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Abstract

This paper presents a two stage SIS epidemic model in animal population

with bovine tuberculosis (BTB) in African buffalo as a guiding example. The

proposed model is rigorously analyzed. The analysis reveals that the model

exhibits the phenomenon of backward bifurcation, where a stable disease-free

equilibrium (DFE) coexists with a stable endemic equilibrium (EE) when the

associated reproduction number (Rv) is less than unity. It is shown under

two special cases of the presented model, that this phenomenon of backward

bifurcation does not arise depending on vaccination coverage and efficacy

of vaccine. Numerical simulations of the model show that, the use of an

imperfect vaccine can lead to effective control of the disease if the vaccination

coverage and the efficacy of vaccine are high enough.
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1. Introduction

Bovine tuberculosis (BTB) is a contagious disease caused by a bacterium

called mycobacterium bovis (M. bovis), with a wide range of hosts such as

domestic livestock, wildlife and humans. Some of such animals include cattle,

goats, sheep, Badgers (Meles meles), brushtail possums (Trichosurus vulpec-

ula), deer (Odocoileus virginianus), bison (Bison bison) and African buffalo
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(Syncerus caffer) which can either be reservoir or spill-over [9]. A reservoir

host maintains and spread infection whereas a spill-over host has a little or

no consequence in the maintenance and spread of the infection. However, a

spill-over host is referred to a dead-end host when it does not pass on the

infection. BTB is a chronic and progressive disease in buffalo that leads to

direct or indirect death. In buffalo herds, BTB has a high prevalence of 60%

to 92% [7]. It was reported in [10] that the higher the prevalence rate the

higher the disease-related mortality and hence a mortality of up to 10% was

detected in buffalo herds having a BTB prevalence of at least 50%. The

time from infection to death is not known but it varies and depends on the

animal’s immune response, which can wane by factors such as stress, drought

or old age.

As in cattle the main source of BTB transmission in buffalo is by di-

rect contact or by aerosol [10]. Vertical (intrauterine) and pseudo-vertical

(through infected milk) transmissions are considered to be rare events in

buffalo [7]. The mode of transmission and the route of infection within and

between species are generally indicated by the locations of the tuberculous

lesions in that species [9].

In Africa most animals infected with BTB show clinical signs only when

the disease has reached an advanced stage. The clinical signs of BTB in

buffalo at such stage include: coughing, debilitation, poor body condition or

emaciation and lagging when chased by helicopter [9, 10].

Park management (Kruger National Park (KNP) and Hluhuwe-iMfolozi

Park (HiP)) in South Africa have maintained some control measures such as

culling, vaccination and some combination of them to control or eradicate

BTB owing to its potential effects on buffalo and other host species [7, 18].

However, some modeling work on BTB on buffalo suggest that vaccination

may be the best control measure option since BTB may persist in buffalo

population even when the population is reduced to low densities [7]. In order

to assess the effectiveness of a buffalo vaccination program in South Africa

some age structured mathematical models have recently been developed [1, 7].

Since there is no clinical evidence which suggest that animals recover

from BTB infection [7], we design a simple susceptible-infectious-susceptible

(SIS) compartmental model based on the most assumptions of the two stage
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bovine respiratory syncytial virus epidemic model presented in [13]. This is

for the fact that BTB infection confers partial immunity and spreads among

seropositive animals. The basic idea of their model is that for animal diseases

which confer partial immunity from initial infection recovery, an animal may

becomes lightly infected again without necessarily showing clinical symptoms

of the disease. This appear for some diseases at which such seropositive an-

imals may transmit the infection at a lower rate than animals experiencing

the infection for the first time. Analysis of the two-stage model in [13] shows

the possibility of backward bifurcation, and that the higher of the two sub-

critical equilibria (one with larger number of infective individuals) is stable

whereas the lower one (one with smaller number of infective individuals) is

unstable. It is argued in [14] that using two-stage model to incorporate the

effect of successive exposure to infectious agents is an oversimplification. This

is based on the suggestion in [23] that in some cases greater level of exposure

to infectious organism may overcome the immune system and lead to a more

subsequent transmission of the disease than a lower exposure. However, a

three-stage model for the spread of Bovine respiratory syncytial virus in cat-

tle may be more realistic than the two-stage one. The three-stage extended

model considered in [14] is shown to exhibit more complex dynamics such as

two subcritical endemic equilibria in the presence of forward bifurcation and

multiple supercritical equilibria.

