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ABSTRACT

In this paper numerical solutions of a mathematical model
that describes the heat transfer, the fluid flow and the
sorption process in a cylindrical adsorption type hydro-
gen storage tank are presented. The tank operates at
cryogenic temperatures and the storage approach is in-
tended for use in automotive applications. The model is
solved using the spectral element method combined with
an overall third order accurate time stepping scheme. Nu-
merical experiments show that the time to fill the tank
decreases with increasing charging pressure and that low
conductive heat fluxes constrain the filling process.

INTRODUCTION

Hydrogen is one possible candidate as a future fuel in
automobiles. However, due to its low density it is not
easily stored on-board vehicles. The main challenges are
to reduce the volume and the weight of the storage ves-
sel to hold the required amount of hydrogen for suffi-
cient mileage. One possibility is to fill the storage ves-
sel with a fine grained adsorbent that possesses a high
specific surface area (SSA) such that hydrogen can be ad-
sorbed on the surface of the adsorbent particles. When
adsorbed, hydrogen is bonded to the surface by van der
Waals forces that are greater in magnitude than the in-
termolecular forces. In that manner the molecules are po-
tentially packed closer together than in the pure gaseous
phase.

Another storage strategy is to chemi-sorb hydrogen in
metal hydrides. This approach has received extensive at-
tention in the literature with respect to modeling of heat
and mass transfer, see e.g Refs. [1–3] and the references

therein. Although some metal hydrides can be operated
at ambient temperature and moderate pressures, they
still suffer from low gravimetric storage densities. This
has triggered interest in adsorption type storage systems.
The heat and mass transfer of these systems, on the other
hand, have not been studied as intensively [4, 5] and very
little attention has been devoted to the transient thermal
analysis of cryogenic storage systems in particular. Such
an analysis is attractive since the adsorption capacity is
increased when lowering the temperature.

Hydrogen sorption is an exo-/endothermal reversible
process, such that during filling the tank needs to be
cooled, and upon discharge the tank needs heat input.
During discharge, hydrogen is dispatched at a relatively
low mass flow rate whereas during filling the mass flow
rates are much higher. Accordingly, the absolute values of
the heat transfer rates are much higher during filling than
during discharge. This fact renders the filling process the
challenging step from an operational point of view, and
for that reason it is the focus of the present paper. In this
work a particular and readily available activated carbon,
namely NORIT R0.8 EXTRA, is applied as the adsorbent
in agreement with an ongoing experimental research pro-
gram at the department. In fact, the objectives of this
study is to predict the transient behavior of the experi-
mental storage tank, which is submerged in a dewar with
liquid nitrogen, alongside establishing a general numerical
test bed.

MATHEMATICAL MODEL

The porous matrix of the activated carbon together with
the hydrogen gas make up a porous medium as visualized
in Fig. 1. Here, β denotes the fluid phase, i.e. the hy-
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Figure 1: The two-phase porous medium composed of the β-phase
and the σ-phase. Symbols are described in the text.

drogen gas, and σ denotes the solid phase including both
the carbon particles and the adsorbed hydrogen. Fur-
thermore, dp denotes a typical particle diameter, l is the
microscopic length scale, u is the hydrogen velocity vec-
tor field, p is the hydrogen pressure, Tβ and Tσ are the
temperature fields of, respectively, the β- and σ-phases,
ρad is the density of adsorbed hydrogen, ρβ is the density
of the hydrogen gas, and nβσ = −nσβ are unit normal
vectors.

Governing equations. In this work, the hydrogen flow
is assumed to be semi-incompressible which implies that
the transient term in the gas phase continuity equation
is dropped ∂tρβ = 0. The hydrogen gas phase density is
described by the ideal gas law, which is justified by the
fact that the compressibility factor is close to unity for
the pressure and temperature ranges analyzed. Further-
more, the transport properties, i.e. hydrogen viscosity µ,
thermal conductivities of the the two phases λβ and λσ

and effective hydrogen self-diffusivity Deff in the parti-
cles, are treated as constants. Also, gravity forces, com-
pression work and thermal radiation effects are neglected.
Hence, at the microscopic scale the governing equations
for momentum-, mass- and energy conservation for the
two phases can be posed as

∂tρad = Deff∇
2ρad in Ωσ (1)

