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ABSTRACT  

 

Subadult age estimation is considered the most accurate parameter estimated in a 

subadult biological profile, even though the methods are deficient and the samples from which 

they are based are inappropriate. The current study addresses the problems that plague subadult 

age estimation and creates age estimation models from diaphyseal dimensions of modern 

children. 

The sample included 1,310 males and females between the ages of birth and 12 years. 

Eighteen diaphyseal length and breadth measurements were obtained from Lodox Statscan 

radiographic images generated at two institutions in Cape Town, South Africa between 2007 and 

2012. Univariate and multivariate age estimation models were created using multivariate 

adaptive regression splines (MARS). K-fold cross-validated 95% prediction intervals (PIs) were 

created for each model and the precision of each model was assessed. 
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The diaphyseal length models generated the narrowest PIs (two months to six years) for 

all univariate models. The majority of multivariate models had PIs that ranged from three months 

to five and six years. Mean bias approximated zero for each model, but most models lost 

precision after 10 years of age. While univariate diaphyseal length models are recommended for 

younger children, multivariate models are recommended for older children where the inclusion 

of more variables minimized the size of the prediction intervals. If diaphyseal lengths are not 

available, multivariate breadth models are recommended. The present study provides applicable 

age estimation formulae and explores the advantages and disadvantages of different subadult age 

estimation models using diaphyseal dimensions.  

Keywords: age estimation; radiographs; diaphyseal lengths; diaphyseal breadths, juvenile  

 

Age is often the sole parameter estimated by an anthropologist for a subadult biological 

profile. In contrast to adult age estimation, which is based on degenerative patterns, subadult age 

estimation is based on morphological and metric evaluation of indicators associated with growth 

and development. Dental development is considered the most accurate age indicator, but when 

dentition is unavailable, anthropologists often utilize long bone lengths (Ubelaker, 1987; 

Cardoso, 2007; Saunders, 2008; Franklin, 2010; Cardoso et al., 2013). However, nearly all age 

estimation methods based on diaphyseal lengths suffer from numerous problems that affect both 

the ability to estimate age and the accuracy of the age estimation. The errors in age estimation 

can be grouped into two categories, misapplication and the use of inappropriate samples.  

Misapplication is a two-fold problem: (1) the failure to provide prediction intervals for an 

estimated age and (2) the difficulties in estimating age when diaphyses are present but the length 

measurements are unavailable. According to a 2009 survey of board certified forensic 
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anthropologists, the most common method to estimate age in subadult remains, when the 

dentition is not available, is to measure diaphyseal lengths and compare these to growth charts 

from longitudinal studies. Thus, one of the fundamental reasons for misapplication is the 

difference between research designs. Biological anthropologists use growth studies designed to 

assess diaphyseal lengths for known age and sex in normal children. Therefore, results were 

presented as percentiles, which documented normal variation in diaphyseal lengths. In contrast, 

biological anthropologists and bioarchaeologists estimate age given diaphyseal length and 

provide a prediction interval. One repercussion of different research designs is the lack of a 

prediction interval (PI), which fails to meet Daubert criteria. Daubert emphasizes scientifically 

tested methods with quantifiable findings (Dirkmaat et al., 2008; Christensen and Crowder, 

2009; Ousley and Hollinger, 2009). Thus, methods are required to have a known error rate to be 

considered admissible scientific evidence (Melnick, 2005). 

A PI provides bounds with an associated probability in which future observations should 

fall. For example, 95% prediction intervals should encompass the true age of the deceased 95% 

of the time; an error rate of 5% is associated with such an age estimate. Most of the original 

publications of longitudinal growth studies (i.e. Ghantus, 1951; Anderson et al.81, 1964; Maresh, 

1970; Gindhart, 1973) allow for the derivation of an 80% PI by using the 10
th

 and 90
th

 

percentiles. However, the 80% PI reflects the range of variation of diaphyseal lengths per age 

and not the variation in age per diaphyseal length; consequently, it cannot be used to estimate 

age. 

While recent studies (i.e. Rissech et al., 2008, 2013; López-Costas et al., 2012; Cardoso 

et al., 2013) were designed to estimate age from long bone lengths, the authors only provided 

regression formulae with the standard error (SE) and R-squared values. Providing a SE implies 
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that the variation in diaphyseal dimensions is constant through all ages, even though variation in 

diaphyseal dimensions is known to increase with age. López-Costas et al. (2012) recommended 

the SEs should not be used until the remains are estimated to be approximately 8 years of age, 

thus the authors acknowledged the inability of the SE to capture variation in the younger 

individuals. The variation in diaphyseal lengths continues to increase after 8 years of age, so the 

SEs will only be valid at 8 years of age, not before or after.  

The second component to misapplication is the difficulty of estimating age if long bone 

length measurements are unavailable. Anthropologists routinely suggest using more than one 

indicator to estimate age in adults, as using more indicators usually yields a more accurate 

estimate (McKern and Stewart, 1957; Boldsen et al., 2002; Buckberry and Chamberlain, 2002; 

Uhl and Nawrocki, 2010). However, longitudinal growth studies and recent anthropological 

studies have only provided univariate assessments with no attempt to evaluate a multivariate 

approach for subadult age estimation. Furthermore, anthropologists regularly analyze skeletal 

material that has been affected by taphonomic processes (e.g. carnivore activity) (Cunningham et 

al., 2011; Pokines, 2014), which affect the anthropologists’ ability to estimate age from 

diaphyseal length measurements. An age method based solely on length measurements is 

problematic and speaks to the need for the inclusion of breadth measurements and a multivariate 

approach. Currently, only a few breadth measurements on the humerus, tibia and femur have 

been considered for age estimation (Rissech et al., 2008, 2013; López-Costas et al., 2012).  

