
A SOFT-CORE PROCESSOR ARCHITECTURE OPTIMISED FOR RADAR SIGNAL

PROCESSING APPLICATIONS

by

René Broich

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

December 2013

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

SUMMARY

A SOFT-CORE PROCESSOR ARCHITECTURE OPTIMISED FOR RADAR SIGNAL

PROCESSING APPLICATIONS

by

René Broich

Promoters: Hans Grobler

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electronic Engineering)

Keywords: Radar signal processor, soft-core processor, FPGA architecture, signal-

flow characteristics, streaming processor, pipelined processor, soft-core

DSP, processor design, DSP architecture, transport-based processor.

Current radar signal processor architectures lack either performance or flexibility in terms of ease of

modification and large design time overheads. Combinations of processors and FPGAs are typically

hard-wired together into a precisely timed and pipelined solution to achieve a desired level of func-

tionality and performance. Such a fixed processing solution is clearly not feasible for new algorithm

evaluation or quick changes during field tests. A more flexible solution based on a high-performance

soft-core processing architecture is proposed.

To develop such a processing architecture, data and signal-flow characteristics of common radar sig-

nal processing algorithms are analysed. Each algorithm is broken down into signal processing and

mathematical operations. The computational requirements are then evaluated using an abstract model

of computation to determine the relative importance of each mathematical operation. Critical portions

of the radar applications are identified for architecture selection and optimisation purposes.

Built around these dominant operations, a soft-core architecture model that is better matched to the

core computational requirements of a radar signal processor is proposed. The processor model is

iteratively refined based on the previous synthesis as well as code profiling results. To automate this

iterative process, a software development environment was designed. The software development en-

vironment enables rapid architectural design space exploration through the automatic generation of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

development tools (assembler, linker, code editor, cycle accurate emulator / simulator, programmer,

and debugger) as well as platform independent VHDL code from an architecture description file. To-

gether with the board specific HDL-based HAL files, the design files are synthesised using the vendor

specific FPGA tools and practically verified on a custom high performance development board. Tim-

ing results, functional accuracy, resource usage, profiling and performance data are analysed and fed

back into the architecture description file for further refinement.

The results from this iterative design process yielded a unique transport-based pipelined architec-

ture. The proposed architecture achieves high data throughput while providing the flexibility that

a software-programmable device offers. The end user can thus write custom radar algorithms in

software rather than going through a long and complex HDL-based design. The simplicity of this

architecture enables high clock frequencies, deterministic response times, and makes it easy to un-

derstand. Furthermore, the architecture is scalable in performance and functionality for a variety of

different streaming and burst-processing related applications.

A comparison to the Texas Instruments C66x DSP core showed a decrease in clock cycles by a factor

between 10.8 and 20.9 for the identical radar application on the proposed architecture over a range of

typical operating parameters. Even with the limited clock speeds achievable on the FPGA technology,

the proposed architecture exceeds the performance of the commercial high-end DSP processor.

Further research is required on ASIC, SIMD and multi-core implementations as well as compiler

technology for the proposed architecture. A custom ASIC implementation is expected to further

improve the processing performance by factors between 10 and 27.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

OPSOMMING

’N SAGTEKERNPROSESSEERDERARGITEKTUUR WAT VIR

RADARSEINPROSESSERINGTOEPASSINGS OPTIMEER IS

deur

René Broich

Promotors: Hans Grobler

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Elektroniese Ingenieurswese)

Sleutelwoorde: Radarseinverwerker, sagtekernverwerker, FPGA-argitektuur, seinvloei-

eienskappe, vloeiverwerker, pyplynargitektuur, DSP-sagtekern, DSP-

verwerker, vervoergebaseerde verwerker

Die huidige radarseinverwerkerargitekture kort óf prestasie óf buigbaarheid betreffende maklike

modifikasie en hoë oorhoofse ontwerptydkoste. Kombinasies van verwerkers en FPGAs word tipies

hard bedraad in ’n noukeurig gemete en pyplynoplossing om die vereiste vlak van funksionaliteit en

prestasie te bereik. So ’n vasteverwerker-oplossing is duidelik nie vir nuwe algoritmiese bereken-

inge of vinnige veranderinge tydens veldtoetse geskik nie. ’n Meer buigsame oplossing gebaseer op

hoëprestasie-sagtekernverwerkerargitektuur word voorgestel.

Om so ’n verwerkingsargitektuur te ontwikkel, is data- en seinvloei-eienskappe van gemeenskap-

like radarseinverwerkingalgoritmes ontleed. Elke algoritme word afgebreek in seinverwerking- en

wiskundige berekeninge. Die berekeningvereistes word dan geëvalueer met behulp van ’n abstrakte

berekeningsmodel om die relatiewe belangrikheid van elke wiskundige operasie te bepaal. Krit-

ieke gedeeltes van die radartoepassings word geïdentifiseer vir argitektuurseleksie en optimering-

doeleindes.

’n Sagtekern-argitektuurmodel, wat volgens die dominante operasies gebou is en wat beter aan die

kernberekeningsvereistes van ’n radarseinverwerker voldoen, word voorgestel. Die verwerkermodel

word iteratief verfyn op die basis van die vorige sintese sowel as kodeprofielresultate. Om hierdie

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

herhalende proses te outomatiseer, is ’n sagteware-ontwikkelingomgewing ontwerp. Die sagteware-

ontwikkelingsomgewing maak vinnige argitektoniese ontwerpsverkenning van die ruimte deur mid-

del van die outomatiese generasie van ontwikkelinggereedskap (samesteller, binder, koderedakteur,

siklus-akkurate emulator/simulator, programmeerder en ontfouter) sowel as platform-onafhanklike

VHDL-kode van ’n argitektuurbeskrywinglêer moontlik. Saam met die bord-spesifieke HDL-

gebaseerde HAL-lêers word die ontwerpslêers gesintetiseer deur die verkoper-spesifieke FPGA-

gereedskap te gebruik en prakties geverifieer op ’n doelgemaakte hoëprestasie-ontwikkelingbord.

Tydsberekeningresultate, funksionele akkuraatheid, middele-gebruik, profiele en prestasiedata word

ontleed en teruggevoer in die argitektuurbeskrywinglêer vir verdere verfyning.

Die resultaat van hierdie iteratiewe ontwerpsproses is ’n unieke vervoergebaseerde pyplynargitektuur.

Die voorgestelde argitektuur bereik hoë deurvoer van data en verleen terselfdertyd die buigsaamheid

wat ’n sagteware-programmeerbare toestel bied. Die eindgebruiker kan dus doelgemaakte radar-

algoritmes in sagteware skryf, eerder as om dit deur ’n lang en komplekse HDL-gebaseerde ontwerp te

doen. Die eenvoud van hierdie argitektuur lewer hoë klokfrekwensie en deterministiese reaksietye en

maak dit maklik om te verstaan. Verder is die argitektuur skaleerbaar wat prestasie en funksionaliteit

betref vir ’n verskeidenheid vloeiverwerkerverwante toepassings.

In vergelyking met die Texas Instruments C66x DSP-kern was daar ’n afname in kloksiklusse met

’n faktor van tussen 10,8 en 20,9 vir die identiese radar op die voorgestelde argitektuur oor ’n ver-

skeidenheid tipiese bedryfstelselparameters. Selfs met die beperkte klokspoed wat haalbaar is op die

FPGA-tegnologie, oorskry die voorgestelde argitektuur die prestasie van die kommersiële hoëspoed-

DSP-verwerker.

Verdere navorsing is nodig oor ASIC, SIMD en multi-kern-implementering, sowel as samesteller-

tegnologie vir die voorgestelde argitektuur. Daar word voorsien dat ’n pasgemaakte ASIC-

implementering die verwerkingprestasie tussen 10 en 27 maal sal verbeter.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF ABBREVIATIONS

AAU Address arithmetic unit

ABI Application binary interface

ADL Architecture description language

AESA Active electronically scanned array

AGU Address generation unit

BRF Burst repetition frequency

BRI Burst repetition interval

CAM Content-addressable memory

CFAR Constant false alarm rate

CLB Configurable logic block

CORDIC Coordinate rotational digital computer

CPI Coherent processing interval

CW Continuous wave

DDS Direct digital synthesizer

DFG Data flow graphs

DFT Discrete Fourier transform

DIF Decimation-in-frequency

DIT Decimation-in-time

DLP Data-level parallelism

DPU Data processing units

DSP Digital signal processor

EPIC Explicitly parallel instruction computing

EW Electronic warfare

FM Frequency modulating

FU Functional unit

GPGPU General purpose computing on GPUs

HDL Hardware descriptive language

HLS High-level synthesis

HRR High range resolution

HSDF Homogeneous synchronous data flow

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I/Q In-phase and quadrature

IDFT Inverse discrete time Fourier transform

IF Intermediate frequency

ILP Instruction-level parallelism

IP Intellectual property

LE Logic elements

LFM Linear frequency modulated

LNA Low noise amplifier

LUT Look up tables

LWDF Lattice wave digital filter

MMU Memory management unit

MTI Moving target indication

NCI Non-coherent integration

NISC No instruction set computer

NLE Noise-level estimation

OISC One instruction set computer

PRF Pulse repetition frequency

PRI Pulse repetition interval

RCS Radar cross section

RSP Radar signal processor

SAT Summed area table

SDF Synchronous data flow

STA Synchronous transfer architecture

STC Sensitivity time control

SW Sliding window

TLP Thread-level parallelism

TTA Transport triggered architecture

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

TABLE OF CONTENTS

CHAPTER 1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Objectives . 4

1.4 Contribution . 5

1.5 Overview . 5

CHAPTER 2 Computational Analysis of Radar Algorithms 7

2.1 Overview . 7

2.2 Radar Overview . 8

2.2.1 Continuous Wave Radar Systems . 8

2.2.2 Pulse Radar Systems . 9

2.3 Computational Requirements . 15

2.4 Computational Breakdown into Mathematical Operations 18

2.5 Relative Processing Requirements for each Operation 19

CHAPTER 3 Current Processing Technologies 23

3.1 Overview . 23

3.2 Digital Signal Processors . 24

3.2.1 Architecture of the Texas Instruments C66x Core 25

3.2.2 Architecture of the Freescale SC3850 Core 26

3.2.3 Usage in Radar . 27

3.3 FPGAs . 27

3.3.1 Streaming / Pipelined Architecture . 28

3.3.2 Adaptive Hardware Reconfiguration . 28

3.3.3 Hard-core Processors Embedded on FPGAs 29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.3.4 Generic Soft-core Processors Embedded on FPGAs 29

3.3.5 Custom Soft-core Processors Embedded on FPGAs 30

3.4 ASIC and Structured ASIC . 31

3.5 Consumer Personal Computer Systems . 32

3.5.1 Vector Processing Extensions . 33

3.5.2 Graphics Processing Unit . 33

3.6 Commercial Microprocessors . 33

3.7 Application Specific Instruction-set Processors . 34

3.8 Other Processing Architectures . 35

3.9 Discussion . 36

CHAPTER 4 Proposed Architecture Template 39

4.1 Overview . 39

4.2 Ideal Radar Signal Processing Architecture . 39

4.3 Simplified Architecture . 40

4.4 Datapath Architecture . 42

4.5 Control Unit Architecture . 44

4.6 Memory Architecture . 46

4.7 Functional Units . 47

4.7.1 Integer Functional Units . 47

4.7.2 Floating-Point Functional Units . 49

CHAPTER 5 Architectural Optimisation Process 51

5.1 Overview . 51

5.2 Software Development Environment . 52

5.3 Algorithm Implementation Procedure . 57

5.3.1 Envelope Calculation . 58

5.3.2 FIR Filter Operation . 60

5.3.3 FFT Operation . 61

5.3.4 Transpose Operation . 65

5.3.5 Summation Operation . 65

5.3.6 Sorting Operation . 66

5.3.7 Timing Generator . 67

5.3.8 Pulse Generation . 67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.3.9 ADC Sampling . 67

5.3.10 IQ Demodulation . 68

5.3.11 Channel Equalisation . 68

5.3.12 Pulse Compression . 68

5.3.13 Corner Turning . 69

5.3.14 Moving Target Indication . 69

5.3.15 Pulse-Doppler Processing . 69

5.3.16 CFAR . 69

5.3.17 Data Processor Interface . 70

CHAPTER 6 Final Architecture 71

6.1 Overview . 71

6.2 Amalgamation of the different Functional Units . 71

6.3 Final Architecture . 74

6.4 Architecture Implementation on Xilinx Virtex 5 . 76

CHAPTER 7 Verification and Quantification 81

7.1 Overview . 81

7.2 Signal Processing Performance Results . 82

7.2.1 Comparison to other Architectures . 83

7.3 Radar Algorithm Performance Results . 87

7.3.1 Comparison to other Architectures . 88

7.4 FPGA Resources Used . 90

7.5 Design time and Ease of implementation . 90

CHAPTER 8 Conclusion 93

8.1 Overview . 93

8.2 Result Discussion . 95

8.2.1 Performance . 95

8.2.2 System Interface . 96

8.2.3 Latency . 96

8.2.4 General Purpose Computing . 97

8.2.5 Architectural Efficiency . 97

8.2.6 Optimisation . 97

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.2.7 Scaling in Performance . 98

8.3 Similar Architectures . 98

8.4 Alternatives . 100

8.4.1 High-level FPGA Synthesis Tools . 100

8.4.2 Grid Processor . 100

8.4.3 GPU-based Processor . 101

8.5 Future Research . 101

8.5.1 Further Performance Optimisations . 101

8.5.2 Resource Usage Reduction . 102

8.5.3 ASIC Implementation . 104

8.5.4 Compiler Support . 104

8.6 Concluding Remarks . 104

APPENDIX A Radar Signal Processing Algorithms 121

A.1 Overview . 121

A.2 Timing Generator . 121

A.3 Pulse Generator . 122

A.4 Analogue Interface . 124

A.5 I/Q Demodulation . 124

A.6 Channel Equalisation . 127

A.7 Pulse Compression / Matched Filtering . 128

A.8 Corner Turning Memory . 130

A.9 Non-coherent Integration . 131

A.10 Moving Target Indication . 131

A.11 Pulse-Doppler Processing . 132

A.12 Envelope Calculation . 134

A.13 Constant False Alarm Rate . 135

A.13.1 Cell Averaging CFAR . 135

A.13.2 Adaptive CFAR . 139

A.13.3 Order Statistic CFAR . 140

A.13.4 Computational Requirements . 140

A.14 Noise Level Estimation . 142

A.15 Monopulse Calculations . 142

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A.16 Data Processor . 142

APPENDIX B Common Signal Processing Operations 145

B.1 Overview . 145

B.2 Basic Arithmetic Operations . 145

B.3 Accumulation . 146

B.4 Fourier Transform . 147

B.4.1 Discrete Fourier Transform . 147

B.4.2 Inverse Discrete Fourier Transform . 148

B.4.3 Fast Fourier Transform . 149

B.4.4 Inverse Fast Fourier Transform . 151

B.5 Finite Impulse Response Filters . 151

B.6 Infinite Impulse Response Filters . 152

B.7 Phase Shift . 153

B.8 Sorting . 154

B.8.1 Odd-Even Transposition Sort . 154

B.8.2 Bitonic Merge-Sort . 155

B.8.3 Odd-Even Merge-Sort . 156

B.9 Array Operations . 156

B.10 Matrix Multiplication . 157

B.11 Matrix Inversion . 157

B.12 Convolution . 158

B.12.1 Fast Convolution . 158

B.13 Cross-Correlation . 159

B.14 Dot product . 159

B.15 Decimation . 160

B.16 Scaling . 160

B.17 Interpolation . 160

B.18 Rectangular and Polar coordinate conversion . 161

B.19 Moving Average . 162

B.20 Finite Word Length Effects . 162

APPENDIX C Current Processing Architectures 163

C.1 Overview . 163

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

C.2 Instruction Set Architecture . 163

C.2.1 Reduced Instruction Set Computing . 164

C.2.2 Complex Instruction Set Computing . 164

C.2.3 Very Long Instruction Word . 164

C.2.4 Instruction Set Extensions . 165

C.3 Micro-architecture . 165

C.4 Memory Architecture . 167

C.5 Hardware coprocessors . 168

C.6 Multiple Cores / Parallel Processor . 168

C.7 Vector / Array Processor . 169

C.8 Stream Processor . 169

C.9 Dataflow Processor Architectures . 169

C.10 No Instruction Set Computer . 171

APPENDIX D Software Development Environment Screenshots 173

APPENDIX E Application Source Code 177

E.1 Envelope Calculation . 177

E.2 FFT Algorithm . 179

E.3 Delay . 182

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

In a modern radar system, the architecture of the radar signal processor is one of the most important

design choices. The amount of useful information that can be extracted from the radar echoes is

directly related to the computational performance that the radar signal processor can deliver. To meet

the required real-time performance, field programmable gate arrays (FPGAs) have become the most

popular technology because of their re-programmability and resource intensive nature. Radar signal

processing algorithms commonly exhibit parallelism and limited cyclic dependencies, making the

FPGA a highly suitable technology. For such cases, considerable performance improvements can be

achieved over conventional microprocessor and dedicated coprocessor solutions [1, 2].

However, with evolving requirements in the constantly changing radar processing field (largely due

to radar technology advances and electronic warfare (EW) counter-measures), an FPGA lacks flex-

ibility in terms of ease of modification and design time overhead. The design cycle for developing

the radar signal processor in a hardware descriptive language (HDL), is often much longer than the

period between consecutive releases of new specifications or requirements. Also, new algorithms or

algorithm combinations based on MATLAB simulations or sequential C program implementations are

typically difficult or cumbersome to convert to the inherently concurrent HDLs, further widening the

gap between the theoretical concept and the practical implementation. The repetitive HDL-based re-

design is time consuming and clearly not feasible in the long run, especially for small design changes

made during field tests.

Soft-core processors (embedded on the FPGA), digital signal processors (DSPs) and conventional

micro-processors shift the redesign methodology to a software based approach, but generally lack the

real-time performance required for processing radar data.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Introduction Chapter 1

It is clear that a more versatile solution is required. A new soft-core processing architecture that is

optimised for radar signal processing applications is proposed. Since the pulse-Doppler radar is most

commonly used for detecting, tracking, and classification functions in modern radar systems, it will

be the main focus of this investigation.

1.2 MOTIVATION

In the past the focus of the radar signal processor design has simply been to achieve a desired level

of functionality and performance. Combinations of multiple application specific integrated circuits

(ASICs), DSPs, FPGAs, and coprocessors were hard-wired together to form a fixed solution for a

specific task. Little or no emphasis has been placed on attempts to establish a versatile, flexible and

easy to use processing architecture for radar processing applications.

performance

fle
xi

bi
lit

y

ASIC

FPGA

m
ic

ro
pr

oc
es

so
r

cu
st

om
is

ed
ar

ch
ite

ct
ur

e

Figure 1.1: Bridging the gap between flexibility and performance

From an FPGA perspective, challenges concerning rapid implementation and high-level optimisation

of algorithms are posed. Some notable attempts have been made to improve the overall design process

of FPGA systems; software abstraction layers [3], library based tool chains [4], rapid implementation

tool-suites for translating high-level algorithms into HDL [5, 6] and high-level synthesis tools [7–

9]. Table 1.1 summarises these different FPGA mapping approaches and compares their relative

characteristics.

Clearly none of these mapping approaches achieve the right balance between speed, flexibility and

ease of implementation. Simple parameter or functional changes are not in-field changeable and re-

quire hours of re-compilation and debugging because of latency mismatches or timing closure prob-

lems. In the rapidly changing field of radar processing, the implementation of custom algorithms

2 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

Table 1.1: FPGA Algorithmic Mapping Techniques

Category Comments
HDL synthesis Tools (e.g.
Xilinx ISE, Altera Quartus II,
Synopsis)

High performance, low latency, time consuming HDL
design; exact cycle by cycle behaviour needs to be spe-
cified, requires specialised expertise, difficult to design for
functional scalability and flexibility, long compile / synthesis
times, timing closure problems, complex and iterative debug-
ging phases, design often relies on vendor specific primitive
and interface blocks

Graphical block diagram tools
(e.g. Mentor Graphics HDL
Author)

Vendor independent, code visualisation as modular blocks,
library based design, graphical state machine editor, facilit-
ates design collaboration, poor integration with design tools,
same issues as with HDL synthesis tools

IP libraries / generators
(e.g. OpenCores [10],
Xilinx CORE Generator Sys-
tem [11], Altera MegaWizard
Plug-In Manager [12])

Library of IP cores that can be generated and reused to in-
crease design productivity

Soft-core processor (e.g.
NIOS II, MicroBlaze, LEON)

Sequential execution model; software is more flexible than
HDL, easy to program with high-level languages such as
C/C++, quick compilation and reprogramming, easy to de-
bug with breakpoints and code stepping, limited FPGA re-
source usage, aimed at general purpose computing and con-
trol applications, can be accelerated by extending the ISA or
adding custom logic into their memory space, lacks DSP per-
formance, not real-time, high latency, limited performance
scalability

C to HDL compiler (e.g.
Xilinx Vivado HLS, Syn-
opsys Synphony C Compiler,
Mentor Graphics Catapult C,
Cadence C-to-Silicon)

C-language is not well-suited for mapping FPGA hardware;
lacking constructs for specifying concurrency, timing, syn-
chronisation. Restructuring the C code is necessary for the
tool to detect parallelism, poor integration with design tools,
same issues than with synthesis tools after HDL creation

OpenCL to HDL compiler
(e.g. Altera SDK for OpenCL
[13] [14])

FPGA used as an accelerator to a host PC processor, experi-
mental

Transaction-level modelling
(e.g. SystemC)

Early architectural exploration, C++ for simulating the entire
system, functional verification, untimed specification, same
issues than with synthesis tools after HDL creation

Dataflow to HDL (e.g. ORCC
[15])

Compiles RVC-CAL actors and XDF networks to any source
code (C/Java/VHDL/Verilog), needs to be synthesized using
traditional tools

Visual design tools (e.g. Na-
tional Instruments LabView
for FPGA, MATLAB/Sim-
ulink plug-ins: Xilinx Sys-
tem Generator, Altera DSP
Builder)

Graphical interconnection of different DSP blocks, multi-
rate systems, fused datapath optimisations. Difficult to de-
scribe and debug complex designs, no design trade-off op-
timisation, lacking support for: parameterised designs, par-
allelism, control signals, interfaces

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Introduction Chapter 1

remains cumbersome with long design cycles on current hardware architectures, often requiring sys-

tem level changes even for small modifications. It is clear that a high-level programming model that

simplifies the algorithmic implementation for a radar signal processor, is required. Given the flex-

ibility limitations of current radar signal processors, it is theorised that a better solution based on a

custom processor and a software development environment is possible. The proposed architecture

is envisioned to consist of multiple low-level functional units applicable to the various radar signal

processing algorithms. Each of these would be configured and interconnected from a high-level, thus

bridging the gap between performance and flexibility as shown in Fig. 1.1.

1.3 OBJECTIVES

The research objective of this study is to develop a framework that captures common low-level pro-

cessing constructs that are applicable to a pulse-Doppler radar signal processing architecture. These

low-level constructs will be combined into a new processing architecture that exhibits the required

performance for radar signal processing, and is programmable from a software environment. This

architecture would have to support numerous variations of the generic radar algorithms as outlined

in Appendix A, as well as a portfolio of signal processing operations as listed in Appendix B. For

example, the Doppler processing requirements for a high range resolution (HRR) radar system would

be significantly different compared to a standard radar system. Some of the research questions that

will be addressed are listed below:

• What does radar signal processing entail from a processing perspective?

• What performance enhancement techniques do current processors employ?

• Which characteristics make an architecture optimal or well-suited for a specific application?

• What procedures are followed to design, optimise, debug and verify an architecture?

• What is the optimal architecture for a radar signal processor?

The aim is to develop a deterministic real-time soft processor architecture that is capable of fully

utilizing the FPGA in the radar signal processing paradigm. Emphasis will be placed on the software

configurable (embedded software rather than FPGA firmware) aspects, while balancing computa-

tional performance. Algorithms written purely as FPGA firmware will almost certainly outperform

any algorithms written for a soft-core architecture residing on that same FPGA. The key difference

of the proposed architecture compared to conventional FPGA and DSP based solutions however, is a

4 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1 Introduction

much better match of the architecture to the core computational as well as the system level architec-

tural needs of a radar signal processor.

It should be clear that the focus of this study is not to develop a radar system, but rather to design and

optimise a soft-core architecture such that radar systems can easily be implemented from a high-level.

The end user would thus be able to write and test new algorithms as embedded software rather than

FPGA firmware.

1.4 CONTRIBUTION

Among the vast amount of implementation details relating to radar signal processors (RSPs), there is

very limited material covering an architecture that is programmable and reconfigurable from a high-

level software environment. Using the architectural knowledge gained through the iterative design and

verification process, a higher level framework is presented. This framework is employed to explore

the design space of an optimal RSP architecture that can be implemented as a soft-core processor

on an FPGA. The results of this study, and specifically the architecture of the proposed soft-core

processor, will be submitted for publication in the IEEE Transactions on Aerospace and Electronic

Systems journal. The background study analysing the processing and computational requirements of

a typical radar signal processor was presented at the 2012 IEEE Radar Conference in Atlanta, GA,

USA [16].

The following list summarises the primary contributions made by this work:

• a computational requirement analysis of radar algorithms,

• a framework for processor architecture design,

• a software tool chain with assembler and simulator,

• the FLOW programming language, and

• the proposed processing architecture for software-defined radar applications.

1.5 OVERVIEW

The structure of this document outlines the approach that was followed in obtaining the optimised

architecture. Chapter 1 identifies the problem and provides a brief literature overview, emphasising

the need for a reprogrammable radar processing architecture.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Introduction Chapter 1

Chapter 2 introduces the problem from a signal processing perspective. Firstly, the background ma-

terial relating to radar systems is covered. Typical radar signal processing algorithms are discussed

and broken down into common digital signal processing operations. The data and signal flow char-

acteristics of the various radar algorithms are then quantitatively analysed based on a test-case, such

that operations can be ranked according to their relative importance for optimisation purposes.

Various computational architectures and processing technologies are discussed and compared in

Chapter 3, examining their applicability to radar systems. Each of these processing architectures

are potential architectural templates, which could be implemented on an FPGA.

Chapter 4 proposes a suitable architectural template that is capable of handling the processing re-

quirements established in Chapter 2. The architecture is discussed from a higher level without the

implementation details of the operations and algorithms. The optimisation procedure and implement-

ation alternatives for the operations and algorithms on the proposed architecture are then discussed in

Chapter 5.

In Chapter 6 these implementation options are amalgamated into a unified architecture. Trade-offs

and algorithm combinations are discussed from a performance and resource usage perspective. The

final architecture is presented and the hardware implementation alternatives are evaluated.

The proposed architecture is verified and quantified in Chapter 7. Processing performance, FPGA

resource usage, and ease of implementation are discussed and compared against other architectures.

Finally, the advantages and shortcomings of the proposed architecture are discussed in Chapter 8,

followed by a discussion on alternative solutions and suggestions for further research.

The following table outlines the notations that are used throughout the document for variables and

constant expressions.

Table 1.2: Notation Convention

Description Description
N Number of samples per PRI P Number of pulses per burst / CPI
L Filter length T Number of transmit samples
K FFT point length R Range
fs Sampling frequency Ts Sampling interval
fd Doppler frequency τ Transmit pulse width
fp Pulse repetition frequency Tp Pulse repetition interval

6 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2

COMPUTATIONAL ANALYSIS OF RADAR

ALGORITHMS

2.1 OVERVIEW

In order to propose an optimised soft-core processing architecture, an in-depth computational analysis

of the algorithms used in pulse-Doppler radar systems is necessary. As a first step, a typical pulse

Doppler radar signal processor is implemented as a MATLAB [17] model. This high-level model of

the radar system:

1. Provides a mechanism for analysing data as well as signal-flow characteristics of the radar

algorithms,

2. Provides an overview of the entire radar system and its processing as well as memory require-

ments,

3. Establishes a baseline to verify the correctness of the implementation during development, and

4. Sets a benchmark for comparing the performance of the implementation against.

The radar signal processor algorithms are then broken down into mathematical and signal processing

operations (kernels). Kernels that exhibit high recurrence or significant computational requirements

are identified and sorted according to their relative processing time and importance. Kernels with a

high computational density are given priority in the optimisation process in later chapters.

