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ABSTRACT 

The paper deals with porous cavities with impermeable 
boundaries. Four squared isothermal bodies are located at the 
corners of the cavity.  Adequate numerical methods, finite 
difference and Gauss-Siedel iterative methods were used to 
solve the governing equations. The analysis of natural 
convection heat transfer was meant for Modified Rayleigh 
Number, Aspect Ratio, and Nusselt Number. In the findings, the 
Nusselt Number emerged as a strong function of Rayleigh 
Number and Aspect Ratio. 
Keywords: porous cavities, aspect ratio, Nusselt number, 
Rayleigh number 
 
 

NOMENCLATURE 
 
A aspect ratio, H/L 
cp specific heat at constant pressure, (J/kg.K) 
g acceleration due to gravity, (m/s2) 
H height of porous cavity, (m) 
K permeability of porous medium, (m2 ) 
ke eff. thermal conductivity of porous 

medium,(W/m.K) 
L width of porous cavity, (m) 
Nu Nusselt number 
p pressure, Pa 
Ra modified Rayleigh number 
T dimensional temperature, K 
∆T temperature difference (Th-Tc ), K 
 u fluid velocity in x direction, m/s 
 v fluid velocity in y direction, m/s 
 x , y Cartesian coordinates 
 α thermal diffusivity of porous medium, (m2/s)  

 β coefficient of thermal expansion of fluid, (K-1)  
θ dimensionless temperature 
 µ dynamic viscosity, (kg/m.s) 
  ρ density of fluid, (kg/m3) 

 ψ stream function 
Subscript 
 c cold wall 
 e effective 
 f fluid 
 h hot wall 
 o reference condition (for the media) 
Superscript 
ˆ dimensionless parameter 

 
 

INTRODUCTION 
Natural convection heat transfer in the porous enclosure 

between two planes, each of constant temperature has been 
studied for many years.  In the on-going search for techniques 
to augment natural convective heat transfer, attention has been 
recently directed at the possibility of embedding isothermal 
bodies in the enclosures. 
Two kinds of problem have been considered in the literature 
with respect to the type of boundary conditions of saturated 
porous cavity. The first kind of the problem, vertically 
difference temperature with horizontal insulated walls [1,2,3].  
The second, horizontally difference temperature with vertical 
insulated walls[4]. 
The works that include bodies embedded in porous media are 
explained here.  Oothuizen [5] studied two dimensional flow 
over a horizontal hot plate in a saturated porous medium 
mounted near an impervious adiabatic horizontal surface and 
subjected to horizontal forced flow, where the usually Darcy 
model is adopted.  This problem was numerically investigated 
by using the finite element method.  The heat transfer from the 
plate is influenced by the dimensionless depth of the plate 
below the surface and the importance of the buoyancy forces. 
Lai and Kulacki[6] analyzed another practical problem of 
natural convection heat transfer from a buried sphere in an 
infinite porous medium.  Also here, the governing equations 
based on Darcy’s law.  Different cases had been studied 
analytically, of temperature, concentration, heat flux, and mass 



 

  

flux to the sphere.  Results were presented as streamlines, 
temperature, and concentrations, where the flow and 
temperature fields are significantly modified by inclusion of 
mass transfer effects. 
Arnold [7] studied the natural convection in a porous medium 
between two concentric, horizontal cylinders. Two-dimensional 
equations had been solved, using a very fine mesh.  For radius 
ratio (R=2), a steady four-cell regimes were seen to occur at a 
Rayleigh number of about 120, further increase of the Rayleigh 
number does not result in the appearance of more cells. 
The present work deals with four squared isothermal bodies 
located at the corners of the porous cavity.  The porous cavity 
has an impermeable boundary.  Two of  the previous isothermal 
bodies are of high temperature and the others are of low 
temperature.  The study was for natural convection heat transfer 
in this cavity.  The problem geometry and the coordinated are 
depicted in figure(1).      
 The porous medium is considered to be homogeneous, 
isotropic, and in local thermal equilibrium with saturated fluid. 
The governing equations (momentum and energy) solved 
numerically by using finite difference method for two 
dimension with Gauss-Siedel iterative method[8]. 
 
GOVERNING EQUATIONS 

The equations that govern the fluid and heat flow in a 
saturated porous medium are the continuity, momentum, and 
energy equations. 

 Continuity Equation 
The continuity equation for steady two-dimensional 

incompressible flow in an isotropic porous medium is: 
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Momentum Equation 
In porous medium the momentum equation is derived from 

Darcy law, which is based on measurement alone.  Where this 
law stated on: the area averaged fluid velocity through a 
column of porous material is directly proportional to the 
pressure gradient established along the column, in addition, the 
velocity is inversely proportional to the viscosity ( µ) of the 
fluid seeping through the porous medium [4].  Then for two 
dimensions with the presence of gravitational acceleration the 
Darcy model is: 
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Where K is an empirical constant called permeability. 
To admit the buoyancy effect the Boussinesq approximation 
will be used.  This approximation can be applied to both liquids 
and gases: 
  [ ])(1 ΟΟ −−≅ TTβρρ           (4) 