It is to be noted that both the two-stage and its three-stage extension

in [13, 14] as well as the three compartmental model in [20] are restricted

to the situations where the affected population is of constant size. This

assumption is reasonable for diseases that either spread quickly (i.e. in less

than one year) through the population or those that spread slowly (i.e. over

many years) with births approximately balanced by the natural deaths [6, 17,

27]. However, for diseases with either high disease-related mortalities or in

which the births are not balanced by the deaths, this assumption is not very

realistic. Several examples of animal diseases in which disease-related deaths

have drastically decreased the population sizes are given in [27]. The two-

stage model presented here is an extension of the model presented in [13] by

incorporating vital dynamics in a population with varying size which makes

the model more realistic and practically relevant. It can also be considered
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as an extension of the three compartmental model in [20] by considering

both differential susceptibility and differential infectivity, respectively. We

study this model with aim to identify causes of backward bifurcation and

to assess vaccine impact in the transmission dynamics of an epidemic model

with partial immunity and variable population.

A rigorous analysis of our model reveals some threshold values of the

most important parameters in applications (i.e. reproduction number, vacci-

nation coverage and vaccine efficacy). In fact, we obtained a critical value of

the vaccinated reproduction number Rv, denoted by R
c
v for the saddle-node

bifurcation which is related with appearance and disappearance of the two

endemic equilibria. In this setting, reducing Rv to a value less than one is no

longer sufficient for disease eradication but below R
c
v. Threshold analysis of

the minimum effort for disease eradication taking into account the existence

of backward bifurcation is presented in [20, 21]. In this paper, we investigate

thresholds of vaccination coverage (θ) and vaccine efficacy (φ = 1 − α) in

relation to the coexistence region of the stable disease-free equilibrium and

endemic equilibrium. These were not reported in [13, 14], even though their

models exhibit backward bifurcations.

The paper is organized as follows. In Section 2, we formulate the math-

ematical model and present it’s basic properties. Detailed analysis of the

phenomenon of backward bifurcation and two significant special cases of the

proposed model is presented in Section 3. In Section 4, the impact of vaccine

is assessed via numerical simulations.

2. Mathematical model

2.1. Formulation of the model

It is well known that some animal infections may confer partial immunity

and can spread among seropositive animals. Such type of disease can be

modeled by the SISI (or S1I1S2I2S2) compartmental type [13]. Following

this approach, we divide the total population N of African buffalo, at time

t into four distinct epidemiological classes, namely: those who have never

been infected before (S1(t)), those who have experienced at least one previ-

ous infection (S2(t)), first time infectious (I1(t)), and at least second time

infectious (I2(t)). Hence, the total population at any time t is given by
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N(t) = S1(t) + I1(t) + S2(t) + I2(t).

The system of ordinary differential equations for the S1I1S2I2S2 model is

dS1

dt
= (1− θ)Λ− (β + µ)S1,

dI1
dt

= βS1 − (γ1 + µ+ τ1)I1,

dS2

dt
= θΛ + γ1I1 + γ2I2 − (αβ + µ)S2,

dI2
dt

= αβS2 − (γ2 + µ+ τ2)I2,

(1)

with force of infection

β =
σ1I1 + σ2I2

N
.

In (1), the parameter Λ is the recruitment rate of susceptible buffalo. A

fraction θ of these susceptible buffalo are vaccinated. Furthermore, the pop-

ulation of first time susceptible buffalo acquire infection, following effective

contact with infectious buffalo at a rate β. The parameter σi (i = 1, 2) is

the effective contact rate for the respective infectious class Ii, µ is the natural

death rate in all classes. γi (i = 1, 2), is the recovery rate of infected buffalo

from the Ii class. τi (i = 1, 2), is the disease induced death rate in each

class Ii. It is assumed that second and subsequent times infected buffalo

acquire natural immunity after recovery and move to S2 class. Further, it

is assumed that vaccine-induced immunity provides the same protection as

the natural immunity. This is a simplifying assumption which helps keep

mathematical complexity of the model at reasonable level, while the model

is still relevant. Hence, the S2 class can be referred to as vaccinated class as

well. The population of vaccinated buffalo in S2 acquire infection at the rate

αβ where 0 ≤ α ≤ 1. Thus α provides a measure of the efficacy of vaccine

in a relative way so that α = 0 means the vaccine is completely effective in

preventing infection and α = 1 means that the vaccine is ineffective. More

precisely, in the absence of vaccine the force of infection is β, with vaccine
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it becomes αβ. The relative reduction φ = β−αβ

β
= 1 − α of the force of

infection is referred to as efficacy of the vaccine.