The first step thus involves an analysis of a typical radar signal processor. An overview of the radar

system as a whole is provided in the next section, identifying the various processing algorithms that

are typically used in such a radar signal processor.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Computational Analysis of Radar Algorithms Chapter 2

2.2 RADAR OVERVIEW

A radar system radiates electromagnetic waves into a certain direction of interest, analysing the re-

ceived echo once the signal has bounced back. The analysed information can be used for target de-

tection, tracking, classification or imaging purposes. Radar systems can be divided into two general

classes; namely continuous wave (CW) and pulsed radars.

2.2.1 Continuous Wave Radar Systems

In the CW configuration, the radar system simultaneously transmits and receives. Fig. 2.1 shows a

basic CW radar with a dual antenna configuration.

TX Ant. CW
Transmitter

f0

f0

LO
fIF

Sideband
Filter

f0 + fIF

f0± fd IF filter &
amplifier

Frequency
detector

fIF ± fd

Display /
Indicator

RX Ant.

Figure 2.1: CW radar block diagram

Although a single antenna monostatic configuration is theoretically possible for CW radar systems,

the transmitter leakage power is typically several magnitudes larger than what can be tolerated at the

receiver, making such systems impractical. Additionally, the received echo-signal power is typically

in the order of 10−18 or less that of the transmitted power. Regardless, complete isolation between

transmitter and receiver is practically not realisable in monostatic configurations, even with separate

antennas. It is thus up to the radar to differentiate between transmitted and received signals.

8 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Computational Analysis of Radar Algorithms

In the case of a moving target, the received echo will have a Doppler frequency shift relative to the

transmitted signal of

fd = ∆ f =
2vr f0

c
, (2.1)

where f0 is the transmitted frequency, c is the propagation velocity (3×108 m/s in free space), and vr

is the relative radial velocity between target and radar.

Thus this frequency shift can be used to detect moving targets, even in noisy environments and with

low signal returns. In the implementation depicted in Fig. 2.1, the transmitted signal is a pure sinusoid

at a radar frequency f0. The received signal is mixed down to the intermediate frequency (IF) of the

local oscillator (LO). A bank of filters acts as a frequency detector and outputs the presence of a

moving target to a display. To measure target distance however, a change in transmitter waveform is

required as a timing reference. This can be accomplished by frequency modulating (FM) the carrier,

as with FM-CW radars.

These FM-CW radars are relatively simple, low power systems often used for proximity fuses, alti-

meters or police speed-trapping radars. Most commercial as well as military radar systems are pulsed

radars; more specifically pulse-Doppler radars as discussed in the next section.

2.2.2 Pulse Radar Systems

Antenna tx
rx

duplexer

RF filter &
amplifier

DACLO

L
N

A

mixer

mixer

IF filter
& amplifier

ADC
signal

processor

data processor
and display

Figure 2.2: Pulse radar block diagram

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Computational Analysis of Radar Algorithms Chapter 2

A simplified pulse radar system is shown on the previous page in Fig 2.2. Pulses that are to be

transmitted are converted to an analogue signal, up-converted to the radar frequency, amplified and

filtered. The duplexer is set to transmit mode and the pulse is radiated at the speed of light in the

direction the antenna is facing. After the transmission is complete, the duplexer is switched back to

receive mode. The receiver now waits for a returned signal. The time it takes for a signal to travel

towards the target, reflect off the target and return back to the antenna is thus

t0 =
2R
c
, (2.2)

where c is the speed of light and R is the range to the target. Once a radar echo is received, it is

amplified by the low noise amplifier (LNA) and down-converted to some IF frequency (typically in

the centre of the ADC band) by the mixing and filtering operations. In practical implementations,

there are usually more IF up and down-conversion stages. Optionally the received signal may also

be fed through a sensitivity time control (STC), a variable attenuator to provide increased dynamic

range (by decreasing the effects of the 1/R4 return power loss) and receiver saturation protection from

close targets. The mixing operations require the LO to be extremely stable in order to maintain phase

coherence between transmitted and received pulses; a vital prerequisite for pulse-Doppler radars and

most modern radar algorithms. The IF signal is then amplified and passed to the analogue to digital

converter (ADC) of the radar signal processor (RSP). When phase coherency between transmitter and

receiver is maintained from sample to sample, the pulse radar is known as a pulse-Doppler radar,

because of its ability to detect Doppler frequencies by measuring phase differences. Thus the ADC

samples both in-phase (I) and quadrature (Q) channels of the received echo in a pulse-Doppler radar.

This can be accomplished by oversampling and performing digital I/Q demodulation (e.g. a Hilbert

transform) or by using two ADC’s and a 90 degree out of phase analogue mixing operation as shown

in Fig. 2.3.

Input
LO

90◦ shift

LPF

LPF

ADC 1

ADC 2

RSP

I

Q

Figure 2.3: Conventional quadrature channel demodulation

10 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Computational Analysis of Radar Algorithms

A pulsed radar system sends out numerous pulses at a predetermined pulse repetition frequency

(PRF); typically between 100 Hz and 1 MHz. Fig. 2.4 shows how its inverse, the pulse repetition

interval (PRI), represents the time between consecutive transmissions. The transmit pulse width τ is

typically 0.1 to 10 microseconds (µs) and the receive / listening time is typically between 1 micro-

second and tens of milliseconds.

#1

τ

#2

PRI

#3

RX

TX

Po
w

er

Time

Complex ADC samples at fs = 1/Ts

Figure 2.4: Pulsed radar waveform

During the receiving time, the ADC collects numerous “fast-time" range samples for each pulse

number. If a transmitted pulse (at the carrier frequency fc) of the form

x(t) = Acos(2π fct +θ), −τ

2
< t <

τ

2
(2.3)

is returned from a hypothetical target at range R0, the received pulse y(t) would be

y(t) = x(t− 2R0

c
) (2.4)

= A′ cos(2π fct +θ − 4πR0

λ
), −τ

2
+

2R0

c
< t <

τ

2
+

2R0

c
. (2.5)

In order to determine the unknown amplitude A′ (modelled by the radar range equation [18]) and

phase shift θ ′ = −(4πR0)/λ , the complex sampling and demodulation techniques of Fig. 2.3 are

employed to remove the carrier frequency cos(2π fct + θ). With y(t) as the input, the discrete time

analytic signal y[n] becomes

y[n] = yI[n]+ j · yQ[n] (2.6)

= A′ cos(−4πR0

λ
)+ j ·A′ sin(−4πR0

λ
) (2.7)

= A′e− j 4πR0
λ , n = 0, ...,N−1 (2.8)

where n is the sample number corresponding to the time of t = nTs. Note how the phase of the analytic

signal is directly proportional to the range of the target. A change in range by just λ/4 changes the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Computational Analysis of Radar Algorithms Chapter 2

phase by π; a range increment of barely 7.5 mm in an X-band radar. This capability is key to most

modern radar algorithms such as Doppler processing, adaptive interference cancellation, and radar

imaging.

The complex I/Q samples of the analytic signal are stored in a matrix with pulses arranged in rows

beneath each other as shown in Fig. 2.5.

Range bin / Sample number
(fast time)

Pu
ls

e
#

(s
lo

w
tim

e)

1

2

P

1 2 3 4 5 6 7 8 9 10 11 12 13 N

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

0∠ 0◦

5∠
10◦

5∠
20◦

5∠
30◦

6∠
50◦

6∠
50◦

6∠
50◦

Figure 2.5: Data matrix: range-pulse map

Each sample in the matrix can now be addressed with y[p][n], where p is the pulse number and n

is the range sample. The number of pulses that are stored together are determined by the coherent

processing interval (CPI), sometimes also referred to as dwell, pulse burst or pulse group. Typical

CPIs are chosen to be between 1 and 128 pulses (P), consisting of between 1 and 20000 range samples

(N). Each column in the CPI matrix represents different “slow-time” samples (separated by the PRI)

for a specific discrete range increment (often called a range bin) corresponding to a range of

Rn =
cnTs

2
, (2.9)

where n is the sample number and Ts is the sampling interval. The two hypothetical targets introduced

in Fig. 2.4 and Fig. 2.5 are clearly visible at range samples 7 and 10. At an ADC sampling frequency

of fs = 50 MHz, these would represent targets at a range of 21 and 30 m with each range bin covering

3 m of distance (provided the pulse width τ is short enough to isolate consecutive targets or pulse

compression techniques are used). Note how the phase is changing in the first target; a trait of a

moving target because of the Doppler shift.

To extract the required information in the presence of noise, clutter, and interference (intentional

[e.g. jamming] or unintentional [e.g. from another radar system]), the pulse-Doppler RSP performs

various functions as discussed in the next section.

12 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Computational Analysis of Radar Algorithms

2.2.2.1 Pulse-Doppler Radar Signal Processor

The RSP of a pulse-Doppler system is responsible for both waveform generation as well as analysis

of the returned signal as shown in Fig. 2.6. In this case a monopulse antenna configuration is depicted,

however a variety of different antenna configurations (e.g. phased array, bi-static, active electronically

scanned array (AESA), or multiple-input multiple-output (MIMO)) could be used. The transmitter

side of the RSP simply generates the desired pulses (usually linear frequency or phase modulated) at

the pulse repetition frequency set by the timing generator, and passes them to the digital to analogue

converter (DAC).

On the receiver side, the functionality of the radar signal processor is typically divided into the front-

end streaming processing, and the processing that is done on bursts of data. Although only the sum-

mation (Σ) channel is shown, the processing requirements are similar on all three of the monopulse

channels.

The streaming radar front-end processing is usually very regular and independent of the data. It

includes basic signal conditioning functions, digital IF down-conversion, in-phase / quadrature com-

ponent demodulation (typically a Hilbert transformer), filtering, channel equalisation, and pulse com-

pression (binary phase coding or linear frequency modulation). Although these functions remain the

same for most applications, samples need to be processed in a high-speed stream as the data from the

ADC becomes available. With sampling rates as much as a few gigahertz in some cases, this type of

data independent processing can demand computational rates in the order of 1 to 1000 billion oper-

ations per second (1 gigaops (GOPS) to 1 teraops (TOPS)) and is thus often implemented in ASICs,

FPGAs or other custom hardware.

Pulse-Doppler processing, ambiguity resolution, moving target indication (MTI), clutter cancella-

tion, noise level estimation, constant false alarm rate (CFAR) processing, and monopulse calculations

are all done on bursts of data in pseudo real-time. After each transmitted pulse, received bursts of

data are stored and grouped together for processing. These algorithms are commonly changed with

new requirements, and many different implementation variations each with their own advantages and

disadvantages exist.

The back-end processing of a radar system performs higher-level functionality such as clustering,

tracking, detecting, measuring, and imaging. These functions make decisions about what to do with

the information extracted from the received radar echoes, and are not as regular as the front-end

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Computational Analysis of Radar Algorithms Chapter 2

Antenna RF

Monopulse RX channels

∆φ∆θΣ

Receiver ADC

I/Q Demodulation

Channel Equalisation

Pulse Compression

Clutter Cancellation

Transmitter DAC

Pulse Generator

Timing Generator

I Q

I Q

I Q

I Q
Corner Turning Memory

Pulse Number

R
an

ge

0 P

N

Doppler Processing or MTI

Envelope Calculation

CFAR Calculation

Target Report Compilation and Angle Calculations

To Data Processor (detection, tracking, measurement)

Noise Level
Estimation

B
ur

st
pr

oc
es

si
ng

0.
1

H
z

to
10

0
kH

z

St
re

am
in

g
pr

oc
es

si
ng

10
0

kH
z

to
10

G
H

z

Figure 2.6: Radar signal processor flow of operations

14 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Computational Analysis of Radar Algorithms

processing. The data throughput for this processing level is much more limited so that almost any

general-purpose processor or computer can be used for such a task. The radar processing requirements

from front- to back-end processing therefore reduce in computational rate and regularity, but increase

in storage requirements for each successive stage. Refer to Appendix A for more details on each of

the algorithms in Fig. 2.6.

Note that Fig. 2.6 is just one possible way of implementing a simple RSP. Many variations to each

of the algorithms exist and new ones are constantly being added or modified with radar technology

advances. For example, MTI is typically only implemented when the computational requirements

for pulse-Doppler processing cannot be achieved. Also, the order of the algorithms may be changed;

clutter cancellation could be performed before the corner turning memory operation or even after

Doppler processing. The next section examines these radar algorithms from a computational per-

spective, identifying the throughput and data-rate requirements.

2.3 COMPUTATIONAL REQUIREMENTS

This section analyses the various radar algorithms from a computational perspective, identifying the

relative importance of each mathematical operation. To determine these processing requirements, the

radar signal processor in Fig. 2.7 is used as a test-case.

Although only some of the many implementation variations are shown in the test-case, it represents a

variety of mathematical operations that are typically found in RSPs and many of the operations also

apply to the higher level data processing. Different implementation options for each algorithm are

shown in the horizontal direction, while the radar algorithm stages are listed in the vertical direction.

For example, I/Q Demodulation could be implemented as a standard mixing operation, as a simplified

mixing operation or as a Hilbert filter. Similarly, amplitude compensation, frequency compensation

or no compensation could be used for the channel equalisation stage.

The typical process of optimising a processor for a specific application is to run the application code

through a software profiler on the target architecture. The profiling tool identifies hotspots and ana-

lyses the call graphs to determine the most time consuming functions. These processing intensive

critical portions are then optimised either by instruction set extensions, parallelisation or hardware

acceleration.

In this case such an approach would be suboptimal, since the processing architecture is yet to be

determined. Profiling radar signal processing applications on a standard personal computer (PC) or

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Computational Analysis of Radar Algorithms Chapter 2

ADC Sampling, DAC Playback

Std. Mixing Simpl. Mixing Hilbert

Amplitude Comp. Frequency Comp.

Correlation Fast Correlation

Transpose

2-pulse Canceller 3-pulse Canceller

Pulse-Doppler MTI Filter

Linear Square Log

CA SO-/GOCA CS OS Adaptive

Target Report

Analogue Interface
FADC=100 MHz, PRF=3 kHz

N=16384, P=64

I/Q Demodulation L=32

Channel Equalisation L=32

Pulse Compression T=512

Corner Turning

Clutter Cancellation

Doppler Processing

Envelope Calculation

CFAR Calculation Ref. cells R=50 (5x5 left/right)

Data Processor Interface

Figure 2.7: RSP test-case flow of operations

reduced instruction set computing (RISC) processor would only achieve feasible results if such a

processor is used as the architectural template. Since the architectural template should be designed to

cater for the computational requirements, an analytical approach is used instead.

Determining the computational requirements of an application is an important step in the architec-

tural design process. Rather than analysing the complexity or growth rate of each algorithm (based

on big O-notation for example) an analytical approach was used to extract approximate quantitative

results. Quantitative analysis is a well-known technique for defining general purpose computer archi-

tectures [19,20], and is typically more accurate than growth rate analysis (in which constants, factors

and design issues are hidden).

Depending on the target architecture, various models of computation can be assumed to perform

this quantitative analysis. Common models in the field of computational complexity theory include

Turing machines, finite state machines and random access machines [21]. To avoid any premature

architectural assumptions, the model of computation is defined as an abstract machine in which a

16 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Computational Analysis of Radar Algorithms

set of predefined primitive operations each have unit cost. Since the architecture is embedded on

an FPGA and applications are inherently memory-access or streaming based, an abstract machine

in which only memory reads, writes, additions and multiplications are considered to be significant

operations is chosen for the model of computation. For each algorithm in Fig. 2.7, a pseudo-code

listing is used to find an expression for the required number of additions/subtractions, multiplications,

as well as memory reads and writes. For example, the pseudo-code for the amplitude scaling of the

channel equalisation operation is given as:

loop p=0 to P-1

loop n=0 to N-1

amp_comp[p][n].RE = iq_dem[p][n].RE*amp_coeff

amp_comp[p][n].IM = iq_dem[p][n].IM*amp_coeff

This requires P×N×2 memory writes and multiplications, as well as P×N×2+1 memory reads if

the above model of computation is used. The identical methodology is used to analyse each of the

remaining algorithms, which are covered in Appendix A.

The quantitative requirements are then calculated by substituting the parameters from Fig. 2.7 into

each of these analytical expressions. The results are graphically depicted in Fig. 2.8. All figures are

in millions of operations required for processing one burst (a burst is t = P× Tp = 21.3 ms in the

test-case).

The correlation in Fig. 2.8 overshoots the axis limit by a factor of more than 6 (equally distributed

between multiplications, additions/subtractions and memory reads), emphasising the computational

requirement difference between the time domain method (correlation) and the frequency domain

method (fast correlation) for matched filtering. It is interesting to note that the number of memory

writes are significantly less than the number of memory reads, with the exception of the algorithms

that make use of the fast Fourier transform (FFT) or sorting operation. The cell averaging (CA-)CFAR

algorithms require the least amount of processing of the CFAR classes, especially when implemented

with the sliding window (SW) optimisation. Although order statistic (OS-)CFAR typically performs

better than CA-CFAR in the presence of interferers, the processing requirements are more than 33

times as high. The next section looks at how these radar algorithms are broken down into mathemat-

ical and signal processing operations.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Computational Analysis of Radar Algorithms Chapter 2

St
d.

M
ix

in
g

Si
m

pl
.

M
ix

in
g

H
ilb

er
t

Fi
lte

r

A
m

pl
.

C
om

p.

Fr
eq

.
C

om
p.

C
or

re
la

tio
n

Fa
st

C
or

re
la

tio
n

2-
pu

ls
e

C
an

ce
lle

r

3-
pu

ls
e

C
an

ce
lle

r

Pu
ls

e-
D

op
pl

er

E
nv

el
op

e

C
A

-C
FA

R

C
A

-C
FA

R
(S

W
)

S/
G

O
C

A

S/
G

O
C

A
(S

W
)

C
S-

C
FA

R
(M

=2
)

O
S-

C
FA

R

A
da

pt
iv

e
C

FA
R

0

200

400

600

800 6443

R
eq

ui
re

d
op

er
at

io
ns

pe
rb

ur
st

(m
ill

io
ns

)
Multiply
Add/Sub
MemRd
MemWr

Figure 2.8: Quantitative Computational Requirements

2.4 COMPUTATIONAL BREAKDOWN INTO MATHEMATICAL OPERATIONS

Most of the radar signal processing algorithms follow a fairly natural breakdown into common math-

ematical and signal processing operations as shown in Table 2.1 and Fig. 2.9. Refer to Appendix B for

a complete list of signal processing operations that are typically required in radar signal processing

applications.

The number to the right of each of the mathematical operations in Fig. 2.9 indicates the number

of algorithms that make use of that particular operation. For example, the finite impulse response

(FIR) filter structure is used in all three of the discussed I/Q demodulation algorithms, in two Doppler

algorithms, in channel equalisation and in one of the pulse compression algorithms.

The CFAR algorithms primarily break down into numerical sorting or minimum/maximum selection

as well as block/vector summation operations. Although functions such as the summed area table

(SAT) and the log-likelihood function are used mainly in the adaptive CFAR implementation, they

could be used for other algorithm classes on the data processor level.

18 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Computational Analysis of Radar Algorithms

Table 2.1: Summary of mathematical operations required for radar algorithms

Radar Algorithm Mathematical Operations
Analogue Interface Counter, comparator, trigonometric functions
I/Q demodulation FIR filter, digital filter, interleaving, negation
Channel equalisation Element-wise complex multiplication, digital filters
Pulse compression Correlation / FIR filter, element-wise complex multiplication,

FFT, IFFT (typically more than 4k samples)
Corner turning Matrix transpose
Clutter cancellation Matrix multiplication / digital filter
Doppler processing Element-wise multiplication, FFT (typically 512 or less)
Envelope calculation Squaring, square-root, logarithm, summation
Constant false alarm rate Block summation, sliding window, sum area table, scalar multi-

plication / division by a constant, comparison, sorting, minimum
/ maximum selection

Target report Mono-pulse calculation, element-wise division, comparison
Data processor Higher level decisioning, branching, filter, convolution, correla-

tion, matrix multiplication, sorting, FFT, angle calculations

2.5 RELATIVE PROCESSING REQUIREMENTS FOR EACH OPERATION

The most important of these mathematical operations need to be selected for optimisation, without

giving too much importance to one specific implementation alternative. Logically only mathematical

operations making up a fair amount of processing time should be optimised. To find the normalised

percentage usage, the different implementation options for each algorithm are thus weighted accord-

ing to their computational requirements. Algorithms with low computational requirements should be

favoured over those with high requirements. For example, pulse compression can be implemented

with the fast correlation or as a FIR filter structure. The FIR filter structure has a substantially larger

computational requirement in terms of operations per second, but may be better suited for streaming

hardware implementations, and thus cannot be neglected. Within radar algorithm groups, each imple-

mentation is assigned a percentage of total computational requirements for that group. This number is

then subtracted from 100% and normalised such that the added weights of each group add up to unity.

Table 2.2 shows the normalised processing requirements for each mathematical operation across the

different implementations that were discussed.

It comes as no surprise that the FIR filter and FFT operations have the highest usage. Although only

used in 3 of the 7 discussed CFAR algorithms, the high computational requirements of the sorting

operation indicate its importance for optimisation purposes. Figure 2.10 graphically confirms the

above results for 5 different RSP implementation alternatives.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Computational Analysis of Radar Algorithms Chapter 2

Linear Magnitude

Log Magnitude

Squared Magnitude

Interleaving data

Envelope
Calculation

Matrix Multiplica-
tion (Elementwise)

IQ Demodulation FIR

Channel
Equalisation FFT / IFFT

Pulse Compression
Matrix Multi-

plication (Scalar)

Doppler Processing Block Summation

CFAR Comparison

Sum Area Table

Log-Likelihood
function

Vector Summation

Sorting

1

1

1

2

3

7

3

8

5

7

1

1

2

3

Figure 2.9: Radar signal processor algorithmic breakdown

Table 2.2: RSP normalised percentage usage

Mathematical Operation %
FIR 56.63
FFT / IFFT 22.50
Sorting 9.57
Block Sum 3.53
Log-Likelihood 3.36
Sum Area Table 1.53
Matrix Multiplication (Elementwise) 1.51
Matrix Multiplication (Scalar) 0.49
Interleaving data 0.18
Log Magnitude 0.17
Comparison 0.17
Linear Magnitude 0.16
Squared Magnitude 0.15
Register Sum 0.07

20 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2 Computational Analysis of Radar Algorithms

1 2 3 4 5

0

100

200

300

Opt 5: Simpl. mix, fast corr., CA-CFAR (SW)
Opt 4: Hilbert, fast corr., CS-CFAR
Opt 3: Std. mix, fast corr., adaptive-CFAR
Opt 2: Std. mix, fast corr., OS-CFAR
Opt 1: Simpl. mix, digital corr., OS-CFAR

Option number

R
eq

ui
re

d
op

er
at

io
ns

pe
rs

ec
(G

O
PS

)

FIR FFT Sort
Sum Other

Figure 2.10: Complete RSP computational requirements

Options 1 to 4 all make use of amplitude and frequency compensation, the 3 pulse canceller, pulse-

Doppler processing and the linear magnitude envelope calculation. In the simplest case (option 5), the

RSP is constructed without channel equalisation and clutter cancellation, consisting of only Hilbert

filtering, fast correlation, pulse-Doppler processing, linear magnitude and cell averaging CFAR. The

large ‘other’ block in option 3 primarily consists of the log-likelihood function. It is interesting to

note that the summation operation does not require much resources compared to the FIR filter, FFT

and sorting operations.

Fig. 2.11 depicts the algorithmic density range (the range between the minimum and maximum al-

gorithmic processing time relative to the total processing time) of the different mathematical oper-

ations when all possible dataflow permutations of the test-case in Fig. 2.7 are considered. Each of

the possible combination options of the test-case are broken down into the comprising mathematical

operations, and sorted according to the percentage processing time. For example, when option 1 is

selected, the FIR filter operation requires 87.7 % of the total processing time of that specific RSP

implementation. Similarly the FIR filter in option 5 consumes 24.6 % of the processing time. Options

1 and 5 happen to be the extremes for the FIR filter operation (representing the maximum and min-

imum processing times respectively) and thus determine the range of the first bar in Fig. 2.11. Only

options 1 and 5 are shown as lines on the diagram; all other possible combination options are hidden

for clarification purposes. Besides the FIR filter, the FFT operation, and the CFAR comparisons, all

other operations have a minimum processing time of 0; meaning that those operations are not required

in one or more implementation alternatives. The maximum of each bar thus represents the processing

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Computational Analysis of Radar Algorithms Chapter 2

FI
R

FF
T

In
te

rl
ea

vi
ng

E
le

M
at

-M
ul

Sc
al

M
at

-M
ul

L
in

ea
r

M
ag

Sq
ua

re
d

M
ag

L
og

M
ag

B
lo

ck
Su

m

C
om

pa
ri

so
n

R
eg

is
te

r
Su

m

So
rt

SA
T

L
og

-L
ik

el
i

0

20

40

60

80

100 Option 1

Option 5

Signal Processing Operation

Pe
rc

en
ta

ge
of

To
ta

lE
xe

cu
tio

n
Ti

m
e

Figure 2.11: RSP algorithmic density range

percentage required in the option with the highest computational requirements for that operation. For

example, the sorting operation could require as much as 63 % of the processing time in one or more

of all possible permutations of the test-case.

The need for an optimised FIR filter and FFT operation is apparent based on the results of the analysis

in this chapter. Even though the sorting and log-likelihood functions consume a considerable amount

of processing time, they are only used in a small subsection of processing algorithms. Regardless, all

mathematical operations identified in this chapter as well as Appendix B need to be supported by the

architectural solution, and the necessary arithmetic and control-flow requirements need to be catered

for.

To handle the throughput requirements of the radar algorithms discussed in this chapter, a suitable

processing architecture is required. The next chapter discusses some of the currently available pro-

cessing architectures and technologies as well as their applicability to radar.

22 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3

CURRENT PROCESSING TECHNOLOGIES

3.1 OVERVIEW

The main processing task of the radar signal processor is the extraction of target information. A

variety of different high performance technologies can be used for this task; FPGAs, ASICs, DSPs,

CPUs, GPUs, coprocessors, soft-core processors, or conventional microprocessors.

Performance is not the only concern when it comes to choosing a processing technology for the radar

signal processor. Radar systems operate in very constrained environments, placing stringent limits on

the available size, weight and power consumption. These computational density (GFLOPs/m3) con-

straints are typically not achievable with commercial high performance systems or similar building-

sized systems. Additionally, specifications demanding extreme shock, vibration, humidity, and tem-

perature conditions need to be met.

ADC
&

DAC

Interface &
Front-End
Streaming

Data
Independent
Processing

Data
Dependent
Processing

Mission
Level

Processing

Controls,
&

Displays

Radar Signal Processor Data Processor

ASIC FPGA DSP PC

Figure 3.1: Processing technology stages in a radar system

The computing platform or technology is highly dependent on the processing stage within the radar

system. Fig. 3.1 depicts an example of functional partitioning across various technology domains

[22]. In this example, high-speed custom digital logic (such as ASICs) is used in the front-end pro-

cessing chain of the radar signal processor, while reconfigurable logic (such as FPGAs) is used for the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Technologies Chapter 3

majority of the data-independent operations. Data dependent operations are usually hosted on com-

mercial off-the-shelf (COTS) processors (such as DSPs) either in fixed or floating-point format, while

commercial computer systems are frequently used as radar data processors and for user interface and

control purposes. With the recent advances in FPGA technology, the entire radar signal processor can

however be implemented as a system-on-chip design. Replacing the ASIC and COTS technologies

with reconfigurable technology increases both the flexibility as well as the design time of the system,

emphasising the need for a higher level design methodology.

For each of the technologies in the following sections, the processing architecture as well as the

applicability to radar processing is investigated. Refer to Appendix C for a discussion of the most

common processing architectures and the various optimisation techniques used in these processing

technologies. Each of these architectures is a potential candidate and could be used as an architectural

template for the proposed architecture.

3.2 DIGITAL SIGNAL PROCESSORS

A DSP is a microprocessor with an architecture designed specifically for real-time signal processing

applications. DSPs often feature slight variations from traditional sequential instruction set archi-

tectures to increase throughput or reduce complexity. One such variation is the use of a mode set

instruction. Depending on the mode set, the same instruction performs differently. Most DSP oper-

ations are comprised of sum-of-product calculations, and thus require multiplying, adding, looping,

and fetching new data values. The architecture of modern DSPs is tailored to do these operations (or

multiple of them) in parallel in a single clock cycle.