 
Using equations (3) and (4)  
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It is convenient to eliminate the pressure term between equation 
(2) and (5) by differentiating the first w.r.t. (y) and the other 
w.r.t. (x) thus the momentum equation becomes: 

      
x
TKg

x
v

y
u

∂
∂−

=
∂
∂

−
∂
∂ Ο

µ
βρ

                         (6) 

Energy Equation 
The derivation of energy equation is based on the 

following assumptions: the medium is homogeneous, isotropic, 
and the solid matrix is in thermal equilibrium with the fluid 
filling the pores. These assumptions are adequate for small-
pores media such as geothermal reservoir and fibrous 
insulation.  Then for steady-state flow in two-dimensions the 
energy equation is: 
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DIMENSIONLESS FORMULATION 

To more conveniently elucidate the mathematical 
manipulations, the study of the governing equations will be 
carried out in a non-dimensional form.  All the spatial 
dimensions are non-dimensionalized with respect to L and H, 
then 
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  Where A is the aspect ratio (height, H, to width, L). 
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The stream function concept is commonly used for convective 
heat transfer problem, and is defined in terms of the velocity 
components, which satisfies the continuity equation:  
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The stream function is non-dimensionalized as follow: 
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Then the governing equations will take the following non-
dimensional forms: 



 

  

 Momentum Equation 
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Where (Ra) is a modified Rayleigh number which is the ratio 
between buoyancy force to drag force. 
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RESULTS AND DISCUSSIONS 

Solution of the flow field and temperature distributions 
within the enclosure may be found by standard numerical 
methods (finite difference and Gauss-Siedel methods).  The 
governing equations for the stream function, eq.(8), and 
temperature, eq.(9), are first discredited according to the well-
known central difference scheme for a regular mesh size.  The 
discredited equations for ψ,θ are then solved at each point, until 
the convergence to a steady or a stationary oscillating state is 
achieved. The iterative procedure was repeated until the 
following condition was satisfied: 5
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where the superscripts n and (n+1) indicate the value of the nth 

and (n+1)th iterations respectively, i and j indices denote grid 
location in the (x,y) plane. 
The most effective parameters in this study are Rayleigh 
number (Ra) and aspect ratio (A). The range of Ra was (0-600) 
and aspect ratios were 0.5, 1, 1.5, and 2. As mentioned before 
the isothermal bodies are square and of dimension 
(0.25H×0.25H) for A=0.5, and (0.25L×0.25L) for other aspect 
ratios. 
Typical numerical results are presented in figures (2-5) for 
isotherms and streamlines and figure(6) for heat transfer result. 
Firstly, for pure conduction, Ra=0, there is no flow and the 
isotherms will be vertical lines across the cavity.  
As Ra increased, figure(2), the isotherms deflect toward the 
right (Ra=300). This deflection increased more at Ra=600 
because of buoyancy effects. It has seen that the flow consists 
of one cell rotating in the clockwise direction (Ra=300). As Ra 
increased to 600 the flow comprises to multi cellular flow of 
two weak secondary cells. 
Figure(3), A=1, the core region looks greater and the main 
streams  appear between vertically spaced isothermal bodies. 
Also here, most of heat released from the hot boundaries and 
that gained by cold boundaries are due to horizontal 

temperature gradient 
x
T
∂
∂  and that is clear at the lower hot body 

and the upper cold body. The flow remains unicellular because 
of the narrow space between different temperature bodies. 
Figures(4,5) for A>1. In figure(4,a) , A=1.5, there is no great 
change in isotherm shape as Ra increased. Also, the flow 
remains unicellular, the core region enlarged and the flow 
proceeds to the boundary layer regime.  The change in the flow 
and direction of heat be clear at A=2, figure(5).  The flow 
comprises to three main cells, Ra=600.  It can be seen vertical 
temperature gradient at the place of the middle cell. Most of the 
heat released from the lower hot boundary gained by the lower 
cold boundary. We can say all the heat released from the upper 
hot boundary gain by the upper cold boundary.  
Figure(6) illustrates the effect of Raleigh number on the 
convection heat transfer presented by Nusselt number at 
different aspect ratios. Generally, Nu increased as Ra increased. 
For A=0.5, the onset of convection was at high Ra and the heat 
is transferred mainly by conduction. The behavior of the curve, 
at A=2, differs on the other curves in the range of Ra from 400 
to 500 because the nature of the flow changes.  This change 
effects on the convective heat transfer which reflect on the 
value of Nu. 
 
CONCLUSIONS 
In this paper a two-dimensional numerical investigation of the 
natural convection in a porous cavity contained in four 
isothermal bodies at its corners. The governing equations were 
solved in the ranges of Ra and A.  We have found that for 
aspect ratio less than one the enhancement  to convection is 
low. Whereas for A>1,(i.e. A=2), the flow structure effect 
greatly on heat transfer as Rayleigh number increased. 
 
 
 

 

 

 

 

 

 

 
 
 
 
 

Figure 1: Geometry of the problem 
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Figure2: (a)Isotherms and, (b)Streamlines for A=0.5 and different Ra 
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Figure3: (a)Isotherms and, (b)Streamlines for A=1 and different Ra 
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Figure4: (a)Isotherms and, (b)Streamlines for A=1.5 and different Ra 
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Figure5: (a)Isotherms and, (b)Streamlines for A=2  and different Ra 
 

Figure6: Relation between Raleigh no. and Nusselt 
no. for different Aspect ratio A
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