Additional errors are compounded in age estimations when the reference samples are 

inappropriate. Skeletal collections that are available for analysis have birth dates that extend 

from the 18
th

 century to the mid 20
th

 century. Formulae derived from the historical samples are 

applicable in a bioarchaeological setting, but the application of the proposed formulae to modern 
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populations ignores the well-documented worldwide secular increase in childhood stature 

(Meredith, 1976; Eveleth and Tanner, 1990; Bogin, 1999; Freedman DS et al., 2000; Loesch et 

al., 2000; Malina, 2004; Marques-Vidal et al., 2008; Hawley et al., 2009; Anholts, 2013). 

Furthermore, populations vary in stature and proportions, which drastically affects the accuracy 

of age estimates. Inaccuracies due to population differences have been previously presented by 

Stull et al. (2013a) and Hoffman (1979). The authors identified differences between 30 mm and 

60 mm when the long bones of modern South Africans and Eskimos, respectively, were 

compared to middle class white North American children born in the mid 1900’s (Hoffman, 

1979; Stull et al., 2013a). To ensure the highest accuracy in age estimates, formulae should only 

be used on populations from which they were derived. 

In the 2009 survey, Maresh (1970) was noted as the most frequently used ―method‖ when 

anthropologists evaluate subadult material. However, three reference samples, with differences 

in temporality and/or demographic composition, have demonstrated the inaccuracies of the 

Maresh "method" (Stull et al., 2008, 2013a). An 80% age interval for the Maresh results was 

derived by choosing upper and lower limits based on the maximum length of the long bone 

falling between the provided 10
th

 and 90
th

 percentiles. The percentage of times the Maresh 

estimated age interval was correct was used to quantify the accuracy. Using the 80% Maresh 

interval resulted in a 57% accuracy for a modern sample of North American children between 

birth and one year (Stull et al., 2008); a 22% accuracy for a modern sample of South African 

children between birth and 12 years; and 41% accuracy for a historic sample of South African 

children between birth and 12 years (Stull et al., 2013a). 

Overall, longitudinal studies do not capture as much variation in a population compared 

to cross-sectional studies. The growth patterns of children sampled in a longitudinal study will 
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seem more homogeneous than they actually are because of autocorrelation. When children are 

measured repeatedly, each child’s measurements are correlated to other measurements close in 

time, which violates assumptions of independent errors (Bock and du Toit 2004). Data heaping is 

an additional consequence of longitudinal study designs and further reduces variation per age 

(Bock and du Toit, 2004). As a result, the variability in diaphyseal measurements is far greater 

among children randomly sampled from a population in a cross-sectional study than the same 

children repeatedly sampled in a longitudinal. Ultimately, cross-sectional data is better suited for 

estimating age while longitudinal data is better suited for evaluating growth (Eveleth and Tanner, 

1990; Ousley, 2013).  

The availability of appropriate modern skeletal samples is the most significant 

impediment in anthropological research of modern subadults. Suitable samples require a large 

number of known-age individuals to adequately capture the variation in the population and make 

meaningful statistical statements (Konigsberg and Holman, 1999). Although radiographic images 

routinely generated at hospitals and morgues can account for the paucity of modern skeletons in 

collections, conventional radiography generates distorted images that limit the collection of 

measurements. In contrast, a radiographic system that generates images with minimal distortion, 

such as Lodox Statscan, would be ideal for metric data collection.  

 The purpose of this study is to provide an age estimation technique that addresses the 

problems associated with previous studies. The current study incorporates a large, cross-sectional 

modern sample, a large number of measurements collected on all six long bones from Lodox 

Statscan radiographic images, and univariate and multivariate models that permit the creation of 

95% PIs. 
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Table 1 – Samples sizes by age, sex and institution. 

Age 

(years) 

 Red Cross  Salt River  
Combined 

 Females Males  Females Males  

0  6 9  23 22  60 

1  22 30  10 13  75 

2  27 68  8 17  120 

3  40 64  12 10  126 

4  39 53  11 5  108 

5  33 66  4 5  108 

6  39 68  1 2  110 

7  42 68  1 4  115 

8  46 60  0 3  109 

9  41 57  0 4  102 

10  34 64  1 2  101 

11  43 62  0 3  108 

12  21 43  2 2  68 

Total  433 712  73 92  1310 

 

MATERIALS AND METHODS 

 

Lodox Statscan (www.lodox.com) radiographic images of 1,310 South African children 

aged between birth and 12 years comprised the sample (Table 1). Birth dates of the children were 

all after 1996. The images were generated at the Red Cross War Memorial Children’s Hospital 

(Red Cross) and the Salt River Forensic Pathology Service (Salt River) in Cape Town, South 

Africa between 2007 and 2012. The Red Cross sample contributed the most to the total sample 

(87%), but the individuals were largely between the ages of four and 12 years. The Salt River 

sample contributed less overall, but contained more individuals of younger age. Overall, the 

sample had a generally equal number of individuals throughout all age ranges with the smallest 

sample sizes in the two youngest age intervals and the oldest age interval. Age intervals were 

based on chronological age, which was calculated from date of birth and date of death or date of 

imaging; individuals aged between 1.00 and 1.99 years formed the 1 year olds, aged between 

