)k

l+1Al(E, r)− ỹl(kr)k−lBl(E, r)
]
,

and if we write

Ãl(E, r) = kl+1Al(E, r) and B̃l(E, r) = k−lBl(E, r), (1.42)

we finally have an expression
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
∂rÃl(E, r) = −ỹl(E, r)V (r)

[
j̃l(E, r)Ãl(E, r)− ỹl(E, r)B̃l(E, r)

]
∂rB̃l(E, r) = −j̃l(E, r)V (r)

[
j̃l(E, r)Ãl(E, r)− ỹl(E, r)B̃

(
lE, r)

]
,

(1.43)

devoid of all momenta factors, where remains a system of first order differ-
ential equations, whose coefficients and solutions are single-valued functions
of the energy E.

1.3.2 Analytic properties of the Jost function

Up to this point we have expressed the system of first-order differential
equations between equations (1.23) and (1.24) by a new set of first-order
differential equation (1.43). The analytic properties of the Jost functions
that we are trying to establish, are subject to the proof that for any r on
the interval [0,∞), the solutions of equation (1.43), namely Ãl(E, r) and
B̃l(E, r), are entire (analytic single-valued) functions of the complex vari-
able E.
The approach for this is to use a theorem taken from a treatise published
in 1896 by french mathematician Emile Picard (1856-1941), based on a the-
ory called the Method of Approximations. This method, although probably
known to Cauchy, originates in 1838 when Joseph Liouville applied it to
the case of the homogeneous linear equation of the second order [21]. The
theory was extended to linear equations of order n by J. Caqué in 1864 [22],
L. Fuchs in 1870 [23] and G. Peano in 1888 [24], but in its most general form
(including non linear differential equations), it was developed by Picard in
1893 [25].
In particular, is found in the treatise a theorem that states [26] the following:
Let a linear differential equation of the form:

dny

dxn
+ P1(x, k)

dn−1y

dxn−1
+ · · ·+ Pn(x, k)y = Q(x, k), (1.44)

where Pi(x, k) (with i = 1, 2, . . . , n) and Q(x, k) are continuous functions
of the real variable x and single-valued analytic functions of the complex
parameter k. The method of successive approximations shows that there
exists a unique solution (real or not), with given initial conditions (real or
not), and that if these initial conditions are independent of k, the solution
is also an analytic function of k. This result was also proved by Poincaré
using a different method [27].
The theorem also mentions that for a system where Q(x, k) = 0, the system
of solutions formed must be independent of k -and in fact must assume
numerical values- at the initial conditions.
The application of this theorem is the object of the next chapters.
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Chapter 2

Mathematical background

We will discuss here, some topics that are of specific interest to us. In this
view, this chapter should merely be regarded as a tool-box.

2.1 Functions of a complex variable

In trying to investigate differential equations with the help of power series,
one realises quickly that a knowledge of the theory of functions of a complex
variable is needed. Here, we will confine our development to the part of
Complex Analysis that will be useful to our present study of the analytic
properties of the solutions of the system of linear differential equations under
consideration. The basic properties of Complex Functions can be found in
[11].

2.1.1 Analytic function

Consider a complex variable z = x + iy, where x and y are independent
real variables. z usually represents a point in a complex z-plane. Let
f(z) = u + iv, a function of the complex variable z be defined by asso-
ciating to each point z a given complex number f(z). The function f(z) is
called a single-valued analytic function of z, if u and v are real single-valued
functions of x and y.

In Real Analysis, f(x) is usually defined as a function of a real variable
x. When f(x) has a derivative, then the quotient

f(x+ h)− f(x)

h
(2.1)

approaches f ′(x) when h approaches zero.

14
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-

6y

x

rr
x x+h

f(x+h)

f(x)

Figure 2.1: Function f(x)

In the same way, in Complex Analysis, if we write ∆z = z − z0 and
∆f(z) = f(z) − f(z0) = f(z0 + ∆z) − f(z0), it is possible to determine

under which conditions the quotient ∆f(z)
∆z will approach a definite limit

when the absolute value of ∆z approaches zero.
By letting x and y have independent increments ∆x and ∆y, z will be in-
cremented by ∆z = ∆x + i∆y. If ∆f(z) is a single-valued function of z ,
f(z) will receive an increment ∆f(z) = ∆u + i∆v. The derivative of f(z)
with respect to z can then be expressed as

df(z)

dz
= lim

∆z→0

∆f(z)

∆z
= lim

(∆x,∆y)→(0,0)

∆u+ i∆v

∆x+ i∆y
, (2.2)

where the limit, if it exists, must have a single value, which is independent
of the path taken by ∆z (or ∆x and ∆y) to approach zero. This means that
the limit in equation (2.2) is a double limit with respect to the increments
∆x and ∆y.

-

6

b
b

∆ x

∆ y

z

z + ∆ z

Im z

Re z
Figure 2.2: Path taken by ∆z

The existence of a double limit implies that the corresponding iterated limits
also exist and are equal. Let ∆x and ∆y in figure (2.2) approach zero in the
following way: first ∆y → 0, then ∆x → 0. Letting ∆z in that way allows
to write
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CHAPTER 2. MATHEMATICAL BACKGROUND 16

dw

dz
= lim

∆x→0
lim

∆y→0

∆u+ i∆v

∆x+ i∆y

= lim
∆x→0

∆u+ i∆v

∆x

= lim
∆x→0

∆u

∆x
+ i lim

∆x→0

∆v

∆x
.

Therefore, if the derivative exists, it will have the value

dw

dz
=
∂u

∂x
+ i

∂v

∂x
. (2.3)

Similarly, if the limit in equation (2.2) exists, it can identically be evaluated
by letting ∆x→ 0 first and then ∆y → 0. Thus

dw

dz
= lim

∆y→0
lim

∆x→0

∆u+ i∆v

∆x+ i∆y

= lim
∆y→0

∆u+ i∆v

i∆y

= −i lim
∆y→0

∆u

∆y
+ lim

∆y→0

∆v

∆y
,

and if the derivative exists, it has the value

dw

dz
= −i∂u

∂y
+
∂v

∂y
. (2.4)

Now, if the derivative exists throughout some region including the point z,
equations (2.3) and (2.4) must then be identical in that region, u and v
being real functions of the real variables x and y, it is possible to equate
real and imaginary parts in the equations (2.3) and (2.4). This yields

∂u

∂x
+ i

∂v

∂x
= −i∂u

∂y
+
∂v

∂y
. (2.5)

Then, if the first derivatives of u and v with respect to x and y are contin-
uous at a point, a necessary and sufficient condition for the existence of the
derivative at the given point is that u and v satisfy the Cauchy-Riemann
equations

∂u

∂x
=

∂v

∂y
(2.6)

∂u

∂y
= −∂v

∂x
, (2.7)
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CHAPTER 2. MATHEMATICAL BACKGROUND 17

throughout some neighbourhood of the point.
From this, it can be inferred that a function is analytic at the point z = z0 if
and only if the above derivative exits at each point in some neighbourhood
of the point. A function that is analytic at every point of a region is said to
be analytic in that region.

