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ABSTRACT 
 In this paper we use two developments to illustrate our 
progress in “design with constructal theory” [1].  The first is the 
development of smart materials with embedded vasculatures 
that provide multiple functionality:  volumetric cooling, self-
healing, enhanced apparent (effective) thermal conductivity, 
and mechanical strength.  Vascularization is achieved by using 
tree-shaped (dendritic) flow architectures.  We show that as 
length scales become smaller, dendritic vascularization 
provides dramatically superior volumetric bathing than the use 
of bundles of parallel microchannels.  A novel dendritic 
architecture has trees that alternate with upside down trees.  In 
addition to flow access to the entire volume, trees offer 
improved robustness in flow operation.  The second develop-
ment is the distributing of energy systems over a given 
territory.  The distribution of heating is used as an example.  
The architecture emerges from the balancing of the losses 
concentrated in the production centers and the losses distributed 
along the conduits that distribute and collect every thing that 
flows on the landscape.  In sum, flow architectures are derived 
from principle, in accordance with constructal theory, not by 
mimicking nature.   

 
INTRODUCTION 
 The current literature reveals a surge of interest in bio-
inspired designs of flow architectures that promise superior 
properties, for example, distributed and high-density heat and 
mass transfer.  Chief among the new architectures that are 
being proposed are the tree-shaped (dendritic) designs.  A 
significant stimulus for this new direction is the emergence of 
constructal theory as a means to explain biological and 

geophysical design, and as a method for developing new 
concepts for engineered flow architectures.  This growing 
research activity was reviewed most recently in Refs. [1-3] and 
is not reviewed again here. 
 Tree-shaped flow structures have multiple scales that are 
distributed nonuniformly through the flow space.  Tree flows 
are everywhere in natural flow systems, and their occurrence 
can be deduced based on a physics principle [the constructal 
law:  “For a finite-size flow system to persist in time (to live) it 
must evolve in such a way that it provides easier and easier 
access to the currents that flow through it”].  The constructal 
law has become an addition to the thermodynamics of 
nonequilibrium systems:  the thermodynamics of flow systems 
with configuration [4, 5]. 
 “Vascularized” is a good name for the energy systems that 
the new thermodynamics covers.  The tissues of energy flows, 
like the fabric of society and all the tissues of biology are 
designed (patterned, purposeful) architectures.  The climbing to 
this high level of performance is the transdisciplinary effort:  
the balance between seemingly unrelated flows, territories, and 
disciplines.  This balancing act—the optimal distribution of 
imperfection—generates the very design of the process, power 
plant, city, geography and economics. 
 Natural porous flow structures also exhibit multiple scales 
and nonuniform distribution of length scales through the 
available space.  Can such heterogeneous flow structures be 
derived from the same principle of maximization of flow 
access? 
 In this article we illustrate our recent progress in 
developing constructal theory and design [1].  In the first 
example, we show the superior properties of a novel dendritic 
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flow architecture (Fig. 6) consisting of alternating trees [6].  In 
the second example we take the multi-scale geometric approach 
of constructal theory to the global level, and illustrate the 
emergence of hierarchy in distributed energy systems over the 
landscape. 

NOMENCLATURE 
 
a, b coefficients, Eqs. (21) and (26) 
A, A0 areas, m2 
c, d dimensions, m, Fig. 2 
D diameter, m 
f friction factor 
L length, m 
m mass, kg 

 m  mass flow rate, kg/s 
n number of pairing levels 
N number of parallel channels 
N number of users, Eq. (24) 
Po Poiseuille constant, Eq. (7) 
q heat current, W 
R global flow resistance 
ReD Reynolds number 
S area, m2 
U heat transfer coefficient, W/m2K 
U mean velocity, m/s 
V total flow volume, m3 
x, y dimensions, m, Fig. 4 
Greek letters 
α angle 
ΔP pressure difference, Pa 
ΔT temperature difference, K 
ν kinematic viscosity, m2/s 
ρ density, kg/m3 
σ1,2 sums 
Subscripts  
c critical 
i pairing level 
min minimum 
opt optimum 
p pipe 
1 one user 

LINE-TO-LINE TREE FLOW 
 In Fig. 1, each tree connects a point with a straight line.  
The need to install trees that alternate with upside-down trees 
comes from the rectangular shape of the line-to-line space.  