2.00 and 2.99 years formed the 2 year olds, and so on. 
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More males (n=804) than females (n=506) are present in the sample because each 

institution reported more males than females being examined annually (Douglas et al., 2010; 

Groenewald et al., 2011). The Salt River sample had known ancestry, but the Red Cross sample 

did not. Because South Africans self-identify with factors such as religion, language, and region 

(Christopher, 2002; Treiman, 2007), these variables were used to estimate ancestry in the Red 

Cross sample. Of the 54% with known or estimated ancestry, black South Africans were the 

most prevalent group (60%), coloured South Africans were the next largest group (39%) and 

white South Africans were the least prevalent with only seven individuals. Coloured South 

Africans are a self-identified group unique to South Africa that is recognized as the most 

genetically admixed population in the world, containing numerous intra-and inter-continental 

genetic contributions (Patterson et al., 2010; Statistics South Africa, 2012; Petersen et al., 2013). 

The frequency of coloured South Africans is higher and the frequency of black and white South 

Africans is lower in the current sample compared to the frequencies for the entire country 

because of data collection in the Western Cape Province and difficulties in the estimation of 

ancestry from demographic variables (Statistics South Africa, 2012). 

Eighteen measurements were collected from the six long bones from each image with 

custom software designed for Lodox (Diagnostic Viewing Software) (Table 2). Length and 

breadth measurement definitions were modified from fetal osteology or from adult postcranial 

standard measurements (Fazekas and Kósa, 1978; Moore-Jansen et al., 1994). Written definitions 

with images can be found in the supplemental material online (Table S1, Figures S1 – S8). 

Measurements were only recorded when the bone was in anatomical position and from the side 

of the body that would yield the least distortion, which were generally measurements in the scan  
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Table 2 – The measurements and associated abbreviations. 

Humerus diaphyseal length HDL  Radius midshaft breadth RMSB 

Humerus proximal breadth HPB  Femur diaphyseal breadth FDL 

Humerus distal breadth HDB  Femur distal breadth FDB 

Humerus midshaft breadth HMSB  Femur midshaft breadth FMSB 

Ulna diaphyseal length UDL  Tibia diaphyseal length TDL 

Ulna midshaft breadth UMSB  Tibia proximal breadth TPB 

Radius diaphyseal length RDL  Tibia distal breadth TDB 

Radius proximal breadth RPB  Tibia midshaft breadth TMSB 

Radius distal breadth RDB  Fibula diaphyseal length FBDL 
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direction, or y-axis (see below) (Stull et al., 2013b). If both left and right-sided elements were in 

proper position then measurements were collected from the left-sided elements.  

Lodox Statscan 

The Lodox Statscan (Lodox Systems Pty [Ltd] Sandton, South Africa) is a full body, fast 

acquisition radiographic device that was initially designed in South Africa for the diamond 

mining industry (Knobel et al., 2006; Evangelopoulos et al., 2009; Douglas et al., 2010). The 

slot-scanning design offers the ability to generate images with minimal distortion because the X-

ray source is projected through a collimated fan-beam onto a detector, which moves in 

synchrony over the patient. Although distortion still exists, it is minimal in comparison to 

distortion generated by conventional radiography machines. Percent agreement between 

measurements collected on the dry bone and the Lodox Statscan-generated images of the dry 

bone was reported at 97% at the +/- 2 mm level (Stull et al., 2013b). Furthermore, average 

differences between skeletal measurements collected from Lodox Statscan radiographic images 

and the original skeletal material were 0.5% for y-axis measurements (i.e. lengths) and 4% for x-

axis measurements (i.e. breadths) (Stull, 2013). Differences were comparable to differences 

between measurements obtained on computed tomography images and dry bone, error rates 

noted in prospective growth studies that had controlled radiographic settings, and intra- and 

inter-observer error rates on dry bone (Green et al., 1946; Maresh, 1955; Gindhart, 1973; 

Hoffman, 1979; Stull et al., 2014).  

Statistical analysis 

Fifteen individuals were randomly selected from the entire sample to estimate the intra- 

and inter-observer error. The number of measurement comparisons was 152 for the intra-

observer error and 149 for the inter-observer error. The intra- and inter-observer errors were 
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assessed with technical error of measurement (TEM), relative technical error of measurement 

(%TEM), and Bland-Altman plots (Bland and Altman, 1986; Ulijaszek and Kerr, 1999; Goto and 

Mascie-Taylor, 2007). 

Scatterplots of age regressed on a measurement were plotted with loess (locally smoothed 

regression) lines to visualize relationships. Loess uses locally weighted polynomial regression to 

fit a smoothed curve through data without making assumptions about the form of the 

relationship. Based on the graphs, the relationship between age and postcraniometric variables 

was nonlinear and reflective of a biological growth curve. Multivariate adaptive regression 

splines (MARS) was used, with age as the response variable (y) and the measurement(s) as the 

predictor variable(s) (x(i)), to adequately model the nonlinear relationships. Because subadult sex 

estimation is problematic, and the authors did not want to incorporate any compounded errors in 

the age estimates, the sexes were pooled for all models.  