2.1.2 Single-valued and many-valued functions

In defining the analytic function of a complex variable z, we have considered
a function f(z) that has assigned to it a definite value for each point z of a
connected region, such that f(z) has a continuous derivative in the region.
These conditions led to the definition of a single-valued analytic function of
z in the domain. It follows that

ez, cos z, sin z, cosh z, sinh z, (2.8)

are single-valued analytic functions in the entire plane, as they all have
continuous derivative for any z [28]. In the same way,

1

z2 − 1
(2.9)

for instance, is a single-valued analytic function in a region formed by the
whole z-plane except the zeros of the denominator z = ±1, and tan z is
single-valued analytic on a region formed by the whole plane except the
infinite point set

. . . ;−7
π

2
;−5

π

2
;−3

π

2
;−π

2
;
π

2
; 3
π

2
; 5
π

2
; . . . (2.10)

Suppose now that f(z) has in general more than one value assigned to it
for the points of the region. f(z) is then said to be a many-valued analytic
function if its values can be grouped in branches, each of which is a single-
valued analytic function about each point of the region [28].
To understand the nature of a many-valued function, we can use the fact
that an analytic function is necessarily continuous at all points at which it is
analytic. Using a geometrically suggestive approach, the idea of continuity
can be expressed by taking into consideration the fact that the value of a
function of the variable z does not always depend entirely upon the value of
z alone, but to a certain extent also upon the successive values assumed by
the z, when going from the initial value to the actual value in consideration
[32], in other words, upon the path taken by the variable z.
This leads to a new definition: an analytic function f(z) is said to be single-
valued in a region when all paths in that region which go from a point z0
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CHAPTER 2. MATHEMATICAL BACKGROUND 18

to any other point z lead to the same final value for f(z). When on the
other hand, the final value of f(z) is not the same for all possible paths in
the region, the function is said to be many-valued. An important statement
in connection with this is found in [32]: a function that is analytic at every
point of a region is necessarily single-valued in that region.
Now, if the path from z0 to z describes a closed circuit, and we return to
our point of departure after having gone through the path, there are two
possibilities: either we arrive again at the same value of the function, and
we there have a necessary and sufficient condition for a function to be single-
valued analytic at every point of a region, or we do not. In this case, we have
many-valued function and f(z0) will have at least two different meanings.
As an example, we will consider the logarithmic function log z. Using polar
coordinates r, θ, it can be shown [30] that

log z = log r + i(θ + 2πn), n = 0,±1,±2, . . . (2.11)

It is easy to verify that this expression satisfies the Cauchy-Riemann equa-
tions, and therefore that log z as expressed in equation (2.11) is an analytic
function of z. The following equation

d

dz
{log z} =

1

z
(2.12)

shows that the derivative of log z is not defined for z = 0. The origin is thus
a point where the derivative of the function and the function itself cease to
be continuous. It is called a singular point of the function.
Equation (2.11) seems to imply that there exists an infinite number of dif-
ferent logarithmic functions, each of them having a different value of n. In
reality, they are all branches of one and the same function, and the integer n
merely accounts for the function to be many-valued. Indeed, let the value of
n be arbitrarily taken as zero, and let z move in the positive direction along
the circle |z| = r, starting from the point (r, 0). log r will remain constant
and θ will grow continuously. When z will return to its original position,
the function log z will therefore not return to its original value. Instead, we
will have

log z = log r + i2π. (2.13)

If starting from this value again, describing a complete circular path along
|z| = r in the positive direction, the new value obtained will be

log z = log r + i4π. (2.14)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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The process can be repeated until a value log z = log r + i2πn is obtained.
This indicates that the different values of log z which are associated with
the different values of n in equation (2.11) all belong to the same analytic
function.
The infinite-valued analytic function log z can be decomposed into branches,
all of which are single-valued, by restricting the value of θ to an interval of
length 2π. For instance, by imposing the condition −π < θ < π, a branch
called the principal value of log z can be obtained. This would mean that
the logarithmic function cannot cross the negative axis. Crossing the cut
will just be like going from one branch to the other.
Another example is the function f(z) = zα, which can also be written as

eα log z. (2.15)

The multi-valuedness of zα can be observed by expressing the principal
value of the logarithm as log z and writing log z = log z+ 2iπn . Then from
equation

eα log z = eα log ze2inαπ = P [zα] e2iαnπ, (2.16)

where P[zα] is the principal part of the function zα. The values of zα are
then obtained by multiplying the principal value with the factor e2iαnπ. This
shows that zα will have infinitely many values. In particular, when α is a
rational number of the form m

n , with m and n having no common factor and
n ≥ 1, then the set e2iαnπ becomes

e2πi(mn )k, (2.17)

contains n different numbers. This is obtained by choosing k = 0, 1, 2, . . . , n−
1 [30].
Geometrically, it is interesting to see how the values of zα change when the
point z describes a circle about the origin. Recalling the example of the log-
arithmic function, a given value of log z continuously changes into log z+2πi
if z returns to its former position after describing a complete circle about
the origin in the positive direction. Accordingly, a given value of zα will also
change into zαe2iαπ. Repeating the process will yield zαe4iαπ, zαe6iαπ, . . . ,
and we see that zα can take any particular value from any other one when
z moves around a closed curve which surrounds the origin in a suitable way.
Just like in the case of the logarithmic function, the origin is a singular point
of zα, for the function is not single-valued in the neighborhood of z = 0 for
all values of α.
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2.1.3 Riemann surfaces

In the study of the logarithmic function f(z) = log z and of the function
f(z) = zα, two mathematical tools were used in order to better understand
the nature of many-valued functions. The first concept was the branch-
cut, that enables to single out one single-valued branch of the many-valued
analytic function. The second was the geometrically suggestive idea of ob-
serving how f(z) changes when z starts at a given point and returns to the
same point after describing a closed contour. Both ideas can be combined
into a single method for visualising the behaviour of a many-valued function
through a geometric construction called the Riemann surfaces.
To illustrate this construction, we consider the simplest case, obtained with
the mapping of the function f(z) = z

1
n . As we saw in the preceding section,

f(z) will have n different values for any given z (except for z = 0). In fact,
if we rather consider the equation

[f(z)]n = z, (2.18)

and if we say

z = r(cosw + i sinw), f(z) = ρ(cosφ+ i sinφ), (2.19)

then from the relation (2.19), we can also have the equivalences

ρn = r, nφ = w + 2kπ, (2.20)

where, ρ = r
1
n which means that r is the nth arithmetic root of the positive

number ρ, and

φ =
ω + 2kπ

n
. (2.21)

To obtain all distinct values of f(z), it suffices to give to the arbitrary
integer k the n consecutive integral values 1, 2, . . . , n; in this way, we obtain
expressions for the n roots of the equation (2.18) as

f(z) = r
1
n

[
cos

(
ω + 2kπ

n

)
+ i sin

(
ω + 2kπ

n

)]
= r

1
n e(i

ω+2kπ
n )

= r
1
n e

iω
n e

i2kπ
n

=
(
reiω

) 1
n e

i2kπ
n

= P
[
z

1
n

]
e
i2kπ
n (k = 1, 2, . . . , n), (2.22)
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where P
[
z

1
n

]
is the principal part of f(z).

Accordingly, f(z) has n branches. Each of these values will be single-valued
if z is restricted to the region obtained by cutting the z-plane along the
negative axis [30]. The construction of the Riemann surface lies in the idea
that to each of the n branches of f(z), will be assigned a replica of the cut
plane, in which the function is single-valued. Indeed, this can also be under-
stood thinking that there is a one-to-one correspondence between each angle
(k − 1)2π

n < arg z < k 2π
n , k = 1, 2, . . . , n and f(z), except for the positive

axis [31]. This is a mere analogy of the single-valued nature of f(z) in each
of the n branches on negative axis. Then the image of each angle (or again
of each branch) will be obtained by performing a cut that will have an upper
and a lower edge, along the positive axis. Corresponding to the n angles (or
branches) in the z-plane, there will be n identical copies of the f(z)-plane
with the cut. These cut-planes are called the sheets of the Riemann surface,
and can be distinguished according to the values of z

1
n by associating the

value P
[
z

1
n

]
e
i2kπ
n with the plane of index n. Then these Riemann sheets

will be placed one upon the other in such a way that the (k+ 1)th sheet will
be immediately on top of the kth one, and the corresponding point z in each
plane have exactly the same position.
If a given point z is now allowed to move along a closed curve which sur-
rounds the origin in a positive direction, the path described will pass from
a given branch of the function, say the kth, to another one, say the (k+ 1)th

one. A geometrical description of the situation is that the upper edge of the
cut in the kth plane is attached to the lower edge of the cut in the (k+ 1)th

plane.
The point z = 0 plays a special role here. Unlike the other points, each of
which lies on only one sheet, the origin connects all the sheets of the surface,
and a curve must wind n times around the origin before it closes. A point
of this kind, which belongs to more than one sheet of the Riemann surface
is called a branch point.