Figure 1: Schematic diagram of model (1)

2.2. Basic properties

The typical epidemiological questions, such as persistence/extinction of

the infection, threshold values of the parameter, etc., are mathematically for-

mulated in terms of the asymptotic behavior of the solution of (1) considered

as a dynamical system as well as the bifurcations of this system.

It is easy to verify that the system of equations (1) defines a (positive)

dynamical system on the domain

Ω =

{

(S1, I1, S2, I2) ∈ R4
+ : S1 + I1 + S2 + I2 ≤

Λ

µ

}

.

In fact, one can easily see that Ṡi ≥ 0, İi ≥ 0 and Ṅ ≤ 0 when Si = 0, Ii = 0

and N = λ/µ, respectively. Therefore, at any point on the boundary the

vector field is pointing inside Ω. Hence, the system (1) defines a dynamical

system on Ω.

2.3. Existence and stability of equilibria

2.3.1. Disease-free equilibrium (DFE)

In the absence of the disease (I1 = I2 = 0), the DFE of the model (1)

obtained at steady state is given by
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E0 = (S∗

1 , I
∗

1 , S
∗

2 , I
∗

2 ) =

(

(1− θ)Λ

µ
, 0,

θΛ

µ
, 0

)

.

To establish conditions for the linear stability of E0, the next generation

operator method is applied to the system (1). Using the notation in [25], the

matrices F (for the new infection terms) and V (of the transition terms) are

given, respectively, by

F =

[

σ1(1− θ) σ2(1− θ)

ασ1θ ασ2θ

]

, V =

[

γ1 + µ+ τ1 0

0 γ2 + µ+ τ2

]

.

The associated reproduction number denoted by Rv, is the spectral radius

of the next generation matrix FV −1, given by

Rv =
σ1k2(1− θ) + ασ2k1θ

k1k2
, (2)

where k1 = γ1 + µ+ τ1 and k2 = γ2 + µ+ τ2.

The threshold quantity, Rv, represents the average number of secondary

infections caused by a single infected buffalo in a susceptible buffalo popula-

tion where a certain fraction of the population is vaccinated [12, 22]. Hence,

using [25, Theorem 2], we obtain the following result.

Theorem 1. The DFE, E0 of the model (1) is locally-asymptotically stable
(LAS) if Rv < 1, and unstable if Rv > 1.

The epidemiological implication of Theorem 1 is that if Rv < 1, the

disease will be eliminated provided the initial sizes of the infected subpop-

ulations of the model are sufficiently small so that the initial state of the

system is in basin of attraction of the DFE (E0).

We note that this result does not exclude the possibility of coexistence

of DFE with a stable endemic equilibrium. This coexistence, which results

from a backward bifurcation at Rv = 1, is the main issue investigated in the

sequel.
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2.3.2. Endemic equilibria (EE)

The endemic equilibria of the model (1) are the steady states where the

disease may persist in the population, that is when at least one of the infected

compartments of the model is non-empty. Let E1 = (S∗∗

1 , I∗∗1 , S∗∗

2 , I∗∗2 ) be an

endemic equilibrium solution of model (1). Then, equating the right-hand

side of (1) to zero, we obtain

S∗∗

1 =
(1− θ)Λ

β∗∗ + µ
, I∗∗1 =

β∗∗(1− θ)Λ

k1(β∗∗ + µ)
,

S∗∗

2 =
k2Λ[k1θ(β

∗∗ + µ) + γ1(1− θ)β∗∗]

k1(β∗∗ + µ)[(µ+ τ2)(αβ∗∗ + µ) + µγ2]
,

I∗∗2 =
αβ∗∗Λ[k1θ(β

∗∗ + µ) + γ1(1− θ)β∗∗]

k1(β∗∗ + µ)[(µ+ τ2)(αβ∗∗ + µ) + µγ2]
,

(3)

where

β∗∗ =
σ1I

∗∗

1 + σ2I
∗∗

2

N∗∗

(4)

and

N∗∗ = S∗∗

1 + I∗∗1 + S∗∗

2 + I∗∗2 . (5)

Equation (4) can be written in the form

S∗∗

1 +

(

1−
σ1

β∗∗

)

I∗∗1 + S∗∗

2 +

(

1−
σ2

β∗∗

)

I∗∗2 = 0. (6)

Substituting equations in (3) into equation (6), gives the following equation

for β∗∗.