Consequently, each line is crossed by flows from the many 
(smallest) canopy channels, which alternate with large streams 
that flow through the tree trunks.  The scales are nonuniformly 
distributed within each tree, throughout the line-to-line space, 
along each of the boundaries, i.e. everywhere. 
 This alternating sequence of point-to-line trees constitutes 
line-to-line vasculature between the two parallel boundaries of 
the designed porous body.  The fluid flows in the same 
direction through all the trees, e.g., upward in Fig. 1.  This type 
of vascularization (line-to-line trees) establishes a multiscale 
“designed porous medium” between the long parallel 
boundaries of the vascularized body. 
 The maximization of flow access between the points of 
one line and the points of a parallel line can be viewed as a 
sequence of point-to-line flow access maximization problems 
(Fig. 1).  The building block on which Fig. 1 is based was 
proposed by Lorente et al. [7], where it was constructed by 
using optimally shaped rectangular areas, as shown in Fig. 2.  
Because the pressure drop is proportional to the duct length, the 
rectangular shape d/c was chosen such that the length of the 
duct PQ that cuts across the fixed area A0 is minimum.  This 
yielded the shape d/c = 2, which led to 90° angles between 
tributaries, and to collinear ducts on the extremities of the V-
shaped tree structure. 
 The 90° angles deduced in Fig. 2 are an approximation of 
the best (“equilibrium” [4]) flow structure that could be traced 
between one point and the many points of a line.  To see this, 
consider the building block sketched in Fig. 3, and abandon the 
assumption that the stem L1 and the extreme branch L2 are 
collinear.  In general, α1 is not the same as α2.  The way in 
which the two branches (or tributaries) cut the upper boundary 
of the rectangular area S indicates that the Y construct of Fig. 3 
is equivalent to a construct that is two-layers thick in Fig. 2. 
 Assume further that all the tubes are round and with 
Poiseuille flow, and that they are sufficiently slender so that 
pressure losses at the junctions can be neglected.  In this case, 
the minimization of the pressure drop across the entire Y-
shaped construct (subject to fixed total tube volume) yields the 
well known Hess-Murray law, according to which the ratio of 
successive tube diameters is D1/D2 = 21/3,  regardless of the way 
in which the tubes are arranged on S. 
 The optimization of the tube layout is next, and is 
subjected to holding the area S fixed, while the shape of S may 
vary.  After the optimized D1/D2 ratio is substituted into the 
global pressure drop expression, the global pressure drop is 
proportional to the geometric flow-resistance group 

  R = L1 + 21/3 L2 (1) 

There are two degrees of freedom in the morphing of Fig. 3, the 
angles α1 and α2, or one angle and the aspect ratio of S.  The 

  
Figure 1  Tree architecture for connecting the points of one line 
with the points of another line [6].  
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minimization of R subject to S = constant is performed 
numerically, and the results are 

  α1  =   40.86°                       α2 = 53.11° (2) 

and the minimized global resistance factor (1) is 

  R = 1.3235 S1/2 (3) 

 How much better is this bent-Y structure (Fig. 3) relative 
to the 45° structure of Fig. 2?  The answer is readily obtainable 
from Eq. (1), in which we substitute 2 1L L / 2=  and, after 
some algebra, L1 = (2 S/3)1/2: 

  R = (1 + 2–2/3) (2 / 3)  1/2 = 1.3309 S1/2 (4) 

Comparing Eq. (4) with Eq. (3) we see that the performance of 
the simpler (minimum-length) structure of Fig. 2 approaches 
within 0.5 percent the performance of the more flexible 
structure optimized in Fig. 3.  Such conclusions are reached 
often in constructal theory:  non-equilibrium flow architectures 
come reasonably close to the equilibrium flow architectures.  
They come close in terms of performance, even though they 
may look different. 
 Because of the comparison made above, in what follows 
we retain the simpler building blocks sketched in Fig. 2, and 
with them we explore several ways in which to maximize line- 
to-line flow access (Fig. 1).  Unlike in Fig. 2, we assume a large 
number of bifurcation levels (i = 1, 2, …, n), as shown in Fig. 
4.  Because of symmetry about the bisector of the 2α angle, the 
tube lengths decrease by a factor of 1/2, from the largest (L0), to 
L1 = L0/2, L2 = L1/2, etc.  The smallest length scale is the 
smallest tube length, 