2.1.4 Factorization revisited

We take a quick break to draw a parallel between the overview of Complex
Analysis that has been written up to this point and the process of factor-
ization of the first chapter.
In the first chapter, we introduced the Jost functions as the amplitudes
of the incoming and outgoing waves in the asymptotics of the radial wave
function

ul(E, r)→ h
(−)
l (kr)f

(in)
l (E) + h

(+)
l (kr)f

(out)
l (E). (2.23)
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Furthermore, the Ricatti-Hankel functions h
(±)
l (kr) were explicitly given

as dependent of the momentum k. A few words can be said about the

dependence of f
(in/out)
l on k and E = ~2k2

2µ . Indeed, the momentum can be

expressed as k =

√(
2µ
~2

)
E, and since the energy is complex, it can be put

in the exponential form E = |E|eiθ, so that

k =

√(
2µ

~2

)
|E|eiθ =

√(
2µ

~2

)
|E|ei

θ
2 , (2.24)

where k =

√(
2µ
~2

)
|E| will be the positive square root of k.

The implication of the exponential complex notation of the energy is that
the Jost function will be many-valued. Indeed, as it was seen in the previous
section for the types of function studied, the point E = 0 can be considered

as a branching point of the functions f
(in/out)
l . If the variable E describes

two full circles about the origin, the functions f
(in/out)
l will return to the

same values as the original ones. In other words, for any given value of the
energy on the circle, the momentum k will have two possible values

k = ±

√(
2µ

~2

)
E. (2.25)

The best way to visualise the many-valuedness of f
(in/out)
l is to introduce the

concept of energetic Riemann surface. As we saw in the case of a function
zα with non-integral exponents, if z = 2µ

~2E and α = 1
2 , here we will have a

function of the type E 7→
√
E defined by

E 7→
[(

2µ

~2

)
E

] 1
2

. (2.26)

Recalling equation (2.22), we can write

[(
2µ

~2

)
E

] 1
2

=

{[(
2µ

~2

)
|E|
] 1

2

ei
θ
2

}
e2πin 1

2

= P
[
E

1
2

]
eπin (n = 0, 1),

where P
[
E

1
2

]
is the principal part of the complex function of the energy.

The latter can then be expressed as
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E 7→ P
[
E

1
2

]
eπin (n = 0, 1). (2.27)

The geometric construction of the Riemann surface of the energy is done
by considering two parallel sheets. When E describes one circle around a
branching point, the function of the energy travels on the first sheet, and
then continues on the second one until coming back to the first sheet after
completing two circles. In quantum theory, such a continuous transition
from one sheet to the other is commonly obtained by cutting two exemplars
of the complex plane along the positive real axis and gluing the two sheets
together in such a way that, if the first sheet is denoted as

Γ1 :=
{
E ∈ C : E 7→ P

[
E

1
2

]
eiα, 0 ≤ α < 2π

}
, (2.28)

and the second sheet as

Γ2 :=
{
E ∈ C : E 7→ P

[
E

1
2

]
eiβ, 2π ≤ β < 4π

}
, (2.29)

the set (Ω) pictured in Figure (2.3) will represent a neighborhood of the
branching point ER on the Riemann surface. The function of the energy is
then single-valued on each sheet.

- �
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�
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�
�*6

A
A
A
A
AK'$q &%

q
ER

ER
��

Ω

��
ΩqER − iΓ

(a) first sheet (b) second sheet

Figure 2.3: The energetic Riemann surface

In the process of factorization discussed in the first chapter, the Jost func-
tions were constructed in such a way that the odd powers of the momentum
k were factorised analytically, leaving the other part dependent only of even
powers of the momentum k, thus making it a single-valued function of the
energy. From this semi-analytic expression of the Jost functions, it was then
possible to obtain a system of differential equations where, very conveniently
the factorised part that is responsible for the existence of branching points
was removed, leading to functions in the set of differential equations that
are single-valued functions of the energy.
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2.1.5 Properties of analytic functions

We briefly discuss some properties of analytic functions that are of interest
to us.

Cauchy theorem and Cauchy Integral theorem

Most of the general properties of analytic functions are embedded in two
important theorems: the first one is the Cauchy theorem and the second
one is the Cauchy integral theorem. Both will be given without proof.
Cauchy theorem asserts that if f(z) is a single-valued analytic function of
z in a region, then

∫
C
f(z)dz = 0, (2.30)

for any simple closed curve C in that region. [28]
Cauchy integral theorem states that [30] if f(z) is a single-valued analytic
function of z in a region bounded by the simple closed curve C, then for any
u within C

f(u) =
1

2πi

∫
C

f(z)

z − u
dz. (2.31)

The second (Cauchy integral) theorem is of a tremendous importance in the
theory of Complex Analysis as it basically says that, given a function f(z)
that is single-valued in a region C and that has a continuous derivative in
that region, if the values of f within the region are not known but are on the
edge of C, then it is possible to know the value of f at some interior point u
by simply calculating the integral. This means that the values of an analytic
function f(z) are completely determined if the values on the boundary C
are given.

Power series expansion

An important property of analytic functions is that they can be expanded in
series. In its formal statement, If f(z) is analytic at z0, there exists a Taylor
expansion

f(z) =
∞∑
n=0

an(z − z0)n, valid in |z − z0| < R, (2.32)

where R is the distance from z0 to the singularity nearest z0.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. MATHEMATICAL BACKGROUND 25
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Figure 2.4: Domain of expansion of the analytic function f(z) in power
series

Analytic continuation along a path

Up to this point, we have seen that analytic functions are functions differ-
entiable in a region of the complex plane. However, the properties of power
series representations aforementioned can be used to extend the domain of
definition of an analytic function.
Let f(z) be an analytic function in a connected region of the plane, say a
circle of radius R and center z0. Then f(z) can be defined at all points
within the circle by the Taylor series

∞∑
0

an(z − z0)n. (2.33)

Consider a path (γ) starting at z0, and a point z1 on the path and inside
the circle of radius R centered at z0.
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Figure 2.5: Analytic continuation of f(z) along a path

If z1 is not a singular point of f(z), then the values of f(z) are uniquely
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determined by the initial conditions at z0, and they can themselves be taken
as a new set of initial conditions for a new origin at z1. Accordingly, we can
construct a circle with center z1 and radius R1. There exists a new Taylor
series

∞∑
0

bn(z − z0)n, (2.34)

of radius of convergence R1, whose sum is equal to the sum (2.33) at any
point of the domain |z − z0| ≤ R0. The sum (2.34) gives the value of f(z)
in the circle |z − z1| ≤ R1.
We repeat the same operation from a point z2 on the path inside the circle
|z − z1| ≤ R1, but outside the circle |z − z0| ≤ R0, constructing a circle
centered at z2 and with radius R2. It follows that all points that can be
attained using all lines (Γ) starting from z0 provided no singular point is
encountered will form a domain, and that a unique value of f(z) at each
point z of the domain can be defined. The function f(z) is then analytic in
the domain.
This process of finding the value of an analytic function f(z) at a point z,
when its value is known at the points of some path (Γ) is called analytic
continuation [29].