(1− θ)Λ

β∗∗ + µ
+

(

1−
σ2

β∗∗

)

αβ∗∗Λ[k1θ(β
∗∗ + µ) + γ1(1− θ)β∗∗]

k1(β∗∗ + µ)[(µ+ τ2)(αβ∗∗ + µ) + µγ2]

+
k2Λ[k1θ(β

∗∗ + µ) + γ1(1− θ)β∗∗]

k1(β∗∗ + µ)[(µ+ τ2)(αβ∗∗ + µ) + µγ2]
+

(

1−
σ1

β∗∗

)

β∗∗(1− θ)Λ

k1(β∗∗ + µ)
= 0.

(7)

Hence, the endemic equilibria of the model (1) correspond to positive solu-

tions of the equation (7).
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3. Backward bifurcation analysis

The phenomenon of backward bifurcation occurs in models that have

multiple endemic equilibria when Rv < 1 [13, 14, 16]. In this case, the

classical epidemiological requirement of having Rv < 1, is necessary but no

longer sufficient for effective disease control or elimination.

3.1. Existence of endemic equilibria

Re-arranging and simplifying equation (7), gives the following quadratic

equation in terms of β∗∗

a(β∗∗)2 + bβ∗∗ + c = 0, (8)

where,

a = α[k1θ + (γ1 + µ+ τ2)(1− θ)],

b = k1α(µ+ τ2)(1− θ) + k1αθ(µ− σ2) + k2(1− θ)(µ+ γ1)

+k1k2θ − σ1α(µ+ τ2)(1− θ)− σ2γ1α(1− θ),

c = k1k2µ(1−Rv).

(9)

Thus, the following result is established.

Theorem 2. The model (1) has:

i. a unique endemic equilibrium if c < 0,

ii. a unique endemic equilibrium if b < 0 and c = 0 or ∆ = b2 − 4ac = 0,

iii. two endemic equilibria if b < 0, c > 0 and ∆ > 0,

iv. no endemic equilibrium otherwise.

If α > 0, the proof follows easily from the properties of the roots of a

quadratic equation. For α = 0, one can verify the statements by inspec-

tion.

Note that a is always positive and c is positive or negative according as

Rv is less than or greater than unity. It is clear from Case (i) of Theorem

2 that the model (1) has a unique endemic equilibrium whenever Rv > 1.

Furthermore, the possibility of backward bifurcation (where a stable DFE
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coexists with a stable EE see, for instance [5, 11, 13, 14, 15, 16, 19, 20, 21])

in model (1) is indicated by Case (iii) of Theorem 2. To check for the possi-

bility of this phenomenon in (1), the discriminant ∆ of the equation (8), is

set to zero and solved for the critical value of Rv, denoted by R
c
v, given by

R
c
v = 1−

b2

4ak1k2µ
.

It follows that backward bifurcation occurs for values of Rv such that Rc
v <

Rv < 1 (see also [22]). This is illustrated on Figure 2 by simulating the

model (1) with following set of parameter values : µ = 0.097, σ1 = 0.5, σ2 =

0.75, α = 0.8, τ1 = 0.36, τ2 = 0.162, γ1 = 0.52, γ2 = 0.001 and θ = 0.2

(so that R
c
v = 0.8646438738 < Rv = 0.8709550431 < 1). Figure 2 clearly

shows in this case the coexistence of two stable equilibria of the model (1)

for Rc
v < Rv < 1.

Figure 2: Graph of the force of infection β∗∗ versus reproduction number Rv that shows

a backward bifurcation diagram for the model (1).

3.2. Coexistence of stable DFE and EE

The parameters θ and α can be considered as controls in the model (1)

due to their relation to vaccination rate and vaccine efficacy. With all other
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parameters fixed, the coefficients a, b and c in equation (9) are functions of θ

and α. Then it follows from Theorem 2 that a stable DFE coexists with an

endemic equilibrium for values of θ and α in the region

M = {(θ, α) ∈ [0, 1]× [0, 1] : b < 0, c > 0, b2 − 4ac > 0}.