OMAP35x

TigerSHARC

SC3400

C64x+

SC3850

C66x

Figure 3.2: BDTI Speed Scores for Fixed-Point Packaged Processors [23]

The chart in Fig. 3.2 compares the performance results of the highest performing commercially

available DSPs. The results are based on an average of 12 digital signal processing algorithm kernels;

namely 4 types of FIR filters, an infinite impulse response (IIR) filter, vector dot product, vector

24 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 Current Processing Technologies

addition, vector maximum, Viterbi decoder, a sequence of control operations, a 256-point FFT, and

bit unpacking [24]. The architecture of the two highest performing DSPs, Texas Instruments’ C66x

and the Freescale’s SC3850, are discussed in the following sections.

3.2.1 Architecture of the Texas Instruments C66x Core

The C66x core is the successor to the popular C64x+ architecture, adding floating-point support and

extending the number of parallel multipliers [25]. Although there are some distinct differences in the

C64x+ and the C66x functional units, the block diagram in Fig. 3.3 summarizes their dual datapath

and very large instruction word architectures.

Program Memory Controller (256 bit reads)

Instruction Fetch

Instruction Decode

Datapath A Datapath B

32 registers 32 registers

.L
1

.S
1

.M
1

.D
1

.D
2

.M
2

.S
2

.L
2

Data Memory Controller (2x 64 bit reads / writes)

Figure 3.3: Texas Instruments C64x+ and C66x CPU Architecture

The two datapaths each consist of 4 functional units, initially designated as multiplier (.M) unit, ALU

(.L) unit, control (.S) unit and data (.D) access unit. Each parallel functional unit is a 32-bit RISC

core with its own instruction set, of which instructions are not only limited to their initial designations.

For example, the "ADD" instruction can be executed on the .L, .S and .D units rather than just the

arithmetic logic unit (ALU). Provided the application is not memory bound, up to 16 single precision

floating-point operations or 32 MAC operations can be executed per cycle per core (2-way single

instruction multiple data (SIMD) Add/Subtract on .L1, .L2, .S1, and .S2 as well as 4-way SIMD

Multiply on .M1 and .M2). When 8 parallel C66x cores (each with 32 KB L1 and 512 KB L2 cache)

are integrated onto a single chip (TMS320C6678) running at the maximum clock frequency of 1.25

GHz, a theoretical performance of 160 GFLOPs or 320 GMACs could be achieved. However, data

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Technologies Chapter 3

memory throughput and control-flow restrictions substantially impede this theoretical performance in

any practical or constructive processing tasks.

3.2.2 Architecture of the Freescale SC3850 Core

Similar to the C66x core, the Freescale SC3850 core also makes use of a VLIW instruction set archi-

tecture to meet the performance requirements of modern DSP systems [26]. It features four identical

data ALUs and two address generation units, making it a 6 issue statically scheduled VLIW pro-

cessing core. The program counter (PC) unit supports up to four zero-overhead hardware loops.

Fig. 3.4 summarises the architectural features of the SC3850 core.

Program Memory Controller (128 bit reads)

MACa

MACb

Logic
x4}A

A
U

a

A
A

U
b

B
M

U

Instruction Fetch

Instruction Decode

AGU DALU

addr registers data registers

Data Memory Controller (2x 64 bit reads / writes)

Figure 3.4: Freescale SC3850 CPU Architecture

Each data arithmetic and logic unit (DALU) contains two 16x16 multipliers for SIMD2 multiplication

and accumulation, as well as application specific instructions for FFT, Viterbi, multimedia and com-

plex algebra operations. The 16 data registers can be used as 8-, 16- or 32-bit data words (fractional

or integer data types) and allow accumulation up to 40 bits. When using the data registers as packed

8-bit registers, a total of 16 instructions can be executed per clock cycle with the SIMD4 instructions

on each DALU.

On the address generation unit (AGU) side there are 27 32-bit registers; 16 for address calculation

and 11 offset registers. Each address arithmetic unit (AAU) drives one memory access and performs

an address calculation per clock cycle. The two 64-bit data buses can thus be used concurrently to

26 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 Current Processing Technologies

access the 32 KB L1, the 512 KB L2 cache or the switching fabric for a throughput of 128 Gbps at a

clock frequency of 1 GHz.

The Freescale MSC8156 DSP adds 6 of these SC3850 cores (total peak performance of 48 GMACs),

1 MB shared memory, a DDR-2/3 controller and a coprocessor (MAPLE-B baseband accelerator:

Turbo/Viterbi decoder, FFT/IFFT, CRC) onto a single chip running at 1 GHz [27].

3.2.3 Usage in Radar

Many conventional radar signal processors rely on arrays of off-the-shelf DSPs together with cop-

rocessors hardwired for a particular function [28–32]. Newer DSP radar systems use multi-cored

DSP processors with integrated hardware accelerators for signal processing routines such as filters

and transforms [33–35]. In both implementations, identical processors (and identical firmware) are

typically pipelined and carefully timed so that blocks of data can be assigned in a round-robin man-

ner. This method ensures that each processor finishes just in time before new data is allocated. The

output of this array of processors will be at the same rate as the block input data, but delayed by the

time it takes a single processor to process the block. DSP architectures are popular for implementing

radar algorithms because of their ease of use and high-speed instruction clock. However, the limit-

ation of these designs is that the entire array of processors is usually only fast enough to perform a

single function of the radar signal processor, effectively requiring multiple of these arrays for each al-

gorithm. Additionally, modern DSPs are not as well-suited for strict timing and low latency streaming

applications as older generations of DSPs, since they include speculative execution, branch predic-

tion, complex caching mechanisms, virtual memory and memory management units. Multiple re-runs

of the same application program yields varying instruction cycle counts, making the processing re-

sponse times non-deterministic. The careful firmware design, timing requirements as well as complex

hardware interconnections between processors usually results in a long development time.

3.3 FPGAs

Field programmable gate arrays are re-programmable devices for implementing custom digital logic

circuits. Internally they are arranged in grids of programmable cells referred to as logic elements

(LE) or configurable logic blocks (CLB). Each of these cells contain configurable SRAM-based look

up tables (LUT), carry chains, multiplexers and registers. The logic blocks are surrounded by pro-

grammable I/O pins, which support a variety of transceiver, interface and communication standards.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Technologies Chapter 3

Additionally, DSP blocks, dedicated memory, clocking resources and built in IP (such as hard-core

processors, Ethernet MACs, serialisers and deserialisers) are often integrated into the array of pro-

grammable blocks [36, 37]. Typically FPGAs are configured with a binary file, which is compiled

from a HDL such as Verilog or VHDL [38, 39].

The internal LUTs can be configured to perform various functions from complex combinatorial logic

to simple logic gates. With these LUTs and the clocked registers in the logic blocks, any sequential

or combinatorial digital circuit can be synthesised. It is thus possible to implement any of the pro-

cessing architectures discussed in Appendix C on an FPGA. Some common architectures and their

applicability to radar signal processors are discussed in the following subsections.

3.3.1 Streaming / Pipelined Architecture

The streaming or pipelined architecture is the most common for FPGA applications. A custom hard-

ware pipeline for a specific application is created with either traditional HDL design flows, graphical

or fused datapath tools. The fused datapath tools can maintain a higher bit accuracy and throughput

by joining two consecutive floating-point operations in the processing chain [40, 41].

For radar signal processing applications, this streaming architecture on an FPGA is applicable to

either the entire radar system or smaller sub-parts thereof. Various radar signal processors rely on

FPGAs to provide an interface to the high-speed ADC and DAC as well as perform some data inde-

pendent front-end streaming operations such as I/Q demodulation, filtering, channel equalisation or

pulse compression [42–48]. The remaining processing and data dependent stages are then handled

by other processing technologies such as PC clusters or DSPs. Various other implementations use a

single FPGA to realise the entire radar system in a pipelined architecture [49–52].

3.3.2 Adaptive Hardware Reconfiguration

Since the LUTs of modern FPGAs are reprogrammable during execution, a partially reconfigurable

adaptive hardware platform is possible. A set of profiles for a variety of different applications could

be created, and activated based on the current computational requirements [53]. Effectively a set

of coarse-grained blocks or components would be predefined and stored in memory, only to be con-

figured into hardware when needed. Depending on the size of the reconfigurable portion, the dynamic

reconfiguration can take between tens of milliseconds to hundreds of milliseconds. Similarly, hard-

ware could be generated for a specific application on demand and configured in an unused section

28 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 Current Processing Technologies

of the FPGA. Adaptive hardware reconfiguration has had some exposure in radar applications, es-

pecially where limited FPGA resources are available and multiple different modes of operation are

required [54, 55].

3.3.3 Hard-core Processors Embedded on FPGAs

Some FPGAs include built in hard-silicon processors between the reconfigurable logic. For example,

select devices from the Xilinx Virtex 4 and 5 families feature an embedded 550 MHz PowerPC pro-

cessor. More recently, Xilinx integrated a 1.0 GHz dual-core ARM Cortex-A9 into the 28-nm Zynq-

7000 FPGA [56]. Altera includes a similar ARM core (at 800 MHz) into some of their Arria V and

Cyclone V FPGAs as a hard-core fixed processor. System-on-chip (SoC) devices are also available;

for example the Intel E6x5C Series adds an Altera Arria II GX FPGA device onto the same package

as a low power 1.3 GHz Intel Atom Processor, connecting the two via PCIe x1 links [57].

Embedded processors are generally used as control or for interface purposes in radar systems [58].

They are aimed at general purpose sequential computing, and lack the DSP performance needed for

radar signal processing, although they frequently feature high clock speeds.

3.3.4 Generic Soft-core Processors Embedded on FPGAs

Another approach to simplify the HDL design phase is by utilising a soft-core processor and a C-

compiler. Since the soft-core architecture is embedded within the FPGA structure, custom instruction

or hardware coprocessors and accelerators are easily integrated into the datapath with tools such as

Altera SOPC Builder or Xilinx Platform Studio.

Generic soft processors such as the NIOS II [59], ARM Cortex-M1, Freescale V1 ColdFire, MIPS

MP32 or the MicroBlaze [60] are thus often used in conjunction with HDL-based intellectual prop-

erty (IP) to create a functional system. This has been done numerous times in the radar field, but is

only viable with applications requiring limited processing as with automotive radar systems [61, 62].

Multiple soft processors can be instantiated on the same FPGA to create a symmetric multiprocessor

(SMP) system to achieve a slightly higher performance [63]. These soft-core processor based sys-

tems allow high-level control (from a software development environment) at the expense of perform-

ance, primarily as a result of the low clock speed, control-flow restrictions and limited instruction

level parallelism. Similar to the hard-core processors embedded on FPGAs, the generic soft-core

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Technologies Chapter 3

processors generally lack the real-time performance required in applications such as radar. Instead

they are frequently used for control and configuration purposes or as an interface to the data pro-

cessor [64–66].

3.3.5 Custom Soft-core Processors Embedded on FPGAs

Unlike the generic soft-core processors, custom soft-core processors are optimised for a specific ap-

plication, and are not necessarily fixed to a specific FPGA vendor’s devices. Multiple custom soft

microprocessors exist for a variety of different applications, ranging from specialised and optimised

communications processors all the way to simple educational RISC cores [10].

One notable attempt at a high-throughput soft-core processor is the GPU-inspired soft-core pro-

cessor [67, 68]. With the long term goal of creating a soft-core processor to fully utilise the FPGA

potential, a soft-core processor that executes AMDs GPGPU CTM applications (by supporting the

r5xx ISA application binary interface (ABI) directly) was created. While it represents a step in the

right direction for high performance soft-core processors, it is not optimised for digital signal pro-

cessing applications. As a result of limited concurrent memory accesses and only a single SIMD4

ALU, multiple threads are executed in a lock-step manner for a maximum of one ALU instruction per

clock cycle.

Another method of achieving a high-throughput soft-core processor is by vectorising the ALU [69,

70]. Such soft vector processors are essentially SIMD processors that perform the same operation on

all data-elements in the vector. As such they are well-suited for applications that can be vectorised,

but leave the majority of data-dependent signal processing operations unoptimised.

VLIW soft processors seem like a natural progression of soft-core processors, especially since the

DSP counterparts all make use of the VLIW paradigm. However, increasing the number of parallel

processing units severely decreases the performance of the processor, as the register file quickly

becomes the bottleneck [71]. When the number of ports to/from each processing element are limited,

some performance improvements can however still be achieved [72].

In another instance, the first generation Texas Instruments TMS32010 DSP core was ported to an

FPGA as a soft-core processor [73]. However, the low clock speeds and limited instruction-level

parallelism make the core impractical for high performance processing. Regardless, there have been

very limited attempts at a high performance soft-core DSP or streaming signal processing architecture

among the vast selection of processors and IP.

30 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 Current Processing Technologies

3.4 ASIC AND STRUCTURED ASIC

The same processing architectures that can be implemented on an FPGA can also be transferred

to a standard-cell ASIC. Although the non-recurring engineering costs are extremely high for this

architecture, the clock rate of an ASIC implementation compared to an FPGA implementation can be

considerably higher, at a fraction of the unit cost for large batches.

Structured ASICs are a trade-off between FPGAs and ASICs. They keep the pre-defined cell struc-

ture of the FPGA-based design (or any other predefined block structure) and fix the interconnect and

LUT SRAM for a specific configuration. Thus higher performance and lower power consumption can

be achieved compared to FPGAs. The predefined structure makes structured ASICs less complex to

design, achieving a faster time-to-market than ASICs. FPGA manufacturers include tools that facilit-

ate transferring a synthesised FPGA design to a “hardcopy” structured ASIC. Table 3.1 compares the

various characteristics of standard cell ASICs, structured ASICs and FPGAs [74, 75].

Table 3.1: FPGA/Structured-ASIC/ASIC Comparison

Criteria FPGA Structured
ASIC

Standard-cell
ASIC

Speed Reduction (seq) 24.7 3.2 1
Speed Reduction (logic) 3.4 1.6 1
Power consumption (seq) - 1.1 1
Power consumption (logic) 14 1.5 1
Area Usage (seq) - 8.0 1
Area Usage (logic) 32 2.1 1
Unit costs High Medium Low (high qty)
NRE cost Low Medium High
Time-to-market Low Low-Medium High
Reconfigurability Full No No
Market Volume Low-Medium Medium High

The results are based on both combinatorial (logic) and sequential benchmarks of a 65-nm standard

cell ASIC, a 65-nm NAND2-based structured ASIC, and a 65-nm Xilinx Virtex-5 XC5VLX330. It

should be noted that the standard cell ASIC performance can be further improved with full-custom

designs. With a full-custom design ASIC implementation, 3 to 8 times the performance, 14.5 times

less area, and 3 to 10 times less power consumption can be achieved compared to standard cell

ASICs [75].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

31

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Technologies Chapter 3

Several licensable cores are commercially available for ASICs. Companies such as ARM (Cortex

series), CEVA (X and TeakLite families), and Tensilica (Xtensa and ConnX cores) supply synthes-

isable process-independent (often configurable) cores, which can be embedded on chip with any

required additional interface or custom logic.

Early digital radar systems heavily relied on custom ASIC implementations to achieve the desired

performance, as other technologies were simply not available. More recent systems typically use

reconfigurable logic rather than ASICs to implement front end streaming processing, mainly because

of limited batch quantities, increased flexibility and the lack of high initial NRE costs.

3.5 CONSUMER PERSONAL COMPUTER SYSTEMS

Standard off-the-shelf computer systems found in today’s businesses and homes often outperform

the custom processors in legacy radar systems. Although their architecture is tailored towards gen-

eral purpose computing, the huge market driving their development ensures consistent performance

growth even for signal processing applications.

Architecturally, modern processors microcode the x86 instruction set into lower level instructions that

map more directly to the execution units. On the Intel Sandy Bridge micro-architecture, 6 parallel ex-

ecution units receive instructions from the hardware scheduler (which features out of order execution,

register renaming, branch prediction, and speculative execution) in order to exploit instruction-level

parallelism. Each of the execution units can perform a subset of operations ranging from ALU and

SIMD operations to memory accesses and address generation. Three execution units directly inter-

face to L1 D-Cache, able to perform two 128-bit memory loads and a 128-bit memory store operation

each clock cycle. L2 Cache is connected to L1 Cache via a single 256-bit bus.

Multiple of these cores are then integrated into a single chip. This parallel processor architecture

is well matched to radar signal processing applications, since multiple channels can be processed

in parallel [76]. Offering significantly reduced platform costs, clusters of these standard architec-

tures were used for some radar applications [77, 78]. Although high-level programming languages

together with parallel processing frameworks such as OpenMP, MPI and TBB can be used, program-

ming real-time signal processing applications under strict latency requirements is challenging mainly

because of operating system overheads, non-deterministic response times and data-input and output

overheads.

32 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 Current Processing Technologies

3.5.1 Vector Processing Extensions

Modern CPUs include vectorised instructions in each of their processing cores. Vectorisation instruc-

tion set extensions (MMX, SSE, and more recently AVX and AVX2) enable arithmetic SIMD oper-

ations on selected extra-wide (packed) registers for high throughput signal processing applications.

Each of the 16 registers in the AVX extensions is 256-bit long, and allows packing of bytes, words,

double words, singles, doubles or long integers for SIMD32 to SIMD4 operations respectively. Such

vector operations are useful for many signal processing applications, achieving significantly higher

computational performance than some high-end DSPs [79]. As dataset sizes increase beyond cache-

sizes however, significant performance drops are experienced as a result of the additional memory

fetch latency.

3.5.2 Graphics Processing Unit

Another method of processing streaming data is with the GPU. Support for general purpose comput-

ing on GPUs (GPGPU) has become a standard feature amongst vendors such as NVIDIA and AMD.

The details of the underlying low-level architecture however, are kept strictly confidential. NVIDIA

provides a low-level programming language called PTX (Parallel Thread eXecution) that doesn’t

expose any the underlying instruction set or architectural features. Similarly, AMD provides a Close-

to-the-Metal (CTM) API [80], an abstracted SDK hiding the GPU control hardware but exposing

some details of the underling fragment processor.

General purpose computing support is obtained through configurable shader processors. Shader op-

erations are by default very regular in nature, applying the same operation to each vertex (or pixel).

The architecture can thus be statically scheduled, deeply pipelined, multi-threaded and make use of

vectorised SIMD operations, making it well-suited for radar applications [81, 82]. As the GPU is

controlled and configured by a host program on the CPU (through calls to the compute-interface of

the API driver), loading and offloading the computed results adds additional latency and creates a

bottleneck for practical real-time signal processing applications on GPU platforms.

3.6 COMMERCIAL MICROPROCESSORS

Embedded low-power RISC processors are becoming increasingly popular for smart-phone, tablet

and other mobile processing platforms. Low power microprocessors such as the ARM Cortex series

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Technologies Chapter 3

are aimed at consumer multimedia applications, and feature multimedia specific signal processing

and SIMD vectorisation instructions, making them useful for many medium performance DSP re-

lated tasks. As a result such processors have been used in multi-core packages for mobile traffic radar

systems [83], which only require limited processing capabilities. For higher performance radar sys-

tems, ARM processors are simply used for control or interface applications [84,85], in many instances

similar to the embedded FPGA soft- or hard-core processors.

3.7 APPLICATION SPECIFIC INSTRUCTION-SET PROCESSORS

Contrary to the design of general purpose processors, the application specific instruction-set pro-

cessors (ASIP) design flow is driven by a set of predefined target applications, usually in the high

performance embedded processing field [86]. As such binary and backwards compatibility is not of

significant importance, and the design is generally optimised for cost and power efficiency [87]. Typ-

ically, a RISC (although sometimes SIMD or VLIW) processor is used as an architectural template

providing basic programmability and thus some flexibility. After algorithm analysis and profiling, an

optimised instruction set is proposed and simulated. This process is repeated until a processor capable

of delivering the required performance for the particular application is synthesised. The resulting ar-

chitecture is thus a trade-off between flexibility and application specific performance, offering limited

programmability to adapt for small changes (e.g. in standards or protocols) at a later stage.

Of particular interest is the ASIP design methodology [88–91]. Numerous tools have been developed

that automate the entire process and simplify design space exploration, functional and performance

simulation as well as generation of a HDL-based target processor description (e.g. Synopsys Pro-

cessor Designer). A number of architecture description languages (ADLs) have emerged for the

purpose of programmatically describing the ASIP architecture; MIMOLA, UDL/I, EXPRESSION,

LISA, ISDL, and nML to name a few [92]. The ADL file is used as an input to the development tool,

which is iteratively refined based on the simulation as well as synthesis and profiling results.

Surprisingly ASIPs have not featured much in radar systems, although some papers on image and

telecommunication processing related applications mention radar as an alternative application [93,

94].

34 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 Current Processing Technologies

3.8 OTHER PROCESSING ARCHITECTURES

Multiple smaller start-up companies have emerged with many-cored RISC processor arrays (MIMD)

for various applications. ZiiLabs’ ZMS-40 processor features a quad-core ARM with 96 program-

mable array processors for media processing (58 GFLOPS). Kalray’s 256-core multi-purpose pro-

cessor array (MPPA-256) delivers 230 GFLOPS or 700 GOPS with a power consumption of 5 Watt.

Picochip’s tiled-processor connects each of the 430 3-way VLIW processors via a compile-time

scheduled interconnect for wireless infrastructure applications. XMOS adds 4 tiles (of 8 time threaded

pipelined RISC processors) into their xCORE for timing sensitive I/O micro-controller applications.

Tilera incorporates up to 72 cores at 1.2 GHz into the TILE-Gx family for networking and cloud-based

applications. Adapteva’s E64G401 features 64-cores at 800 MHz for general purpose computing up

to 102 GFLOPS, which is incorporated into their low-cost Parallella boards together with a Xilinx

Zynq7010 (dual core ARM processor and FPGA). Clearspeed’s CSX700 64-bit floating-point 192-

core array processor yields a maximum performance of 96 GFLOPS at 250 MHz for low-power signal

processing applications.

Another interesting development on exascale computing is Convey’s Hybrid Core HC1. A large array

of FPGAs is loaded with application specific “personalities”, and interfaces to a standard Intel x86-

64 processor through cache-coherent shared memory via the north bridge controller. The array of

FPGAs thus act as an application specific coprocessor, which is programmed by the host CPU from

a high-level programming development environment (Fortran/C/C++). A similar development is the

Stretch S6000 architecture; it features an array of custom FPGA-like configurable logic that acts as an

instruction set extension to the Tensilica Xtensa core, providing acceleration for various applications

without the overhead of the FPGA interconnect.

A rather unconventional architecture is the counterflow pipeline processor architecture [95–97]. This

architecture allows temporary results to be reused directly in the instruction pipeline without stalling

the entire pipeline until data is written back into the register file. This approach attempts to replace the

long path delays between functional units in traditional architectures with pipelined local processing

units. Register values flow in the opposite direction of the instruction pipeline, allowing successive

instructions to grab values before they reach the register file for writing. This methodology alleviates

congestion at the register file and is suited for asynchronous as well as synchronous operation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Technologies Chapter 3

Another processor that attempts to reduce power consumption with asynchronous execution is the

SCALP processor [98]. This superscalar processor lacks a global register file, and explicitly forwards

the result of each instruction to the functional unit where it is needed next.

3.9 DISCUSSION

Modern silicon processes can integrate over 2 billion transistors on a single chip. As such the amount

of on-chip arithmetic and computational resources are no longer a bottleneck, leaving the challenge

of enabling an effective interface to fully utilise these raw computational resources. In the general

purpose processing and DSP paradigm, these challenges have been overcome with various instruc-

tion sets optimisations (vectorisation, SIMD, and instruction set extensions) and micro-architectural

techniques (dynamic instruction scheduling, superscalar, rotating register files, speculation buffers,

register renaming, pipelining, out-of-order execution, and branch prediction) as described in Ap-

pendix C. Together with memory caching techniques, these optimisations attain significant utilisation

of the underlying processing resources by extracting parallelism from the mostly unpredictable and

irregular instruction stream of general purpose processing tasks.

In the streaming processing paradigm however, some of these techniques are actually detrimental

to the application performance. Application, task, data and instruction-level parallelism is not suffi-

ciently propagated down to the computational resources, mostly due to inadequate capturing in high-

level sequential programming languages as well as hardware-based dynamic scheduling mechanisms

which cannot extract sufficient parallelism from the sequential instruction stream. The regular instruc-

tion stream and data access patterns of most stream processing applications enable static scheduling

with large degrees of parallelism, provided that the programmer/compiler has explicit control over

the low-level processing resources. The general purpose processing optimisations and techniques in-

herently deny this low-level control. As such the optimisation for streaming processing applications

becomes a complicated task which requires detailed insights into each mechanism of the processing

architecture. Additionally, caches typically perform poorly on streaming applications. The optimisa-

tion procedure is thus mostly based on trial and error, experimenting with various cache sizes, com-

piler optimisation settings, loop unrolling, different high-level coding structures and styles, profiling

tools, assembly optimisation, software pipelining and instruction reordering. On multi-cored and

many-cored platforms insight into the performance measures is further obscured by shared memory

controller throughput and arbitration, memory hierarchy, access times, and inter-process communic-

ation mechanisms.

36 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3 Current Processing Technologies

For these reasons, an architecture with much finer control over each low-level computational resource

is proposed. Table 3.2 summarises some of the desirable and undesirable features of a radar signal

processor.

Table 3.2: Radar signal processor desirable and undesirable features

Feature Comments
X Deep Pipelines Deeply pipelined computational resources achieve high through-

put and clock frequencies; well-suited for the regular data access
patterns of a RSP

X Vectorisation and SIMD Increases performance for many signal processing operations or
for multiple channels

X Multiple cores Exploit coarse-grained and task-level parallelism; time-division
multiplexing or multi-channel processing

X Instruction-level paral-
lelism

RSP algorithms can benefit from more than the 2-8 parallel exe-
cution units of current superscalar and VLIW architectures

× Hardware scheduling RSP and streaming applications are better scheduled statically at
compile-time; deterministic and less overhead than dynamic in-
struction scheduling

× Memory caching Explicit control over fast on-chip memory is preferred to exploit
high data locality; scratch-pad rather than cache

× Branch prediction and
speculation buffers

RSP applications feature very limited branches; speculative exe-
cution mechanisms just add overhead

× Register renaming and
rotating register files

Adds hardware complexity; can be done in software during com-
pile time for the statically scheduled RSP applications

× Out-of-order execution Adds no value as data-dependencies are resolved at compile time
× Interrupts RSP applications have a very regular control flow that typically

does not need to be interrupted; interrupts are of low importance
× Data bus arbitration Simple point-to-point data buses are preferred for deterministic

and low latency accesses
× MMU, virtual memory Not required for streaming and signal processing operations
× Central register file Localised registers preferred for higher memory bandwidths
× High-level abstraction Simplification is preferred over abstraction; an easy-to-understand

architecture enables intuitive optimisation; the limitations and ad-
vantages of the processing architecture become transparent

The most important characteristics for a radar signal processing architecture are thus architectural

transparency, deterministic performance (repeatable and predictable), and full control over horizontal

as well as vertical instruction-level parallelism (explicit pipeline control to avoid stalls and enable

pipelining of multi-cycle arithmetic operations). These characteristics differ substantially from cur-

rent processing architectures, which seem to focus on higher levels of abstraction and task-level par-

allelism through multiple cores.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4

PROPOSED ARCHITECTURE TEMPLATE

4.1 OVERVIEW

This chapter introduces a processing architecture that is well matched to the computational require-

ments outlined in Chapter 2. The processing architecture is presented at an abstracted level without

the datapath optimisations for any of the algorithms. The optimisation procedure as well as the sig-

nal processing and algorithmic radar datapath optimisations are covered in Chapter 5, while the final

architecture is presented in Chapter 6. Note that this work is not based on any prior literature, and

deduced entirely from the data and control-flow requirements of the radar algorithms.

4.2 IDEAL RADAR SIGNAL PROCESSING ARCHITECTURE

At this point it would be useful to consider the ideal processing architecture for radar signal processing

from a fundamental and conceptual perspective. Based on generic “ideal DSP” wish-lists covered in

literature [99, 100] as well as the findings covered in Chapter 2, the following list summarises some

desirable architectural characteristics of a radar signal processor.

• High throughput and performance (instruction-level parallelism, fast instruction cycle; not ne-

cessarily clock speed)

• Easily programmable and debuggable (high-level control, development environment, in-field

changeable - fast compile times, code profiling capability)

• Large dynamic range (high precision, floating-point)

• Low power consumption

• Small size and low weight (stringent requirements on airborne platforms, spacecraft, missiles,

UAVs, vehicles)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Proposed Architecture Template Chapter 4

• Direct high-speed peripheral interfaces (ADC / DAC / MGT / Ethernet / IOs)

• Streaming and real-time (deterministic, low latency)

• Parallel arithmetic operation execution

• Fast memory with multiple ports (simultaneous read and write)

• No or low overhead loops

• Dedicated address generation units

• Support general purpose computing (control-flow based: if-then, case, call, goto)

• Scalable in terms of performance (multi-core support)

• Excellent customer support and documentation

An architecture that meets all of the above criteria is practically not achievable, and some comprom-

ises and trade-offs will have to be made.