2.2 Existence and nature of solutions of ordinary
differential equations

2.2.1 Background

Generally, as an introduction to the study of Ordinary Differential equations
of type

dy

dx
= f(x, y), (2.35)

exact solutions can be found using elementary methods of integration, such
as the method of separation of variables, or again the method of integrating
factors. These types of equations are easily integrable on the account that
they belong to certain simple classes. However, it is in general not evident
that a differential equation of the type of equation (2.35) will have so ele-
mentary a treatment, and very often, the only recourse is to use methods of
numerical approximation.
This gives rise to the fundamental question of the existence of solutions of
differential questions, and interestingly enough, in the chronology of the the-
ory of Ordinary Differential Equations, existence theorems were established
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only after the elementary processes of integration aforementioned.
Three proofs of these existence theorems are widely found in the litterature.
The first one is the calculus of limits credited to Cauchy. Also known as
the first rigorous investigation to establish the existence of solutions of a
system of ordinary differential equations, the method of calculus of limits
proves the existence of solutions for analytic equations through a method
of comparison. Cauchy is also at the origin of another method which does
not assume the functions to be analytic. Although given by Cauchy and
preserved in the lectures of Moigno published in 1844 [32], it was greatly
simplified by Lipschitz, who gave an explicit account of the necessary hy-
potheses or the validity of the proof. For that reason, the proof is called the
Cauchy-Lipschitz method.
The last of the three existence theorem proofs is the method of successive
approximations. This method being the one of interest to us, a description
of the theory will be given.

2.2.2 The existence theorem

Consider the equation

dy

dx
= f(x, y). (2.36)
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Figure 2.6: Rectangular domain R surrounding the point (x0, y0)

Let (x0, y0) be a pair of values assigned to the real variables (x, y) within
a rectangular domain R surrounding the point (x0, y0) and defined by the
inequalities
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|x− x0| ≤ a, |y − y0| ≤ b, (2.37)

and f(x, y) a single-valued continuous function of x and y.
Let M be the upper boundary of |f(x, y)| in R and let h be the smaller of a
and b

M such that if h < a, the following restriction is imposed on x

|x− x0| < h, (2.38)

and if (x, y) and (x, Y ) are two points within R, of the same abcissa, then

|f(x, Y )− f(x, y)| < K|Y − y|, (2.39)

where K is a constant. Inequality (2.39) is known as the Lipschitz condition.
These two conditions being satisfied, there exists a unique continuous func-
tion of x, say y(x), defined for all values of x such that |x− x0| < h, which
satisfies the differential equation and reduces to y0 when x = x0.

A proof of this existence theorem will now be given using the method of
successive approximations.

2.3 The method of successive approximations

The classical theory of Analysis shows that there is a strong relation be-
tween differential and integral equations. In fact, most ordinary differential
equations can be expressed as integral equations. The converse though is
not true. Integral equations are one of the most useful mathematical tools.
This is particularly true of problems ranging from both pure and applied
mathematical analysis to engineering and mathematical physics, where they
are not only useful but indispensable even for numerical computations.
Consider the initial value problem

dy

dx
= f(x, y), y(x0) = y0. (2.40)

Suppose that a solution of equation is known and that it reduces to y0 when
x = x0. Then the solution clearly satisfies the relation

y(x) = y0 +

∫ x

x0

f{s, y(s)}ds. (2.41)

Indeed, by integrating both sides of the differential equation (2.40), one
obtains
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∫ x

x0

y′(s)ds =

∫ x

x0

f{s, y(s)}dy. (2.42)

Then applying the Fundamental Theorem of Calculus to the left side of
equation (2.42) yields

∫ x

x0

y′(s)ds = y(x)− y(x0) = y(x)− y0, (2.43)

and we have

y(x)− y0 =

∫ x

x0

f{s, y(s)}ds, (2.44)

which can be arranged into equation (2.41). The initial value problem (2.40)
has been reformulated as an equivalent integral equation. Assuming that the
function y(x) is unknown, the integral equation can be solve by a method
of successive approximation as follows. Observe that the integral equation
(2.41) involves the dependent variable in the integrand, hence y(x) occurs on
both the left- and right-hand side of the equation. We can use this formula
and input y(s) in the integrand f{s, y(s)} on the right, and then output the
next iteration for y(x) on the left side. This is a type of fixed point iteration,
the most familiar form of which is Newton’s method for root finding.
Start the iteration with the initial function y0(s) = y0 and define the next
function y1(x) as

y1(x) = y0 +

∫ x

x0

f{s, y0(s)}dt. (2.45)

Then, y1(x) is used to construct y2(x) as follows

y2(x) = y0 +

∫ x

x0

f{s, y1(s)}dt. (2.46)

The process is repeated until yn(x) has been obtained in the recursive equa-
tion

yn(x) = y0 +

∫ x

x0

f{s, yn−1(s)}dt. (2.47)

Following [33], it will then be proved that
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(i) as n→∞, the sequence of functions yn(x) tends to a limit which is a
continuous function of x,

(ii) the limit-function satisfies the differential equation and the solution
y(x) satisfies the initial condition y(x0) = y0,

(iii) the solution thus defined is the only continuous solution.

To prove (i), it will first be shown by induction that, when x ∈ (x0;x0 + h),
|yn(x)−y0| ≤ b. Suppose that |yn−1(x)−y0| ≤ b. Then, |f{s, yn−1(s)}| ≤M ,
and subsequently

|yn(x)− y0| ≤
∫ x

x0

|f{s, yn−1(s)}|ds

≤ M(x− x0)

≤ Mh

≤ b.

But clearly

|y1(x)− y0| ≤ b. (2.48)

Therefore

|yn(x)− y0| ≤ b, ∀n. (2.49)

It follows that

|f{s, yn(s)}| ≤M, ∀x ∈ (x0;x0 + h). (2.50)

Similarly, it will be shown that

|yn(x)− yn−1(x)| < MKn−1

n!
(x− x0)n. (2.51)

Suppose that when x ∈ [x0;x0 + h]

|yn−1(x)− yn−2(x)| < MKn−2

(n− 1)!
(x− x0)n−1, (2.52)

then
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|yn(x)− yn−1(x)| ≤
∫ x

x0

|f{s, yn−1(s)} − f{s, yn−2(s)}|ds

<

∫ x

x0

K|yn−1(s)− yn−2(s)|ds, (2.53)

by virtue of the Lipschitz condition, so that

|yn(x)− yn−1(x)| <
MKn−1

(n− 1)!

∫ x

x0

|s− x0|n−1ds

=
MKn−1

n!
|x− x0|n. (2.54)

Since the inequality (2.54) is true for n = 1 from inequality (2.48), it is also
true at level n. The same process can be used for x ∈ [x0 − h : x0], and the
inequality (2.54) will hold for |x− x0| ≤ h.
As a result, the series

y0 +

∞∑
n=1

{yn(x)− yn−1(x)} (2.55)

is absolutely and uniformly convergent when |x−x0| ≤ h, and furthermore,
each term is continuous in x. Now, since

yn(x) = y0 +

n∑
n=1

{yn(x)− yn−1(x)}, (2.56)

∀x ∈ (x0 − h;x0 + h) the limit-function

y(x) = lim
n→∞

yn(x) (2.57)

exists and is a continuous function of x. This completes the proof of (i).