   Ln = 2–n L0 (5) 

or the distance between the two ends of two neighboring Ln 
tubes, 

  d = 2 Ln sin α (6) 

In this analysis, we carry α as a parameter, although according 
to the preceding discussion the value of α should be 45°. 
 

   
Figure 2  Tree architecture for connecting one point with one 
line:  the length of every duct is minimized [14]. 

 The pressure drop along one tube of length Li and diameter  
Di is 

   8 i
i i 4

i

LP m Po
Dπ

Δ = ν  (7) 

where Po is the Poiseuille constant (e.g., Po = 16 for round 
tubes), which appears in the formula for the friction factor, 

  
i

i
D

Pof
Re

=  (8) 

and 
iD i iRe U D /= ν  with 2

i i iU m /( D / 4)= ρ π .  Mass 

conservation at every junction requires that i i 1m 2m += , where 
it is again assumed that the tubes are sufficiently slender so that 
the asymmetry of the Y junction does not affect the splitting of 

im  into two equal streams i 1m + .  After using the ratios for 
diameters, lengths and mass flow rates indicated above, the 
total pressure drop from the open end of the L0 tube to the open 
ends of the Ln tubes, becomes 

  
n

0
i 0 14

i 1 0

L8P P m Po
D=

Δ = Δ = ν σ
π

∑  (9) 

where 2/3 2n /3 2 /3 n 1 2/3
1 1 2 ... 2 [1 (2 ) ] / (1 2 )− − − + −σ = + + + = − − . 

The total tube volume occupied by the tree flow is 

2 2 n 2 2
0 0 1 1 n n 0 0 1V (D L 2D L ... 2 D L ) D L

4 4
π π

= + + + = σ  (10) 

The largest length scale (L0) is related to the vertical dimension 
of the tree (y) by 

  0 1 n 0 2y (L L ... L ) cos L cos= + + + α = σ α  (11) 

where σ2 = 2 [1 – 2–(n+1)].  The horizontal dimension (x) of the 
area occupied by the tree projection is 

  n
0

2

2x 2 d 2 L sin y tan
S

= = α = α  (12) 

  
Figure 3  Y-shaped construct in which, in general, α1 is not the 
same as α2 [6]. 
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where 2n is the number of Ln tubes that reach the upper end of 
the construct.  Eliminating L0 and D0 between Eqs. (9) – (11) 
we obtain 

  
3

1
0 2

2

yP m Po
2 cosV

⎛ ⎞σπ ν
Δ = ⎜ ⎟σ α⎝ ⎠

 (13) 

 We question how effective the tree structure of Fig. 4 is 
relative to a well-known reference architecture:  an array of N 
equidistant parallel tubes, each of length y and diameter D.  
This classical structure carries the same total flow rate 0m  in 

the same total tube volume 2( V N D y)
4
π

=  and over the same 

area xy/2.  The structure has one degree of freedom, the tube 
diameter D, or the number of parallel tubes, 

  2
4VN
D y

=
π

 (14) 

The pressure drop along this structure (ΔPref) is the same as the 
pressure drop along a single tube, cf. Eq. (7), through which the 
flow rate now is 0m /N, 

  0
ref 4

m 8 yP Po
N D

Δ = ν
π

 (15) 

Eliminating D by using Eq. (14) we obtain 

  3
ref 0 2P m Po N y

2 V
π ν

Δ =  (16) 

 The tree-shaped structure of Fig. 4 has a smaller flow 
resistance than the parallel channels when ΔP < ΔPref, or, using 
Eqs. (13) and (16), when 

  
3

1

2
N

cos
⎛ ⎞σ

> ⎜ ⎟σ α⎝ ⎠
  (17) 

The right side of this inequality is a number on the order of 1.   