4.3 SIMPLIFIED ARCHITECTURE

One of such trade-offs is the fundamental architectural design choice between control-flow and

data flow. Streaming hardware implementations are commonly based on fixed and pipelined data-

flow implementations that achieve high throughput but extremely limited flexibility, while traditional

control-flow architectures offer high levels of flexibility, but limited scalability in terms of perform-

ance.

To overcome the limitation in performance scalability, commercial DSP solutions make use of VLIW

architectures to exploit instruction-level parallelism. Since the clock speed of an FPGA is substan-

tially lower than that of commercial DSPs, a similar FPGA processing architecture will have to bridge

the performance gap by parallelisation methods. An FPGA VLIW implementation would thus have to

have more than the typical 8 parallel execution units. When implementing such a VLIW architecture,

it quickly becomes apparent that the register file becomes the biggest bottleneck to performance. Ex-

ecution units require multiple port access to the register file and have to cater for different processing

latencies for the various instructions. These accesses to the register file severely limit the maximum

performance of the entire processor.

The VLIW register file optimisation attempt inspired an entirely different architecture as shown in

Fig. 4.1. Rather than an instruction word controlling the execution units, the instruction word defines

how data is routed between the lower level functional units. Unlike a dataflow architecture however,

40 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Proposed Architecture Template

Switching

Registers

Functional Units

Adders, Multipliers, Memory, I/Os, ...

Program

Memory

pc

pword

clk clk

clk

Figure 4.1: Basic Processor Architecture

this approach still retains the program memory and program counter. Thus no token matching logic

is required, overcoming the bottleneck of traditional dataflow architectures.

The switching matrix of Fig. 4.1 is a simple multiplexer, selecting a functional unit output for each

register, based on a slice of the program word. Functional unit outputs are connected to the multiplexer

inputs. The multiplexer outputs are in turn connected to the clocked registers, and each register output

has a fixed connection to a specific functional unit input. Fig. 4.2 shows how the switching matrix is

implemented for the case of 32 functional units with 32-bit wide registers.

clk
d

q

FU outputs (32-bit)

5select signal
(instr. word slice)

Register output (FU input)

32

32

Figure 4.2: Register switching matrix architecture

It consists of a simple D-flip flop register that is fed back into a multiplexer, such that when nothing is

selected on the multiplexer select signal, the register remains unchanged. It is thus possible to assign

any functional unit output to each register every clock cycle. Note that registers cannot be read; only

functional unit outputs can be read and in turn written to one or more registers.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Proposed Architecture Template Chapter 4

This architecture represents a dataflow architecture that is reconfigured every clock cycle, as each

assembly instruction stores a specific static dataflow pattern. Instruction-level parallelism is thus

fully exploited with control over both horizontal as well as vertical operations in the datapath. There

is no instruction set, only a source select signal for each register that routes data from any functional

unit to that register. This matches well to the streaming requirements of a radar signal processor, with

a fixed and deterministic latency determined only by the internal functional units.

4.4 DATAPATH ARCHITECTURE

The datapath is split into two sides; the data processing side, and the address generation / program flow

control side. The data processing side is implemented as floating-point registers and functional units,

while the address generation / program flow control side requires integer registers and functional units.

Separating the datapath into integer and floating-point registers reduces the number of multiplexer

inputs for each register. Fig. 4.3 depicts the simplified processor architecture with some arbitrary

functional units added for illustration purposes. Data flows in a counter-clockwise circular motion

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

instruction word

program counter

const flags

Pr
og

ra
m

M
em

or
y

31
x

in
t3

2
31

x
flo

at
(3

2
bi

t)

clk

5

Int32 Registers Float Registers

+1 +1 +1 +

+

+ −
Data Memory

w
r_

en

ra
dd

r

w
ad

dr

+ − + √

at
an

()

Figure 4.3: Simplified Processor Architecture

for both the integer as well as floating-point sides. The instruction word does not control any of the

functional units, instead it controls what functional unit output is selected for each individual register.

Additionally it includes a constant, which can be assigned to any register via the multiplexers it

controls.

42 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Proposed Architecture Template

Functional units in the datapath can be deeply pipelined and have any arbitrary latency, depending on

the target clock frequency. A functional unit does not necessarily have to be an arithmetic operation;

external IO ports, delay registers, memory or even register buffers (used as temporary variable storage

or function call arguments) are all valid functional units.

The performance of this architecture is quite easily scaled up in performance by increasing the number

of functional units and the number of registers. However, the number of functional units are directly

related to the size of the multiplexer in the switching matrix. Depending on the targeted technology,

increasing the size of the multiplexer beyond for example 128, may severely limit the maximum clock

frequency. Similarly, scaling the number of registers directly affects the width of the instruction word

as well as the number of multiplexers, influencing the required silicon area. Thus some practical

limitations are imposed on the scalability of the instruction-level parallelism.

Registers are named according to the functional unit they are connected to. Registers (functional unit

inputs) have the suffixes ‘_a’, ‘_b’ or ‘_c’ while functional unit outputs are assigned the suffixes ‘_o’

or ‘_p’. For example, the inputs to the integer adder (the first integer adder being referred to as IAdd0)

are connected to the registers IAdd0_a and IAdd0_b, and produce the functional unit output IAdd0_o.

Since the integer subtractor shares the same input registers, IAdd0_a is equivalent to ISub0_a and

IAdd0_b is equivalent to ISub0_b.

From an assembler/compiler point of view, functional unit outputs are assigned to registers as:

; REGISTER_a/b/c = FU_OUTPUT_o/p
FAdd0_a = DMem0_o
FAdd0_b = DMem0_p
FSqr0_a = FAdd0_o
DMem0_a = FSqr0_o
|| ; instruction delimiter - starts new instruction block
; next assembly instruction

It should be noted that the order of the instructions in an instruction block does not matter, as each

assignment occurs concurrently. In this code segment, the two 32-bit output words from the data

memory are fed into the floating-point adder, which is connected to the square root input, and the

output of the square root is written back into memory, all in a single assembly instruction. This

architecture allows multiple datapaths to run in parallel and provides a mechanism for creating a deep

pipeline with multiple functional units. Applications can thus produce one or more streaming data

output every clock cycle, greatly improving on the performance of traditional processing architectures

by fully exploiting all functional units in parallel. Obviously the memory read and write address as

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Proposed Architecture Template Chapter 4

well as the write enable strobes need to be updated accordingly on the integer side for such a streaming

application.

4.5 CONTROL UNIT ARCHITECTURE

As it is in Fig. 4.3, the program counter can be assigned any constant from the instruction word or be

calculated with the integer registers. No conditional branching or calling is supported. Calling support

is added with a stack functional unit. Conditional branching is achieved by making the assignment

of a new value to the PC register based on a condition pass flag. Table 4.1 summarises the various

functional units associated with the program flow control.

Table 4.1: Control Function Units

FU Name Inputs Outputs Formulae Description
PC _a _o o = a Program Counter
Stack push, pop _o o = STACK[TOP] Stack
RCon _a, le,eq,gr a <=> 0 Int32 Condition Check
FCon _a, le,eq,gr a <=> 0 Float Condition Check
Cons const _w0, _w1,

_d, _f
w0/1 = LO/HI(const)
d = const, f = const

Constant from instruc-
tion word slice

The program counter register (PC0_a) can be directly written to via the switching matrix. When no

assignment is made, it is incremented by default. The current program counter value is fed back into

the switching matrix, such that it can be used for calculations on the integer side (e.g. jumps into a

look up table, case statements, non-linear program flow).

The stack unit is a simple clocked last-in-first-out (LIFO) buffer, with a depth equal to the required

number of levels in the calling hierarchy. It only has a single output, Stack0_o, which represents the

current value on top of the stack. When the “pop” flag from the program word is asserted, the current

value on the top of the stack is “popped” off, and the next value appears on the output (or zero if the

stack is empty). The “push” flag increases the current program counter value and adds it to the top of

the stack. A function call thus requires the function address to be assigned to the PC while asserting

the “push” flag. Returning from the function is then achieved by assigning the stack output to the PC

and asserting the “pop” flag.

The two conditional check units (RCon and FCon for integer and floating-point respectively) each

only have a single input port. The input is compared against 0, and one or more of the following

44 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Proposed Architecture Template

internal flags are set: _less, _equal, _greater. These flags form part of a multiplexer input, which

produces the condition pass flag output. A 4-bit segment from the instruction word (cond_sel) is used

to select which condition is assigned to the cond_pass flag. The following conditions are selectable

from the instruction word:

no condition peripheral_irq proc_start not proc_start

RCon0 < 0 RCon0 ≤ 0 FCon0 < 0 FCon0 ≤ 0

RCon0 > 0 RCon0 ≥ 0 FCon0 > 0 FCon0 ≥ 0

RCon0 = 0 RCon0 6= 0 FCon0 = 0 FCon0 6= 0

When no condition is selected, or the selected condition is true, the cond_pass flag is high and allows

writes to the PC. When the selected condition is false, the write request to the PC is ignored and the

PC is incremented, resuming with the next instruction in program memory.

The following code segment shows how zero-overhead hardware while loops can be implemented

with the above functional units. Similarly, a FOR-loop could be implemented by assigning a counter

to the integer conditional check unit, with the initial condition (number of loop cycles) assigned in

the previous instruction.
PC0_a = PC0_o ; assign PC to itself; i.e. don’t increase PC, loop here
FCon_a = DMem0_o1; loop depends on e.g. data memory output
[FCon_a > 0] ; condition select: allow PC write when FCon_a > 0
|| ; instruction delimiter - starts new instruction block
; next assembly instruction after loop condition has failed

Initial conditions, addresses or constant values are assigned via the “Cons” functional unit. The

“Cons” unit uses a 32-bit slice of the instruction word as an input and directly outputs the constant

to the floating-point as well as the integer multiplexers. Four output ports are defined: _w0, _w1, _d,

_f. On the integer side, the words _w0 and _w1 (Int16) are the sign extended lower and upper words

of the 32-bit constant respectively, while the _d output (Int32) is the full double-word constant from

the instruction word. The _f output routes the constant through to the floating-point side as a single

precision representation of the constant. From the assembler point of view, the above ports can be

assigned any number, defined value or address. In turn they can be assigned to any register of the

proposed architecture as shown below:
Cons0_f = 1.2345
FSqr0_a = Cons0_f ; calculate the square root of 1.2345
||
Cons0_w0 = (25+MY_DEFINED_VALUE/2)
IAdd0_a = Cons0_w0 ; assign a compiler calculated value
Cons0_w1 = addr_fft_function
PC0_a = Cons0_w1 ; jump to address in current program

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Proposed Architecture Template Chapter 4

4.6 MEMORY ARCHITECTURE

Since most algorithms exhibit alternating horizontal and vertical data dependencies, the processing

chain typically involves reading memory, performing some mathematical operations, and writing back

the processed memory.

Both data and coefficient memories are functionally identical from the processor point of view,

providing fixed access times to any memory location after issuing the read address. Memory archi-

tectures such as external QDR memory, SRAM or internal FPGA Block RAM exhibit deterministic

latency and are thus well-suited for this purpose. DDR3 SDRAM poses a problem when used as data

memory in the processing loop. The activation of a row (based on the row address) requires a certain

minimum amount of time, and rows in multiple banks need to be refreshed more than 100 times per

second. Once a row is activated, the behaviour simplifies and columns can be addressed with data

becoming available after the specified CAS latency. DDR memory is thus better suited for loading or

offloading large blocks of data after inner-loop processing is complete.

In most signal processing algorithms simultaneous reading and writing of complex numbers (with a

separate read and write address bus) greatly improves the algorithmic performance. Dual-ported 64-

bit memory is thus mapped directly into the datapath as a functional unit. Fig. 4.4 shows the memory

architecture of both the data as well as coefficient memory functional units.

_wi _waddr _a1 _a2 _raddr

Data Memory 0

WE

0.00000000.0000000
0.00000000.0000000
0.00000000.0000000
0.00000000.0000000
0.00000000.0000000
0.00000000.0000000

≥ 0?

&

Figure 4.4: Data Memory Functional Unit

Each memory functional unit (DMem and CMem) thus has a write enable flag (_WE) and 3 input

ports on the integer side (_wi, _waddr, _raddr). On the floating-point side two inputs (_a1, _a2)

and two outputs (_o1, _o2) are provided for simultaneous reading and writing of complex-valued

data.

46 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Proposed Architecture Template

In order to simplify the control-flow, an additional input signal with a comparator is inserted before

the write enable signal of the memory controller. Only when this write inhibit (_wi) signal is greater

or equal to zero and the write enable flag (_WE) from the instruction word is asserted, data is written

to memory. Connecting a simple counter to this write inhibit signal in the inner loop allows the write

enable signal to be asserted any number of clock cycles after the inner loop processing commences,

accounting for the computational latency between reading and writing memory. This mechanism

simplifies software pipelining and removes the need for a prologue before the inner loop, further

reducing complexity and program code size.

4.7 FUNCTIONAL UNITS

This section outlines the functional units used for performing the actual calculations, both on the in-

teger (address / program counter) and floating-point (data calculations) side. For each functional unit,

the input and output ports as well as the naming convention are given. Multiple of the same functional

units can be added to the architecture; for example IAdd0, IAdd1 and IAdd2 are collectively referred

to as IAdd<n>.

4.7.1 Integer Functional Units

The functional units on the integer side are given in Table 4.2. One of the most fundamental operations

on the integer side is the increase function. When the output is connected to the input a counter is

created, which is used for loop control counting, linear address generation, write inhibit counters,

activity counters and any other application requiring a linear counter.

Equally important are the add and subtract functional units. Together with the multiply adder, they

are used for address offset calculations and matrix address translation from row/column format to a

linear address.

The integer buffer unit is used for temporary variable storage (e.g. parameters in function call) or

delaying a result by a single clock cycle for alignment purposes. When more clock cycles of delay are

required, the variable delay operation provides a tapped delay register, capable of selecting between 1

and 32 clock cycles of latency. This operation is needed for synchronisation and alignment pur-

poses when the processing latency needs to be matched to the address generation latency or vice

versa.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

47

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Proposed Architecture Template Chapter 4

Table 4.2: Integer Function Units

FU Name Inputs Outputs Formulae Description
IInc _a _o o = a+1 Int32 Increase
IAdd _a, _b _o o = a+b Int32 Adder
ISub _a, _b _o o = a−b Int32 Subtractor
IMac _a, _b, _c _o o = a×b+ c Int32 Multiply Adder
IBuf _a _o o = a Int32 Buffer
IDel _a, _b _o o = delayb[a] Int32 Variable Delay
RotR _a, _b _o o = a >> b Int32 Rotate Right
RotL _a, _b _o o = a << b Int32 Rotate Left
IRev _a, _b _o o = a[0_to_b] Int32 Bitwise Reverse
IncZ _a, _b, _c _o, _p o= a+1< b?a+1 : 0

p = a+1 < b?c : c+1
Int32 Increase, Compare, and
Conditional Zero

IIOPort _a _o IOout = a, o = IOin Int32 I/O Port
IReg int addr _o o = REG[addr] Register Select Buffer
IDebug _a debug = a Debug trace to ChipScope

The bitwise rotate left and right functional units are used for multiplying or dividing by factors of 2.

They can also be used for calculating base-2 logarithms and exponentials. The bitwise reverse func-

tional unit is used by the FFT algorithm for bit-reversed addressing.

The IncZ functional unit is one that is surprisingly not featured on modern instruction sets. It is

however a very useful functional unit in the address generation and control-flow paradigm. Under

normal operating conditions the output IncZ0_o is assigned to input IncZ0_a, which forms a con-

tinuous counter that resets to zero when the value IncZ0_b is reached. When the output IncZ0_p is

assigned to the IncZ0_c input, an up-counter counting the number of overflows on the IncZ0_a side is

achieved. This instruction can thus be used to transpose arbitrary dimensioned matrices, for FFT ad-

dress calculation purposes, as a circular address buffer, or simply as a counter and comparator.

The I/O port interface resides on the integer side, and similar to all other functional units, can be

assigned and read every clock cycle. At a width of 32-bits and a clock frequency of 100 MHz, a single

IIOPORT functional unit can provide 3.2 Gbits of full duplex bandwidth to peripherals, coprocessors

or general purpose I/O pins.

The integer and floating-point debug registers are routed to a logic analyser (such as integrated Xilinx

ChipScope ILA or an external logic analyser port) to provide a clock-by-clock snapshot of the internal

debug register values. These snapshots can be loaded into the development environment for exact

comparisons between runtime and simulated results.

48 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4 Proposed Architecture Template

The IReg functional unit differs substantially from the IBuf and any other functional unit. The input

port of the register select buffer is simply a multiplexer select signal, which allows any register (based

on an address) value to be read directly and fed through to the output port, rather than selecting

a functional unit output. An indirect register addressing mode is created with this functional unit,

allowing unused functional unit registers to be used as general purpose registers or temporary variable

storage.

4.7.2 Floating-Point Functional Units

To increase dynamic range and simplify scaling between processing stages, all functional units in the

data processing path were implemented as floating-point values. The single precision floating-point

format (32-bit) was chosen since the limited number of bits of the analogue converter interfaces did

not justify the additional resource usage of the the double precision (64-bit) arithmetic functions. The

IEEE single precision floating-point type features a 1 bit sign bit (s) and 23 fractional bits (mantissa

m) along with an 8-bit exponent (x). Eq. 4.1 shows how to calculate the decimal value from a floating-

point type. Special numbers such as positive infinity, negative infinity and not a number (NaN) are

defined when the exponent is 0xFF.

n = (−1)s× (1+m×2−23)×2x−127 (4.1)

Although more on chip resources (silicon area or LUT) are required for floating-point arithmetic com-

pared to fixed-point arithmetic, the advantage in dynamic range, lack of scaling between processing

steps and faster design time is usually significant in radar processing algorithms. Since most radar sig-

nal processing related algorithms are streaming in nature, the increased latency of the floating-point

arithmetic does not have a major influence on the overall performance.

Table 4.3 summarises the different functional units that reside on the floating-point side. The majority

of functional units in the datapath are self-explanatory mathematical operators; the adder, subtracter,

multiplier, square root, sine, cosine, and arctangent are fundamental operations used in multiple al-

gorithms and to calculate other composite operations.

The float-to-integer and integer-to-floating point conversion functional units facilitate data exchange

between the two sides. Sometimes indexes are required for calculations, e.g. pulse generation uses a

counter on the integer side to calculate the phase for the sine and cosine functional unit. Also, since

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Proposed Architecture Template Chapter 4

Table 4.3: Floating-Point Function Units

FU Name Inputs Outputs Formulae Description
ItoF _a _o o = int_to_float[a] Int32 to Floating-Point
FtoI _a _o o = float_to_int[a] Floating-Point to Int32
FAdd _a, _b _o o = a+b Floating-Point Adder
FSub _a, _b _o o = a−b Floating-Point Subtractor
FMul _a, _b _o o = a×b Floating-Point Multiplier
FDiv _a, _b _o o = a/b Floating-Point Divider
FDot _a0..7, _b0..7 _o o = ∑[ai×bi] Floating-Point Dot Product
FBuf _a _o o = a Floating-Point Buffer
FDel _a, _b _o o = delayb[a] Floating-Point Variable Delay
FSwap _a, _b _o, _p o = min[a,b] Floating-Point Compare and

p = max[a,b] Swap
FSqr _a _o o =

√
a Floating-Point Square Root

FSinCos _a _o, _p o = sin(a) Floating-Point Sine and
p = cos(a) Cosine

FDebug _a debug = a Debug trace to ChipScope
FReg int addr _o o = REG[addr] Register Select Buffer

the data memory ports are only accessible from the floating-point side, these conversion functional

units (or special pass-through register through the FReg and IReg units) allow integer values to be

stored in and read from memory. Similarly, I/O ports are only mapped on the integer side, and thus

require the conversion functional units to bridge the two sides for floating-point I/O access.

The floating-point dot product has 16 inputs and a throughput of 1 result every clock cycle. Internally

the outputs of all 8 multipliers are connected to a balanced adder tree consisting of 7 adders (3 levels

deep), giving a latency of

FDOTLAT = FMULLAT +3FADDLAT (4.2)

For algorithms requiring data comparison, the FSwap functional unit takes two input values, sorts

them and outputs the larger value to the _p port and the smaller value to the _o port.

The floating-point buffer, register select buffer and variable delay functional units are identical to the

integer IBuf, IReg and IDel respectively. The delay unit is used extensively on the floating-point side

to match processing latencies in streaming applications that have two or more distinct datapaths that

are joined again at a later stage.

50 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5

ARCHITECTURAL OPTIMISATION PROCESS

5.1 OVERVIEW

The design and optimisation of a processor architecture is frequently an iterative refinement process

as shown in Fig. 5.1. This process consists of alternating processor definition, practical or theoretical

implementation, and application profiling stages.

Architecture Definition

Implementation

Profiling Applications

Figure 5.1: Architecture Design Process

The application profiling stage includes functional as well as performance verification, but also takes

other factors such as resource usage and power consumption into consideration. After the first few

iterations it becomes clear that this design process is a time consuming and tedious task of which many

aspects can be automated. As such a software development environment was designed to automate

this architectural design space exploration phase, bearing a close resemblance to the ASIP design

methodology [88–91].

This chapter introduces the software development environment for the proposed architecture, fol-

lowed by a description of the algorithmic implementation process within this environment. Each of

the algorithms required for a typical radar application are then discussed from an implementation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

and optimisation perspective. The algorithmic implementations on the proposed architecture determ-

ine the quantity and type of functional units, while the respective optimisations thereof are used to

iteratively refine the processor model.

5.2 SOFTWARE DEVELOPMENT ENVIRONMENT

A substantial portion of the architectural design process relies on a software development environment

to enable efficient design feedback for debugging and optimisation of the architecture. To automate

the design process of Fig. 5.1, both the hardware implementation and the relevant software tools are

generated from an architectural definition. The design flow of this software-based approach is shown

in Fig. 5.2.

Architecture
Description File

*.ARCH

Architecture Compiler

Editor

Assembler

Linker

Emulator

Result Evaluation
(clock cycles,

functional results)

Programmer

*.HEX

Debugger
Ethernet

Hardware
Description

*.VHDL

Synthesis

Result Evaluation
(clock speed, resource

usage, power)

Physical Hardware

*.BIT

Practical Verification

Figure 5.2: Software-based Architecture Design Flow

The architecture is defined by an architecture description file (*.ARCH file), which forms the found-

ation of the entire software development environment. It consists of a list of the various functional

units, registers, and their respective input as well as output ports for interconnection purposes. Refer

to Appendix D for an example of this architecture description file.

52 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

From a software architecture point of view, each functional unit is an inherited object with a virtual

execute function, VHDL instantiation template and graphical drawing routine (additional functional

units are easily added into the software development environment by copying the functional unit

template object and reimplementing these functions). Based on the *.ARCH file, the software devel-

opment environment creates one or more of each functional unit type, and stores these instantiations

in a list. This functional unit list is then used to generate the VHDL source files for the processor

core implementation, a graphical depiction of the processor architecture, and all the required devel-

opment tools such as code editor, assembler, linker, cycle accurate emulator / simulator, debugger and

programmer.

Since the architectural template (defined in Chapter 4) has a regular and well defined structure, the

generation of a synthesisable RTL model for the target processor is a trivial process. Firstly, all the

output ports of the functional units in the instantiation list are grouped into either integer or floating-

point categories. Each functional unit output port has a unique name, which is used for declaring

the VHDL signals for both categories. Both integer and floating-point register signals are declared as

arrays. A generate statement iterates over all register indexes, instantiating a multiplexer with input

signals from the respective integer or floating-point categories. The select signal of the multiplexers

is a fixed slice of the program word, calculated by the register index. Objects in the functional unit list

locally store the associated input register indexes, linking to the register array. When the instantiation

function of an item in the functional unit list is called, the code segment of that functional unit type is

written to the VHDL file with its local register indexes. For most functional units on the integer side,

this is a single line of source code using the VHDL syntax of the respective mathematical operation.

The functional units on the floating-point side instantiate components that were generated using the

Xilinx CORE Generator tool [11] (for the Altera design flow, similar components can be generated

with the MegaWizard Plug-In [12]). Lastly common elements such as the debug registers and the

condition pass logic are instantiated based on a pre-written code segment.

Together with the board specific HDL-based hardware abstraction layer (HAL) files, the generated

VHDL design files are then synthesised using the vendor specific FPGA tools (in this case Xilinx

ISE, but similarly on Altera Quartus II). Timing results, functional accuracy, resource usage, profiling

and performance data are then analysed and used by the designer to further refine the architecture

through the architecture description file as shown in Fig. 5.2. The generated *.BIT file is programmed

into flash memory on the development board. When the development board boots up, the FPGA is

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

loaded with this firmware containing the processor core, memory and high-speed analogue converter

interfaces.

The application running on the processor core (*.HEX file) is then programmed via the gigabit Eth-

ernet interface. The programming tool of the development environment supports scripted memory

pre-loading (exported from MATLAB or the development environment in HEX, BIN or TXT formats)

and exporting after execution is complete. Once the hardware platform is released from reset, an op-

tional debugger trace can be enabled from the Xilinx ChipScope interface. This debug trace is used to

compare the runtime results against the simulated results on a cycle by cycle basis to ensure congru-

ency. These mechanisms simplify the practical verification of the proposed architecture, by running

the application directly on the high performance development board. This can also have considerable

performance benefits, as the practical runtime is typically a few orders of magnitude faster than the

simulation time.

Application Source
Code (*.FLOW)

Architecture Descrip-
tion File (*.ARCH)

Code Editor
(syntax highlighting, code completion,

macros, defines)

Assembler and Linker

Cycle Accurate Simulator
(step, run, halt, breakpoints,

scripted memory import/export)

Graphical Architecture View
(functional unit pipelines,

register trace, memory view)

MATLAB
Stimulus

Prog. Mem
(*.HEX)

Data Mem

MATLAB
Analysis Data Mem

Figure 5.3: Software-based Simulation Flow

The left side of the design flow in Fig. 5.2 is more concerned with the development and simulation

aspect of the processing architecture. Similar to the right side, the *.ARCH file is used as the found-

ation for the development tools as shown in Fig. 5.3. For the code editor, it provides the mechanism

for syntax highlighting and dynamic code completion. For each assignment in the *.FLOW language,

the code completion determines which assignments are possible with the selected register and pops

up with the relevant functional unit outputs. Macro’s and defines using compile time evaluated ex-

54 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

pressions for both floating-point as well as integer constants are also possible in the editor, easing

maintainability and ensuring better code readability.

The *.FLOW language maps almost directly to the assembly datapath routings on the proposed archi-

tecture. Each assignment line in the source code simply determines the constant on the select signal

of the related multiplexer. The second pass of the assembly process thus only involves a lookup in

a map, followed by setting the appropriate bits in the program word. The first pass determines label

addresses and resolves defines and macros such that the constants are updated correctly on the second

pass of the source code. When the entire application has been assembled, the program memory is ex-

ported and written to a *.HEX file, which can be programmed onto the physical hardware as described

earlier.

The assembled source files are also used by the emulator. This cycle accurate simulator plays an

important role during debugging, architecture design, code profiling and understanding the dataflow

paths in the proposed architecture. As such a substantial amount of effort has been placed into data

visualisation and ease of use. Fig. 5.4 depicts the methodology of the simulator showing how data

flows between registers with each instruction step. With each consecutive clock cycle step in the

simulator, a time instance of the architecture is appended to the bottom of the current view, updating

the relevant register values and latency slots of multi-cycle functional units. This mechanism allows

the user to trace changes in the registers and latency slots between clock cycles by simply scrolling

up and down.

Fig. 5.4 represents the dataflow of an envelope calculation. Registers are marked blue, while latency

slots are shown in orange. Instructions 0 and 1 are identical, routing the data memory output to the

two multipliers, their output to the adder, and its output to the square root operation, which in turn is

connected to the input port of the memory. On the integer side, an increment functional unit is used

as a counter with its output connected to the memory read address. Functional unit outputs are given

in the last of the orange boxes, with multi-cycle (pipelined) operations shifting down the values in the

pipeline each clock cycle.