ρβ(∂tu + u · ∇u) = −∇p + µ∇2u in Ωβ (2)

∇ · ρβu = 0 in Ωβ (3)

(ρcp)β(∂tTβ + u · ∇Tβ) = λβ∇
2Tβ in Ωβ (4)

(ρcp)σ∂tTσ = λσ∇
2Tσ in Ωσ (5)

with appropriate boundary conditions. Here, the domains
Ωβ and Ωσ describe the regions in space occupied by the
two phases, and the complete tank domain is described
by Ω = Ωβ ∪ Ωσ ∪ Ωw ∈ R

d, where Ωw is the region
of the tank walls, as shown in Fig. 2. The subscript β
has deliberately been dropped for brevity for p, u and
µ, since these are unique to the β-phase, i.e. they are
only defined in Ωβ. Similarly, the subscript σ is dropped
for ρad. When posing (1) it has already been assumed
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Figure 2: Schematic view of the storage vessel and, hence, the
computational domain Ω = Ωβ ∪ Ωσ ∪ Ωw. The shaded area repre-
sents the tank walls, Γ = Γ1 ∪ Γ2 ∪ Γ3 is the boundary of Ω, Ro is
the outer radius, dw is the wall thickness and H is the height.

that the equation has been spatially smoothed within the
particles, such that Deff is the effective self-diffusivity of
hydrogen in the micro-pores of the particles.

Local volume averaging and closing. Although, the
set of equations (2)-(5) are valid at the microscopic level,
under the aforementioned assumptions, they are not eas-
ily solved in their respective domains since Ω comprises
millions of particles. Hence, some kind of up-scaling is
necessary. To this end the method of local volume aver-
aging [6] can be applied. The local volume average (LVA)
of, say, the temperature of the β-phase is defined as

〈Tβ〉 = ε〈Tβ〉
β =

1

V

∫

Vβ

Tβ dV (6)

where V = Vσ ∪Vβ ∈ Ω is a small representative region in
space as shown in Fig. 1, Vβ is the volume occupied by the
β-phase and the porosity is defined as ε = Vβ/V . Here,
〈Tβ〉 denotes the superficial average and 〈Tβ〉

β denotes
the intrinsic average of Tβ . Together with (6), two LVA
theorems are needed to smooth the equations, these are

〈∇Tβ〉 = ∇〈Tβ〉 +
1

V

∫

A

Tβnβσ dA (7)

〈∇ · qβ〉 = ∇ · 〈qβ〉 +
1

V

∫

A

qβ · nβσ dA (8)

where A is the interfacial surface area contained in V . Af-
ter the application of (6)-(8), closure constitutive equa-
tions are needed to close the equations. In this work we
typically employ empirical constitutive equations found in
the literature or heuristic relationships where appropriate.

To arrive at the equations presented below, some more
assumptions need to be made. The two phases are con-
sidered to be in local thermal equilibrium (LTE), i.e.
〈T 〉 = 〈Tβ〉

β = 〈Tσ〉
σ. Additionally, the particles are

treated as perfect spheres with diameter dp, the poros-
ity ε is constant and the porous medium is isotropic with
respect to transport processes.

Adsorption. The linear driving force (LDF) model [7]
simplifies (1) to an ordinary differential equation (ODE)

〈ρ̇ad〉 = kL(〈ρ∗ad〉 − 〈ρad〉) in Ω (9)



valid at the macroscopic level. Here, kL is the effective
LDF mass transfer coefficient (cf. Hills [8])

kL = 60Deff/d2
p

and 〈ρ∗ad〉 is the LVA density of adsorbed hydrogen under
equilibrium conditions given by an adsorption equilibrium
isotherm as discussed below. The total density of stored
hydrogen 〈ρtot〉 in the tank can then be expressed as

〈ρtot〉 = (1/ε)〈ρβ〉 + 〈ρad〉 = 〈ρβ〉
β + 〈ρad〉 (10)

i.e. the sum of hydrogen that would be contained in an
adsorbent free vessel and excess adsorbed hydrogen. The
effective self-diffusivity is then given by [9]

Deff = [2εµ/(3 − εµ)]D

where εµ is the micro-porosity of the particles. The self-
diffusivity of hydrogen D is determined from kinetic the-
ory of gases at fixed and typical temperature and pressure
values (see Tab. 1).