(ii) is proved in the following manner

lim
n→∞

yn(x) = y0 + lim
n→∞

∫ x

x0

f{s, yn−1(s)}ds

= y0 +

∫ x

x0

lim
n→∞

f{s, yn−1(s)}ds. (2.58)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. MATHEMATICAL BACKGROUND 32

From equation (2.58), it follows that y(x) is a solution of the integral equa-
tion (2.41). The inversion of the order between the limit and the integral in
equation (2.58) can be explained as follows

∣∣∣∣∫ x

x0

[f{s, y(s)} − f{s, yn−1(s)}] ds
∣∣∣∣ < K

∫ x

x0

|y(s)− yn−1(s)| ds

< Kεn|x− x0|
< Kεnh, (2.59)

where εn is independent of x and approaches zero when n tends to infinity.
Because f{s, y(s)} is continuous for s ∈ [x0 − h;x0 + h]

dy(x)

dx
=

d

dx

∫ x

x0

f{s, y(s)}ds

= f{x, y(x)}. (2.60)

This completes the proof of (ii).

To prove the uniqueness of y(x), consider a solution Y (x) distinct from
y(x) and such that Y (x0) = y0, and continuous for x ∈ (x0;x0 + h′), where
h′ is taken such that

h′ < h

|Y (x)− y0| < b.

Y (x) will also satisfy the integral equation

Y (x) = y0 +

∫ x

x0

f{s, Y (s)}ds, (2.61)

giving

Y (x)− yn(x) =

∫ x

x0

[f{s, Y (s)} − f{s, yn−1(s)}] ds. (2.62)

For n = 1

Y (x)− y1(x) =

∫ x

x0

[f{s, Y (s)} − f{s, y0}] ds, (2.63)

and from the Lipschitz condition
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|Y (x)− y1(x)| < Kk(x− x0). (2.64)

For n = 2

|Y (x)− y2(x)| <

∣∣∣∣∫ x

x0

[f{s, Y (s)} − f{s, y1(s)}] ds
∣∣∣∣

< K

∫ x

x0

|Y (s)− y1(s)|ds

< K

∫ x

x0

Kb(s− x0)ds =
1

2
K2b(x− x0)2. (2.65)

At level n

|Y (x)− yn(x)| < Knb(x− x0)n

n!
, (2.66)

thus

Y (x) = lim
n→∞

yn(x) = y(x), ∀x ∈ (x0;x0 + h). (2.67)

The new solution is therefore identical to the original one. This completes
the proof of (iii).

2.4 Gronwall inequality

We discuss an inequality that will be useful in facilitating the proof of the
uniqueness of solutions of differential equations.

2.4.1 Gronwall Lemma [34]

Let I = [0;α) denote an interval of the real line of the form [0;∞). Let
f, g : [0;α) → [0;∞) be real-valued functions. Assume that f and g are
continuous and let c be a non-negative number. If

f(x) ≤ c+

∫ x

0
g(s)f(s)ds, 0 ≤ x < α, (2.68)

then

f(x) ≤ ce
∫ x
0 g(s)ds, 0 ≤ x < α. (2.69)
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To prove the above statement, suppose first that c > 0. Divide both sides
of inequality (2.68) by

[
c+

∫ x
0 g(s)f(s)ds

]
, and multiply the result by g(x)

to obtain

f(x)g(x)

c+
∫ x

0 g(s)f(s)ds
≤ g(x). (2.70)

Then, integrating from 0 to x yields

ln{
[
c+

∫ x
0 g(s)f(s)ds

]
c

} ≤
∫ x

0
g(s)ds, (2.71)

or

f(x) ≤ c+

∫ x

0
g(s)f(s)ds ≤ ce

∫ x
0 g(s)ds. (2.72)

If c = 0, the limit as c → 0 can be taken through positive values. This
completes the proof.

2.5 On certain methods of successive approxima-
tions

In [35], was discussed a method of successive approximations that led to
some fundamental theorems on the existence of integrals of the differential
equations. In particular, it was noticed that for a linear equation

dmy

dxm
+ P1(x)

dm−1y

dxm−1
+ · · ·+ Pm(x)y = 0, (2.73)

where the functions Pi(x) on an interval I are continuous functions of x, the
method prescribed led to a development in series valid for any value of the
variable x in the domain I where the functions Pi are continuous. In the
next section, we will see how this general idea of successive approximation
can in turn be used, changing the conditions of the problem.

2.6 A general theorem on linear differential equa-
tions that depend on a parameter

Here, the method of successive approximations will be used to show an im-
portant theorem on linear differential equations [36]. Let a linear differential
equation
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dmy

dxm
+ P1(x, k)

dm−1y

dxm−1
+ · · ·+ Pm(x, k)y = 0, (2.74)

whose coefficients depend on parameter k, and are entire functions of the
parameter. Furthermore,the functions Pi(x, k) are x-continuous on an in-
terval I. Then, for x in the interval I, there is a fundamental system of
integrals that are entire functions of k, i.e holomorphic on the whole plane
of the variable k.

To prove this, if yn is a sequence of functions, which as defined in section
2.3 tends to y as n approaches infinity, and we represent yn by the series

yn = y0 + (y1 − y0) + (y2 − y1) + . . .+ (yn − yn−1), (2.75)

each term of the series is an entire function of k, assuming that their initial
values are numeric, i.e independent of k. We consider in the plane of the
variable k, a circle C. We know that for any x in I, and for any k within
the circle C, there exist a fixed number λ such that

|yn − yn−1| <
λn

1 · 2 . . . n
. (2.76)

This means that we have a series

u0 + u1 + · · ·+ un + · · · , (2.77)

whose terms ui are holomorphic functions of k, in the circle C, and that we
furthermore have

|un| <
λn

1 · 2 . . . n
. (2.78)

It is easy to see that the series of terms ui will itself be a holomorphic
function of k in C. We obtain this by the Cauchy formula

un(k) =
1

2πi

∮
C

un(z)

z − k
dz; (2.79)

The series of general term un(z), being uniformly convergent on C, we have

u0(k) + · · ·+ un(k) + · · · = 1

2πi

∮
C

u0(z) + · · ·+ un(z) + · · ·
z − k

dz, (2.80)
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and from there, we immediately deduce that the series of terms u is a holo-
morphic function of k in C, and therefore on the whole plane.
We can conclude by saying that the general solution of (2.74) can be put in
the form

A1u1(x, k) +A2u2(x, k) + · · ·+Anun(x, k), (2.81)

with the functions ui being entire functions of k. This ends the proof.

2.7 Extension of the method of successive approx-
imation to a system of differential equations of
the first-order; vector-matrix notation

2.7.1 A glance at existence and uniqueness

Let a system of differential equations be in the form

dyi
dx

= fi(x, y1, y2, . . . , ym), (2.82)

with i = 1, 2, . . . ,m. If the functions fi are single-valued and continuous
with respect to their m+ 1 arguments in a domain R such that

{R = (x, y1, y2, . . . , yn) : |x− x0
1| ≤ a, |y − y0

2| ≤ b1, . . . , |y − y0
m| ≤ bm},

then there exists a unique set of continuous solutions of this system of equa-
tions which assume given values y0

1, y
0
2, . . . , y

0
m when x = x0. The proof will

just be outlined, as the method is similar to the case of a single first order
differential equation.
Let M be the greatest of the upper bounds of the functions fi in the domain
R. If h is the least of a, b1M , . . . ,

bm
M , let x also satisfy the restriction

|x− x0| ≤ h. (2.83)

Moreover, by virtue of the Lipschitz condition

|fr(x, Y1, Y2, . . . , Ym)− fr(x, y1, y2, . . . , ym)| < K1 |Y1 − y1|+K2|Y2 − y2|
+ · · ·
+ Km|Ym − ym|,

for r = 1, 2, . . . ,m.
Defining the functions yn1 (x), yn2 (x), . . . , ynm(x) by
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ynr (x) = y0
r +

∫ x

x0

fr[s, y
n−1
1 (s), yn−1

2 (s), . . . , yn−1
m (s)]ds, (2.84)

it can be shown by induction that

|ynr (x)− yn−1
r (x)| < M

(K1 +K2 + · · ·+Km)n−1)

n!
|x− x0|n, (2.85)

and the existence, continuity and uniqueness of the set of solutions can be
derived immediately.