The graph of the coexistence region M on the (θ, α) plane is presented on

Figure 3. One can observe that although the region covers wide range of

values of θ and α, for any fixed value of one parameter the range of the other

is rather small. Further, the curves ∆ = 0, b = 0 and Rv = 1 intersect at one

point, say P = (θ̂, α̂). Indeed, it is easy to see that if two of the equations

hold then so does the third one, e.g. ∆ = 0, b = 0 ⇒ c = 0 ⇔ Rv = 1.
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Figure 3: Region with stars in the (θ, α) space is defined by Rv < 1, b < 0 and ∆ > 0

where stable DFE and EE of model (1) coexist. Parameter values used are: µ = 0.01, σ1 =

0.07, σ2 = 0.5, γ1 = 0.1, γ2 = 0.01 and τ1 = τ2 = 0.1.

Note that for values of θ larger than θ̂ or values of α smaller than α̂ there

is no coexistence of DFE with any endemic equilibrium. Depending on the

values of the other parameters the region M may vary in shape and size.

However, we will show later that there are always threshold values θ̂ and α̂
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with the above stated properties. The proof is based on the two special cases

given in the next subsection.

3.3. Two special cases

3.3.1. All new recruits are vaccinated (θ = 1)

In this case we have

Rv =
ασ2

k2
(10)

and the coefficients of equation (8) in (9) are now

a = α, b = αµ+ k2(1−Rv), c = k2µ(1−Rv). (11)

Then it follows from Theorem 2 that there is no endemic equilibrium when

Rv ≤ 1. The following theorem shows that if Rv ≤ 1, the DFE is globally

asymptotically stable on Ω.

Theorem 3. The DFE (E0) of the model (1) is GAS on Ω whenever Rv ≤ 1.

Proof. Since for θ = 1 there are no recruits in the compartment S1 then both

S1 and I1 approach zero as t → ∞. This essentially means that the model is

reduced to a two dimensional system given by

dS2

dt
= Λ + γ2I2 −

ασ2I2
N

S2 − µS2,

dI2
dt

=
ασ2I2
N

S2 − (γ2 + µ+ τ2)I2.

(12)

This argument can be made precise by using LaSalle’s Invariance Principle

[2] with Lyapunov function

G(S1, I1, S2, I2) = S1 + I1.

Indeed, we have

Ġ =
dS1

dt
+

dI1
dt

= −µS1 − (γ1 + µ+ τ1)I1 ≤ 0

and
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Ġ = 0 ⇔ S1 = I1 = 0.

It is easy to see that the largest invariant subset of

W = {(S1, I1, S2, I2) ∈ Ω : Ġ(S1, I1, S2, I2) = 0}

= {(S1, I1, S2, I2) ∈ Ω : S1 = I1 = 0}

is the disease-free equilibrium E0. Then it follows from LaSalle’s Invariance

Principle [2, Theorem 3.7.11, page 346] that E0 is globally asymptotically

stable. �

3.3.2. Recovery from infection confers permanent immunity (α = 0)

In this case we have Rv = σ1(1−θ)
k1

and the coefficients of (8) in equation

(9) become

a = 0, b = k1θ + (µ+ γ1)(1− θ), c = k1µ(1−Rv). (13)

It then follows from Theorem 2 that there is no endemic equilibrium when

Rv ≤ 1. Furthermore, the following theorem shows that if Rv ≤ 1, the DFE

is globally asymptotically stable on Ω.

Theorem 4. The DFE (E0) of the model (1) is GAS on Ω whenever Rv ≤ 1.

Proof. Since for α = 0 recovery from infection confers permanent immunity

then the infected compartment I2 approaches zero as t → ∞. In fact, this

reduces (1) to the following three dimensional system

dS1

dt
= (1− θ)Λ−

σ1I1
N

S1 − µS1,

dI1
dt

=
σ1I1
N

S1 − (γ1 + µ+ τ1)I1,

dS2

dt
= θΛ + γ1I1 − µS2.