NORIT R0.8 is, to the best of the present authors
knowledge, not fully characterized in the open literature
with respect to adsorption equilibrium isotherms. Hence,
we propose a way of establishing such an isotherm by cap-
italizing on the following. It has been observed through
experiments that there is a nearly linear dependence be-
tween hydrogen adsorption capacity and SSA amongst
activated carbons [10]. Bénard and Chahine [11] charac-
terized another activated carbon, AX-21, thoroughly and
investigated different models, one of which is a Langmuir
model

〈ρ∗ad〉 = K〈p〉β/(1 + K〈p〉β)〈ρsat〉 (11)

This model can be adapted to NORIT R0.8 by correcting
the saturation density 〈ρsat〉 given in Ref. [11] by the ratio
of the SSAs of the two adsorbents such that

〈ρsat〉 = 100/(1 + 0.035〈T 〉)MH2
(SSANOR/SSAAX)〈ρσ〉

where MH2
is the molecular weight of hydrogen. The

equilibrium constant K follows an Arrhenius expression

K = A exp[EA/(R〈T 〉)]

All parameters related to the isotherm are given in Tab. 1.
The adapted excess adsorption equilibrium isotherm for
NORIT R0.8 is shown in Fig. 3 where it is compared to the
data-points of Texier-Mandoki et al. [12]. Also shown in
the figure is an Ono-Kondo isotherm where 5 adsorption
layers have been assumed. This isotherm was adapted
from Refs. [11, 13] by correcting the relevant properties
with the differences in SSAs, in a similar fashion as above.
The Ono-Kondo model is assumably more accurate over
wider pressure and temperature regimes than (11). How-
ever, this model requires the solution of non-linear equa-
tions for the concentration of the adsorbate in each layer,
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Figure 3: The adapted excess adsorption equilibrium isotherms
at T = 77 K for NORIT R0.8 are compared to the data-points of
Texier-Mandoki et al. [12].

so, due to its simplicity, the Langmuir model is adopted
in this work.

It can be noted that this adsorbent would require a
tank volume of 160 dm3 to hold a typical amount of 4 kg
of hydrogen at p = 40 bar without considering insulation
and the pressure vessel itself. Hence, this is not a suitable
adsorbent for practical applications. It is sufficient for
research purposes, however, since the point of interest lies
in assessing the qualitative behavior.

Momentum equations. Darcy’s law is valid for van-
ishing Reynolds numbers based on the particle diame-
ter and the so-called Darcian velocity 〈u〉, i.e. Redp

=
〈ρβ〉

β |〈u〉|dp/µ < 1. With the assumption of an isotropic
porous medium the permeability tensor is reduced to a
scalar K and we obtain the following smoothed momen-
tum equations

0 = −∇〈p〉β − µ/K〈u〉 − 〈ρ̇ad〉〈u〉 in Ω (12)

The last term on the right hand side compensates for
the loss of momentum due to interphasial mass transfer.
The latter term stems from the application of (8) to the
convection term in (2) using the following heuristic closure

〈ρ̇ad〉〈u〉 =
1

V

∫

A

ρβuu · nβσ dA

The permeability K is given by (see e.g. Ref. [14])

K = (d2
pε

3)/[180(1− ε)2]

Continuity equation for the hydrogen gas. The local
volume averaged continuity equation is

∇ · 〈ρβ〉
β〈uβ〉 = −〈ρ̇ad〉 in Ω (13)

where it is assumed that the density of the hydrogen gas
ρβ is constant over the small averaging volume V . The
case 〈ρ̇ad〉 > 0 corresponds to adsorption and the case
〈ρ̇ad〉 < 0 corresponds to desorption. The right hand side



is obtained by using

〈ρ̇ad〉 =
1

V

∫

A

ρβu · nβσ dA

after the application of (8) to (3).
Energy equation. By the aforementioned LTE assump-

tion a single energy equation is constructed for the porous
medium

(ρcp)eff∂t〈T 〉 + 〈ρβ〉
βcp,β〈u〉 · ∇〈T 〉 =

∇ ·Λeff · ∇〈T 〉 − ∆H〈ρ̇ad〉

}

in Ω (14)

where −∆H is the heat of adsorption and the effective
heat capacity is given by

(ρcp)eff = 〈ρtot〉cp,β + 〈ρσ〉cp,σ

The last term on the right hand side of (14) accounts
for the heat released during adsorption. In the derivation
of this equation we have benefited from (7) and (8) in
addition to the spatial decomposition formula