Univariate age-at-death MARS models were created for each measurement. Additionally, 

multivariate subsets of the data were created to demonstrate the potential utility and benefits of 

multivariate models. Multivariate subsets included bone subsets, similar measurement subsets, 

and an all measurement subset (Table 3). Two sets of variables existed for each multivariate 

subset, the original measurements and the principal component (PC) scores from the variance-

covariance matrix. The principal component analysis (PCA) removed high inter-variable 

correlations, which affects the ability of MARS to recognize important variables. Because PCA 

was used to remove multicollinearity and not to reduce dimensionality, all PCs were retained 

regardless of the proportion of variance. Three models were created and compared for each 

variable or multivariate subset to find the fit with the smallest residual standard error; the models 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 – Measurements included in each multivariate subset. 

 n Variables 

Humerus 497 HDL, HPB, HDB, HMSB 

Radius 281 RDL, RPB, RDB, RMSB 

Ulna 400 UDL, UMSB 

Femur 778 FDL, FDB, FMSB 

Tibia 521 TDL, TPB, TDB, TMSB 

Upper Limbs 96 
HDL, HPB, HDB, RDL, RPB, RDB, RMSB, 

UDL, UMSB 

Lower Limbs 458 
FDL, FDB, FMSB, TDL, TPB, TDB, TMSB, 

FBDL 

Proximal 

Elements 
316 HDL, HPB, HDB, HMSB, FDL, FDB, FMSB 

Distal Elements 100 
RDL, RPB, RDB, RMSB, UDL, UMSB, TDL, 

TPB, TDB, TMSB, FBDL 

All Measurement 157 
HDL, HPB, HDB, HMSB, UDL, RDL, FDL, 

FDB, FMSB, TDL, TPB, TDB, TMSB, FBDL* 

*Some variables were excluded to retain a large sample size 
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included age without a transformation, age with a square root (sqrt) transformation, and age with 

a cubed root (cbrt) transformation. 

The 95% PIs of each observation for each measurement were based on the spread of the 

predictions made on the out-of-fold (see below) data for each univariate model. The residuals 

and chronological age were plotted with loess lines to determine the precision (i.e. bias) of each 

model. In order to test the accuracy of the PIs, k-fold cross-validation was used. The authors 

acknowledge that testing the derived 95% PIs on the sample that created the intervals produces 

overly optimistic results. 

 

Multivariate adaptive regression splines (MARS). Multivariate adaptive regression splines is a 

flexible, nonparametric regression modeling technique that requires no assumptions about the 

relationships among the variables (Friedman, 1991; De Veaux and Ungar, 1994; Butte et al., 

2010). Linear regression, truncated basis functions, and binary recursive partitioning are 

incorporated into MARS to approximate the underlying function and model relationships 

(Muñoz and Felicísimo, 2004). The ultimate goal of MARS is to identify the basis function, f(X), 

which is estimated by subdividing X into regions and obtaining estimates of f(X) for each region 

(Friedman, 1991; Sekulic and Kowalski, 1992). Piecewise linear basis functions are conducted 

for each predictor variable (x) and every possible value of t and take the form of a constant, a 

hinge function, or a combination of hinge functions. Hinge functions take the form:  

  

The knot, t, forms a reflected pair for each predictor variable and represents a change in slope or 
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transition between polynomials (Friedman, 1991; Sekulic and Kowalski, 1992; Muñoz and 

Felicísimo, 2004; Hastie et al., 2009; Butte et al., 2010). The hinge function that results in a 

positive value is used. For example, if hinge functions for a model are (HDL – 222) and (222 – 

HDL), the change in slope is at 222 mm and the first hinge function is used if the diaphyseal 

length is greater than 222 mm and the second hinge function is used if the diaphyseal length is 

smaller than 222 mm.  

Forward and backward iterative selection constructs a set of basis functions for the final 

MARS model (Friedman, 1991, 1993). The forward pass deliberately overfits the training data 

and the backward pruning pass removes excess basis functions that no longer contribute to the 

accuracy of the fit, which is based on the generalized criterion value (GCV). The GCV is an 

approximation of the prediction error ascertained by leave-one-out cross-validation (Friedman, 

1991, 1993; Milborrow, 2013). The knot and variable that provides the best fit are retained in the 

model and the coefficients for each function are estimated by minimizing the residual sum of 

squares (RSS) (Friedman, 1991; Sekulic and Kowalski, 1992; De Veaux and Ungar, 1994; Hastie 

et al., 2009).  

Multivariate adaptive regression splines models were built through k-fold cross-

validation. K-fold cross-validation separates the data into K equal sized parts. The model is fit 

with the K – 1 parts and the prediction error of the fitted model is calculated when predicting the 

k
th

 part, or the out-of-fold data (Efron and Tibshirani, 1993; Kohavi, 1995; Hastie et al., 2009). 

The process is conducted for k = 1, 2, … K and the prediction error is averaged across all out-of-

fold predictions. The current study uses K = 10 because it allows for a lower variance, but a 

possibly higher bias; however, this bias is alleviated if the training sample has at least 100 

observations (Efron and Tibshirani, 1993). Each training set will be a different size because the 
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dataset specific to each variable is different; the largest univariate samples (i.e. HDL, FDL) have 

training sets with more than 100 observations though all of the univariate breadths and 

multivariate samples will not. The out-of-fold R-squared is averaged (cross-validated R
2
) from 

the left-out subset, which is an estimate of the model performance on independent data (Efron 

and Tibshirani, 1993; Hastie et al., 2009; Milborrow, 2013). The generalized R-squared (GRSq) 

is based on the raw GCV and is a generalization of model performance. Adding terms (or hinge 

functions) generally always increases the R-squared statistic, but the GRSq may actually 

decrease because of the reduction of predictive powers (Milborrow, 2013). Additional 

information on MARS can be found in Friedman (1991) and Hastie et al. (2009). The earth 

package in R was used to create the MARS models (Milborrow, 2013; R Core Team, 2013).  