(14)

We make this statement precise by using LaSalle’s Invariance Principle in a

similar way as in the proof of Theorem 3. We consider the Lyapunov function

U(S1, I1, S2, I2) =

{

I2 +
1
2
(θS1 − (1− θ)S2)

2 if S1 >
1−θ
θ
S2,

I2 if S1 ≤
1−θ
θ
S2.
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Then

U̇ =

{

İ2 + (θS1 − (1− θ)S2)(θṠ1 − (1− θ)Ṡ2) if S1 >
1−θ
θ
S2,

İ2 if S1 ≤
1−θ
θ
S2.

We have

θṠ1 − (1− θ)Ṡ2 = −µ(θS1 − (1− θ)S2)− θβS1 − (1− θ)(γ1I1 + γ2I2)

≤ −µ(θS1 − (1− θ)S2.

Therefore

U̇ ≤

{

−k2I2 − µ(θS1 − (1− θ)S2)
2 if S1 >

1−θ
θ
S2,

−k2I2 if S1 ≤
1−θ
θ
S2.

Hence, U̇ ≤ 0 with U̇ = 0 if and only if I2 = 0 and θS1 − (1 − θ)S2 = 0.

Then it follows that

Ω̌ = {(S1, I1, S2, I2) ∈ Ω : θS1 ≤ (1− θ)S2, I2 = 0}

is a stable and attractive invariant subdomain of Ω. Therefore, E0 is GAS

equilibrium of (1) on Ω if it is GAS equilibrium of (1) on Ω̌ or equivalently

that Ē0 = (S∗

1 , I
∗

1 , S
∗

2) =
(

Λ(1−θ)
µ

, 0, Λθ
µ

)

is a GAS equilibrium of (14) on

Ω̄ =

{

(S1, I1, S2) ∈ R
3
+ : S1 + I1 + S2 ≤

Λ

µ
, θS1 ≤ (1− θ)S2

}

.

For the dynamical system defined by (14) on Ω̄, we consider the Lyapunov

function F (S1, I1, S2) =
1
2
I21 . Then

Ḟ = I1
dI1
dt

= I1

(

σ1I1
N

S1 − k1I1

)

= I21

(

σ1S1

N
− k1

)

.

But on Ω̌, we have

S1 = (1− θ)S1 + θS1 ≤ (1− θ)S1 + (1− θ)S2 ≤ (1− θ)(S1 + S2) ≤ (1− θ)N.
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Therefore

Ḟ ≤ I21

(

σ1(1− θ)N

N
− k1

)

= I21k1(Rv − 1) ≤ 0.

It is easy to see that Ḟ = 0 if and only if I1 = 0. Substituting I1 = 0 in

the first and third equations of (14) implies that S1 approaches Λ(1−θ)
µ

and

S2 approaches
Λθ
µ

as t → ∞. Hence, Ē0 is GAS equilibrium of (14) on Ω̄ and

subsequently E0 is GAS equilibrium of (1) on Ω. �

3.4. Existence of thresholds for θ and α

The functions a, b and c in (9) used in the equations defining the coex-

istence region M are all continuous functions of θ and α. Therefore, the

topological closure of M is

M̄ = {(θ, α) : b ≤ 0, c ≥ 0, b2 − 4ac ≥ 0}.

Let

θ̂ = max{θ ∈ [0, 1] : ∃ α ∈ [0, 1] : (θ, α) ∈ M̄}

and

α̂ = min{α ∈ [0, 1] : ∃ θ ∈ [0, 1] : (θ, α) ∈ M̄}.

Assume θ̂ = 1, then there exists α̌ such that (1, α̌) ∈ M̄ . However, from the

discussion in Subsection 3.3.1 we have (1, α̌) /∈ M . Therefore b = 0 at the

point (1, α̌) in Figure 3. Then it follows from (11) that α = 0 and Rv = 1

which contradicts (10). Thus θ̂ < 1. Similarly, using Subsection 3.3.2 we

show that α̂ > 0.

These results show that the backward bifurcation can be removed if either

(i) significantly large proportion of the population are vaccinated or (ii) the

vaccine efficacy φ = 1−α is high enough. Indeed, in the parameter regime of

the coexistence region (Figure 3) α̂ = 0.25 and θ̂ = 0.95, so that at least 75%

vaccine efficacy or 95% vaccination coverage is required to remove backward

bifurcation.
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4. Impact of vaccine

Since preliminary data from a previous study of African buffalo suggests

that the Bacille Calmette-Guerin (BCG) vaccine was not effective [8] despite

its potential impact in some alternative BTB hosts, it is useful to investigate

whether or not the widespread application of such imperfect vaccine in free-

ranging African buffalo will be beneficial or not.