Tβ = 〈Tβ〉
β + T ′

β (15)

which states that Tβ can be decomposed into an average
part 〈Tβ〉

β and a deviatoric part T ′
β . The formula (15)

is needed in the evaluation of the convection term in (4).
Inherent in the derivation is also the following heat flux
jump condition

λβ∇Tβ · nβσ|A = (λσ∇Tσ − ∆Hρβu) · nβσ|A

which has been used in conjunction with the assumption
of a continuous temperature T |A = Tβ|A = Tσ|A at the
interface A of the two phases. Furthermore, to close the
LVA equation after application of (7), (8) and (15) to (4)
and (5), a gradient hypothesis has been applied

Λeff · ∇〈T 〉 = [ελβ + (1 − ε)λσ]∇〈T 〉+

λβ − λσ

V

∫

A

Tnβσ dA − 〈ρβ〉
βcp,β〈u

′T ′
β〉

(16)

such that the effective thermal conductivity tensor Λeff is
composed of two parts

Λeff = Λstag + Λdisp = λstagI + Λdisp

Here, the stagnant thermal conductivity tensor Λstag,
which reduces to a scalar due to isotropy, accounts for
the first two terms on the right hand side of (16) and the
thermal dispersion tensor Λdisp accounts for the last term.
To determine λstag the expression of Hadley [15], which
compares nicely to experimental data for a wide range of
κ = λσ/λβ, is used

λstag/λβ =(1 − α)
εf0 + κ(1 − εf0)

1 − ε(1 − f0) + κε(1 − f0)
+

α
2κ2(1 − ε) + (1 + 2ε)κ

(2 + ε)κ + 1 − ε

where α and f0 are given by

log α = −1.084− 6.778(ε− 0.298) and f0 = 0.8 + 0.1ε

As is the case with λstag, there are many different corre-
lations for Λdisp in the literature. In this paper the cor-
relation proposed by Metzger et al. [16] is applied due to
its simplicity and applicability for a wide range of Péclet
numbers. Their expression for the longitudinal dispersion
component is

(Λdisp)ii/λβ = 0.073Pe1.59
dp,i , i = 1, . . . , d

and the Péclet number based on the particle diameter
and the Darcian velocity is Pedp,i = (ρcp)β |〈u〉i|dp/λβ for
i = 1, . . . , d. In this work the contribution from the lateral
dispersion component is disregarded since it is typically an
order of magnitude smaller than the longitudinal disper-
sion component. In the tank walls the effective thermal
conductivity tensor simplifies to Λeff|Ωw

= λsteel.

NUMERICAL METHODS

In this paper the spectral element method sem is applied
for the spatial discretization. This method is based on the
solution of the weak form of the governing equations us-
ing high order Legendre polynomials of degree N , within
each element, as basis functions combined with Gauss-
Lobatto-Legendre (GLL) quadrature. The method typi-
cally exhibits exponential convergence rates in space such
that fewer degrees of freedom are needed, to reach a given
error target, compared to low order methods like the finite
element method. For details, the reader might consult
Ref. [17].

To advance the equations forward in time the third or-
der backward differentiation formula bdf3 is used. How-
ever, since the equations are coupled and non-linear, ex-
trapolations of relevant terms are needed in order to fa-
cilitate a sequential solution procedure. Furthermore, the
Uzawa algorithm is applied to solve (12)-(13). The Uzawa
equation is derived by performing a block Gaussian elim-
ination of the discrete system of equations resulting from
the discretization of (12)-(13), see e.g. Ref. [18]. Since
the Uzawa operator is non-symmetric in this case, due
to the use of cylindrical coordinates, the biconjugate gra-
dient stabilized bicgstab algorithm is applied to solve
it. Nested iterations are not needed here, since the dis-
crete viscous operator is diagonal. The Uzawa algorithm
is combined with the PN -PN−2-method to avoid any spu-
rious pressure modes. The overall solution strategy to
advance the equations from time-level tn to tn+1 is then:

1. Solve the LDF equation (9) for 〈ρad〉
n+1 with an ex-

trapolated value for 〈ρ∗ad〉
n+1 and calculate the volu-

metric adsorption rate 〈ρ̇ad〉
n+1.