 
Figure 4  One of the point-to-line trees of Fig. 1 [6]. 

In conclusion, as the reference structure becomes finer (i.e., as 
N increases), the tree-shaped design of Fig. 4 becomes more 
attractive. 
 This conclusion can be read as a statement of how fine the 
tree structure must be such that it is preferable to the reference 
design.  For a more practical comparison, assume that the 
smallest dimension that can be manufactured (d) is the same in 
both architectures, i.e.  the d spacing of Fig. 4 is the same as the 
spacing between parallel tubes.  This means that the number of 
parallel channels that occupy the area y × (x/2) is N = 2n/2, and 
when α = 45° the inequality (17) becomes approximately 

  n
ref

P 14 1
P 2
Δ

≅ <
Δ

 (18) 

We conclude that when the number of branching levels is 4 or 
larger, the tree-shaped architecture offers greater access to the 
flow that permeates through the porous structure of thickness y.  
The superiority of the tree design increases fast as n increases:  
when n = 7, the ratio ΔP/ΔPref is as low as 1/10. 
 Tree-shaped flows occur everywhere, not only for fluid 
flow access but also for energy, goods, people, etc. [8].  In Ref. 
[9] we explored the use of line-to-line trees for configuring 
counterflow heat exchangers with greater volumetric density of 
heat transfer [9]. 

DISTRIBUTED ENERGY SYSTEMS 
 One lesson that nature teaches us is that in highly complex 
systems the generation and use of motive power is distributed 
throughout the body.  It is not centered in a single spot, nodule 
or organ.  The animal muscle is a “tapestry” of patches served 
by two kinds of flow systems:  (i) tissues that generate 
movement (contraction), and (ii) vascularization that feeds, 
cleanses and endows the tissue with the ability to sense and act. 
 So perfect is the allocation of power generation to the 
networks for supply and distribution that the untrained eye sees 
the tissue as one, or, at the most, as a complicated (multiscale) 
porous flow structure.  The “allocating” of one flow system to 
the other flow system, in the same confined space, is the secret 
of the design.  How are such designs made?  How do they 
function? 
 These questions are interesting and highly promising when 
placed in the context of a sustainable energy future for our 
planet.  The inhabited surface of the earth is covered by the 
same two classes of flow systems:  (i) nodules, large channels 
of power generation, embedded in (ii) networks of supply and 
distribution.  Systems (i) and (ii) are allocated to elemental 
areas forming a patchwork that covers countries and continents.  
For example, the air mass-transit map has history and memory.  
In time, new channels appear and old ones become thicker.   
 Like the animal muscle, the patchwork of power 
generation, distribution and use happened naturally.  Unlike the 
animal muscle, which has spent millions of years in the factory 
of evolution, our energy systems evolve in front of our eyes.  
They morph while they grow.  They produce more power, and 
they produce the power more efficiently.  Why do humans need 
power?  For the same reason that animals need muscle power:  
to move mass on the earth’s surface.  Recent theoretical work 
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on the origins of animal locomotion [10, 11] has shown that for 
all types of locomotion (running, flying, swimming), animal 
force is roughly equal to the body weight, and the minimum 
work that the body performs is proportional to the body weight 
times the distance traveled.  The consumed food or fuel is 
“converted” into mass moved.  Our cars, construction sites and 
everything else we do (our legacy) are the product of this.  All 
the animals and all of us consume food and fuel, and the result 
is the shaping and reshaping (the mixing) of the earth’s surface. 
 The widespread occurrence of distributed energy systems 
in nature is a very loud hint that the future of human energy 
design belongs to distributed systems.  The future belongs to 
the vascularized.  In nature, distributed energy systems occur 
not only in animal design but also in inanimate flow systems 
such as river basins.  Each sloped channel in a river basin is an 
optimal combination of (i) motive power (the slope, i.e., the 
driving gravitational potential), (ii) distribution, use, dissipation 
(friction along the channel), and the allocation of (i) and (ii) to 
the elemental territory bathed by the channel.  The time arrow 
of evolution in natural flow systems points toward distributed 
energy systems. 
 Here we show how to uncover the most fundamental 
principles of distributed energy systems—what makes them 
more efficient, more resilient and more adaptable than other 
architectures.  We search for the principles that govern the 
generation of patterns, clusters of energy systems, 
centralization vs. decentralization, and transitions (in time) 
from one configuration to another.  We start from the simplest 
setting for pursuing the above questions, and look toward more 
complex, more realistic and more interdisciplinary 
manifestations of the phenomenon of distributed energy design.   
 Consider the design of energy systems for heating.  
Humanity needs heating all over the globe, and for this reason 
the burning of fuel occurs all over the globe.  Key is the 
observation that all the generated heat (the used and the 
unused) is eventually discharged into the environment.  The 
challenge is to channel most of this heat through our homes and 
enterprises before discharging it into the environment.  The 
challenge is to place humans and enterprises in the right places 
on the landscape, as optimally positioned interceptors.  When 
this tapestry of interceptors of heat is designed from principle, 
two major objectives are achieved simultaneously: 