 

K-fold cross-validated prediction intervals.   K-fold cross-validated 95% PIs were created 

for each model to quantify prediction accuracy (Melnick, 2005; Dirkmaat et al., 2008). Gaussian 

PIs were inappropriate because MARS models are nonparametric. The primary difference 

between a k-fold cross-validated PI and a classic parametric PI is how the variance of the 

predicted values is estimated. With resampling, the average variance of predicted values of the 

out-of-fold samples is calculated from 100 iterations of the k-fold cross-validated (K = 10) 

training models. Overall, cross-validation supplies a realistic estimate of prediction error because 

the average error is estimated from a sample that is different from the sample that created the 

models (Efron and Tibshirani, 1993). Additional details on cross-validation can be found in 

Efron and Tibshirani (1993) and Hastie et al. (2009).  
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RESULTS 

 The mean intra-observer TEM and %TEM are small at 0.45 mm and 0.22%, respectively 

(Table 4). The mean inter-observer TEM and %TEM were slightly larger at 0.76 mm and 0.40%, 

respectively (Table 4). The measurements with the highest inter-observer %TEM were midshaft 

breadths of the ulna and radius whereas the measurements with the highest intra-observer %TEM 

were the ulna midshaft breadth and radius proximal breadth. Neither the intra-observer error nor 

the inter-observer error showed systematic bias on the Bland-Altman plots. Most intra-observer 

and inter-observer measurement differences were within 2 mm (Figure 1). However, the spread 

of differences was larger for the inter-observer error than the spread of differences for the intra-

observer error.  

 

Fig. 1. Bland–Altman plots that illustrate the intraobserver error (left) and interobserver error (right). 

 

Univariate models 

Means, standard deviations and sample sizes for each measurement per age can be found 

in the supplemental material (Tables S2 – S7). The six diaphyseal lengths resulted with the 

smallest SEs and narrowest PIs, ranging from two months to five or six years (Table 5). Four of 



 

Table 4 – TEM and %TEM for inter-observer error and intra-

observer error. 

 

Inter-observer  

Error 
 Intra-observer  

Error 

TEM %TEM  TEM %TEM 

HDL 1.68 0.08  0.66 0.04 

HPB 0.80 0.24  0.63 0.22 

HDB 0.68 0.58  0.24 0.16 

HMSB 0.30 0.22  0.29 0.20 

UMXL 1.18 0.10  0.91 0.07 

UMSB 0.66 1.92  0.30 0.84 

RDL 1.15 0.06  0.35 0.02 

RPB 0.23 0.49  0.26 0.75 

RDB 0.02 0.04  0.25 0.44 

RMSB 0.79 2.27  0.19 0.52 

FDL 1.58 0.06  0.91 0.03 

FDB 0.62 0.13  0.65 0.19 

FMSB 0.15 0.09  0.16 0.12 

TDL 0.87 0.06  0.70 0.04 

TPB 0.40 0.16  0.29 0.09 

TDB 0.81 0.49  0.19 0.21 

TMSB 0.26 0.56  0.07 0.16 

FBDL 0.48 0.02  0.71 0.03 

Min 0.02 0.02  0.07 0.02 

Max 1.70 2.27  0.91 0.84 

Mean 0.76 0.40  0.45 0.22 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 – The univariate models with the 

standard error (SE) and range of the k-fold cross-

validated 95% prediction interval (PI). Variables 

are listed in decreasing order of SE.  

 
SE Size of 95% PI 

FDL 0.9 2 months – 5 years 

TDL 0.95 6 months – 5 years 

HDL 0.97 2 months – 6 years 

FBDL 0.99 8 months – 5 years 

UDL 1.01 3 months – 6 years 

RDL 1.02 5 months – 6 years 

TDB 1.35 2 years – 7 years 

RPB 1.38 1 years – 8 years 

TPB 1.39 2 years – 7 years 

RDB 1.47 4 months – 9 years 

FDB 1.51 2 years – 7 years 

HDB 1.55 5 months – 10 years 

TMSB 1.59 2 years – 10 years 

HPB 1.6 1 years – 8 years 

FMSB 1.62 1 years – 9 years 

RMSB 1.76 5 months – 11 years 

UMSB 1.76 9 months – 10 years 

HMSB 2.18 3 years – 12 years 
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the five univariate midshaft breadths were the worst performing models, demonstrated by the 

largest SEs and widest PIs, ranging from five months to 12 years. The proximal and distal 

breadths clustered between the diaphyseal lengths and midshaft breadth measurements, with PIs 

ranging from four months to 10 years. Prediction intervals were narrower for the younger ages 

and wider for the older ages (Fig. 2). The associated diaphyseal measurements were removed if 

the lower 95% PIs included ages younger than birth. An example of the age estimation formula 

using the femur diaphyseal length is provided in Table 6. The remaining MARS formulae and k-

fold cross-validated 95% PIs for the univariate diaphyseal length models can be found in the 

supplemental material (Tables S8 – S18). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 – MARS model for femur diaphyseal length 

with a cubed root transformation (cbrt) on age. The 

models is significant at p < 0.0001. The residual 

standard error (RSE) is in years and is not affected 

by the transformation of age. 