To get a clear insight of vaccine impact in reducing the spread of infection

at endemic state, a plot of the BTB prevalence as a function of time is

depicted in Figure 4. It is evident from Figure 4, that prevalence decreases

with decreasing value of the vaccinated reproduction number (Rv). It should

be noted that the reproduction number before vaccination (R0), is always

greater than the reproduction number in the presence of vaccination (Rv) at

the endemic state. Thus, vaccination reduces the prevalence of the disease.
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Figure 4: Prevalence as a function of time for model (1) showing positive impact of

vaccine: when σ1 = 0.93 then Rv = 2.3252 < R0 = 4.6350; when σ1 = 0.73 then

Rv = 1.8268 < R0 = 3.6382; when σ1 = 0.53 then Rv = 1.3284 < R0 = 2.6414; when

σ1 = 0.053 then Rv = 0.1398 < R0 = 0.2641. Other parameter values used are as given

in Table 2 with σ2 = 0.0034.
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A contour plot of the reproduction threshold Rv, as a function of vaccine

efficacy (φ) and fraction of vaccinated buffalo (θ), is depicted in Figure 5.

The contours indicate that for effective disease elimination, a vaccine efficacy

(φ) and fraction of vaccinated susceptible buffalo (θ) are to be high enough.

For instance, if 90% of susceptible African buffalo are vaccinated, an efficacy

level of at least 85% would be required to eradicate the disease.
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Figure 5: Contour plot of Rv of the model (1) as a function of vaccine efficacy (φ) and frac-

tion of vaccinated susceptible buffalo (θ). Parameter values used are µ = 0.000648, σ1 =

0.83, σ2 = 0.3, γ1 = 0.09, γ2 = 0.01, τ1 = 0.12, τ2 = 0.069. The reproduction number

without vaccination is R0 = 3.94 which indicates that vaccination always has positive

impact.
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Conclusion

A two-stage deterministic epidemic model in animal population with

bovine tuberculosis in African buffalo as a guiding example, is designed and

rigorously analyzed. Some of the main findings of the study are:

(1) The presented model exhibits the phenomenon of backward bifurcation

for certain values of the parameters.

(2) The presence of backward bifurcation does not arise under each of the

following scenarios:

(i) sufficiently large fraction (at least 95%) but not necessarily all of

recruited buffalo are vaccinated,

(ii) if the efficacy of the vaccine is high enough (at least 75%), although

it need not be perfect.

(3) The disease-free equilibrium is proved to be globally-asymptotically

stable whenever all new recruits are vaccinated (θ = 1) or the vaccine

is 100% effective (α = 0).

(4) Numerical simulations of the model demonstrate that, the use of an

imperfect vaccine can lead to effective control of the disease if the vac-

cination coverage and the efficacy of vaccine are high enough, at least

90% each.

(5) Vaccination with BCG is a means of reducing levels of bovine TB,

thereby, diminishing the spread and severity of the disease in African

buffalo population. This follows from the model result in the parameter

regime of the coexistence region (Figure 3), that for effective disease

eradication a high vaccination coverage or vaccine efficacy is required.

But in the field high coverage is very challenging and efficacy of the

BCG vaccine may wane with prior exposure to mycobacteria [3]. This

conclusion is in line with the finding in [7] that eradication of BTB via

vaccination alone may not be an effective control strategy .
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Table 1: Description of variables and parameters of the models (1).

Variable Interpretation

S1 First time susceptible buffalo

I1 First time infectious buffalo

S2 Subsequent times susceptible buffalo

I2 Subsequent times infectious buffalo

Parameter Interpretation Unit

Λ Recruitment rate year−1

θ Fraction of newly-recruited buffalo vaccinated year−1

µ Natural death rate year−1

σ1, σ2 Effective contact rates year−1

γ1, γ2 Recovery rates year−1

τ1, τ2 disease induced death rates

α = 1− φ relative vaccine efficacy

Table 2: Parameter Values

Parameter nominal value references

Λ 1000 [4]

θ [0,1] [7]

µ 0.000648 assumed

σ1 0.053 [7]

σ2 0.034 [7]

γ1 0.1 assumed

γ2 0.01 assumed

τ1, τ2 0.1 assumed

α 0.5 assumed
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