2.7.2 Application to linear equations

The preceding results apply in particular to systems of linear equations

dyi
dx

= pi1y1 + pi2y2 + · · ·+ pim + ri, (2.86)

with i = 1, 2, . . . ,m, and where the coefficients pij and ri are functions
of x. If all these functions are continuous functions of x in the interval
a ≤ x ≤ b, the right-hand side of equation (2.86) is likewise continuous
in this interval, and the set of continuous solutions y1(x), y2(x), . . . , ym(x)
exists and is unique in the interval (a, b). Furthermore, if the coefficients
are continuous for all positive and negative values of x, all the solutions are
then continuous when x varies from −∞ to +∞. Such a case is found in
linear equations in which the coefficients are polynomials functions of x.

2.7.3 Vector-matrix notation

We briefly discuss the use of matrix theory in expressing a linear system of
differential equations in a single vector-matrix equation. Consider the the
set of equations (2.86), with an associated set of initial conditions yi(0) = ci
(i = 1, 2, . . . ,m). To study the system, we introduce the vectors Y and Y0,
possessing the components yi and ci respectively, and the matrix M = pij
[37]. It follows that the derivatives of the vector Y can be expressed as

dY

dx
=



dy1

dx
dy2

dx
...

dym
dx


, (2.87)
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and the system of equations can be rewritten as the following initial value
problem

dY

dx
= M(x)Y, Y0 = Y (x = 0) =


c1

c2
...
cm

 . (2.88)

By introducing the (vector) integral equation

Y (x) = Y0 +

∫ x

x0

M(s)Y (s)ds, (2.89)

where the matrix function M(s) is frequently called the Kernel, it can be
demonstrated via the method of successive approximations that there exist
a unique set of solutions to a system of linear differential equations of the
first order, and more importantly to us, that if the coefficients in addition
to being continuous functions of x are also analytic functions of a complex
parameter, then the solutions are also analytic functions of the parameter.

2.8 Norms of matrices

Let A= {ajk} and B= {bjk} be the n by n matrices with respective entries
ajk and bjk at the intersection of the jth row and the kth column (j, k =
1, 2, . . . , n) [38], and consider the space of all matrices Mn. We call the
matrix function ‖·‖ : Mn 7→ R a matrix norm if for all A,B ∈ Mn and
c ∈ C, the following properties are satisfied

(a) ‖A‖ = 0 if and only if A = 0,

(b) If I is the identity matrix, then ‖I‖ = 1,

(c) Let c be a complex scalar. Then ‖cA‖ = |c|‖A‖,

(d) ‖A+B‖ ≤ ‖A‖+ ‖B‖,

(e) ‖AB‖ ≤ ‖A‖‖B‖,

(f) limr→∞Ar = 0 if and only if limr→∞‖Ar‖ = 0.

The norms of A is generally expressed as

‖A‖ = max
j

n∑
k=1

|ajk|, (2.90)
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and likewise for B.
It is worthwhile adding a corresponding definition of the norm of a vector
[38]: Let v be the column vector with components v1, v2,. . ., vn. Then the
norm ‖v‖ is defined by

‖v‖ =
n∑
k=1

|vj |. (2.91)

It has the properties

(g) v = 0 if and only if ‖v‖ = 0,

(h) ‖cv‖ ≤ |c|‖v‖,

(i) ‖v + w‖ ≤ ‖v‖+ ‖w‖,

(j) ‖Av‖ ≤ ‖A‖‖v‖,

(k) Corresponding to any matrix A, there exist nonzero vectors v such
that
‖Av‖ = ‖A‖‖v‖.

We will use the notation ‖·‖ for both vector norm and matrix norm.

2.8.1 An inequality involving norms and integrals

Let f : Rn 7→ Rn be a continuous function. Then

∥∥∥∥∫ b

a
f(x)dx

∥∥∥∥ ≤ ∫ b

a
‖f(x)‖dx (2.92)

To prove this, it can first be noted [39] that

∥∥∥∥∫ b

a
f(x)dx

∥∥∥∥ =

(∥∥∥∥∫ b

a
f1(x)dx

∥∥∥∥, . . . ,∥∥∥∥∫ b

a
fn(x)dx

∥∥∥∥) . (2.93)

Then, using the definition of the Riemann integral for a give component
function fi (i = 1, . . . , n)

∫ b

a
f(x)dx = lim

k→∞

k∑
j=1

fi(x
∗
j )∆xj , (2.94)

with x∗j as the sample point in the interval [xj−1, xj ] with width ∆xj . Hence
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∥∥∥∥∫ b

a
fi(x)dx

∥∥∥∥ =

∥∥∥∥ lim
k→∞

k∑
j=1

fi(x
∗
j )∆xj

∥∥∥∥
= lim

k→∞

∥∥∥∥ k∑
j=1

fi(x
∗
j )∆x

∗
j

∥∥∥∥, (2.95)

since the norm is a continuous function. The result then follows from the
triangle inequality.
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Chapter 3

Analyticity of the functions
Ãl (E, r) and B̃l (E, r)

We start with the system of first order differential equations derived from
the radial Schrödinger equation in the first chapter


∂rÃl(E, r) = −ỹl(E, r)V (r)

[
j̃l(E, r)Ãl(E, r)− ỹl(E, r)B̃l(E, r)

]
∂rB̃l(E, r) = −j̃l(E, r)V (r)

[
j̃l(E, r)Ãl(E, r)− ỹl(E, r)B̃

(
lE, r)

]
,

(3.1)

and for which the coefficients and solutions are single-valued functions of
the energy. The system can be rewritten in the following form


∂rÃ = −ỹV j̃Ã+ ỹV ỹB̃

∂rB̃ = −j̃V j̃Ã+ j̃V ỹB̃,

(3.2)

devoid of arguments. Equation (3.2) can be recast in matrix form

∂r

(
Ã

B̃

)
=

(
−ỹV j̃ ỹV ỹ

−j̃V j̃ j̃V ỹ

)(
Ã

B̃

)
(3.3)

which in turn can be rewritten as

∂r

(
Ã

B̃

)
= M

(
Ã

B̃

)
, (3.4)

or again

X ′ = MX. (3.5)

41
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3.1 Existence and uniqueness

The matrix M being defined and continuous for r ≥ 0, then there exists a
unique solution to the differential equation (3.5). To set the proof, we pro-
ceed in the following way. In place of the differential equation, we consider
the integral equation

X =

(
1
0

)
+

∫ r

0
MXdr′, (3.6)

or more formally

X(E, r) =

(
1
0

)
+

∫ r

0
M(E, r′)X(E, r′)dr′. (3.7)

We then define a sequence of vector-functions {Xn} by

X0 =

(
1
0

)
and Xn = X0 +

∫ r

0
MXn−1dr

′, (3.8)

and we show by induction that each Xn(E, r) is defined for r ≥ 0, and is
continuous. Let m = maxo≤r≤r1 ||M(E, r)||, where ||M(E, r)|| represents
the norm of matrix M(E, r), and consider the series

X0(E, r) +
∞∑
n=1

(Xn(E, r)−Xn−1(E, r)) , (3.9)

whose partial sum is Xn(E, r). We show by induction that

‖Xn(E, r)−Xn−1(E, r)‖ ≤ mnrn

n!
. (3.10)