 Predictor Variable 

 Cube root of age 

(Intercept) 2.234*** 

h(FDL - 282.32) 0.006*** 

h(282.32 - FDL) -0.008*** 

h(FDL - 167.91) -0.002*** 

h(FDL - 342.03) -0.002*** 

Observations 1117 

cv R
2
 0.95 

Adjusted R
2
 0.95 

RSE 0.90 

Note:                     *p < 0.01; **p<0.001; ***p<0.0001 
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Fig. 2. The cross-validated 95% prediction intervals when age is regressed on femur diaphyseal length. Note how 

the prediction interval adjusts as age increases. 

 

Although the bias was normally distributed, the mean bias always approximated zero, and 

the majority of individuals were aged within one year of their chronological age, an increase in 

error with an increase in age was apparent, showing heteroscedasticity in every univariate model. 

The bias ranged between -3 and +3 years, though most diaphyseal length models were unbiased 

until approximately 10 years of age (Fig. 3). Following 10 years of age, the degree of 

underestimation increased as age increased. Diaphyseal breadth models were more imprecise 

than diaphyseal length models, displaying a slight overestimation of age in the younger ages and  
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Fig. 3. The loess line depicts the loss of precision commencing around 10 years of age. All diaphyseal length models 

demonstrated the same trend when the residuals of the model were plotted with chronological age. 

 

 

an underestimation of age in the older ages (Fig. 4). Even with the loss of precision in the older 

ages, the frequency of the chronological age falling within the PIs ranged from 94% to 100%.  
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Fig. 4. The loess line depicts the trend to overestimate age in the younger ages and to underestimate age in the older 

ages. All diaphyseal breadth models demonstrated the same trend when the residuals of the model were plotted with 

chronological age. 

Multivariate models 

Model types, variables utilized in model creation, SE and the k-fold cross-validated 95% 

PIs for each multivariate model are shown in Table 7. Though the number of variables and their 

importance varied for each model, either the diaphyseal lengths or PC1 were retained and 

recognized as the most influential predictor variable(s) in every model. In the age models using 

the bone subsets, the diaphyseal length or PC1 were the only variable used for model creation for 



 

 

 

 

Table 7 – The transformation required on age, stepwise selected variables, standard 

error (SE), and k-fold cross-validated 95% prediction interval (PI) for each 

multivariate model. 

 
Model Variables SE Size of 95% PI 

Radius 
sqrt MARS RDL, RMSB 0.98 4 months – 5 years 

cbrt MARS PC1, PC2, PC4 0.97 3 months – 6 years 

Tibia 
cbrt MARS TDL, TPB 0.98 1 year – 5 years 

cbrt MARS PC1, PC2 0.97 1 year – 5 years 

Upper Limbs 
cbrt MARS 

UDL, RMSB, RDB, 

HMSB 
0.99 6 months – 7 years 

cbrt MARS PC1, PC9 1.04 6 months – 6 years 

Lower Limbs 

cbrt MARS FDL, TDB 0.86 1 year – 5 years 

cbrt MARS 
PC1, PC2, 

PC5, PC6 
0.85 1 year – 5 years 

Proximal 

Elements 

cbrt MARS 
FDL, HDB, 

HPB, HDL 
0.87 1 year – 5 years 

cbrt MARS PC1, PC3 0.88 1 year – 6 years 

Distal 

Elements 

cbrt MARS 

RMSB, TPB, TDB, 

FBDL, UDL, RDB, 

UMSB, TDL 

0.78 1 year – 6 years 

cbrt MARS 
PC1, PC4, PC6, PC7, 

PC9, PC10 
0.79 1 year – 7 years 

All 

measurement 

cbrt MARS 
FDL, HDB, TPB, RDL, 

UDL, TDL 
0.80 1 year – 5 years 

MARS 
PC1, PC2, PC3, PC5, 

PC8, PC10 
0.77 1 year – 6 years 
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the humerus, ulna, and femur. The cross-validated 95% PIs for the majority of the multivariate 

models ranged between one year and five years. 

Stepwise selected principal components generally had large contributions from the same 

measurements that were stepwise selected in the model using the original measurements. For 

example, six of the 14 measurements were stepwise selected in the all-measurement model 

(FDL, HDB, TPB, RDL, TDL, and UDL). Similarly, MARS stepwise selected six of the 14 

predictors in the all-measurement model using PC scores. The stepwise selected variables, in the 

order of variable importance, were PC1, PC3, PC2, PC10, PC5 and PC8. The largest 

contributions to PC1-3 and PC5 were from diaphyseal lengths (FDL, TDL, UDL, HDL) whereas 

PC8 and PC10 had large contributions from diaphyseal breadths (TDB, HPB, FDB and TMSB) 

(Table 8).  

The bias in the multivariate models ranged between -2 and +2 years. The mean bias of 

the multivariate models always approximated zero, though some models demonstrated a slight 

loss of precision as age increased (Fig. 5). Heteroscedasticity was apparent though not to the 

severity of the univariate models. Even though the models lose precision and may be slightly 

biased, 100% of the predicted ages fell within the 95% PIs.  



 

 

 

 

 

 

 

 

 

Table 8 – The eigenvectors and proportion of variance for PCs 1 through 10 using the variance-covariance matrix for the all 

measurement model.  