• The heating needs of humanity are met by burning 
minimum fuel, and 

• The total heating dumped into the environment is the 
smallest that it can be. 

 To illustrate the approach, assume that our heating needs 
are served by streams of hot water of temperature T∞ + ΔT, 
where T∞ is the environment temperature, and ΔT is specified.  
These streams are heated in imperfect installations that burn 
fuel, heat water, and leak a portion of the heat of combustion to 
the environment. 
 The hot water is used by individuals and their enterprises at 
discrete sites (Fig. 5a-c).  Assume that all the sites are identical 
in size and need.  Size is indicated by the length scale of one 
site, d, which is fixed.  Need is indicated by the hot water mass 
m1 used per unit time at one site.  The following scale analysis 
refers to hot water generation and use on a per unit time basis.  

According to the rules of scale analysis, factors of order 1 are 
neglected, and the results are correct and accurate within a 
factor of order 1. 
 Consider two designs for distributing water heating and 
use.  First, every user produces its hot water on site in a heater-
tank installation.  An individual water heating tank is modeled 
as a sphere of diameter D1.  This tank is filled with hot water 
(mass m1), and leaks heat to the ambient in proportion to the 
tank surface, 

  2
1 1q ~ UD TΔ  (19) 

where U is the overall heat transfer coefficient (between water 
mass and ambient) multiplied by the time unit.  In view of the 
tank size, 3

1 1m ~ D ,ρ  where ρ is the water density, the heat loss 
from the water tank is 

  
2 /3

1
1

mq ~ U T⎛ ⎞
Δ⎜ ⎟ρ⎝ ⎠

 (20) 

 There are N user sites on the territory of size A.  The total 
heat loss from the N sites is 

  2 /3
1 1q Nq ~ a N m=  (21) 

where a = U ρ–2/3ΔT.  We see that the loss of fuel burned (q) is 
proportional to the size of the population (N) and the individual 
water consumption raised to the power 2/3.  Can this penalty be 
made smaller?  The answer is yes, and the solution consists of 
organizing the users on the landscape.  One design with 
organization is where N users are arranged around a single 
water-heating site.  The central tank has the size 

  c 1m Nm=  (22) 

and the heat loss, cf. Eq. (21), 

  2 /3
c cq ~ a m  (23) 

The N users are positioned on a circle of radius L, therefore 

  L ~ Nd (24) 

Each user receives its hot water allocation (m1) through an L-
long radial pipe of standard diameter Dp.  Each pipe loses heat 
in amount 

  1p p pq ~ U D L TΔ  (25) 

 

Figure 5  Distributed energy systems for heating:  (a) Individual 
heaters; (b) Central heater and radial distribution lines; (c) 
Central heater and dendritic distribution network. 

d

(a) 
Individual

(b) 
Radial 

(c) 
Dendritic 
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where Up is the pipe-ambient heat transfer coefficient 
multiplied by the time unit.  The loss from the N radial pipes is 

  p 1pq Nq ~ b L N=  (26) 

where b = Up Dp ΔT.  The global loss from the entire construct 
(central heater + radial pipes) is 

  q ~ qc + qp (27) 