2. Solve the Uzawa equation for pressure (〈p〉β)n+1 with
an extrapolated value for 〈ρβ〉

β .

3. Calculate the velocity field 〈u〉n+1 from (12). This is
done explicitly since the sem mass matrix is diagonal.



4. Solve the energy equation (14) for the temperature
〈T 〉n+1.

5. Calculate the gas phase density (〈ρβ〉
β)n+1 with the

ideal gas law.

The energy equation is also solved with bicgstab as the
coefficient matrix is non-symmetric due to the convection
operator.

NUMERICAL SIMULATIONS AND DISCUSSION

Given the cylindrical geometry of the tank, the governing
equations are written in cylindrical coordinates x = (r, z)
and symmetry is assumed in the angular direction. The
computational domain is given by Ω = (0, Ro) × (0, H) ∈
R

2, where Ro is the outer tank radius and H is the tank
height. The model has been solved using E = 12 spectral
elements, see Fig. 5c for the partitioning of Ω into spec-
tral elements, with N = 7 order polynomials for the basis
functions and a time-step of size h = 1/4. This time-step
is mainly chosen to prevent that bdf3 produces under-
shoots in the calculation of 〈ρad〉. With these settings
the numerical error is well below the modeling error. Pa-
rameters and property values related to the mathematical
model are given in Tab. 1.

Parameter Symbol Value Ref.
Activation energy EA 4.32 kJ/mol [11]
Pre-exp. factor A 1.32 · 10−3 MPa−1 [11]
Gas constant R 8314 J/(kmol·K) -
Molecular weight MH2

2.016 kg/kmol -
NORIT spec. surf. area SSANOR 1320 m2/g [12]
AX-21 spec. surf. area SSAAX 2800 m2/g [11]
Porosity ε 0.4 [12, 19]
Micro-porosity εµ 0.3 [12, 19]
Particle diameter dp 2.4 · 10−3 m [19]
Viscosity µ 4.21 · 10−6 kg/(m·s) [20]
H2 therm. cond. λβ 0.14 W/(m·K) [20]
Carbon therm. cond. λσ 20 W/(m·K) -
Steel therm. cond. λsteel 15 W/(m·K) [20]
Hydrogen spec. heat cp,β 14000 kJ/(kg·K) [20]
Carbon spec. heat cp,σ 725 kJ/(kg·K) [5]
Carbon density 〈ρσ〉 400.0 kg/m3 [19]
Self-diffusivity D 2.5 · 10−6 m2/s -
Heat of adsorption −∆H 4.66 kJ/mol [11]
Tank height H 723.5 · 10−3 m -
Wall thickness dw 3.5 · 10−3 m -
Outer tank radius Ro 69.5 · 10−3 m -

Table 1: Model parameters with citations to the references from
which they were obtained. The porosity ε has been deduced from
Refs. [12, 19].

As mentioned in the introduction we wish to investigate
the behavior of the vessel during charging. The charging
time tfill is defined as the time needed to reach a certain
fraction κ

κ = m(p, 〈T 〉)/mmax(pfill, TN2
)

of the maximum storage capacity at a given filling pres-
sure. The stored mass m is calculated by applying GLL

quadrature to the integral

m(p, T ) = 2π

∫ H

0

∫ Ro

0

ρtot(p, 〈T 〉)r drdz

Boundary- and initial conditions. Denoting the bound-
ary of Ω by Γ it is divided into the inlet Γ1 = {(r, z) ∈
Γ, 0 ≤ r ≤ Rinlet, z = H}, the centerline Γ2 = {(r, z) ∈
Γ, r = 0} and the outer surface of the tank walls in con-
tact with the liquid nitrogen Γ3 = Γ − Γ1 ∪ Γ2. The
boundary conditions for the momentum- and continuity
equations (12)-(13) are