In run mode, the graphical view is suspended for simulation performance reasons, and only resumed

once a breakpoint is reached. Breakpoints can be set at source-code line numbers, defined in-line,

called once a cycle count is reached or be more complex data-matching criteria. In-line breakpoints

also allow scripted data memory imports and exports (text, binary or hexadecimal formats) at multiple

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

DMEM
0x0000

MUL0a MUL0b MUL1a MUL1b ADD0a ADD0b

DATA MEM X

0x01245678

X +

SQRT

√

INCR
0000

WE
0

+1

0001

ADDR
0000

DMEM
0x0000

MUL0a MUL0b MUL1a MUL1b ADD0a ADD0b

DATA MEM X

0xABCDEF01

0x01245678

X +

SQRT

√

INCR
0001

WE
0

+1

0002

ADDR
0001

INSTRUCTION 0

DMEM
0x0000

MUL0a MUL0b MUL1a MUL1b ADD0a ADD0b

DATA MEM X

0xD1234F98

0xABCDEF01

0x01245678

X +

SQRT

√

INCR
0002

WE
0

+1

0003

ADDR
0002

INSTRUCTION 1

Figure 5.4: Proposed Architecture - Simulator Methodology

locations in the program code, making it easy to verify execution stages in the program flow by

analysing the data with tools like MATLAB.

Functional verification and performance profiling are important aspects of the simulator during al-

gorithm development. The design flow typically involves implementing and compiling the algorithm

in the FLOW language, pre-loading the data memory, running the simulator (or releasing the hard-

ware from reset), recording the elapsed clock cycles, exporting the memory and finally verifying the

results for functional correctness. The development tools were designed with this principle in mind,

integrating the verification process into a ’Run on Hardware’ and ’Run in Simulator’ button. Refer

to Appendix D for screen-shots of the software development environment, as well as source code

examples in Appendix E.

56 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

5.3 ALGORITHM IMPLEMENTATION PROCEDURE

The previous section introduced the software development environment for the proposed architecture.

The software-based design flow reduces the design time and overcomes many typical error-prone

design challenges through automatic generation of the relevant design tools and the RTL-model. It

is thus possible to change the underling processor architecture by simply changing the architecture

description file (e.g. creating new functional units or experimenting with different functional unit

combinations and number of registers). Such a process enables the gradual refinement of a processor

architecture for an optimised solution based on a particular set of algorithms and applications.

The implementation of this set of algorithms is covered in the following subsections. The software-

based design process is used for the algorithm implementation and verification, facilitating the archi-

tecture refinement in the process. The aim is to determine the hardware/software boundary for each

algorithm; finding a balance between performance and re-usability of each functional unit. On the one

extreme, a functional unit could be an optimised hardware coprocessor for a specific algorithm, while

the opposite extreme would rely on a few transcendental RISC functional units for all algorithms.

Regardless, a sufficient quantity and the appropriate types of functional units need to be included

in the final architecture to support all the operations described in Appendix B. The following steps

outline the general procedure that was followed in the implementation of the various algorithms on

the proposed architecture template.

1. Draw the dataflow graph for the data processing section of the algorithm; Start by drawing the

memory read ports, showing the data moving through the mathematical functions all way the

to the memory write ports with connecting lines. Ideally all these operations should happen

simultaneously in a single clock cycle in the inner loop to create a pipeline.

2. Are there enough functional units for each of the mathematical functions in step 1? If not,

split the dataflow into smaller portions or add more functional units. If yes, are there enough

functional units / memory ports to process two or more parallel data streams simultaneously?

3. Draw the control-flow graph for the memory address generation

4. Is an outer loop required? What changes each outer loop?

5. Convert the dataflow and control-flow graphs into FLOW language assignments. Use the soft-

ware development environment to calculate the write latency and adjust the memory write

enable strobe delay.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

Based on these steps, the majority of operations follow a straightforward mapping to the architecture

described in Chapter 4. During this implementation process, it becomes clear if an algorithm would

benefit from having more mathematical functional units or a specialised one, implicitly defining the

boundary and trade-offs between performance for an individual algorithm and general purpose per-

formance for all algorithms. This implementation and optimisation effort is used to determine both

the type and quantity of functional units, which are required for the set of algorithms that are typical

in radar signal processing. The implementation options for each of the algorithms and mathematical

operations are discussed in the following sections.

5.3.1 Envelope Calculation

The envelope calculation (linear magnitude operation) is well-suited for the illustration of the imple-

mentation process, and is thus covered first. The signal flow graph of this operation is shown below

in Fig. 5.5.

read_addr
Input memory

Re

+

Im

+

+

√

write_en

write_addr
Output memory

Figure 5.5: Signal Flow Graph for the Envelope Operation

For the squared magnitude and log-magnitude envelope calculations, the square root operation is

removed or replaced by a logarithm and multiplication by 2 stage respectively. The above signal flow

graph simply translates to the following dataflow routings on the proposed architecture:

FMul0_a = DMem0_o ; RE*RE
FMul0_b = DMem0_o
FMul1_a = DMem0_p ; IM*IM
FMul1_b = DMem0_p
FAdd0_a = FMul0_o
FAdd0_b = FMul1_o ; RE*RE + IM*IM
FSqr0_a = FAdd0_o ; SQRT(RE*RE + IM*IM)
DMem0_a = FSqr0_o

58 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

Every move operation in this listing occurs in parallel, making the process a software pipeline capable

of producing a new output every clock cycle. The write enable signal is asserted when the first

output is available from the square root operation. This processing latency entails the DMEM_LAT

+ FMUL_LAT + FADD_LAT + FSQR_LAT, which initialises the write-inhibit counter, controlling

the data memory write enable signal through a comparator. The number of iterations of the inner

loop instruction is controlled by the control-flow methods of Section 4.5. A counter is connected to

the RCon comparator that controls the condition pass flag; when it fails the program counter flow

continues normally and exits the inner loop. Read and write addresses can be generated with simple

linear up-counters and some initial start addresses as shown below:

Cons0_w0 = READ_ADDR
Cons0_w1 = WRITE_ADDR - (DMEM_LAT+FMUL_LAT+FADD_LAT+FSQR_LAT)
DMem0_raddr = Cons0_w0
IInc0_a = Cons0_w0
IInc1_a = Cons0_w1
|| ; inner loop:
IInc0_a = IInc0_o ; increase counter0
DMem0_raddr = IInc0_o ; assign counter0 to read address
IInc1_a = IInc1_o ; increase counter1
DMem0_waddr = IInc1_o ; assign counter1 to write address

This implementation implies a two-word-wide data bus on the input memory side, and a single word-

wide data bus on the output side. Another implementation option is to integrate the envelope operation

into the write stage of the previous operation, reducing the cycle count by an iteration over the en-

tire data set. If the data memory cannot read and write simultaneously (or the data bus is only a

single word wide), the dataflow graph would have to operate in a lock-step fashion with alternating

memory accesses. Similarly, when more than one memory data bus is available, parallel streams

of execution are possible provided enough multipliers, adders and square root functional units are

accessible.

However, even if multiple two-word-wide data buses and sufficient multipliers and adders are avail-

able, adding a second square root operation (for a speed-up by a factor of 2) to the architecture might

not justify the overall performance improvement gained by this addition. Based on the percentage

processing time spent on the envelope calculation as shown in Table 2.2, an additional functional unit

might be better suited to slightly improve the performance of another algorithm of higher import-

ance.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

5.3.2 FIR Filter Operation

The FIR filter structure of Fig. 5.6 can be mapped directly to a hardware implementation. For any

given filter length, a filter of lower order is realised with the same hardware implementation by setting

the unused coefficients equal to zero, at the expense of additional latency cycles. With such a FIR filter

structure as a functional unit (single data input and output port), coefficients could be address-mapped

into the main memory space for a high performance streaming solution.

z−1 z−1 z−1 ... z−1x(n)

... y(n)

h(0) h(1) h(2) h(3) h(N)

Figure 5.6: Direct-form FIR filter implementation

However, the multiply reduction structure of this hardware implementation cannot be re-used by other

processing operations that would otherwise benefit from a similar structure. The vector dot product,

convolution, correlation, interpolation and the matrix multiplication algorithms all require element-

wise multiplication followed by a reduction of the products into a single result via summation. As

such all of these operations can benefit from the dot product structure as depicted in Fig. 5.7.

+

a(0)

+

a(1)

+

a(2)

+

a(3)

+

a(4)

+

a(5)

+

a(6)

+

a(7)

b(0) b(1) b(2) b(3) b(4) b(5) b(6) b(7)

+ + + +

+ +

+

Output

Inputs

Figure 5.7: Eight Point Dot Product Hardware Implementation

60 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

Each of the input ports are connected to registers in the proposed architecture. Assigning registers

the value of the register to the right, shifts the entire data-stream to the left, allowing new input data

to be clocked in on the right-most port every clock cycle. This connection effectively implements

a streaming FIR filter of length 8. For higher order filters, the entire data-stream is filtered with

the first 8 coefficients, and the output stream written to a temporary memory location. The next 8

coefficients are then loaded into the relevant registers, followed by a second filtering stage that reads

the previously calculated partial results and adds them to the calculated output stream, writing the

results back to memory. This process is repeated until the required filter length is reached. Care must

be taken with the number of iterations and the output address offset, as they decrease and increase by

8 after each partial filtering stage respectively.

5.3.3 FFT Operation

Similar to the FIR filter, the FFT operation could also be implemented as a coprocessor in a functional

unit with a single input and output port. A suitable streaming pipelined FFT architecture is given

in [101], which could be coupled with FIFO buffers on the input and output ports with flags indicating

processing start and completion events.

Only supporting a few selected point sizes and no resource reuse, an optimisation of the core archi-

tecture was chosen over the FFT coprocessor alternative. Section B.4.3 introduces the Radix-2 FFT

operation from a dataflow perspective. The FFT butterfly translates to the signal flow graph in Fig. 5.8

on the proposed architecture.

Input memory 0 Input memory 1

+ + − −

raddr1raddr0
Re Im

Twiddle memory raddrT

Re Im

+ + + +

− +

Output memory 0 Output memory 1
Re ImRe Im

waddr1waddr0

wen1wen0

FD
el

0

FD
el

1

Figure 5.8: Signal Flow Graph for the FFT Operation

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

Fig. 5.8 depicts the real functional units that are required for a streaming approach. As long as the

read and appropriate write address are changed every clock cycle, a new butterfly can be calculated

every instruction cycle. The latency between memory read and memory write is:

PROCLAT = DMEMLAT +FSUBLAT +FMULLAT +FADDLAT . (5.1)

The control-flow and address generation for the FFT operation control ‘wen0’, ‘wen1’ and ‘raddr0’,

‘raddr1’, ‘waddr0’, ‘waddr1’ respectively. Since the read data is written back to the same memory

locations after the butterfly computation, the write addresses ‘waddr0’ and ‘waddr1’ are simply the

read addresses ‘raddr0’ and ‘raddr1’ delayed by the processing latency PROCLAT .

From the FFT dataflow pattern in Fig. B.3 it is clear that there are data dependencies between stages.

If memory is read in stage 2 before it is written back to memory in stage 1, invalid values would

be produced. This adds overhead between processing stages since the control-flow has to suspend

reading data for the next stage until the PROCLAT of the previous stage has elapsed. To hide this

latency, multiple FFT operations can be executed stage by stage.

Another issue is the alignment of output memory 0 and 1. The ‘output memory 0’ write enable strobe

needs to be asserted after DMEMLAT +FADDLAT , or delayed along with its input data to match the

latency of the ‘output memory 1’ calculation. In this implementation the data is delayed to simplify

the control-flow.

The address generation pattern for an FFT with N=16 (at an offset of 0x0000 in data memory) is

shown below in Table 5.1.

Table 5.1: FFT Address Generation Pattern (N=16, format="addr0:addr1 / addrT")

Stage 0 Stage 1 Stage 2 Stage 3
Iteration 0 00:08 / 0 00:04 / 0 00:02 / 0 00:01 / 0
Iteration 1 01:09 / 1 01:05 / 2 01:03 / 4 02:03 / 0
Iteration 2 02:10 / 2 02:06 / 4 04:06 / 0 04:05 / 0
Iteration 3 03:11 / 3 03:07 / 6 05:07 / 4 06:07 / 0
Iteration 4 04:12 / 4 08:12 / 0 08:10 / 0 08:09 / 0
Iteration 5 05:13 / 5 09:13 / 2 09:11 / 4 10:11 / 0
Iteration 6 06:14 / 6 10:14 / 4 12:14 / 0 12:13 / 0
Iteration 7 07:15 / 7 11:15 / 6 13:15 / 4 14:15 / 0

62 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

Note how the difference between addr0 and addr1 is always N >> (stage+ 1). Thus the following

address generation code applies:

addr0 = b∗ (N >> s)+ i (5.2)

addr1 = addr0+N >> (s+1), (5.3)

where b represents the block number, s is the current stage number and i is the current index value.

The difference between consecutive addresses is 1 unless the end of a block is reached. The end of a

block is reached when the current index value exceeds (N >> (s+1)). The following pseudo code is

thus performed every iteration to increase the index and the block number.

if (i++ > (N>>(s+1)))
i = 0
b++

The stage number s is increased and the block number reset when the number of executed butterflies

in the current stage exceeds N/2. The following code depicts how this is done:

if (j++ > (N/2))
s++
b = 0

The twiddle factor address can be calculated from the current index value and the stage number as

shown below:

addrT = i<<s

This address access pattern could be precomputed and stored in the program memory, with each in-

struction cycle accessing and writing back a different memory location. The precomputed access

pattern is however fixed to a certain size of N, and uses unnecessary amounts of program memory.

For bigger sizes of N, this address access pattern becomes excessively large and impractical for the

proposed long instruction word architecture. The preferred method would thus be to implement the

address generation circuitry and dynamically calculate the address access patterns. The following

address flow graph depicts how this address generation scheme is implemented on the proposed ar-

chitecture (Fig. 5.9)

The blue dashed lines represent registers that are re-initialised before each stage, while the red register

values are set during the function initialisation. These initial conditions are set with the traditional

control-flow methods.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

waddr0 waddr1 raddrT raddr0 raddr1

ID
el

0

ID
el

1

ID
el

2

IBuf0
IAdd0
+

mIAdd1

addr_offset

+

IM
ac

0

+ 2m
+

a b c

IncZ0a+1<b?
a+1:0

a+1<b?
c:c+1

m

i b

IInc1

-1

+1

s

RotR0

N/2
>>

m

RotL0
<<

IInc2 +1 w
i0≥ 0? w
i1≥ 0?

W
E

0

W
E

1

wen0
wen1

IInc0 +1

R
C

on
0

< 0?

cond_pass

-1 0-20 -NP/2-11

Figure 5.9: Address Flow Graph for the FFT Operation

The IInc0 counter keeps track of the number of butterflies to be calculated in each stage. Once it

reaches 0, the condpass flag clears and the inner loop is interrupted. PC0_a is no longer assigned to

PC0_o and the control-flow continues sequentially rather than looping at the inner loop FFT instruc-

tion. The outer loop then initialises the registers for the next inner loop stage.

RotR0 calculates the new m value when the stage number is increased. Since the m value halves

for each consecutive stage, the m value from the previous stage is the current 2m value. After each

stage, the current m value (which becomes 2m in the next stage) is read from RotR0_o and assigned

to IMac0_b, followed by assigning IInc1_o to IInc1_a to increase the stage number. The newly cal-

culated m value (on RotR0_o a clock cycle later) is then assigned to IncZ0_b and IAdd0_b. The write

inhibit counter (IInc2_a) is reinitialised to −20 to account for the address generation, memory read

and data calculation latency. Similarly, the i and b values are reset by writing −1 and 0 to IncZ0_a

and IncZ0_c respectively. The −NP
2 −11 value requires an additional Buffer/Adder/Increment func-

tional unit, so it can be assigned to IInc0 after each stage without being recomputed and adding more

latency into the outer loop.

Bit-reversed addressing could be incorporated into the last stage of the address generation logic.

The delay just before the write addresses could be reduced, and the bit reversal function inserted in

between. Since the twiddle factors are 0 for the last stage, the IRev and RotL functional units are not

used at the same time and could thus be secondary functional units.

64 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

A Radix-4 FFT requires log2 N stages each consisting of N/4 butterflies, making it 4 times as fast as

the Radix-2 implementation if a butterfly is executed every clock cycle. However, for a Radix-4 FFT

implementation capable of executing a butterfly every clock cycle, the required number of functional

units become excessive on the proposed architecture. A single radix-4 butterfly consists of 8 complex

adders/subtractors and 3 complex multipliers and needs a data memory with 4 simultaneous complex

reads and writes as well as a twiddle factor memory with 3 complex read ports. This translates to

22 real adders/subtractors, 12 real multipliers, 4 DMem and 3 CMem units on the datapath side.

Unless the radix-4 butterfly is implemented as a single functional unit, the number of functional units

and thus the number and size of multiplexers cause a bottleneck and reduced the maximum clock

frequency. Additionally, quad-ported memory with simultaneous read and write capability further

reduce the maximum clock speed.

5.3.4 Transpose Operation

Transposing or corner-turning a matrix simply requires the output port of the memory to be connected

to its input port. The appropriate address and write enable signals then need to be generated with

the traditional control-flow mechanisms. This requires the IncZ functional unit to generate the row

and column addresses, which are connected to the IMac unit to calculate the transposed linear write

address. An additional integer adder is required for writing back the result to an offset in memory

(any address other than 0). An IInc functional unit is then used for the input address, the write inhibit

signal as well as the inner loop counter.

For data buses wider than the individual data elements, the transpose operation becomes a bit more

complex, requiring a large amount of registers to buffer the read data before it is reassembled into a

packed data-word and written back to memory.

5.3.5 Summation Operation

The block summation for a sliding window or moving average calculation is easily implemented

with a log-sum structure [102] as shown in Fig. 5.10. The latency of the adders does not affect

the operation, provided it remains the same for all adders in the log-sum structure. Each additional

stage that is added into the structure requires a delay register of d = 2stage−1 clock cycles. With the

depicted structure consisting of 3 stages, N = 2stages = 8 values will be summed. Depending on how

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

Input

A
dd

er
L

at
en

cy
=

x +

+

+

Output

delay=1

delay=2

delay=4

Figure 5.10: Log-Sum Technique for a Moving Average Calculation

many values need to be summed, log2(N) adders are connected in series with the appropriate delay

lines using the FDel functional units.

The FDot instruction could also be used for summing or averaging 8 numbers with the multiplication

factors set to 1 or 1/N respectively. Since input data can be left shifted, the FDot instruction acts as a

sliding window over the input samples, summing the 8 previous values.

5.3.6 Sorting Operation

For standard sequential CPUs, data dependent sorting algorithms like heapsort or quicksort are well-

suited because of the dynamic branch prediction, speculative execution and high clock rates of the

CPU architecture. For dataflow based processors, data independent sorting networks are better suited

as discussed in Section B.8. These sorting networks typically require more operations than the equi-

valent sorting algorithm, but do not suffer from pipeline stalls or control-flow restrictions. They can

thus be statically scheduled and use deeply pipelined arithmetic compare and swap operations.

From an implementation point of view, the dual ported data memory outputs are connected to the two

input ports of the FSwap operation, of which the outputs are connected to the memory input ports

again. The FSwap operation simply compares the two input ports, and outputs the larger value to

the p port, while the smaller value is outputted on the o port. The control-flow section of the sorting

operation then simply generates the addresses and delayed write enable strobe according to one of

the sorting network structures from Section B.8. The latency of the datapath needs to be considered

because of data dependencies between stages, requiring delays between stages or a rearrangement of

comparators in the consecutive stage.

66 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

5.3.7 Timing Generator

The timing generator can be implemented with a control-flow loop that waits a certain number of

iterations before continuing. It calls both the DAC playback and the ADC sampling routines and keeps

track of the number of pulses required for the burst. It also increases the write address for the ADC

sampling routine to ensure the samples are written to the appropriate memory locations. With such a

core implementation of the timing generator, the operations before the corner turn could be completed

during the PRI dead-time, shortening the processing overhead after the completed burst.

Regardless, the core implementation of the timing generator restricts the minimum burst repetition

interval (BRI) of the radar, as processing cannot occur during the sampling and playback operations.

To support pipelined sampling and processing, a dual-ported memory (in addition to the data memory)

with a separate timing controller is required.

5.3.8 Pulse Generation

The transmit pulse is stored in data memory and played back once the timing generator calls the

dac_playback function. From an implementation perspective, the data memory output ports are dir-

ectly connected to the DAC ports, and enabled once the DAC_EN flag is high. The pulse playback

function then simply needs to point the read address to the memory location of the transmit pulse and

linearly increase the address until the end of the pulse is reached.

Using the FSinCos and FMul functional units in the datapath and the IInc together with ItoF func-

tional units on the integer side, the transmit waveform could also be generated dynamically during

execution.

5.3.9 ADC Sampling

The ADC sampling process is called from the timing generator. A direct connection from the ADC

to the memory input ports is provided, and if the CUSTOM_SELECT signal of the multiplexer is

enabled via the program word, ADC data is directly streamed into the main data memory. The ADC

sampling process then simply linearly increases the write address with an IInc counter.

Similarly to the DAC, 4 interface ports are provided. Each data memory interface (DMem0 and

DMem1) provides two write ports, which are normally used for real and imaginary components. In

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

the ADC sampling process all 4 input ports are used for receiving de-serialised data from the ADC,

which thus runs at 4 times the clock speed of the processor.

If data sampling rates higher than 4 times the processor clock frequency are required, a dual ported

block memory can be mapped into the CMem space and sampled or played out with flags. This

method allows the processor to simultaneously sample and process the previous data as the core is

not involved in the sampling process.

5.3.10 IQ Demodulation

The IQ demodulation algorithm is implemented by calling the FIR filter function with the Hilbert filter

coefficients loaded into the coefficient memory. Since the Hilbert transform produces the Q compon-

ent from the I component, the I component needs to be delayed by the group delay of the filter to align

the real and imaginary parts. A decimation stage removes the unnecessary data, since the full band-

width is still preserved with complex data. From an implementation perspective, both the alignment

and the decimation can be done with a single iteration over the filtered data in memory.

5.3.11 Channel Equalisation

The channel equalisation is implemented with a simple FIR filter function call. A FIR filter with 32

coefficients requires 4 iterations over the input data with the length-8 FDot implementation.

5.3.12 Pulse Compression

The pulse compression operation can be realised with either a matched filter in the time domain,

or a fast filtering operation by means of a spectrum multiplication in the frequency domain. With

larger number of transmit pulse samples, the frequency domain method becomes computationally

more efficient than the time domain matched filter.

The frequency domain method involves converting the sampled range-line to the frequency domain

via the FFT, performing a complex multiplication by the precomputed spectrum of the transmit pulse,

and performing an inverse FFT again. The FFT and IFFT translate to a functional call to the P×N-

point FFT subroutine with the forward and reverse twiddle factors loaded into memory respectively.

The spectrum multiplication and bit-reversed addressing can be done in a single iteration of the range-

pulse map for each burst between the FFT and IFFT. After the IFFT operation, the multiplication by

68 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5 Architectural Optimisation Process

1/N, bit-reversed addressing, the matrix transpose and Doppler window multiplication can all be done

in a single iteration.

The time domain matched filter simply involves a function call to the FIR filter routine, with the

conjugated and time reversed transmit pulse samples as coefficients.

5.3.13 Corner Turning

The corner turning operation is simply a matrix transpose, and is implemented as discussed in Sec-

tion 5.3.4. For the fast correlation implementation of pulse compression, it can be incorporated into

the bit-reversed addressing after the IFFT operation.

5.3.14 Moving Target Indication

The moving target indication algorithm simply removes stationary clutter with a filter. It thus involves

a call to the FIR filter function with the appropriate coefficients loaded into memory.

5.3.15 Pulse-Doppler Processing

Pulse-Doppler processing simply involves performing an FFT operation over the pulse-to-pulse

samples in each range-bin, or simply a call to N×P-point FFT subroutine. To suppress side-lobes, a

window can be applied prior to the FFT. This window multiplication can be done as part of the matrix

transpose during the bit reversed addressing of the pulse compression IFFT operation.

5.3.16 CFAR

The CFAR implementation depends primarily on the algorithm class that is selected. For the simple

case of 1 dimensional cell averaging CFAR, a call to the moving average function (or FIR filter

function with coefficients set to 1) is required before the threshold comparison. Each moving average

value is then multiplied by the CFAR constant and compared against the cell under test, requiring

two simultaneous read ports. The threshold comparison is done with the FSub and FCon functional

units. When the FCon greater than 0 condition passes, the program flow loop is interrupted and adds

the current range and Doppler index into a list. Alternatively, the detections could be marked on the

range-Doppler map.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Architectural Optimisation Process Chapter 5

For the two dimensional CA-CFAR, the averaging of any number of reference cells is achieved by first

computing a summed area table by looping over the vertical and horizontal dimensions of the range-

Doppler map and accumulating the sums. Since the FAdd functional units are multi-cycle operations,

partial sums are kept for multiple range-lines to sustain the maximum throughput (limited by the

data memory access speeds). The reference cell summation can then be calculated by reading the

edges of the reference window in the sum area table as described in Section A.13.1.1. The threshold

comparison and target listing is then performed similar to the 1 dimensional case.

Other CFAR classes follow a straightforward implementation by calling the appropriate sorting,

summed area table or moving average calculation functions.

5.3.17 Data Processor Interface

The data processor interface consists of assembling the target detection list from the CFAR process

into a packet that can be transmitted to the data processor via a communication peripheral. The dif-

ferent peripheral interfaces are FIFO memory mapped into the address space of the CMem functional

unit. For most instances, the data processor is a standard PC with a gigabit Ethernet connection,

which is also used for displaying the radar data. In the next chapter, the required functional units are

grouped together, and the final architecture is proposed.

70 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6

FINAL ARCHITECTURE

6.1 OVERVIEW

This chapter presents the final architecture with all the necessary functional units. Each functional

unit is evaluated from the perspectives of generality, algorithmic reuse, and performance. Too fine-

grained functional units add overhead to the core architecture, while too coarse-grained functional

units are only applicable to very specific algorithms and cannot be reused for other similar algorithms.

A processor consisting of only hard-wired coprocessors optimised for a specific application may be

optimal in terms of performance, but lacks flexibility for algorithmic variations or future algorithms.

Similarly, a processor architecture that is too focused on general purpose computing usually lacks the

real-time performance from a signal processing perspective. The aim is thus to balance these two

extremes, providing a solution that is as customisable as possible, whilst still delivering the required

performance for radar signal processing.

6.2 AMALGAMATION OF THE DIFFERENT FUNCTIONAL UNITS

This section serves to determine the required number and input connections of the different functional

units. Table 6.1 and 6.2 summarise the functional unit requirements for the various signal processing

operations, control-flow constructs and radar algorithms as determined by the implementations in the

previous chapter.

Several functional units are interchangeable or can be used for purposes other than the intended one.

For example, the IAdd can be used as an additional IInc, as a subtractor, a decrement function or

simply as a temporary register in form of an IBuf. Many of the integer functional units are only used

in the loop or address setup calculations, and do not form part of the inner loop.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Final Architecture Chapter 6

Table 6.1: Integer functional unit usage

C
on

s

PC St
ac

k

R
C

on

ID
eb

ug

II
nc

IA
dd

IS
ub

IM
ac

IB
uf

ID
el

R
ot

R

R
ot

L

IR
ev

In
cZ

It
oF

IR
eg

II
O

Po
rt

General Purpose X X X X X X X X X X X
Branch (Goto) X X
Call X X X
Conditional Branch X X X
Loop X X X 1
FFT X X X X 4 2 1 1 1 3 1 1 1
FIR X X X X 4 2 1 1 1
CA-CFAR X X X X 4 3
Moving Average X X X X 3 3
Spectrum Multiply X X X X 3 3 1
Bit reverse X X X X 3 3 1 1 1 1 1
Envelope X X X X 3 3
Windowing X X X X 3 3
Transpose X X X X 2 3 1 1
Memory Copy X X X X 3 3
Memory Clear X X X X 1 3
Delay X X X X 1 1
Signal Generation X X X X 2 1 1
DAC Output X X X X 2 1 1 1
ADC Sample X X X X 2 1 1 1

The majority of callable functions (with arguments: read address memory offset, write address

memory offset, and number of iterations) simply require 3 IAdd, 3 IInc and the standard Cons, PC,

Stack and RCon functional units on the integer side. These functional units provide loop control,

read and write address generation with offsets as well as a variable write delay counter. Regardless

of the operations on the floating-point data side, the address generation and control-flow model (of

reading data memory in a linear stream and writing it back to memory some variable clock cycles

later) remains constant.