The global loss per user is 

  
2 /3
1
1/3

a mq ~ b N d
N N

+  (28) 

This expression shows that the density of heat loss is minimum 
when the number of users grouped around a single central 
heater is 

  
3/ 4

1/ 2
opt 1

aN ~ m
bd

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (29) 

The minimum heat loss density is 

  1/ 23/ 4 1/ 4
1

min

q ~ a (bd) m
N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (30) 

 The significance of this result becomes evident when we 
compare it with Eq. (21), where 2 /3

1q / N ~ a m .  In both 
designs, q/N increases with the individual water use, but the 
rate of increase depends on m1.  This is shown in Fig. 6, where 
the abscissa can be interpreted as the direction of time, or the 
direction of increase in living standard (namely, amount of hot 
water use per unit time).  When m1 is small, preferable is the 
decentralized design:  one heater on every site.  When m1 is 
sufficiently large, preferable is the centralized water heating 
and site.  When m1 is sufficiently large, preferable is the 
centralized water heating and distribution design.  The 
transition between the two designs occurs when m1 reaches the 

0

2 Eq. (21)

Eq. (30)

Eq. (36)

2

1

0
0 1 2 3

L ~ d

1m

d

L

1/2A

Eq. (21)

Eq. (30)

Eq. (36)

q
N

1 1cm /m  
 
Figure 6  The fuel burned per user in three configurations:  
individual heaters, central heater with radial lines to users on a 
circle, and central heater with radial lines to users clustered 
near the heater.   

critical size 

  
3/ 23/ 2

p
1c p

Ubdm ~ ~ D d
a U

⎛ ⎞⎛ ⎞ ρ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (31) 

for which the critical number of organized sites is: 

  Nc ~ 1 (32) 

The geometric meaning of Nc ~ 1 is derived from Eq. (24), 
which now reads 

  Lc ~ d (33) 

 In conclusion, at transition the users should cluster tightly 
at a distance of order d around a central source.  Arrangements 
of this type are triangular (N = 3), square (N = 4), hexagonal (N 
= 6), e.g., Fig. 5b.  Larger clusters (N > Nc) are more attractive 
when m1 becomes greater than m1,c. 
 When the m1 sites are tightly packed, the minimization of 
q/N is synonymous with the minimization of the loss per unit 
territory, q/A.  When m1 > m1c, the radial scale L exceeds d, 
and the area (of order L2) is covered only partially by user sites 
(area of order Ld). 
 If land is at such a premium that it is covered continuously 
by users, then Eqs. (22) - (33) can be repeated for an area A 
covered completely by N sites of size d, namely A ~ Nd2.  The 
length scale of area A is then L ~ A1/2 ~ N1/2d.  This is the 
length scale of any of the pipes connecting one user to the 
single hot-water generation center located on A.  Substituting 
N1/2d in place of L in Eq. (26) we obtain qp ~ b N3/2d.  In place 
of Eq. (28) we write 

  
2 /3

1/ 21
2 1/3

a mq b~ N
A dd N

+  (34) 

The optimal number N for minimum q/A is 

  
6 /5

4 /5
opt 1

aN ~ m
bd

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (35) 

for which Eq. (34) yields 

  2 /5 3/5 8/5 2 /5
1

min

q ~ b a d m
A

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 (36) 

Written in terms of q/A, Eq. (21) becomes 

  2 /3
12

q a~ m
A d

 (37) 

The transition between the disorganized design (37) and the 
organized design (36) occurs at the intersection of the two, 
which is the same as in Eq. (31).  This is to be expected, 
because when 1 1cm m≤  the area A is proportional to N.   
 The next question is what should happen when m1 exceeds 
m1c.  In this domain, we compare Eq. (36) with Eq. (30) on a 
q/N basis.  The two equations become 