〈p〉β |Γ1
= −pfill (17)

u · n|Γ2
= 0 (18)

where u = (u, v)T . Here, (17) is imposed weakly and (18)
states that no mass can cross a symmetry line. In ad-
dition, the inner tank walls are impermeable such that
u · n = 0 at the interface between the porous bed and
the inner tank walls. For the energy equation (14) the
boundary conditions are given as

(Λeff · ∇〈T 〉) · n|Γ1
= (ρcp)β〈u〉(〈T 〉 − Tfill) · n|Γ1

(Λeff · ∇〈T 〉) · n|Γ2
= 0

〈T 〉|Γ3
= TN2

where TN2
= 77 K is the temperature of the liquid ni-

trogen bath and Tfill = 273 K is the temperature of the
incoming hydrogen. The initial conditions (t = 0) are set
to

〈u〉0 = 0, 〈T 〉0 = 77 K, 〈p〉β0 = 1 bar

and 〈ρad〉0 and 〈ρβ〉
β
0 are initialized thereafter. Being an

ODE, (9) only needs an initial condition.
Interpretation of results. A series of simulations have

been conducted with filling pressures ranging from 5 to 40
bars and κ ∈ {0.85, 0.90, 0.95}. These runs are summa-
rized in Fig. 4 which shows tfill as function of pfill for differ-
ent values of κ. It can be seen that tfill decreases with pfill.
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Figure 4: Filling time tfill as a function of filling pressure pfill to
reach a given fraction κ of the maximum storage capacity.

This seemingly non-intuitive behavior can be explained



by the fact that the ratio of gaseous- and adsorbed hy-
drogen 〈ρβ〉

β/〈ρad〉 increases with pressure. The density
of gaseous hydrogen 〈ρβ〉

β approaches its maximum value
faster than 〈ρad〉 when the tank is cooled which implies
that the bed temperature at tfill can be higher at elevated
pressures. Consequently, part of the problem of poor heat
transfer rates, when the tank approaches thermal equilib-
rium with the nitrogen bath, is avoided. In general, at
high pfill more energy is introduced to the system by in-
flowing hydrogen. The increased heat input does not seem
to restrict the charging time considerably. It can be ar-
gued that the introduced heat is efficiently dissipated to
the nitrogen in the dewar by the sharp radial temperature
gradients close to the entrance.

Temperature fields at different time levels for one par-
ticular realization with pfill = 40 bar and κ = 0.95 are
shown in Fig. 5a-b. These figures show the heating of the
tank at the inlet due to the incoming hydrogen gas and
the heating downstream due to adsorption. The temper-
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Figure 5: The temperature field at (a) t = 0.10 · tfill and (b)
t = 0.90 · tfill for the case with pfill = 40 bar and κ = 0.95. (c) The
spectral element partitioning of Ω.

ature decreases rather rapidly in the axial direction since
the incoming mass is cooled from the side by the liquid
nitrogen bath and by the thermal mass already present
in the tank. The axial decrease of temperature is also
due to the small convecting velocities. In fact, apart from
a limited time period immediately after start up, ther-
mal convection is negligible. Hence, the filling process is
reduced to a thermal conduction problem.

Fig. 5 also serves as a reminder of the shortcomings

of the model. The aforementioned assumption of semi-
incompressibility, i.e. ∂ρ/∂t = 0, reduces the pressure to
a non-physical variable. As a consequence the tank pres-
sure increases too rapidly and the volumetric adsorption
rate 〈ρ̇ad〉 becomes close to uniform in space. This is in
contrast to the actual adsorption process which one would
believe to have a high rate close to the inlet and then
gradually increase downstream as the pressure builds up.
Despite the limitation the model still offers valuable in-
formation as it estimates lower bounds for charging times.

FINAL REMARKS

We have presented a mathematical model and created a
numerical test bed for the analysis of transient behavior
of transport processes in a hydrogen adsorption storage
tank. It was deduced from the numerical experiments that
the poor effective thermal conductivity of the porous bed
limits rapid filling. Therefore, it can be argued that for
real life storage systems based on adsorption an efficient
charging strategy is needed that incorporates the issue of
thermal management. Finally, it is mentioned that the
work presented herein will be the backbone of forthcom-
ing numerical studies including heat and mass transfer
enhancement, improvement of mathematical model to al-
low for compressibility, parameter sensitivity analysis and
validation based on anticipated experimental data.
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