For all of the above operations, a core architecture optimisation was chosen over the coprocessor

alternative. The coprocessor option provides a usable solution for a few fixed applications, but does

not allow for resource re-use or optimisation. If the performance from the core is not sufficient, a

coprocessor can easily be added at a later stage.

As explained in Section 4.4, the number of combined output ports of all functional units determines

the multiplexer size, directly influencing the required silicon area and maximum clock frequency. In

the proposed architecture, each input register is associated with a multiplexer and requires a slice

of the program word. The number of registers therefore directly determine the program memory

72 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Architecture

Table 6.2: Floating-point functional unit usage

D
M

em

C
M

em

FC
on

FR
eg

FD
eb

ug

Ft
oI

FA
dd

FS
ub

FM
ul

FD
iv

FD
ot

FB
uf

FD
el

FS
w

ap

FS
qr

FS
in

C
os

FL
og

FA
Ta

n2

General Purpose X X X X X X X X X X
Standard Arith. X X X X X X X X X
FFT 2 1 3 3 4 2
FIR 2 1 1 1 1
CA-CFAR 2 1 1 2 1
Moving Average N=8 1 3 1 2
Transpose, Window 2 2
Spectrum Multiply 2 1 1 4
Bit reverse 1
Envelope 1 1 2 1
Transpose 1
Memory Copy 1 1
Memory Clear 2
DAC Output 2
ADC Sample 2
Polar->Rect Convert 1 2 1
Rect->Polar Convert 1 1 2 1 1
Log-Sum N=16 1 4 3
Log-Magnitude 1 1 3 1
Dot Product N=8 1 1
Phase Shift 1 1 1 4 1
Matrix Multiply 2 1 1
Scaling 1 1
Compile Target List 1 1 1
Sort 2 1

width and the required silicon area for the multiplexers. Minimising the number of registers and the

number of functional unit output ports reduces the required silicon area, while reducing the number

of functional unit output ports increases the maximum clock frequency.

One method of minimising the number of registers is by connecting multiple functional units to the

same registers. This is possible when the functional units are not used in parallel or require the

same input connections. For example, both the floating-point adders and subtractors (connected to

the memory output) for the FFT operation in Fig. 5.8 share the same input connections, and could

thus share the same input registers (provided no other operation requires separate input registers).

Similarly, the rotate left and bit-reverse functional units are never used concurrently in an inner loop,

allowing common input ports between them.

For a throughput of one or more kernel operation every clock cycle, many algorithms benefit from

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Final Architecture Chapter 6

data memory with two ports as well as a separate cache or coefficient memory. Each of the two

data memory ports should be capable of reading and writing a complex number simultaneously every

clock cycle. A single ported data memory causes many operations to become memory bound as the

ALU datapath is idle every second clock cycle. Data memories with more than 2 simultaneous ports

hamper the access time, throughput and memory clock speed, severely limiting the maximum clock

frequency of the entire processor.

When such a dual ported data memory is used, some operations become ALU bound again, as there

are not enough functional units. For example, the envelope operation could be sped up by a factor of

2, if another square root operation were available. However, the percentage processing time improve-

ment as a function of the total processing time does not justify the additional resource requirements

for a second square root functional unit.

Combining the arithmetic RISC-type functional units into more complex CISC-type functional units

is also possible (e.g. complex multiplier, FFT butterfly). However, the core architecture provides a

software defined mechanism of combining arithmetic functional units into a software pipeline without

incurring additional overhead. Hardware combined functional units would thus have the same latency

as the software pipelined implementation at the expense of not being able to reuse the arithmetic units

for other operations.

6.3 FINAL ARCHITECTURE

Fig. 6.1 depicts the switching matrix and register architecture. The first multiplexer input is directly

connected to its associated register output. When the select signal is zero, the register is assigned to

itself and therefore remains unchanged. The input ports on the right of both Fig. 6.1a and Fig. 6.1b

are the functional unit outputs. In this implementation, there are 32 multiplexer inputs (31 functional

unit outputs) making the select signal for the multiplexer log2(N) = 5 bits wide.

Registers are 32 bits wide and divided into integer as well as floating-point sides to avoid the multi-

plexers getting too large. The integer registers are used for memory address generation and program

flow (e.g. branching and loop control), while the floating-point registers are used for data processing.

The program memory width is determined by the number of registers and the multiplexer select width,

and can become rather large. For the 92 registers used in this implementation, 460 bits are required

for the multiplexer select signals. Additionally a 32 bit constant, a 4 bit condition code and 12 flags

form the program word as shown in Fig. 6.2.

74 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Architecture

5

clk

D

Q

in
t3

2_
se

l(
x)

reg_int32_out(x)

32

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

PC0_o
Cons0_w0
Cons0_w1
Cons0_d
Stack0_o
IInc0_o
IInc1_o
IInc2_o
IInc3_o
IMac0_o
IBuf0_o
IAdd0_o
ISub0_o
IAdd1_o
IAdd2_o
IDel0_o
IDel1_o
IDel2_o

RotR0_o
IncZ0_o
IncZ0_p
RotL0_o
IRev0_o

IIOPort0_rd
IIOPort1_rd

FtoI0_o

(a) Integer Side

5

clk

D

Q
flo

at
_s

el
(x

)

reg_float_out(x)

32

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Cons0_f
ItoF0_o
FDel0_o
FDel1_o
FDel2_o
CMem0_o1
CMem0_o2
DMem0_o1
DMem0_o2
DMem1_o1
DMem1_o2
FBuf0_o
FMul0_o
FMul1_o
FMul2_o
FMul3_o
FDot0_o
FAdd1_o
FAdd2_o
FSub1_o
FSub2_o
FAdd0_o
FSub0_o

FSinCos0_s
FSinCos0_c
FSqr0_o
FSwap0_o
FSwap0_p

CUSTOM(x)

(b) Floating-Point Side

Figure 6.1: Switching Matrix and Register Architecture

constant

C
on

s0
_w

0

C
on

s0
_w

1

C
on

s0
_f

C
on

s0
_d

511 480 479 476 475 464 463 256 255 0

cond

co
nd

_s
el

f_
dm

em
0_

w
e

f_
dm

em
1_

w
e

f_
cm

em
0_

w
e

f_
st

ac
k_

pu
sh

f_
st

ac
k_

po
p

f_
cm

em
0_

re
f_

pr
oc

_d
on

e
f_

da
c_

en

flags[12] float_sel[41]

flo
at

_s
el

(0
)

flo
at

_s
el

(1
)

flo
at

_s
el

(2
)

...

flo
at

_s
el

(4
0)

int32_sel[51]

in
t3

2_
se

l(
0)

in
t3

2_
se

l(
1)

in
t3

2_
se

l(
2)

...

in
t3

2_
se

l(
50

)

Figure 6.2: Program Word Format

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Final Architecture Chapter 6

The constant from the program word is also routed to the multiplexer input, making it possible to

assign a value to any register. On the integer side, the constant can be split into two different 16 bit

constants or kept in its 32 bit form.

On the floating-point side, the CUSTOM(x) multiplexer input allows a customised input specific to

each individual register (blue lines in Fig. 6.1 and Fig. 6.4b). For example, the ADC data would

typically be routed directly to the data memory input registers, and not to any other register. It would

thus make sense to route the ADC data only to the multiplexer connected to the data memory input,

and not to any other multiplexer. Similarly, the FDot inputs need to be shifted each clock cycle for FIR

filtering, requiring a connection to the adjacent register via the multiplexer. No other registers require

a direct connection to these input registers from the FDot functional unit, making additional global

multiplexer ports pointless. Instead the CUSTOM(x) signal is used to route data between adjacent

registers as shown in Fig. 6.4b.

The first register, the program counter, deviates slightly from Fig. 6.1. It uses the conditional code

from the program word (cond_sel) to determine whether assignments to the program counter are

permitted. If the condition check fails, or if no new assignment for the PC is selected, the multiplexer

selects input port 0. Unlike the other registers however, input port 0 is not directly connected to the

register output, but instead increased by one. Thus, if the condition passes the new value is assigned,

else the program counter is increased and the program execution continues normally. Fig. 6.3 depicts

the program counter architecture. Note that the program counter can still be assigned to itself, thus

repeatedly executing the current instruction for looping or end-of-program purposes.

The final architecture is shown in Fig. 6.4a and Fig. 6.4b for both the integer and floating-point sides.

Because of the independent select signals for each multiplexer, the proposed architecture provides

direct control over horizontal as well as vertical instruction-level parallelism in both the data- and

control-path.

6.4 ARCHITECTURE IMPLEMENTATION ON XILINX VIRTEX 5

The final architecture was implemented on a Xilinx Virtex 5 SX95T FPGA for verification purposes.

The various floating-point arithmetic functional units (multiply, divide, add, subtract, square root,

compare, integer to float, float to integer) were generated using the floating-point wizard of Xilinx

CORE Generator [11]. A conservative clock frequency of 100 MHz was initially chosen as a proof

76 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Architecture

5

clk

D

Q

+1

0

1int32_sel(0)

’00000’

clk Q

D

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

cond_sel

co
nd

_p
as

s

’1’
rcon0_sz
rcon0_gz

rcon0_sz or rcon0_ez
rcon0_gz or rcon0_ez

rcon0_ez
not rcon0_ez

fcon0_sz
fcon0_gz

fcon0_sz or fcon0_ez
fcon0_gz or fcon0_ez

fcon0_ez
not fcon0_ez

cmem0_data_avail
proc_start

not proc_start

[reg_int32_out(0)] pmem_raddr

32

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

PC0_o
Cons0_w0
Cons0_w1
Cons0_d
Stack0_o
IInc0_o
IInc1_o
IInc2_o
IInc3_o
IMac0_o
IBuf0_o
IAdd0_o
ISub0_o
IAdd1_o
IAdd2_o
IDel0_o
IDel1_o
IDel2_o

RotR0_o
IncZ0_o
IncZ0_p
RotL0_o
IRev0_o

IIOPort0_rd
IIOPort1_rd

FtoI0_o

Figure 6.3: Program Counter Architecture

of concept to avoid timing closure problems. As such the amount of pipelining in the functional units

was kept to a minimum as shown in Table 6.3.

Each 32-to-1 multiplexer uses 10 look up tables on the Virtex-5 architecture, resulting in a path delay

of 2.011 ns (0.641 ns logic, 1.370 ns route, 2 levels of logic). A total of 320 LUTs is thus required

for each 32-bit register multiplexer pair. The coefficient and program memory was implemented

using internal block RAM. The main data memory requires a minimum of 2 memory slots of size

N×P complex samples (for operations that cannot be executed in place; e.g. matrix transpose) plus

additional coefficient storage (pulse compression spectrum, twiddle factors FFT, twiddle factors IFFT,

twiddle factors Doppler, Doppler window, transmit pulse). The absolute minimum memory space is

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Final Architecture Chapter 6

clk

+125
5

int32_sel

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

PC0_a

RCon0_a

IDebug0_a

IDebug1_a

IDebug2_a

IInc0_a

IInc1_a

IInc2_a

IInc3_a

IMac0_a

IMac0_b

IMac0_c

IAdd0_a
ISub0_a

IAdd0_b
ISub0_b

IAdd1_a

IAdd1_b

IAdd2_a

IAdd2_b

IDel0_a

IDel0_d

IDel1_a

IDel1_d

IDel2_a

IDel2_d

RotR0_a

RotR0_b

IncZ0_a

IncZ0_b

IncZ0_c

RotL0_a

RotL0_b

IRev0_a

IRev0_b

IIOPort0_wr

IIOPort1_wr

ItoF0_a

FDel0_d

FDel1_d

FDel2_d

CMem0_wi

CMem0_waddr

CMem0_raddr

DMem0_wi

DMem0_waddr

DMem0_raddr

DMem1_wi

DMem1_waddr

DMem1_raddr

PC0_o

Cons0_d

Cons0_w0

Cons0_w1PC
0_

a+
1

L
IF

O
-

f_
st

ac
k_

pu
sh

-
f_

st
ac

k_
po

p

Stack0_o

+1
+1

+1
+1

IInc0_o

IInc1_o

IInc2_o

IInc3_o

<0?
=0?
>0?

rcon0_sz
rcon0_ez
rcon0_gz

+ + IMac0_o

IBuf0_o

IAdd0_o+

ISub0_o-

IAdd1_o+

IAdd1_o+

IDel0_o

IDel1_o

IDel2_o

>>

RotR0_o

<<

RotL0_o

R IRev0_o

a+
1<

b?

a+1:0

c:c+1
IncZ0_o

IncZ0_p

I/Os IIOPort0_rd

IIOPort1_rd

FtoI0_a

→
I FtoI0_o

≥0? cmem0_wi_gez

≥0? dmem0_wi_gez

≥0? dmem1_wi_gez

(a) Processor Architecture: Integer Side

clk20
5

float_sel

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

5

QD

A
D

C

FDel0_a

FDel1_a

FDel2_a

CMem0_a1

CMem0_a2

DMem0_a1

DMem0_a2

DMem1_a1

DMem1_a2

FtoI0_a
FBuf0_a

FMul0_a

FMul0_b

FMul1_a

FMul1_b

FMul2_a

FMul2_b

FMul3_a

FMul3_b

FAdd1_a

FAdd1_b

FAdd2_a

FAdd2_b

FSub1_a

FSub1_b

FSub2_a

FSub2_b

FDot0_0a

FDot0_0b

FDot0_1a

FDot0_1b

FDot0_2a

FDot0_2b

FDot0_3a

FDot0_3b

FDot0_4a

FDot0_4b

FDot0_5a

FDot0_5b

FDot0_6a

FDot0_6b

FDot0_7a

FDot0_7b

FAdd0_a

FAdd0_b

FSub0_a

FSub0_b

FSinCos0_a

FSqr0_a

FSwap0_a

FSwap0_b

FCon0_a

FDebug0_a

FDebug1_a

FDebug2_a

Cons0_f
FDel0_d

FDel1_d

FDel2_d

FDel0_o

FDel1_o

FDel2_o

64 64

CMem0_o1

CMem0_o2
f_cmem0_we

cmem0_wi_gez

CMEM0di
n

do
ut

we

raddr

waddr

64 64

DMem0_o1

DMem0_o2
f_dmem0_we

dmem0_wi_gez

DMEM0di
n

do
ut

we

raddr

waddr

64 64

DMem1_o1

DMem1_o2
f_dmem1_we

dmem1_wi_gez

DMEM1di
n

do
ut

we

raddr

waddr

FBuf0_o

ItoF0_a

→
F ItoF0_o

+

+

+

+
+

+
-

-

FMul0_o

FMul1_o

FMul2_o

FMul3_o

FAdd1_o

FAdd2_o

FSub1_o

FSub2_o

FAdd0_o

FSub0_o

+
-

<0?
=0?
>0?

fcon0_sz
fcon0_ez
fcon0_gz

√

FSqrt0_o

min(a,b)
max(a,b)

FSwap0_o
FSwap0_p

FSinCos0_s

FSinCos0_c

sin(πa)

cos(πa)

+

+

+

+

FDot0_4a
FDot0_4b
FDot0_5a
FDot0_5b
FDot0_6a
FDot0_6b
FDot0_7a
FDot0_7b

FMul0_o
FMul1_o
FMul2_o
FMul3_o

B
al

an
ce

d
A

dd
er

Tr
ee

FDot0_o

(b) Processor Architecture: Floating-Point Side
Figure 6.4: Final Processor Architecture

78 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6 Final Architecture

Table 6.3: Functional unit latency

FU Name Latency Cycles Max Path Delay
IMac 1 7.136 ns
ItoF 2 6.939 ns

DMem 5 (external QDRII)
FtoI 2 7.693 ns

FMul 2 6.210 ns
FDiv 10 7.465 ns
FAdd 2 7.652 ns
FSub 2 7.652 ns

FSinCos 7 7.517 ns
FSqr 10 7.174 ns

thus

MEMmin = 2PN +N +N/2+N/2+P/2+P+T complex float (6.1)

= 16(P+2)N +8P+8T bytes, (6.2)

more than 16.5 MB for the test-case in Fig. 2.7. In this implementation a stack depth of 16 and a

program memory depth of 1024 was chosen, which proved to be more than sufficient for the tested

radar signal processors. Fig. 6.5 shows the top level of the firmware instantiating the soft-processor

core.

Peripherals are memory-address mapped into the CMem functional unit and coupled via FIFO buffers

with a flag indicating received data availability. Additionally a “start” flag is provided for synchron-

isation purposes between multiple cores. These flags can be used as conditionals in the soft-core to

poll for certain conditions.

A JTAG interface via the standard Xilinx USB programmer allows soft-core BIT file programming

and access to the internal BSCAN interface. This BSCAN debugging interface can be used for pro-

gramming the program memory, preloading the external data memory (QDRII+ memory chip) and

accessing the internal ChipScope logic analyser trace (dbg_regs) of the IDebug and FDebug func-

tional units for verification purposes.

The ADC interface de-serialises and de-couples the high-speed differential inputs (400 MSPS, 10-bit)

into a parallel 4-word wide single precision floating-point (128-bits) stream that is connected to the

soft-core processor. Similarly, the DAC interface converts and then serialises the floating-point data

coming from the soft-core processor into the 12-bit wide fixed point stream used by the DAC IC. For

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Final Architecture Chapter 6

FPGA
C

L
O

C
K

_I
N

(4
00

M
H

z)

in
te

rf
ac

e
in

te
rf

ac
e

B
SC

A
N

de
bu

g/
pr

og
ra

m
in

te
rf

ac
eLV

D
S

C
L

K
/4

A
D

C
(4

00
M

SP
S)

LV
D

S
C

L
K

/4

D
A

C
(4

00
M

SP
S)

JTAG

A Q D

QDR-II
(200 MHz)

interface PMem CMem
51

264
64

64

100 MHz
reset
dbg_regs(256)

128

12
8

Pe
ri

ph
er

al
s

E
T

H
/A

ur
or

a/
V

M
E

64 I/O

done
start

Soft-core

Dataflow

Processor

DMem0/1 PMem0 CMem0

Figure 6.5: Hardware and Firmware Interface: Top Level

ADC and DAC sampling rates higher than 400 MSPS, dual port memories with sample-enable and

playback-enable flags can be mapped into the CMem space.

80 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7

VERIFICATION AND QUANTIFICATION

7.1 OVERVIEW

This chapter presents the performance results of both the signal processing operations as well as the

radar algorithms on the proposed architecture. Although there are many verification metrics, the

primary focus is algorithmic performance. Other metrics of the core architecture include latency,

resource usage (area or LUT), power consumption, ease of programmability and composite metrics

based on ratios of these metrics.

For performance comparison purposes, the architectures of the Texas Instruments C66x core and In-

tel’s AVX SIMD vector extensions (e.g. in the 2nd and 3rd generation Intel Core i7 processors) are

used. The comparison is based on the number of clock cycles required for each algorithm or op-

eration, rather than the processing time. Since the two competing architectures are implemented in

custom CMOS silicon processes, the achievable clock rates are in the gigahertz ranges and a compar-

ison based on processing time would favour these architectures. An implementation of the proposed

architecture in a full custom ASIC is expected to achieve comparable if not higher clock frequencies

than the competing architectures. The clock cycle based comparison can thus be seen as a normal-

ised performance metric (which can also be used as a measure of architectural efficiency), while the

processing time represents the actual performance.

As a final step, a simple radar signal processor is implemented directly from the high-level develop-

ment environment to demonstrate the processing capability of this architecture. The implementation

is evaluated in terms of functionality and performance characterised against an identical implement-

ation on the Texas Instruments C66x architecture, from both a clock cycle as well as processing time

perspective.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Verification and Quantification Chapter 7

7.2 SIGNAL PROCESSING PERFORMANCE RESULTS

Table 7.1 summarises the required number of clock cycles for some selected signal processing opera-

tions. Note that only a few signal processing operations were implemented as a proof of concept of the

proposed architecture; more elaborate signal processing libraries will be written at a later stage.

Table 7.1: Architectural clock cycles (N=No. of samples, P=No. of pulses, L=Filter length)

Algorithm Clock Cycles

FIR Filter 5+ ceil(L
8)[N +23]−8[ceil(L

8)−1
2]ceil(L

8)

Inplace Fast Fourier Transform (FFT) (PN
2 +21) log2(N)+8

Clear DMEM N
2 +5

Copy DMEM to DMEM/CMEM N +10

Transpose in DMEM N +11

Bit reversed addressing in DMEM N +11

Elementwise operations in DMEM N +17

8-point Moving Average in DMEM N +28

Provided that there are enough functional units to do the required operation in a stream, only a single

iteration over the data values is required. For most operations, the cycle count is thus simply N with a

few extra clock cycles for the memory read and functional unit latencies. With the FIR filter operation,

multiple iterations are required if the filter length exceeds the length of the FDot functional unit (8 in

this implementation). Each additional iteration is offset by 8 data values from the previous iteration

to align the data stream, requiring 8 less clock cycles with each consecutive iteration cycle. The FFT

operation has an outer loop latency of 21 clock cycles and an 8 clock cycle setup requirement. The

outer loop latency can be hidden by performing the same stage of multiple FFT operations back-to-

back before proceeding to the next stage.

Note that these results are based on callable functions (with arguments for point sizes, input and output

addresses, and number of samples) in a crude *.FLOW assembly implementation on the proposed

architecture. Further optimisations are possible when the iterations are fixed (based on #defines or

macros) or optimised for specific point sizes. For example, the outer loop latency of a single 8-point

FFT (using the above function) exceeds the calculation latency of the butterfly operation by a factor

of more than 5. Embedding the address generation code into the program flow would greatly reduce

82 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Verification and Quantification

the datapath idle time between stages at the expense of code flexibility, program memory size and

reuse for other point sizes.

7.2.1 Comparison to other Architectures

Fig. 7.1, Fig. 7.2, and Fig. 7.3 graphically compare the FFT clock cycle performance of the Texas

instruments C66x core and the Intel AVX instruction set extensions with the proposed architecture.

All calculations are performed on single precision floating-point values. Note that the Texas Instru-

ments implementation is based on a Radix-4 algorithm, while the implementation on the proposed

architecture is a Radix-2 FFT algorithm.

8 16 32 64 128 256 512 1k 2k 4k 8k 16k

102

103

104

105

106

C
lo

ck
C

yc
le

s

Proposed Architecture TI C66x Intel AVX

Figure 7.1: FFT 1D clock cycle comparison N=8 to 16384

The required clock cycles for performing a single FFT on each of the three architectures is shown

in Fig. 7.1 above. Note that these results were obtained by averaging the clock cycle results of over

40 repeated runs. The proposed architecture required the identical number of clock cycles for each

repeated run, while the C66x and the AVX clock cycle count varied significantly. The relative standard

deviation of the AVX results was as much as 240 percent for some point sizes, while settling to about

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

83

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Verification and Quantification Chapter 7

10 percent for the larger point sizes. Texas Instruments’ C66x architecture was a bit more consistent,

and achieved a relative standard deviation of less than 6 percent over the entire range. The initial

performance results from the Texas Instruments C66x core were based on simulator profiling of the

dsplib DSPF_sp_fftSPxSP function call, however actual measured results (with all data in L2RAM)

required about 30% more clock cycles.

1kx256 2kx128 4kx64 8kx32 16kx16
0

5

10

C
lo

ck
C

yc
le

s
(m

ill
io

ns
)

Proposed Architecture TI C66x Intel AVX

Figure 7.2: FFT 2D clock cycle comparison N=1024×256 to 16384×16

The best case results (rather than the averaged results) of the AVX technology performed slightly

better than the proposed architecture for point sizes between 512 and 2048, achieving very similar

results for larger point sizes. The wide SIMD registers of the AVX architecture work well for the FFT

operation, where multiple elements fit into a single register; operations can thus occur in the registers

without having to re-fetch data from main memory. As the point size increases, the wide registers

do not favour data locality any more, and memory has to be fetched from DDR. For larger or mul-

tidimensional FFTs, the performance of the AVX extensions thus start degrading, as the algorithms

become more memory bound.

Regardless, the AVX methodology works quite well even in the two-dimensional case. The 2-

dimensional performance of the 3 architectures is shown in Fig. 7.2 for sizes that are common in

radar signal processing. The proposed architecture achieves very similar clock cycle results to the

AVX extensions, even though the Intel architecture features a much wider data memory bus, 8-wide

SIMD operations and exceeds the number of arithmetic primitives of the proposed architecture by

several factors. In comparison to Texas Instruments’ architecture, the proposed architecture does the

84 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Verification and Quantification

same calculation in about a third of the clock cycles of the C66x implementation. Note that the data-

set does not fit into the local L2RAM of the C66x architecture and is executed from DDR memory

instead.

101
102

103
104 100

101

102100

105

FFT Points (N) Number of FFTs (P)

C
lo

ck
C

yc
le

s

Figure 7.3: 2D FFT clock cycles; surface plot is the proposed architecture, mesh plot is the C66x

architecture

Fig. 7.3 depicts the performance difference between the proposed architecture and the C66x core

architecture for point sizes ranging from 8 to 16384 and the number of FFTs ranging between 1

and 512. The last 3 data-sets of the proposed architecture (for 8192-pt × 512, 16384-pt × 512 and

16384-pt × 256) did not fit into the off-chip memory on the development board, and were thus not

computed. The proposed architecture performs bit-reversed addressing after the in-place FFT library

function. This bit reversal could be incorporated into the last stage of the library function, further

reducing the number of clock cycles by N for any point size. Regardless, the proposed architecture

performed more than 3 times faster than the C66x core, and identically to the AVX implementation

for the dimensions applicable to radar signal processing.

The FIR filter performance is compared in Fig. 7.4 and Fig. 7.5 for filter lengths of 8 and 32 respect-

ively. The proposed architecture performs faster than the competing architectures in both cases, with

a clock cycle performance gain of more than 7 for the filter length of 8.

The complex vector multiplication is an indication of the performance of element-wise operations

in the datapath. Fig. 7.6 compares the clock cycle performance difference between the proposed

architecture and the AVX implementation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Verification and Quantification Chapter 7

32 128 512 2048 8192 32768

102

103

104

105

106

C
lo

ck
C

yc
le

s

Proposed Architecture TI C66x Intel AVX

Figure 7.4: FIR filter clock cycle comparison (L=8), N=32 to 32768

32 128 512 2048 8192 32768

102

103

104

105

106

C
lo

ck
C

yc
le

s

Proposed Architecture TI C66x Intel AVX

Figure 7.5: FIR filter clock cycle comparison (L=32), N=32 to 32768

The proposed architecture achieves a clock cycle performance improvement of at least 20 percent for

small sizes of 4096 and less. For larger or two-dimensional sizes, the performance difference between

the proposed architecture and the AVX implementation is further improved. The vector multiplication

operation is mostly memory bound, as both vectors need to be read (2× 64-bit) and the result written

(1× 64-bit) simultaneously. When a vector by matrix multiplication is required, the vector can be

read from the CMem functional unit, while two data streams are processed in parallel directly from

main memory.

86 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Verification and Quantification

64 256 512 1k 2k 4k 8k 16k

102

103

104

C
lo

ck
C

yc
le

s

Proposed Architecture Intel AVX

Figure 7.6: Vector complex multiply clock cycle comparison N=64 to 16384

7.3 RADAR ALGORITHM PERFORMANCE RESULTS

A test-case similar to that shown in Fig. 2.7 is used to validate and profile the radar implementation.

Processing time is measured for a single burst, consisting of a range-Doppler map of 32 × 8192

complex samples. The flow of processing subcomponents is shown in Fig. 7.7.

Each of these subcomponents have been implemented and practically validated on the Xilinx Virtex 5

FPGA platform with an ADC, DAC, and QDR interface as shown in Fig. 6.5. The shaded operations

in Fig. 7.7 are combined into a single pipelined operation that only loops over the range-Doppler map

(N×P iterations) once, rather than for each individual sub-operation. This is possible since there are

sufficient processing functional units in the datapath. Table 7.2 shows the measured results in terms

of number of clock cycles and respective processing time for a single burst.

The processing time as shown is based on the reference clock frequency of 100 MHz. Based on

the path delay analysis in Section 6.4, much higher clock rates are achievable, especially if deeper

pipelined functional units are used in the datapath. Deeply pipelined functional units slightly increase

the required number of clock cycles because of the increased latency, but allow substantially higher

clock frequencies.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

87

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Verification and Quantification Chapter 7

p=0

No

Y

TX Pulse Playback

Duplexer Delay

ADC Sample

PRI Delay

p++ ≥ P

Copy Hilbert Coeff.