  1/ 230
1

q ~ bd m
N

 (38) 
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  2 /536
1

q ~ bd m
N

 (39) 

where, in view of Eq. (31), 1 1 1cm m / m= .  When 1m 1> , the 
heat loss minimized in Eq. (36) is smaller than in the design of 
Eq. (30).  This is indicated by the curve drawn for Eq. (36) in 
Fig. 6.              
 The chief message of this very simple example is that the 
emergence of configuration in time can be derived from 
principle.  The drawings and their times of emergence can be 
predicted.  Organization is good, provided that the level of 
advancement (m1) calls for it.  For example, Fig. 6 indicates 
that when the individual need (m1) is less than m1c  the better 
configuration is the individual pattern (Fig. 5a).  When m1 
increases above the critical level, the preferred pattern is radial 
and tightly packed (Fig. 5b).   
 The constructal literature [1] suggests that farther in time 
(i.e., to the right in Fig. 6) we will discover even better 
configurations, such as the dendritic design sketched in Fig. 5c.  
This is the direction of the constructal paradigm:  thinking 
ahead (in time), and searching without bias for the best 
organization that benefits every member of the organization. 
 The illustration of the generation of distributed-energy 
configuration can be thought of as a tradeoff between losses 
concentrated in the nodes of production and losses spread along 
the lines of the distribution network.  When these two kinds of 
losses are balanced (i.e., summed up and minimized on the 
available territory), and when the flow paths are free to morph, 
the configuration takes shape. 
 This trade-off generates other important designs.  The 
generation of electricity in power plants is an important 
application of this approach.  Economies of scale are well 
established in power generation.  Larger stationary power 
plants are more efficient than miniature power plants.  The 
attractiveness of a large power plant makes the clustering of 
more and more users attractive.  At the same time, the territory 
served by the power plant increases, and so does the length 
scale of the power distribution lines.  The losses due to 
distributing the power grow as the power plant grows.  There is 
a tradeoff between the savings associated with using a central 
(efficient) power plant and the losses of a dissipative 
distribution network.  This tradeoff establishes the length scale 
of the pattern in which power plants must be allocated to users, 
and how each such cluster must be allocated to its area on the 
landscape.  This is the conceptual route to discovering the 
architecture of the distributed power system. 

SCALING UP 
 The work line traced in the section on Distributed Energy 
Systems is a promising direction to solving the toughest of all 
problems in engineering design:  scaling, i.e., how to use the 
results from a desk-size model in order to predict the behavior 
and performance of “the same” system but at much larger 
scales.  The difficulty stems from the nature of all flow 
systems:  the larger is not “the same” as the laboratory model.  
The larger is not a magnified replica of the model. 
 What happens during the magnification exercise is 
suggested by the abscissa of Fig. 6.  The configuration changes, 

because the flow system must be the best that it can be at any 
size.  One cannot predict the performance of a large-use heating 
system (m1 > m1c, Fig. 6) by extrapolating from the tested 
performance of a small-use system (m1 < m1c). 
 The only way to crack the scaling nut is to have a firm grip 
on the hammer of principles, i.e., to know how the system 
configuration changes as its size increases.  Once we know the 
drawing, large or small, we can analyze (or test) the flow 
system and describe its performance with confidence.  This 
means that if we know that Fig. 5c will be the configuration at 
large scales, then we must test in the laboratory a miniature of 
Fig. 5c, not of Fig. 5a.  This knowledge is a powerful new tool, 
and a very timely one for placing the subject of “design” on a 
scientific basis. 
 
CONCLUSIONS 
 In this paper we illustrated our progress in using 
constructal theory for the design of novel flow architectures for 
energy systems.  Two classes were used as examples, 
vascularized smart composites with line-to-line flow and 
distributed energy systems.  In both, the recommended 
architecture emerged as a balance between two or more loss 
mechanisms.  In vascular systems, the balance is between he 
flow resistances distributed over many small channels and few 
large channels.  In distributed systems, the balance is between 
losses that occur in nodes (points of flow concentration), and 
losses that are distributed along the lines that connect the nodes. 
 In sum, this new work provides addition lessons regarding 
the general applicability of the constructal law and its design 
principle of “optimal distribution of imperfection”.  The latest 
progress in this domain is detailed in Refs. [1-3, 12]. 
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