 
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

TDL -0.460 -0.158 0.517 -0.110 -0.231 0.052 -0.614 -0.192 0.063 -0.028 

TPB -0.067 -0.087 -0.210 -0.457 -0.033 -0.117 -0.043 0.236 0.215 0.142 

TMSB -0.025 -0.023 -0.058 -0.157 -0.001 0.036 0.076 -0.003 -0.108 0.479 

TDB -0.051 -0.028 -0.097 -0.302 -0.057 0.035 -0.094 -0.042 -0.293 0.543 

UDL -0.274 -0.472 -0.293 0.187 0.314 0.104 -0.202 0.343 -0.505 -0.218 

FDL -0.540 0.700 -0.129 -0.062 0.439 0.028 -0.027 -0.030 -0.032 -0.028 

FDB -0.072 -0.091 -0.255 -0.561 -0.076 -0.281 -0.069 0.212 0.227 -0.353 

FMSB -0.025 -0.029 -0.045 -0.115 -0.044 0.054 -0.036 0.042 -0.190 0.274 

RDL -0.262 -0.412 -0.277 0.216 0.319 -0.194 0.056 -0.442 0.480 0.235 

HMSB -0.016 -0.058 -0.081 -0.114 -0.040 0.097 0.109 -0.256 -0.244 0.075 

HDB -0.047 -0.094 -0.141 -0.209 -0.021 0.901 0.114 -0.097 0.240 -0.139 

HDL -0.354 0.136 -0.447 0.356 -0.718 -0.007 0.033 0.095 0.044 0.042 

HPB -0.042 -0.027 -0.140 -0.247 -0.146 -0.157 0.182 -0.645 -0.398 -0.353 

FBDL -0.458 -0.206 0.430 -0.076 -0.058 -0.059 0.705 0.214 -0.031 0.002 

Proportion of 

Variance 
0.985 0.004 0.003 0.003 0.002 0.0005 0.0004 0.0004 0.0003 0.0002 
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Fig. 5. The loess line depicts the high precision, and the spread of the residuals shows the small range of error for the 

all measurement model. 

DISCUSSION 

This study addressed the problems associated with subadult age estimation by integrating 

a large modern sample, a univariate and multivariate approach, and appropriate statistics that 

model nonlinear relationships and produce explicit PIs. The sample is the largest modern cross-

sectional sample of subadult diaphyseal dimensions from one population ever to be collected. 

Data are representative of the current South African demographics and reflects modern variation 

in diaphyseal dimensions. This study also presented the largest number of univariate models as 

well as the first multivariate approach to age estimation using diaphyseal dimensions. K-fold 
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cross-validated 95% PIs were created, which provide an appropriate technique to estimate age in 

subadults. Thus, the presented method satisfies Daubert criteria as each model has a prediction 

interval with an explicit error rate that accounts for the variation in age. 

The largest measurement errors in the current study were associated with the smallest 

measurements (UMSB and RMSB); however, the differences in repeated measurements for 

UMSB and RMSB were never greater than 1 mm. Comparisons of measurement error obtained 

from subadult skeletal data are limited; consequently, the only available comparative studies use 

the diaphyseal lengths. Overall, the current study had lower %TEM values than Cardoso et al. 

(2013). An evaluation of published literature demonstrates the intra- and inter-observer TEM and 

%TEM obtained in the current study are comparable to other studies, even though the specifics 

for each study vary (i.e. anthropometrics, craniometrics) (Utermohle et al., 1983; Ulijaszek and 

Kerr, 1999; Cardoso, 2005; WHO Multicentre Growth Reference Study Group, 2006; Sicotte et 

al., 2010).  

Prediction intervals and model selection 

The PIs produced from the MARS models compensate for the smaller range of variation 

in diaphyseal dimensions of the younger children and the larger variation in diaphyseal 

dimensions of the older children. For all measurements and multivariate subsets, the size of the 

PIs increased with age, especially during early adolescence. Although all children increase in 

size, the timing of the adolescent growth spurt is highly variable in boys and girls and among 

populations (Hauspie and Roelants, 2012). For example, the 95% PI for the smallest FDL (75 

mm) is approximately a three-month interval, from 0.04 years to 0.33 years, and the 95% PI 

when FDL is 348 mm is approximately five years, from 8.5 years to 13.4 years. The lower 

bounds were adjusted in all models to only include ages after birth, which was the age range of 
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the collected sample. When the upper PI bound is greater than 12.99 years, age estimates should 

be augmented with additional age indicators, such as epiphyseal fusion or dental development.  

Evaluation of the k-fold cross-validated 95% PIs revealed the multivariate models had 

smaller PIs for the older children than most of the univariate models and univariate models had 

smaller PIs in younger children than most of the multivariate models. While some of the 

univariate breadth models have 95% PIs as wide as ten years, the multivariate subsets offer 95% 

PIs of five or six years for comparable ages. To demonstrate the differences between multivariate 

and univariate models, the sample was separated into age intervals that follow the subdivisions 

of growth, such as less than 3 years, between 3 and 6.99 years, and between 7 and 12.99 years 

(Bogin, 1999). Pearson correlation coefficients were obtained for each diaphyseal length and age 

subdivision (Table 9). High correlations were noted for the diaphyseal lengths with age in the 

youngest age interval, showing multicollinearity and indicating that including multiple 

diaphyseal lengths will not improve predictions. The correlation coefficients decrease with age. 

A multitude of interacting factors affect growth and ultimately result in adults of different sizes 

and proportions. Older children are more variable in their proportions and the inclusion of more 

variables reduces the PI.  