Clear Output Array

Hilbert FIR Filter

Align I/Q

Copy FFT Coeff.

Inplace FFT

FFT Bit Reversal

Spectrum Multiply

Copy IFFT Coeff.

Inplace FFT

FFT Bit Reversal

IFFT 1/N Multiply

Transpose Matrix

Window Multiply

Copy FFT Coeff.

Inplace FFT

FFT Bit Reversal

Transpose Matrix

Envelope Calculation

Sliding Window

CFAR Comparison

TX Target Report

BRF Delay

I/Q Demodulation

Pulse Compression

Doppler Processing

CFAR Processing

DEFINES:

T=256

N=8192

P=32

L=32

ARGUMENTS:

T

2N

L

NP

L, NP

NP

N/2

N, P

NP, log2(N)

NP, N

N/2

N, P

NP, log2(N)

NP

N, P

NP, P

P/2

P, N

NP, log2(P)

P, N

NP

NP

NP

Figure 7.7: RSP test-case flow chart

7.3.1 Comparison to other Architectures

The identical radar signal processing chain (as shown in Fig. 7.7) is implemented on the Texas In-

struments C66x core by using the optimised signal processing library functions from the Texas In-

strument’s DSPLIB, and compared against the proposed architecture. An implementation based on

Intel’s AVX instruction set was not realised as no direct high-speed connection to an ADC and DAC

was available, and this peripheral interface is expected to be the major bottleneck for a practical radar

system.

Fig. 7.8 compares the total number of clock cycles required for the radar signal processor of the pro-

posed architecture (surface plot) with the C66x architecture (mesh plot). The last 5 data-points of

the proposed architecture were not computable due to limited external memory on the development

board. There is an almost constant offset between the C66x results and the proposed architecture

results on the log scale, a difference of more than an order in magnitude. The C66x implementation

requires between 10.8 and 20.9 times the number of clock cycles compared to the equivalent imple-

88 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Verification and Quantification

Table 7.2: Radar performance

Algorithm Clock Cycles Time (ms)
32x DAC Playback 2240 0.02
32x Deadtime Delay 0 variable
32x ADC Sample 131328 1.31
32x PRI Delay 0 variable
FIR Hilbert Filter 1050144 10.50
Memory Re-align 262175 2.62
Load FFT Coeff 4106 0.04
32x FFT8192 1704217 17.04
Bitrev+Spectrum Multiply 262167 2.62
Load IFFT Coeff 4106 0.04
32x IFFT8192 1704217 17.04
Bitrev+Windowing+Transpose 262159 2.62
Load FFT32 Coeff 26 0.00
8192x FFT32 655473 6.55
Bitrev+Transp.+Envelope+Moving ave 262189 2.62
CFAR processing 262173 2.62
Send target report to data processor 262154 2.62
TOTAL 6828874 68.29

mentation on the proposed architecture for typical radar operating parameters. Based purely on clock

cycles, the proposed architecture outperforms the C66x implementation by an average factor of 13.9

over the parameter ranges in Fig. 7.8.

101
102

103
104 101

102100

105

1010

Range Bins (N) Number of Pulses (P)

C
lo

ck
C

yc
le

s

Figure 7.8: RSP clock cycles as a function of range and number of pulses

A similar variation was also implemented on the fixed point Texas instruments C64x+ core. The

single-core processing time performance of this implementation is compared to the proposed archi-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Verification and Quantification Chapter 7

tecture and the C66x in Fig. 7.9 for a single burst. Note how this comparison favours the PC and

DSPs, as they are running at 2.1 GHz, 625 MHz and 1200 MHz respectively, with all calculations on

the C64x+ in fixed point at either 16 or 32 bit depending on the processing stage. The ADC sampling

process, I/Q demodulation and the data processor interface are excluded from this comparison, as

they are handled by other processing interfaces in the C64x+ based radar system.

Proposed Architecture

TI C66x (1 core)

TI C64x+ (1 core)

MATLAB (i7 L640)

51 ms

52 ms

132 ms

163 ms

Figure 7.9: Processing-time comparison between TI DSPs, MATLAB and the proposed architecture

7.4 FPGA RESOURCES USED

Table 7.3 summarises the resource usage of the various core elements. Some of the elements of the

proposed architecture are not shown explicitly, as they were absorbed into other modules by the syn-

thesizer tool. The combined LUT usage of the multiplexers is 22118 (some multiplexers on the integer

side are less than 32 bit wide and thus use less than 320 LUTs), about 50 % of the total LUT usage

of the proposed architecture. The remaining resources are dedicated mostly to address generation

and data processing functional units, achieving a high ratio of processing resources to control-flow

overheads. The Xilinx tools reported a power consumption of 5.23 Watts, which is comparable to the

6.5 Watts of single-cored high performance DSP processors. The power consumption is not expected

to increase with clock frequency, as the ASIC processes are more power efficient.

7.5 DESIGN TIME AND EASE OF IMPLEMENTATION

For many high performance systems, the actual algorithmic performance is not the only metric in

choosing the processing architecture. The design time, ease of implementation, support and software

development environment also play a vital role in the decision making process.

The primary reason for the proposed soft-core processor is to speed up the development time of

the current HDL-based FPGA design flows. As the development tools for the proposed architecture

are still in their infancy, they cannot be compared against the matured software IDE suits of Intel and

Texas Instruments. Regardless, the low-level assignment-based FLOW language is easy to understand

90 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7 Verification and Quantification

Table 7.3: FPGA resource usage

Component LUT usage BRAM usage DSP48E usage
CMem memory 142 57 0
DMem interface 25 0 0
PMem memory 0 15 0
ADC interface 269 0 0
DAC interface 600 0 0

FAdd0/1/2 252 0 2
FSub0/1/2 252 0 2

FCon 39 0 0
FDel0/1/2 991 0 0

FDot0 2356 0 38
FMul0/1/2/3 74 0 3

FSinCos0 413 2 5
FSqr0 432 0 0

FSwap0 108 0 0
FtoI0 182 0 0
ItoF0 169 0 0

IAdd0/1/2 32 0 0
ISub0 32 0 0

IDel0/1/2 991 0 0
IInc0/1/2/3 1 0 0

IMac0 32 0 3
IncZ0 82 0 0
RotR0 26 0 0
Stack0 13 0 0

MUX (x 81) 320 0 0
TOTAL 41783 74 70

and maps directly to the underlying hardware architecture. Optimising an algorithmic kernel on the

proposed architecture is straightforward, as the architecture is simple to understand and its limitations

as well as advantages are transparent. In most cases, implementing a processing system only requires

calling a few signal processing library functions with arguments such as number of iterations, point

or filter lengths and memory addresses. This makes the design flow very similar to the commercial

processing approaches, with function calls to optimised signal processing operations.

The commercial software tools make the first stage of algorithm development quick and relatively ef-

fortless, as the design flow is based on a high-level programming language such as C and performance

libraries or intrinsics. Optimising for performance on these architectures however, requires an in depth

understanding of the complex underlying architecture, a task that is not necessarily trivial.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8

CONCLUSION

8.1 OVERVIEW

The proposed architecture was designed to bridge the gap between high performance radar signal pro-

cessors and soft-core architectures, allowing for faster practical evaluation of new radar algorithms.

From the extensive literature covering soft-core processors, there has been very limited material on

custom soft-core processors for streaming signal processing applications, especially in the field of

radar signal processing.

The first step of the architectural design process was to analyse the various radar signal processing

algorithms. The algorithms were broken down into mathematical kernels and ranked according to

their relative processing requirements. Operations exhibiting high computational requirements were

then selected for optimisation purposes and architectural selection.

The next step involved an examination of current processing architectures and technologies as well

as their usage in radar signal processing applications. Architectural traits that were well matched

to the prior computational requirements were selected and a new architectural template was pro-

posed.

The various radar algorithms were implemented and then performance profiled on this architectural

template. With each implementation and profiling stage, the architectural template is incrementally

refined into the final architecture. A software development environment was designed to simplify and

facilitate this iterative process, generating the development tools as well as HDL-based description of

the processor core from an architectural description file.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Conclusion Chapter 8

For practical verification, the generated core was synthesised on a Xilinx Virtex-5 FPGA. The custom

development board includes a high-speed ADC and DAC, making the implementation a complete

radar signal processor system. The proposed architecture was compared against COTS processing al-

ternatives, and surpassed their performances over a wide range of typical operating parameters.

The primary contributions made by this work consist of the architectural framework with the rel-

evant optimisation process and guidelines, the final architecture, the software tool chain and FLOW

programming representation, a survey of radar processing systems, and a computational requirement

analysis of typical radar algorithms. The answers to the original research questions of Section 1.3 are

summarised in Table 8.1 below.

Table 8.1: Answers to original research questions

Research Question Short Answer
What does radar signal pro-
cessing entail from a pro-
cessing perspective?

Streaming, fixed processing chains consisting of mostly FFT,
IFFT, FIR and sorting operations along both vertical and ho-
rizontal dimensions in the data matrix.

What performance enhance-
ment techniques do current
processors employ?

Vectorisation and SIMD, superscalar, VLIW, instruction set
extensions, dynamic instruction scheduling, micro-coding,
rotating register files, speculation buffers, hardware looping
mechanisms, register renaming, pipelining, out-of-order ex-
ecution, caching, branch prediction, co-processors, multiple
cores

Which characteristics make an
architecture optimal for a spe-
cific application?

Streaming support, burst processing support, memory hier-
archies, interface mechanisms, deterministic and real-time
responses, interrupt support, dynamic instruction schedul-
ing support, high-level compiler support, architectural trans-
parency, inter-process communication mechanisms, memory
management units, hardware abstraction, power consump-
tion, physical size, dynamic range, performance scalability,
operating system support, customer support

What procedures are followed
to design, optimise, debug and
verify an architecture?

Iterative design, functional / performance evaluation and ar-
chitectural model refinement based on a development envir-
onment and designer intuition

What is a well-suited archi-
tecture for a radar signal pro-
cessor?

Low latency, predictability and transparency, determinism,
deeply pipelined functional units (no pipeline stalls), expli-
cit cache / scratch-pad control, small uncached instruction
memory, no dynamic hardware scheduling techniques, full
control over low-level computational resources

This chapter critically discusses the advantages and shortcomings of the proposed architecture, and

provides suggestions on future research topics and optimisation alternatives.

94 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion

8.2 RESULT DISCUSSION

The advantages and shortcomings of the proposed architecture are considered from various perspect-

ives; namely performance, system interface, latency, support for general purpose computing, archi-

tectural efficiency, assembly optimisation, and performance scalability.

8.2.1 Performance

The performance results of the proposed architecture compared to the COTS processing alternatives

show an interesting trend. In the case of the one-dimensional clock cycle performance of the indi-

vidual operations, the proposed architecture only slightly outperforms the competing architectures.

In the two dimensional case and when the entire radar signal processing chain is profiled, the pro-

posed architecture performs several orders of magnitude better as shown in Fig. 7.8 and below in

Fig. 8.1.

8 16 32 64 128 256 512 1k 2k 4k 8k 16k

103

104

105

106

107

108

C
lo

ck
C

yc
le

s

Proposed Architecture TI C66x

Figure 8.1: RSP clock cycle comparison, 32 pulses per burst

This comparison, based purely on the required number of clock cycles for processing a radar burst,

shows a performance improvement to the C66x core by an average factor of 14 over the range of

typical operating parameters. This suggests an exceptional architectural match to the core signal

processing needs of the radar signal processor. Note that this comparison is based on single core

performance of both architectures. A comparison based on processing time favours the competing

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Conclusion Chapter 8

architecture (clock frequency of 1.2 GHz versus 100 MHz), yet the proposed architecture still achieves

a marginally better performance compared to the C66x core. Implementing the proposed architecture

on a custom ASIC is expected to yield substantially higher clock rates, surpassing the computational

performance of the competing architectures by several factors.

8.2.2 System Interface

DSP systems, by definition, are designed to process analogue signals in the digital domain. As such

they conceptually consist of an ADC, a DSP processor, and a DAC. The DSP processor thus runs

continuously, processing the input stream according to some algorithm and passing the output data to

the analogue interface. Surprisingly, none of today’s DSPs even include interfaces to high-speed ADC

and DAC (multi-GSPS, parallel LVDS lines) chips, forcing designers to use FPGAs, ASICs or other

dedicated front end ICs as interfaces between the analogue devices and the DSP (or PC). Since these

FPGAs or ASICs are required either ways, the proposed architecture greatly simplifies the system

design, providing a complete system-on-chip solution based on a single FPGA or ASIC. External

system interfaces are easily mapped into the architectural multiplexers, providing a low latency and

high-speed streaming mechanism directly into the core registers.

8.2.3 Latency

Additionally, modern DSPs look a lot more like CPUs rather than dedicated streaming signal pro-

cessors. The architecture of these DSPs is primarily optimised for batch or packet processing in com-

munication infrastructure applications (such as 3G-LTE, 3GPP/3GPP2, TD-SCDMA, and WiMAX).

Due to the large market driving these developments, they feature many general purpose processing

mechanisms for hardware scheduling, branch prediction, speculative execution, multi-level caches,

virtual memory, shared memory and switching fabric controllers, memory management units (MMU)

and support for operating systems. As such their performance and response times are no longer de-

terministic, with varying number of clock cycles between different re-runs of the same application,

making them unsuitable for applications that require strict timing control (real-time processing). The

proposed architecture does not feature any of these general purpose processing mechanisms, and is

thus much better suited for streaming and timing critical signal processing applications (such as radar

signal processing), providing fixed and deterministic processing latencies.

96 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion

8.2.4 General Purpose Computing

The lack of these general purpose processing mechanisms in the proposed architecture comes at the

expense of limited performance for control-flow orientated or multi-threaded applications. Applica-

tions with an unpredictable control-flow feature suboptimal performance when scheduled statically.

Another disadvantage of the proposed architecture is limited code-interruptibility and backward-

compatibility. Interrupting the software pipeline during an inner loop calculation would require a

context backup of all core registers as well as the various partial results inside the pipelined func-

tional units. As such a context switching mechanism would both complicate as well as limit the

maximum performance of the proposed architecture. Interrupts should thus be disabled during inner

loops, or, for the case of high priority interrupts, the last few inner loop iterations (based on the num-

ber of inner loop latency cycles) would have to be rerun after the interrupt service routine returns.

Since most streaming applications (such as the radar signal processing operations) are highly regu-

lar and data-independent, the lack of interrupts is not necessarily a limiting factor of the proposed

architecture.

8.2.5 Architectural Efficiency

Commercial CPUs and DSPs feature a multitude of functional units ranging from mathematical to

arithmetic, logical and SIMD functions. However, the control-flow restrictions of their respective

out-of-order and VLIW architectures allow a maximum of 6 or 8 instructions to be issued every clock

cycle, while the remaining functional units sit idle. Additionally, the datapath has various routing

restrictions between functional units, further restricting the number of simultaneous execution units

that can be used in a constructive way. The proposed architecture features less functional units than

the traditional architectures, but exhibits full control over each low-level execution unit on a cycle-

by-cycle basis. Of the 6828874 required clock cycles for processing a burst in Table 7.2, 99.96% are

used for actual processing; the remaining 0.04% make up the architectural overhead and consist of

functional unit latencies, function calls, loop setups and other control-flow related overheads. The

proposed architecture thus exhibits very little architectural overhead and is able to fully utilise the

ALU and other on-chip resources, making the core architecture extremely efficient.

8.2.6 Optimisation

A lacking feature of the proposed architecture is a supporting high-level compiler. The competing ar-

chitectures are driven by large markets, ensuring consistent growth on both the hardware and software

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Conclusion Chapter 8

sides. As such they have mature development environments with optimised compilers, development

support and debugging tool chains. Even though their architectures are hard to understand and re-

quire a significant amount of insight for optimisation purposes, the software tools and performance

libraries achieve acceptable results and manual optimisation is not typically required. Creating an

algorithmic kernel on the proposed architecture requires thinking on a streaming dataflow level rather

than a sequential or control-flow paradigm. The majority of algorithms are implemented with soft-

ware pipeline mechanisms, avoiding the need for an explicit loop prologue or epilogue. The FLOW

assignment based language maps directly to the functional units on the proposed architecture, making

it easy to understand and optimise based on the graphical development tools. The simplicity of the

proposed architecture makes trade-offs between various performance optimisations and implementa-

tions transparent.

8.2.7 Scaling in Performance

Modern digital signal processors are easily up-scaled in the number of processing cores; various de-

velopment boards feature numerous interconnected multi-cored DSPs. Although the interconnection

mechanisms (or the shared memory controllers) on these architectures usually pose bottlenecks for

distributed computing, their limitations and applications are well characterised. The proposed archi-

tecture is similarly scalable in number of cores, but can be scaled on a functional unit level as well.

Additional functional units are easily added provided sufficient silicon area or LUTs are available,

and the application is not memory-bound. Pipelining multiple cores for streaming or distributed com-

puting applications could be achieved with interconnections based on FIFO-coupled input and output

ports, which are mapped into the core architecture as functional units. Such mechanisms are determ-

inistic in terms of throughput and latency, simplifying inter-processor communications and system

level design.

8.3 SIMILAR ARCHITECTURES

Additional research revealed two processing architectures that feature some resemblance to the pro-

posed architecture. The first of these architectures is the Multi-logic-unit processor [103–105]. As

the name suggests, the architecture features multiple arithmetic logic units. These architectures use

program word slices to directly control various ALU units simultaneously. Similar to VLIW archi-

tectures, they rely on a shared register file, which creates a bottleneck in the datapath at the crossbar

98 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion

switching network. Also, only a single functional unit inside of each ALU can be used simultan-

eously, limiting the maximum ILP to the number of ALUs.

Another architecture-class, which is closely related to the proposed architecture, is the transport

triggered architecture (TTA) [106–108]. A transport triggered architecture can be seen as a one in-

struction set computer (OISC); the only available instruction is to move data from a source register

address to a destination register address. Register files, memory access units as well as functional

modules all have a fixed number of input and output ports with queues and special trigger-ports

for initiating operations. As data is moved between registers, the processing inside the functional

module happens as a side effect of the move operation. Multiple transport buses can be provided,

exposing instruction-level parallelism similar to VLIW architectures. The exposed datapath of TTA

architectures provides finer grained control over functional units compared to VLIW architectures

though, allowing direct data movement between functional modules and bypassing the register file

completely. The TTA architecture is used in the commercially available MAXQ processor family

from Maxim Integrated [109]. These processors feature a single transport bus, and as such each in-

struction can move one data word from a module output port (16-to-1 multiplexer) to a module input

port (1-to-16 multiplexer) in a clock cycle. Each instruction also specifies both the input and output

register addresses internal to the selected module. TTA architectures can also be used as templates

for C-to-HDL compilers or other application-specific instruction-set processors (ASIP) [110].

A simplification of the TTA architecture is the synchronous transfer architecture (STA) [111, 112].

The STA architecture removes the register-file, trigger-ports and queues from the critical path of the

TTA architecture, using synchronous communication between arithmetic logic modules (somewhat

resembling [113]). The assembly instruction thus contains both transfers and operations that supply

control signals to explicitly trigger control functional units.

The proposed architecture could thus be seen as a further optimisation of the STA architecture. In the

proposed architecture, the instruction word is only used to specify the routings for each register (from

a specific functional unit output port to a register), and not for instruction control to modules via op-

codes. The proposed architecture thus allows even finer grained control and can use every functional

unit simultaneously, rather than using multiple modules simultaneously. Additionally, the proposed

architecture provides various architectural optimisations for loop control and streaming applications

as explained in Chapters 4 and 6.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

99

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Conclusion Chapter 8

8.4 ALTERNATIVES

The proposed soft-core architecture is not the only processing solution that is programmable from a

high level and well-suited for radar signal processing applications. Various other alternatives based

on completely different architectures are possible as discussed in this section.

8.4.1 High-level FPGA Synthesis Tools

Developers usually design and describe mathematical algorithms in a sequential matter in high-level

languages such as MATLAB or C. A limitation of this approach is that the inherent serial execution

denies parallelism. Various architectural techniques can extract instruction-level parallelism from

the sequential instruction stream, but these approaches are only scalable to a limited extent. Although

these high-level synthesis tools are constantly evolving [8,9,114–116], the abstraction of time through

high-level programming languages limits design trade-offs and optimisation prospects. Additionally,

the sequential program descriptions rely on a flat memory structure, which inherently denies locality.

Cache memories provide an illusion of both temporal as well as spatial memory locality, but these

approaches become very inefficient for streaming approaches or when the working set does not fit

into the cache.

To overcome these limitations in the streaming signal processing domain, various FPGA synthesis

tools enable developers to work on higher levels of abstraction and functionality [7,117]. These tools

attempt to address the needs of developers, allowing them to describe systems through an abstracted

graphical interface that exposes the inherent parallelism in the algorithms. Although these develop-

ments are still in their infancy and various issues still need to be overcome, multiple frameworks for

algorithm development and implementation have been demonstrated.

8.4.2 Grid Processor

Another architecture that is well-suited for algorithms exhibiting high levels of temporal locality,

is the grid-processor. Various programmable processing units are arranged in a grid, with memory

outputs or ADC ports connected on top of the grid and memory input or DAC ports connected at the

bottom of the grid. This arrangement works well for streaming applications where accesses to the

same data values tend to be clustered in time, and are not reused later.

100 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion

The proposed architecture could be used as such a grid-processor, when the data processing (floating

point) side is duplicated numerous times. The memory access functional units of each grid-processor

would then be replaced with interface ports to the adjacent processors. When a clock-by-clock re-

configuration of the multiplexer connections is not required, the PC and instruction word could be

completely removed and replaced with latches that are initialised on power-up.

8.4.3 GPU-based Processor

Another alternative processing platform for radar signal processing is the GPU. Modern GPU ar-

chitectures feature large arrays of configurable processors that are well-suited for streaming and

data-independent processing. Provided the external interfaces to the ADC and DAC can sustain

the required data throughput and low latency requirements, the GPU makes a capable radar signal

processor.

8.5 FUTURE RESEARCH

This section provides some ideas on how to further optimise the proposed architecture for perform-

ance and resource utilisation. Future research includes a custom ASIC implementation of the pro-

posed architecture as well as adding compiler support for a high-level programming language.

8.5.1 Further Performance Optimisations

Although the proposed architecture was optimised for performance of radar signal processing ap-

plications, the architecture could easily be extended to support more algorithms from the radar data-

processor (or any other signal processing application) by adding the required functional units.

One way to increase data-parallelism and thus also the performance of the proposed core architecture

is by adding vectorisation support. In multi-channel radar signal processors, the same operations

are applied to each channel simultaneously. By extending the registers and functional units on the

data processing side of the proposed architecture to vectors and SIMD operations respectively, such

a multi-channel system is easily realised (e.g. phased array or mono-pulse radars).

Another method of increasing performance is by pipelining. When throughput is more important

than atomic latency, each functional unit in the datapath can be further pipelined, reducing critical

path lengths and in turn increasing the maximum clock frequency. However, data dependent or single

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

101

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Conclusion Chapter 8

value calculations take multiple clock cycles to complete with such deeply pipelined arithmetic or

functional units.

The proposed architecture is also well-suited for adding coprocessors directly into the critical datapath

based on a custom functional unit. Coprocessors such as complex FIR filters or FFT processors can

thus be mapped directly into the core architecture to increase throughput.

For many streaming signal processing applications, multi-core implementations are a simple way of

increasing system performance. A multi-cored version of the proposed architecture is achieved by

adding special functional units into the datapath. Depending on the required multi-core arrangement,

different inter-process communication mechanisms are possible.

When the system is used in a pipelined fashion, where the processed data is passed along the pro-

cessing chain to the next core, simple FIFO-coupled input and output ports provide communication

between adjacent cores.

For distributed computing applications, an entirely different mechanism, which allows communica-

tion between all cores, is required. Such a mechanism could be a simple functional unit that provides

bus arbitration to a shared memory resource, or a more advanced inter-process communication mech-

anisms based on hardware semaphores and mutexes.

8.5.2 Resource Usage Reduction

The resources used by the proposed architecture could be further reduced using several different

methodologies, each with their own advantages and disadvantages, as described in this section.

One way to reduce the routing congestion and thus the resource utilisation, is by removing the global

reset signal going into the proposed architecture. Rather than an explicit reset signal going to all

registers and functional units, the program word at address zero could be set in such a way that the

zero constant is assigned to each register in the architecture. This would save LUT resources on the

FPGA, as the reset signal would only have to be routed to the PC register. The reset signal should be

asserted for a minimum number of clock cycles determined by the maximum latency of the internal

functional units. This method would also allow non-zero reset values, for example the NaN could be

assigned to all floating-point registers.

102 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion

The debug registers and multiplexers use a substantial amount of chip resources that do not construct-

ively add to the processing performance. An alternative mechanism of saving a debugging trace could

be implemented. For example, a single bit in the program word could indicate that all registers are

to be saved into a dual ported RAM for the next X instruction cycles before the processor halts. The

saved values could then be read out to the debugging environment at any later stage via a dedicated

debugging peripheral interface (e.g. via USB or Ethernet).

The program word of the proposed architecture is extremely wide, yet most program word slices

are only fully utilised in the inner loops. During setup and control-flow instructions, only a small

portion of the program word is used. One mechanism to reduce the program memory bandwidth, is

to compress the instruction word. Another mechanism would be to store the long instruction words in

a separate dedicated memory, and have the shorter control-flow instruction word point to an address

in this dedicated memory when needed.

To save on-chip resources without degrading the performance of the proposed architecture, the mul-

tiplexer connections could be further reduced. In most applications, the multiplexer select signals

only take a few discrete values with the majority of connections left unused. Based on the desired

end application, these multiplexer sizes could be reduced at the expense of flexibility with reduced

inter-functional-unit connectivity.

Also, many functional units are seldom used and never used concurrently in the inner loops. Such

functional units could be mapped into the memory space or grouped into secondary functional unit

clusters with common input ports. The output ports of each cluster could then be passed to a secondary

multiplexer with a registered output port connection to the main multiplexers. Only a single functional

unit in a cluster can thus be used concurrently. This reduces the width of the main architectural

multiplexers and saves on-chip resources at the expense of limited ILP and an added latency cycle on

the secondary/clustered functional units.

Another method of reducing the resource usage and possibly increasing performance, is segmenting

the functional units into localised groups based on functionality. Each functional unit in the localised

group would have direct multiplexer connections to every element in the same group, but connec-

tions to other groups would be of secondary concern. This method thus resembles the integer and

floating-point functional unit split in the proposed architecture, with a much finer grained split in the

datapath.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

103

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Conclusion Chapter 8

8.5.3 ASIC Implementation

A substantial amount of effort is required to implement the proposed architecture in a custom ASIC.

The proposed architecture is a prototype demonstrating its characteristics and performance, still re-

quiring many system level design choices and trade-offs before taking the design to a final product.

Regardless, an ASIC implementation of the proposed architecture is expected to achieve considerable

performance, power and area-usage improvements over the FPGA implementation. Such an imple-

mentation would overcome many issues inherent to FPGAs: routing congestions, datapath latencies,

maximum clock frequencies, and the FPGA technology-gate overhead.

8.5.4 Compiler Support

Although performance libraries based on manually-optimised DSP functions have been implemented,

adding high-level compiler support to the proposed architecture greatly simplifies the development of

new algorithms. Possible high-level language support could include MATLAB and C/C++. However,

as the serial execution of these languages typically denies parallelism, alternative programming lan-

guages could be better suited. For example, functional programming languages such as Haskell might

be better matched to extracting parallelism than traditional sequential programming languages.

Regardless of the programming language, the proposed architecture is well-suited for compiler-based

static scheduling because of deterministic and fixed latencies in the core architecture, interconnects

and functional units. Many developers find it more difficult to write parallel programs compared to

sequential programs, however experimental results show that compilers can evolve parallel programs

with less computational effort than the equivalent sequential programs [103]. A significant amount

of research has been done on compilers for both TTA as well as STA architectures [110, 118–122].

Of particular value to the proposed architecture would be the LLVM-based TCE toolset [123], which

could be used as a basis for designing a compiler for the proposed architecture.

8.6 CONCLUDING REMARKS

The main focus of this research was to design a processing architecture that is optimal for radar sig-

nal processing applications. Constructs of both sequential processors and dataflow machines were

merged into a tightly coupled solution, capable of fully exploiting each of the underlying processing

resources concurrently. This novel soft-core processing architecture features an excellent match to

104 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8 Conclusion

the core computational requirements of the RSP. The proposed architecture outperforms competing

architectures in both number of clock cycles and processing time, despite the limited clock frequen-

cies achievable in the FPGA technology. Table 8.2 summarises the characteristics of this architec-

ture.