We start by writing

‖X1 −X0‖ =

∥∥∥∥(1
0

)
+

∫ r

0
M(E, r′)X0dr

′ −
(

1
0

)∥∥∥∥
=

∥∥∥∥∫ r

0
M(E, r′)

(
1
0

)
dr′
∥∥∥∥

≤
∫ r

0

∥∥∥∥M(E, r′)

(
1
0

)∥∥∥∥dr′ = ∫ r

0
‖M(E, r′)‖

∥∥∥∥(1
0

)∥∥∥∥dr′
=

∫ r

0
‖M(E, r′)‖dr′

≤ mr =
m1r1

1!
,
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so that inequality (3.10) is true for n = 1. We then assume the same
inequality to be true at level n, and show that it is therefore also true at
level n+ 1

‖Xn+1 −Xn‖ =

∥∥∥∥[(1
0

)
+

∫ r

0
MXndr

′
]
−
[(

1
0

)
+

∫ r

0
MXn−1dr

′
]∥∥∥∥

=

∥∥∥∥∫ r

0
M (Xn −Xn−1) dr′

∥∥∥∥
≤

∫ r

0
‖M‖‖Xn −Xn−1‖dr′

≤ m

∫ r

0
‖Xn −Xn−1‖dr′,

and from inequality (3.10)

‖Xn+1 −Xn‖ ≤ m
∫ r

0

mnrn

n!
= m

(
1

n+ 1

mnrn+1

n!

)
=

mn+1rn+1

(n+ 1)!
,

as required.
But (mr)n

n! is the typical term of a Taylor series of emr that converges uni-
formly and absolutely on a finite interval. Therefore, (3.9) also converges
uniformly on the interval, to a continuous limit-function, say X(E, r). We
may then take the limit as n→∞ and pass it through the integral obtaining
expression (3.7) by writing

X(E, r) = lim
n→∞

Xn(E, r), (3.11)

so that the limit-function X(E, r) is a solution of the initial value problem.
Since by assumption, M(E, r) is continuous for r ≥ 0, we may take r arbi-
trarily large. We may thus obtain a solution valid for r ≥ 0.
To see that X(E, r) is the only solution, suppose that there are two solu-
tions, say X1(E, r) and X2(E, r), on the finite interval, then from expression
(3.7)

‖X1 −X2‖ =

∥∥∥∥∫ r

0
M(X1 −X2)dr′

∥∥∥∥
≤ m

∫ r

0
‖X1 −X2‖dr′.

This is of the form
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‖X1 −X2‖ ≤ C +

∫ r

0
m‖X1 −X2‖dr′, (3.12)

with C = 0.
By Gronwall inequality

‖X1 −X2‖ ≤ Cemr

= 0, (3.13)

hence

X1 = X2. (3.14)

This completes the proof of the existence and uniqueness of X(E, r).

3.2 Analyticity

We now use the method of successive approximations to show that X is an
analytic function of E . By iteration of equation (3.6), we obtained a formal
series

X(E, r) =
∞∑
n=0

Xn(E, r), (3.15)

where

X0(E, 0) =

(
1
0

)
, (3.16)

and

Xn(E, r) =

∫ r

0
M(E, r′)Xn−1(E, r′)dr′. (3.17)

We consider a circle C in the plane of the variable E . We show by induction
that for any x in an interval I , and for any k within the circle C , we have

‖Xn‖ ≤
[∫ r

0 ‖M‖dr
′]n

n!
. (3.18)
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This is true at level 1. Indeed

X1 =

∫ r

0
MX0dr′ =

∫ r

0
M

(
1
0

)
dr′. (3.19)

If follows that

‖X1‖ =

∥∥∥∥∥
∫ r

0
M

(
1
0

)
dr′

∥∥∥∥∥ ≤
∫ r

0

∥∥∥∥∥M
(

1
0

)∥∥∥∥∥dr′

=

∫ r

0
‖M‖

∥∥∥∥∥
(

1
0

)∥∥∥∥∥dr′

=

∫ r

0
‖M‖dr′, (3.20)

and therefore

‖X1‖ ≤
[∫ r

0 ‖M‖dr
′]1

1!
. (3.21)

We then assume inequality (3.18) true at level n, and we show that it is also
true at level n+1. From

Xn+1(E, r) =

∫ r

0
M(E, r′)Xn(E, r′)dr′, (3.22)

Follows

‖Xn+1‖ =

∥∥∥∥∥
∫ r

0
MXndr′

∥∥∥∥∥ ≤
∫ r

0

∥∥∥∥∥MXn

∥∥∥∥∥dr′

≤
∫ r

0
‖M‖

[∫ r′
0 ‖M‖dr

′′
]n

n!
dr′

=
1

n!

∫ r

0
‖M‖

[∫ r′

0
‖M‖dr′′

]n
dr′

=

[∫ r′
0 ‖M‖dr

′′
]n+1

(n+ 1)!
. (3.23)

Hence, Xn converges absolutely in the interval I , and in the circle C . It is
easy to see that the series of terms Xn will be a holomorphic function of E
in C . We obtain this by making use of the Cauchy formula
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Xn(E) =
1

2πi

∮
C

Xn(r)

r − E
dr, (3.24)

for any complex variable r .
The series of general terms Xn(r) being uniformly convergent on C , we will
obtain

X0(E) +X1(E) + . . .+Xn(E) =
1

2πi

∮
C

X0(r) +X1(r) + . . .+Xn(r)

r − E
dr,

(3.25)

and from there, we immediately deduce that the series

∞∑
n=0

Xn, (3.26)

is a holomorphic function of E in C and therefore in the whole plane by
using the principle of analytic continuation along a path.
We conclude by saying that the solutions Al (E , r) and Bl (E , r) can be ex-
panded in the form

Ãl(E, r) =
∞∑
n=0

α(E, r)(E − E0)n (3.27)

B̃l(E, r) =

∞∑
n=0

β(E, r)(E − E0)n. (3.28)
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Chapter 4

Analyticity of the functions
Ãl (E,∞) and B̃l (E,∞)

So far, we have established that the solutions of equation (1.43), namely
Ãl(E, r) and B̃l(E, r), are entire (analytic single-valued) functions of the
complex variable E only for finite values of the variable r. But we ought to
remember that in order to establish the analytic properties of the Jost func-
tions, we must also and in particular, consider what happens asymptotically,
i.e when r approaches infinity.

4.1 Asymptotics of the Ricatti-Bessel and of the
Ricatti-Neumann functions

The Ricatti-Hankel asymptotics are expressed in the following form

h
(±)
l (kr)

|kr|→∞−−−−−→ ∓ie[±i(kr∓l
π
2 )]. (4.1)

Recalling the Ricatti-Hankel functions as a linear combination of the Ricatti-
Bessel and of the Ricatti-Neumann, it is possible to obtain the two latter in
terms of the Ricatti-Hankel functions. The Ricatti-Hankel function reads

h
(±)
l (kr) = jl(kr)± iyl(kr). (4.2)

From equation (4.2), it is easy to write the Ricatti-Bessel functions as

jl(kr) =
h(+)(kr) + h(−)(kr)

2
, (4.3)

and the Ricatti-Neumann functions as

47
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yl(kr) =
h(+)(kr)− h(−)(kr)

2i
. (4.4)

Inserting equation (4.1) into the latter expressions of the Ricatti-Bessel and
of the Ricatti-Neumann functions will yield their respective asymptotics.
The Ricatti-Bessel asymptotics are found by writing

jl(kr)
|kr|→∞−−−−−→ −ie

(+ikr−ilπ
2 ) + ie(−ikr+il

π
2 )

2
(4.5)

which after some algebraic manipulation results into

jl(kr)
|kr|→∞−−−−−→ 1

2i

(
eikr(−i)l − e−ikr(i)l

)
(4.6)