A breadths-only model was created because diaphyseal lengths were always retained in 

the multivariate models and the authors wanted to purposefully remove the variables that 

presented with the strongest relationships with age. Furthermore, a breadths-only model may be 

applicable when remains are damaged. The size of the k-fold cross-validated 95% PIs ranged 

between 2 and 7 years, which were narrower than all of the univariate breadth models and only 

slightly wider than the univariate diaphyseal length models and multivariate models at the oldest 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 – Pearson correlation coefficients of the 

diaphyseal lengths per three growth periods. The <3 

interval included individuals from birth to 2.99, the 

second interval included individuals from 3.00 to 6.99 

years and the oldest interval included individuals from 

7.00 to 12.99 years.  

 Age (years) 

 <3 

(n =128) 

3 – 6.99 

(n =265) 

7 – 12 

(n =300) 

HDL 0.873 0.849 0.675 

RDL 0.859 0.831 0.669 

UDL 0.849 0.829 0.666 

FDL 0.908 0.876 0.725 

TDL 0.887 0.844 0.684 

FBDL 0.892 0.856 0.679 
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ages. Thus, if diaphyseal lengths are not available, the application of a multivariate breadth 

model is preferred to a univariate breadth model.  

Precision and accuracy 

Bias results of all models indicate MARS loses precision in children older than 10 years 

of age. Though the increased imprecision with increased age persisted in the multivariate 

models, the bias was smaller than in the univariate models. However, even though the models 

lose precision, 95% – or more – of the observed values fell within the 95% PIs, indicating high 

accuracy. Because of the trend to underestimate age as age increased, the bias was plotted by sex 

to explore what other factors may be affecting the precision of the models. Based on the loess 

lines, males and females followed similar trends in bias for all univariate models. However, 

larger sex disparities were apparent in the univariate breadth models than in the univariate length 

models and the multivariate models (Fig. 6). The sex discrepancy in the bias of the diaphyseal 

breadth models is likely due to the greater number of significant differences between males and 

females in breadth than in length measurements (Stull, 2013). Sex differences in the multivariate 

models were less than univariate breadth models, which further supports the suggestion to apply 

multivariate breadth models rather than univariate breadth models.  

Lack of sex differences in the bias of univariate diaphyseal length models contradicted 

the expectations of lost precision due to females entering the adolescent growth spurt earlier than 

males. The results indicate other biological factors are responsible for the increased bias with 

increased age. A recent study demonstrated statistically significant differences in height for the 

three largest South African populations (black, white and coloured) in a large and evenly 

distributed sample of children between six and 10 years of age (Anholts, 2013). Because ancestry 

is unevenly represented in the current sample, a Student’s t-test would likely not reflect accurate  
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Fig. 6. The loess lines depict the local estimated bias of males and females for a univariate length (left) and breadth 

(middle) model and the multivariate all measurement model (right). The figures show the lack of sex differences in 

the univariate length and multivariate model and the pronounced sex differences for the univariate breadth model. 

 

patterns in the population. Future research should assess population differences in diaphyseal 

dimensions.  

Because current techniques are not available to estimate sex or ancestry, the presented 

models compensated for all the variation in the sample, which resulted in a larger distribution of 

estimated ages. If variation were eliminated, such that sex and/or ancestry was known, the 95% 

PIs would be narrower and the precision would increase. For example, a model based on femoral 

diaphyseal lengths of black South Africans resulted in a bias of -3 years and +2 years and the 

95% PIs ranged from a few months to 4 years. Though the ancestry-specific model still lost 

precision with increased age, the degree was less and the 95% PIs were narrower than the 

original model, which pooled all populations. Not all variation can be removed because it exists 

on an individual level and as such, the 95% PIs will reflect the range of variation (Konigsberg 

and Holman, 1999).  

 

CONCLUSIONS 

Anthropologists have previously used diaphyseal dimensions to estimate subadult age 

without an appreciation of error in the estimates. Two large sources of error can be attributed to 
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misapplication and inappropriate samples. The current study showed that diaphyseal dimensions 

can be used to estimate subadult age using univariate and multivariate models with 95% PIs. The 

ability to create the largest modern subadult sample was feasible through the application of 

minimally distorted Lodox Statscan radiographic images. The populations that comprised the 

sample are reflective of the South African population, which allowed for a country-specific 

technique with immediate applicability.  

Multivariate models result in the smallest PIs in older children while univariate models 

result in the smallest PIs in younger children. Because a specific age cannot be provided for 

when the univariate or multivariate model is preferred, the anthropologist should choose the 

model with the narrowest PIs. Furthermore, a multivariate breadth model should be used if 

diaphyseal lengths are unavailable. The multivariate subsets serve as an example of the potential 

success of multivariate models when estimating age, however, there are a vast number of tables 

required to present all combinations of variables. Thus, a computer software program is currently 

being developed from the South African subadult data that will allow for all possible 

measurement permutations and k-fold cross-validated 95% PIs. Consequently, the user will be 

able to provide age estimations specific to each analysis of subadult remains aged between birth 

and 12 years. In an effort to increase applicability, a sample of modern North American children 

is currently being collected. 

The study documented the first application of MARS in anthropology and highlighted its 

valuable qualities, especially the flexibility to model the nonlinear relationship between 

chronological age and diaphyseal dimensions and to generate forward and backward stepwise 

selected, k-fold cross-validated models. Although MARS performed well through the majority of 
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the ages, the models lost precision after 10 years of age, reflecting greater variability at those 

ages.  
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