Similarly, the Ricatti-Neumann asymptotics are found by writing

yl(kr)
|kr|→∞−−−−−→ −ie

(+ikr−ilπ
2 ) − ie(−ikr+il

π
2 )

2i
, (4.7)

which in turn gives

yl(kr)
|kr|→∞−−−−−→ −1

2

(
eikr(−i)l + e−ikr(i)l

)
. (4.8)

4.2 The integral equation and its Kernel

The integral equation that is solution of equation (3.5) is of the form

X(E, r) =

(
1
0

)
+

∫ r

0
M(E, r′)X(E, r′)dr′, (4.9)

where the matrix M(E, r′) is the kernel of the integral equation. For solu-
tions of equation (3.5) to exist, the kernel must be finite. It is expressed in
the following matrix form

M(E, r) =

(
ỹV j̃ ỹV ỹ

−j̃V j̃ j̃V ỹ

)
, (4.10)

with

ỹ = kly and j̃ = k−(l+1)j. (4.11)
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For the class of potential (exponential) we are working with, the determina-
tion of the expression of the different entries of the matrix M asymptotically
gives

−ỹV j̃ = −
{[
−
(
eikr(−i)l + e−ikr(i)l

2

)] [
e−λr

] [eikr(−i)l − e−ikr(i)l
2i

]}
=

(−1)l

4i

[
e(2ik−λ)r − e−(2ik+λ)r

]
, (4.12)

ỹV ỹ =

{[
−
(
eikr(−i)l + e−ikr(i)l

2

)] [
e−λr

] [
−
(
eikr(−i)l + e−ikr(i)l

2i

)]}
=

1

4

[
e(2ik−λ)r(−1)l + e−(2ik+λ)r(−1)l + 2e−λr

]
, (4.13)

−j̃V j̃ = −
{[
−
(
eikr(−i)l − e−ikr(i)l

2i

)] [
e−λr

] [(eikr(−i)l − e−ikr(i)l
2i

)]}
=

1

4

[
e(2ik−λ)r(−1)l + e−(2ik+λ)r(−1)l − 2e−λr

]
, (4.14)

−j̃V ỹ = −
{[
−
(
eikr(−i)l − e−ikr(i)l

2i

)] [
e−λr

] [
−
(
eikr(−i)l + e−ikr(i)l

2i

)]}
= −(−1)l

4i

[
e(2ik−λ)r − e−(2ik+λ)r

]
, (4.15)

4.3 Restriction on the Kernel

The behaviour of the matrix M(E, r) when the variable r approaches infinity
is dictated by the functions e(2ik−λ)r and e−(2ik+λ)r. For these functions and
for the matrix to be finite, we must have

Re(2ik− λ) < 0 and Re(2ik + λ) > 0. (4.16)

Let k be a complex number that can be written in the form

k = u+ iv. (4.17)

Then

e(2ik−λ)r = e[2i(u+iv)−λ]r

= e2iure−(2v+λ)r, (4.18)
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and

e−(2ik+λ)r = e−[2i(u+iv)+λ]r

= e−2iure(2v−λ)r. (4.19)

Hence, from equation (4.18), for the matrix to be finite, we must have the
following restriction

2v + λ > 0, (4.20)

or again

v >
−λ
2
, (4.21)

and from equation (4.19), we must have

2v − λ < 0, (4.22)

or again

v <
λ

2
. (4.23)

v being the imaginary part of k , from the latter two inequalities comes

|Imk| < λ

2
, (4.24)

or also

(Imk)2 <
λ2

4
. (4.25)

It is also known that

k = ±
√

2µE

~2
, (4.26)

which gives

k2 =
2µE

~2
. (4.27)
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If E is a complex number that can be written as E = x+ iy, then

(u+ iv)2 =
2µ

~2
(x+ iy), (4.28)

which in turn gives

(
u2 − v2

)
+ 2iuv =

2µ

~2
(x+ iy). (4.29)

By identification, the real part and the complex part in the above equation
give


u2 − v2 = 2µ

h2
x

2uv = 2µ
h2
y.

(4.30)

From the second equation of the system (4.30)

u =
µ

~2

y

v
, (4.31)

which leads to

u2 =
( µ
~2

)2 y2

v2
. (4.32)

Then in the first equation of the system (4.30)

( µ
~2

)2 y2

v2
− v2 =

(
2µ

~2

)
x( µ

~2

)2 y2

v2
=

(
2µ

~2

)
x+ v2

y2 =

(
2µ
~2

)
( µ
~2
)2xv2 +

1( µ
~2
)2 v4

y2 =
2~2

µ
v2x+

~4

µ2
v4. (4.33)

Previously, it was established that

(Imk)2 <
λ2

4
, (4.34)
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which also gives

(Imk)4 <
λ4

16
. (4.35)

This leads to the following set of inequalities

(Imk)2 <
λ2

4
(Imk)4 <

λ4

16

v2 <
λ2

4
v4 <

λ4

16
2~2

µ
xv2 <

~2

2µ
xλ2 ~4

µ2
v4 <

~4

16µ2
λ4 (4.36)

From the set of inequalities (4.36), we can write

2~2

µ
v2x+

~4

µ2
v4 <

~2λ2

2µ
x+

~4λ4

16µ2
. (4.37)

This allows us to write

y2 <

(
~2λ2

2µ

)
x+

~4λ4

16µ2
, (4.38)

or again

(ImE)2 <

(
~2λ2

2µ

)
(ReE) +

~4λ4

16µ2
. (4.39)

The inequality is sketched below in the complex E -plane as the shadded
area inside the parabolic region.
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Re E

−4

−3

−2

−1

0

1

2

3

4
Im E

Figure 4.1: Region of analyticity defined by inequality (4.39). The functions
Ãl(E,∞) and B̃l(E,∞) are holomorphic inside the parabolic region. The

parabola crosses the real axis at E=−~2λ2
8µ .
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Chapter 5

Conclusion

A novel theory on the Jost functions was developed recently. The origi-
nality of the theory is that on one hand it allows for an exact and unified
treatment of all bound, scattering and resonant states whereas by the past
these different states had to be treated separately. On the other hand, the
Jost function had for a long time been regarded as mathematical entities
without practical use. The perception changed after the advent of this new
method...
The development of the theory was based on the derivation of a system of
two ordinary linear differential equations of order one which is equivalent
to the Schrödinger equation. The system of equation was derived using a
method known as the variation of parameters, from an expression of the
solution of the radial Schrödinger equation, in which the coefficients of the
solutions are functions of the energy and of r at finite values of r, and be-
come functions of the energy only when r tends to infinity. These functions
of the energy when r tends to infinity are the Jost functions.
However, the new method is based on a power series expansion of the Jost
function. This implies that the latter must be analytic single-valued. Since it
is not the case of the Jost functions, they were split into two parts, one that
has factors responsible for all branching points, the other one containing
single-valued valued functions of the energy. Conveniently, the factorized
part was cancelled in the system of differential equations, leaving it with
only the single-valued functions of the energy.
In the present work, we used the method of successive approximations to
show that the functions in the system of differential equations are analytic
functions of the energy. We firstly established the existence and the unique-
ness of these functions in the set of linear differential equations for finite
values of r, and then showed their analyticity. These properties were there-
after extended to the asymptotic case. In contrast with the case of finite
values of r where the functions are analytic on the whole complex plane,
it was interesting to observe that asymptotically, the functions of the dif-
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ferential equations are analytic on a specific portion of the complex plane.
Finally, the domain of analyticity of these functions was explicitly deter-
mined.
Note should be taken that we worked with a certain class of potential, short-
range potentials. As another case of study, it would then be interesting to
see how well the theory holds with a different type of potential...
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édition, Paris, 1905.
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