Table 8.2: Proposed architecture - Characteristics Summary

Property Characteristics
Number of Cores 1
Clock Frequency 100 MHz (ASIC estimated: 1.0 - 2.7 GHz)
Streaming Performance High (data independent processing)
Burst Processing Performance Medium to High (software pipelines)
General Purpose Performance Low to Medium (no hardware scheduling)
Interrupt Support Limited (impractical context backup)
Latency Low (deterministic and real-time)
Interface Capabilities Excellent (direct streaming interfaces to peripherals and ex-

ternal systems)
Architectural Efficiency Excellent (extremely low overhead, high ALU utilisation)
Performance Scalability Excellent (add/remove functional units)
Power Consumption Low to Average
Code Compatibility None (not backwards compatible between implementations)
Code Density High (horizontal and vertical)
Compile Times Low (less than a second)
Resource Usage Average (medium to high on an FPGA)
Ease of Use Good (software based: function calls to optimised DSP

routines, lacking high-level compiler)

The software-based development environment enables quick algorithmic changes and instant compile

times during field tests, greatly improving the ease of use compared to the FPGA design flow and com-

pilation times. An ASIC implementation of the proposed architecture would be extremely well-suited

for integration into the transmit/receive (TR-)modules of AESA and MIMO radar systems, featuring

low power consumption, high processing throughputs and instant front-end processing mode changes

for various operational requirements (e.g. communications, radar, electronic warfare techniques and

jamming modes).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[1] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and P. Cheung, “Reconfigurable

computing: architectures and design methods,” IEE Proc. Comput. Digit. Tech., vol. 152, no. 2,

pp. 193–207, Mar. 2005.

[2] P. Yiannacouras, J. Steffan, and J. Rose, “Data Parallel FPGA Workloads: Software versus

Hardware,” in IEEE Int. Conf. Field-Program. Logic Appl., Aug. 2009, pp. 51–58.

[3] J. Greco, G. Cieslewski, A. Jacobs, I. Troxel, and A. George, “Hardware/software Interface

for High-performance Space Computing with FPGA Coprocessors,” in IEEE Aerospace Conf.,

Jan. 2006, pp. 1–10.

[4] Y. He, C. Le, J. Zheng, K. Nguyen, and D. Bekker, “ISAAC - A Case of Highly-Reusable,

Highly-Capable Computing and Control Platform for Radar Applications,” in IEEE Radar

Conf., May 2009, pp. 1–4.

[5] J. McAllister, R. Woods, S. Fischaber, and E. Malins, “Rapid implementation and optimisation

of DSP systems on FPGA-centric heterogeneous platforms,” J. Syst. Architect., vol. 53, no. 8,

pp. 511–523, 2007.

[6] O. Cret, K. Pusztai, C. Vancea, and B. Szente, “CREC: A Novel Reconfigurable Computing

Design Methodology,” in Int. Proc. Parallel Distr. Processing, Apr. 2003, pp. 8–16.

[7] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-Level Synthesis

for FPGAs: From Prototyping to Deployment,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 30, no. 4, pp. 473–491, Apr. 2011.

[8] Berkeley Design Technology, Inc. (2012, May) BDTI Certified Results for the AutoESL

AutoPilot High-Level Synthesis Tool. [Online]. Available: http://www.bdti.com/Resources/

BenchmarkResults/HLSTCP/AutoPilot

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.bdti.com/Resources/BenchmarkResults/HLSTCP/AutoPilot
http://www.bdti.com/Resources/BenchmarkResults/HLSTCP/AutoPilot

References

[9] ——. (2012, May) BDTI Certified Results for the Synopsys Synphony C Compiler. [Online].

Available: http://www.bdti.com/Resources/BenchmarkResults/HLSTCP/Synphony

[10] (2012, Nov.) Opencores. [Online]. Available: http://opencores.org/

[11] Xilinx. (2012, Nov.) Xilinx CORE Generator System. [Online]. Available: http:

//www.xilinx.com/tools/coregen.htm

[12] Altera Corporation. (2013, Aug.) MegaWizard Plug-Ins. [Online]. Available: http:

//www.altera.com/products/ip/altera/megawizd.html

[13] ——. (2012, Nov.) OpenCL for Altera FPGAs: Accelerating Performance and Design Pro-

ductivity. [Online]. Available: http://www.altera.com/products/software/opencl/opencl-index.

html

[14] D. Singh. (2011, Mar.) Higher Level Programming Abstractions for FPGAs using OpenCL.

Altera Corporation. [Online]. Available: http://cas.ee.ic.ac.uk/people/gac1/DATE2011/Singh.

pdf

[15] (2012, Nov.) Open RVC-CAL Compiler. [Online]. Available: http://orcc.sourceforge.net/

[16] R. Broich and H. Grobler, “Analysis of the Computational Requirements of a Pulse-Doppler

Radar Signal Processor,” in IEEE Radar Conf., May 2012, pp. 835–840.

[17] Mathworks. (2010, Nov.) MATLAB - The Language Of Technical Computing. [Online].

Available: http://www.mathworks.com/products/matlab/

[18] M. A. Richards, Fundamentals of Radar Signal Processing, 1st ed. New York: McGraw-Hill,

2005.

[19] B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf, “An Approach for Quantitative

Analysis of Application-Specific Dataflow Architectures,” in IEEE Int. Conf. Appl.-Specific

Systems, Architectures & Processors, Jul. 1997, pp. 338–349.

[20] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 3rd ed.

Morgan Kaufmann, 2002.

108 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.bdti.com/Resources/BenchmarkResults/HLSTCP/Synphony
http://opencores.org/
http://www.xilinx.com/tools/coregen.htm
http://www.xilinx.com/tools/coregen.htm
http://www.altera.com/products/ip/altera/megawizd.html
http://www.altera.com/products/ip/altera/megawizd.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://cas.ee.ic.ac.uk/people/gac1/DATE2011/Singh.pdf
http://cas.ee.ic.ac.uk/people/gac1/DATE2011/Singh.pdf
http://orcc.sourceforge.net/
http://www.mathworks.com/products/matlab/

References

[21] A. Blass and Y. Gurevich, “Abstract state machines capture parallel algorithms,” ACM Trans.

Comput. Logic, vol. 4, no. 4, pp. 578–651, Oct. 2003.

[22] M. A. Richards, Principles of Modern Radar: Basic Principles, 1st ed. North Carolina:

SciTech Publishing, 2010.

[23] Berkeley Design Technology, Inc. (2011, Feb.) Speed Scores for Fixed-Point Packaged

Processors. [Online]. Available: http://www.bdti.com/MyBDTI/bdtimark/chip_fixed_scores.

pdf

[24] ——. (2011, Aug.) BDTI DSP Kernel Benchmarks (BDTImark2000). [Online]. Available:

http://www.bdti.com/Resources/BenchmarkResults/BDTIMark2000

[25] TMS320C66x CPU and Instruction Set Reference Guide (SPRUGH7), Texas Instruments, Nov.

2010.

[26] StarCore DSP SC3850 Core Reference Manual (SC3850CRM Rev. C), Freescale, Jul. 2009.

[27] MSC8156 SC3850 DSP Subsystem Reference Manual (SC3850SUBRM Rev. E), Freescale, Feb.

2010.

[28] J. Alter, J. Evins, J. Davis, and D. Rooney, “A Programmable Radar Signal Processor Archi-

tecture,” in IEEE Nat. Radar Conf., Mar. 1991, pp. 108–111.

[29] Y. Rin, B. Sie, and L. Yongtan, “An Advanced Digital Signal Processor for the HRR Polar-

imetric MMW Active Guidance Radar,” in IEEE Nat. Proc. Aerospace & Electronics Conf.,

vol. 1, May 1993, pp. 370–376.

[30] Y. Lan, Y. Zhaoming, J. Jing, Z. Delin, and T. Changwen, “A High-Speed Multi-Channel Data

Acquisition and Processing System for Coherent Radar,” in Int. Conf. Signal Processing Proc.,

vol. 2, 1998, pp. 1632–1635.

[31] F. Wang, T. Long, and M. Gao, “A digital signal processor for high range resolution tracking

radar,” in Int. Conf. Signal Processing, vol. 2, Aug. 2002, pp. 1441–1444.

[32] S.-Q. Hu and T. Long, “Design and Realization of High-performance Universal Radar Signal

Processing System,” in Int. Conf. Signal Processing, Oct. 2008, pp. 2254–2257.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

109

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.bdti.com/MyBDTI/bdtimark/chip_fixed_scores.pdf
http://www.bdti.com/MyBDTI/bdtimark/chip_fixed_scores.pdf
http://www.bdti.com/Resources/BenchmarkResults/BDTIMark2000

References

[33] D. Anuradha, P. Barua, A. Singhal, and R. Rathore, “Programmable Radar Signal Processor

For a Multi Function Radar,” in IEEE Radar Conf., May 2009, pp. 1–5.

[34] F. Wen, W. Zhu, and B. Chen, “Design of Universal Radar Signal Processor Architecture Based

on Crosspoint Switch,” in Int. Conf. on Multimedia Technology (ICMT), Oct. 2010, pp. 1–4.

[35] D. Wang and M. Ali, “Synthetic Aperture Radar on Low Power Multi-Core Digital Signal

Processor,” in IEEE Conf. High Performance Extreme Computing (HPEC), Sep. 2012, pp. 1

–6.

[36] Virtex-5 FPGA User Guide (UG190 v5.3), Xilinx, May 2010.

[37] Virtex-5 FPGA XtremeDSP Design Considerations User Guide (UG193 v3.4), Xilinx, Jun.

2010.

[38] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of Field-Programmable

Gate Arrays,” Proc. IEEE, vol. 81, no. 7, pp. 1013–1029, Jul. 1993.

[39] FPGA Architecture - White Paper (WP-01003-1.0), Altera Corporation, Jul. 2006.

[40] E. E. Swartzlander and H. H. Saleh, “FFT Implementation with Fused Floating-Point Opera-

tions,” IEEE Trans. Computers, vol. 61, no. 2, pp. 284–288, Feb. 2012.

[41] Achieving One TeraFLOPS with 28nm FPGAs - White Paper (WP-01142-1.0), Altera Corpor-

ation, Sep. 2010.

[42] R. Lazarus and F. Meyer, “Realization of a Dynamically Reconfigurable Preprocessor,” in

IEEE Nat. Proc. Aerospace & Electronics Conf., May 1993, pp. 74–80.

[43] T. Tuan, M. Figueroa, F. Lind, C. Zhou, C. Diorio, and J. Sahr, “An FPGA-Based Array Pro-

cessor for an Ionospheric-Imaging Radar,” in IEEE Symp. Field-Programmable Custom Com-

puting Machines, 2000, pp. 313–314.

[44] S. Sumeem, M. Mobien, and M. Siddiqi, “A Pulse Doppler Radar using Reconfigurable Com-

puting,” in Int. Multi Topic Conf., Dec. 2003, pp. 213–217.

110 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[45] Y. Shi, X. Gao, Z. Tan, and Y. Wang, “Research of Radar Signal Processor Based on the

Software Defined Radio,” in Int. Conf. Wireless Comm., Networking & Mobile Computing,

Sep. 2007, pp. 1252–1255.

[46] H. Nicolaisen, T. Holmboe, K. Hoel, and S. Kristoffersen, “High Resolution Range-Doppler

Radar Demonstrator Based on a Commercially Available FPGA Card,” in Int. Conf. Radar,

Sep. 2008, pp. 676–681.

[47] S. Xu, M. Li, and J. Suo, “Clutter Processing for Digital Radars Based on FPGA and DSP,” in

Int. Conf. Wireless Comm. Signal Processing, Nov. 2009, pp. 1–4.

[48] B. Liu, W. Chang, and X. Li, “Design and Implemetation of a Monopulse Radar Signal Pro-

cessor,” in Int. Conf. Mixed Design of Integrated Circuits & Systems (MIXDES), May 2012,

pp. 484–488.

[49] R. Stapleton, K. Merranko, C. Parris, and J. Alter, “The Use of Field Programmable Gate

Arrays in High Performance Radar Signal Processing Applications,” in IEEE Int. Radar Conf.,

2000, pp. 850–855.

[50] V. Winkler, J. Detlefsen, U. Siart, J. Buchler, and M. Wagner, “FPGA-based Signal Processing

of an Automotive Radar Sensor,” in European Radar Conf., 2004, pp. 245–248.

[51] T. Darwich, “Pulse-modulated Radar Display Processor on a Chip,” in Int. Parallel & Distrib-

uted Processing Symp., Apr. 2004, pp. 128–132.

[52] S. Lal, R. Muscedere, and S. Chowdhury, “An FPGA-Based Signal Processing System for a

77 GHz MEMS Tri-Mode Automotive Radar,” in IEEE Int. Symp. Rapid System Prototyping,

May 2011, pp. 2–8.

[53] S. Bayar and A. Yurdakul, “Self-Reconfiguration on Spartan-III FPGAs with Compressed Par-

tial Bitstreams via a Parallel Configuration Access Port (cPCAP) Core,” in Research in Micro-

electronics & Electronics, Apr. 2008, pp. 137–140.

[54] N. Harb, S. Niar, M. Saghir, Y. Hillali, and R. Atitallah, “Dynamically Reconfigurable Archi-

tecture for a Driver Assistant System,” in IEEE Symp. Application Specific Processors, Jun.

2011, pp. 62–65.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

111

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[55] E. Seguin, R. Tessier, E. Knapp, and R. Jackson, “A Dynamically-Reconfigurable Phased Ar-

ray Radar Processing System,” in IEEE Int. Conf. Field Programmable Logic & Applications

(FPL), Sep. 2011, pp. 258–263.

[56] Xilinx. (2013, Mar.) Zynq-7000 All Programmable SoC. [Online]. Available: http:

//www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm

[57] Altera Corporation. (2013, Mar.) Intel Atom Processor E6x5C Series. [Online]. Available:

http://www.altera.com/devices/processor/intel/e6xx/proc-e6x5c.html

[58] P. Long, C. He, and L. Yuedong, “The SoPC Based Design for Real-Time Radar Seeker Signal

Processing,” in IET Int. Radar Conf., Apr. 2009, pp. 1–4.

[59] Altera Corporation. (2011, Apr.) Nios II Processor: The World’s Most Versatile Embedded

Processor. [Online]. Available: http://www.altera.com/products/ip/processors/nios2/ni2-index.

html

[60] Xilinx. (2010, Sep.) MicroBlaze Soft Processor Core. [Online]. Available: http:

//www.xilinx.com/tools/microblaze.htm

[61] S. Le Beux, V. Gagne, E. Aboulhamid, P. Marquet, and J.-L. Dekeyser, “Hardware/Software

Exploration for an Anti-collision Radar System,” in IEEE Int. Midwest Symp. Circuits & Sys-

tems, vol. 1, Aug. 2006, pp. 385–389.

[62] J. Saad, A. Baghdadi, and F. Bodereau, “FPGA-based Radar Signal Processing for Automotive

Driver Assistance System,” in IEEE/IFIP Int. Symp. Rapid System Prototyping, Jun. 2009, pp.

196–199.

[63] J. Khan, S. Niar, A. Rivenq, and Y. El-Hillali, “Radar based collision avoidance system imple-

mentation in a reconfigurable MPSoC,” in Int. Conf. Intelligent Transport Systems Telecomm.,

Oct. 2009, pp. 586–591.

[64] B. Mingming, L. Feng, and X. Yizhuang, “Dynamic Reconfigurable Storage and Pretreatment

System of SAR Signal Processing using Nios II Architecture,” in IET Int. Radar Conf., Apr.

2009, pp. 1–4.

112 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm
http://www.altera.com/devices/processor/intel/e6xx/proc-e6x5c.html
http://www.altera.com/products/ip/processors/nios2/ni2-index.html
http://www.altera.com/products/ip/processors/nios2/ni2-index.html
http://www.xilinx.com/tools/microblaze.htm
http://www.xilinx.com/tools/microblaze.htm

References

[65] R. Djemal, “A Real-time FPGA-Based Implementation of Target Detection Technique in Non

Homogenous Environment,” in Int. Conf. Design Technology Integr. Systems, Mar. 2010, pp.

1–6.

[66] P. Jena, C. V, B. Tripathi, R. Kuloor, and W. Nasir, “Design and Implementation of a Highly

Configurable Low Power Robust Signal Processor for Portable Ground Based Multiple Scan

Rate Surveillance Radar,” in Int. Radar Symp., Jun. 2010, pp. 1–4.

[67] J. R. C. Kingyens, “A GPU-Inspired Soft Processor for High-Throughput Acceleration,” Mas-

ter’s thesis, University of Toronto, 2008.

[68] J. Kingyens and J. Steffan, “A GPU-Inspired Soft Processor for High-Throughput Accelera-

tion,” in IEEE Int. Symp. Parallel Distributed Processing, Apr. 2010, pp. 1–8.

[69] P. Yiannacouras, J. Steffan, and J. Rose, “Portable, Flexible, and Scalable Soft Vector Pro-

cessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 8, pp. 1429–1442,

Aug. 2008.

[70] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux, “Vector Processing as

a Soft Processor Accelerator,” ACM Trans. Reconfigurable Technol. Syst., vol. 2, no. 2, pp.

12:1–12:34, Jun. 2009.

[71] M. Purnaprajna and P. Ienne, “Making wide-issue VLIW processors viable on FPGAs,” ACM

Trans. Archit. Code Optim., vol. 8, no. 4, pp. 33:1–33:16, Jan. 2012.

[72] A. Jones, R. Hoare, I. Kourtev, J. Fazekas, D. Kusic, J. Foster, S. Boddie, and A. Muaydh,

“A 64-way VLIW/SIMD FPGA architecture and design flow,” in IEEE Int. Conf. Electronics,

Circuits & Systems, Dec. 2004, pp. 499–502.

[73] C. Choo, J. Chung, J. Fong, and S. E. Cheung, “Implementation of Texas Instruments

TMS32010 DSP Processor on Altera FPGA,” in Global Signal Processing Expo & Conf. San

Jose State University, Sep. 2004.

[74] L. Noury, S. Dupuis, and N. Fel, “A Reference Low-Complexity Structured ASIC,” in IEEE

Int. Sym. on Circuits & Systems, May 2012, pp. 2709–2712.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

113

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[75] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp. 203–215, Feb. 2007.

[76] K. Hwang and Z. Xu, “Scalable Parallel Computers for Real-Time Signal Processing,” IEEE

Signal Process. Mag., vol. 13, no. 4, pp. 50–66, Jul. 1996.

[77] M. Kalkuhl, P. Droste, W. Wiechert, H. Nies, O. Loffeld, and M. Lambers, “Parallel Compu-

tation of Synthetic SAR Raw Data,” in IEEE Int. Geoscience & Remote Sensing Symp., Jul.

2007, pp. 536–539.

[78] T. Maese, J. A. Hunziker, H. S. Owen, C. Reed, R. Bluth, and L. Wagner, “Modular Software

Architecture for Tactical Weather Radar Processing,” in Int. Interactive Information & Proc.

Systems Conf., Jan. 2009.

[79] Signal Processing on Intel Architecture: Performance Analysis using Intel Performance Prim-

itives, Intel, Jan. 2011.

[80] J. Hensley, “AMD CTM overview,” in ACM SIGGRAPH courses, 2007.

[81] C. Fallen, B. Bellamy, G. Newby, and B. Watkins, “GPU Performance Comparison for Ac-

celerated Radar Data Processing,” in Symp. Application Accelerators in High-Performance

Computing, Jul. 2011, pp. 84–92.

[82] S. Mu, C. Wang, M. Liu, D. Li, M. Zhu, X. Chen, X. Xie, and Y. Deng, “Evaluating the

Potential of Graphics Processors for High Performance Embedded Computing,” in Design,

Automation Test in Europe Conf. Exhibition, Mar. 2011, pp. 1–6.

[83] Y. Zeng, J. Xu, and D. Peng, “Radar Velocity-Measuring System Design and Computation

Algorithm Based on ARM Processor,” in Int. Conf. Intelligent Control & Automation, Jul.

2010, pp. 5352–5357.

[84] R. Khasgiwale, L. Krnan, A. Perinkulam, and R. Tessier, “Reconfigurable Data Acquisition

System for Weather Radar Applications,” in Symp. Circuits & Systems, Aug. 2005, pp. 822–

825.

[85] S. Winberg, A. Mishra, and B. Raw, “Rhino Blocks Pulse-Doppler Radar Framework,” in IEEE

Int. Conf. Parallel Distributed & Grid Computing, Dec. 2012, pp. 876–881.

114 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[86] Z. Liu, K. Dickson, and J. McCanny, “Application-specific instruction set processor for SoC

implementation of modern signal processing algorithms,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 52, pp. 755–765, 2005.

[87] P. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens, “Embedded software in real-time

signal processing systems: application and architecture trends,” Proc. IEEE, vol. 85, no. 3, pp.

419–435, 1997.

[88] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink, and

H. Meyr, “A novel methodology for the design of application-specific instruction-set pro-

cessors (ASIPs) using a machine description language,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 20, pp. 1338–1354, 2001.

[89] V. Kathail, S. Aditya, R. Schreiber, B. Rau, D. Cronquist, and M. Sivaraman, “PICO: automat-

ically designing custom computers,” Computer, vol. 35, pp. 39–47, 2002.

[90] A. Hoffmann, F. Fiedler, A. Nohl, and S. Parupalli, “A methodology and tooling enabling

application specific processor design,” in Int. Conf. VLSI Design, 2005, pp. 399–404.

[91] V. Guzma, S. Bhattacharyya, P. Kellomaki, and J. Takala, “An integrated ASIP design flow for

digital signal processing applications,” in Int. Symp. Appl. Sci. on Biomedical & Comm. Tech.,

2008, pp. 1–5.

[92] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set processors using nML,”

in Proc. European Design & Test Conf., 1995, pp. 503–507.

[93] J.-H. Yang, B.-W. Kim, S.-J. Nam, Y.-S. Kwon, D.-H. Lee, J.-Y. Lee, C.-S. Hwang, Y.-H. Lee,

S.-H. Hwang, I.-C. Park, and C.-M. Kyung, “MetaCore: an application-specific programmable

DSP development system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, pp. 173–

183, 2000.

[94] L. Zhang, S. Li, Z. Yin, and W. Zhao, “A Research on an ASIP Processing Element Architec-

ture Suitable for FPGA Implementation,” in Int. Conf. Comp Science & Software Engineering,

vol. 3, Dec. 2008, pp. 441–445.

[95] R. Sproull, I. Sutherland, and C. Molnar, “The counterflow pipeline processor architecture,”

IEEE Des. Test. Comput., vol. 11, no. 3, pp. 48–59, 1994.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

115

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[96] P. Balaji, W. Mahmoud, E. Ososanya, and K. Thangarajan, “Survey of the counterflow pipeline

processor architectures,” in System Theory Symp., 2002, pp. 1–5.

[97] B. Childers and J. Davidson, “Custom wide counterflow pipelines for high-performance em-

bedded applications,” IEEE Trans. Computers, vol. 53, pp. 141–158, 2004.

[98] P. B. Endecott, “SCALP: A Superscalar Asynchronous Low-Power Processor,” Ph.D. disserta-

tion, University of Manchester, 1996.

[99] M. Smith, “How RISCy is DSP?” IEEE Micro, vol. 12, no. 6, pp. 10–23, Dec. 1992.

[100] L. Wanhammar, DSP Integrated Circuits. Academic Press, 1999.

[101] D. R. Martinez, R. A. Bond, and M. M. Vai, High Performance Embedded Computing Hand-

book. CRC Press, 2008.

[102] S. Sun and J. Zambreno, “A Floating-point Accumulator for FPGA-based High Performance

Computing Applications,” in Int. Conf. Field-Prog. Technology, Dec. 2009, pp. 493–499.

[103] S. M. Cheang, K. S. Leung, and K. H. Lee, “Genetic Parallel Programming: Design and Im-

plementation,” Evol. Comput., vol. 14, no. 2, pp. 129–156, Jun. 2006.

[104] W. S. Lau, G. Li, K. H. Lee, K. S. Leung, and S. M. Cheang, “Multi-logic-unit processor: A

combinational logic circuit evaluation engine for genetic parallel programming,” in European

Conf. Genetic Programming, 2005, pp. 167–177.

[105] Z. Gajda, “A Core Generator for Multi-ALU Processors Utilized in Genetic Parallel Program-

ming,” in IEEE Design & Diagn. of Electr. Circuits & Systems, 2006, pp. 236–238.

[106] H. Corporaal, “A different approach to high performance computing,” in Int. Conf. High-

Performance Computing, Dec. 1997, pp. 22–27.

[107] ——, Microprocessor Architectures from VLIW to TTA. John Wiley, 1998.

[108] Y. He, D. She, B. Mesman, and H. Corporaal, “MOVE-Pro: A Low Power and High Code

Density TTA Architecture,” in Int. Conf. Embedded Computer Systems, Jul. 2011, pp. 294

–301.

116 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[109] MAXQ Family Users Guide, 6th ed., Maxim Integrated, Sep. 2008.

[110] O. Esko, P. Jaaskelainen, P. Huerta, C. de La Lama, J. Takala, and J. Martinez, “Customized

Exposed Datapath Soft-Core Design Flow with Compiler Support,” in Int. Conf. Field Pro-

grammable Logic & Applications (FPL), Sep. 2010, pp. 217–222.

[111] G. Cichon, P. Robelly, H. Seidel, T. Limberg, G. Fettweis, and V. Chair, “SAMIRA: A SIMD-

DSP architecture targeted to the Matlab source language,” in Proc. Global Signal Processing

Expo & Conf., 2004.

[112] G. Cichon, P. Robelly, H. Seidel, M. Bronzel, and G. Fettweis, “Synchronous Transfer Archi-

tecture (STA),” in Proc. Systems, Architectures, Modeling & Simulation, Jul. 2004, pp. 126–

130.

[113] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling, “Architecture Design of

Reconfigurable Pipelined Datapaths,” in Conf. Advanced Research in VLSI, Mar. 1999, pp. 23

–40.

[114] Xilinx. (2013, Jul.) Vivado ESL Design. [Online]. Available: http://www.xilinx.com/products/

design-tools/vivado/integration/esl-design/index.htm

[115] Synopsys, Inc. (2013, Jul.) Synphony C Compiler - High-Level Synthesis from C/C++

to RTL. [Online]. Available: http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/

SynphonyC-Compiler.aspx

[116] Cadence Design Systems, Inc. (2013, Jul.) C-to-Silicon Compiler. [Online]. Available:

http://www.cadence.com/products/sd/silicon_compiler/pages/default.aspx

[117] Mathworks. (2013, Jul.) HDL Coder. [Online]. Available: http://www.mathworks.com/

products/hdl-coder/

[118] J. Hoogerbrugge and H. Corporaal. (1997, Apr.) Resource Assignment in a Compiler for

Transport Triggered Architectures. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.46.3906

[119] G. Cichon, P. Robelly, H. Seidel, M. Bronzel, and G. Fettweis, “Compiler Scheduling for STA-

Processors,” in Int. Conf. Parallel Computing in Electrical Engineering, Sep. 2004, pp. 45–60.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

117

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/index.htm
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/index.htm
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx
http://www.cadence.com/products/sd/silicon_compiler/pages/default.aspx
http://www.mathworks.com/products/hdl-coder/
http://www.mathworks.com/products/hdl-coder/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.3906
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.3906

References

[120] J. Guo, J. Liu, B. Mennenga, and G. Fettweis, “A Phase-Coupled Compiler Backend for a

New VLIW Processor Architecture Using Two-step Register Allocation,” in IEEE Int. Conf.

Application-specific Systems, Architectures & Processors, Jul. 2007, pp. 346–352.

[121] X. Jia and G. Fettweis, “Code Generation for a Novel STA Architecture by Using Post-

Processing Backend,” in Int. Conf. Embedded Computer Systems, Jul. 2010, pp. 208–215.

[122] ——, “Integration of Code Optimization and Hardware Exploration for A VLIW Architecture

by Using Fuzzy Control System,” in IEEE Int. SOC Conf., Sep. 2011, pp. 36–41.

[123] Tampere University of Technology. (2012, Nov.) TTA-based Co-design Environment (TCE).

[Online]. Available: http://tce.cs.tut.fi/

[124] M. I. Skolnik, Introduction to Radar Systems, 2nd ed. Mcgraw-Hill College, 1980.

[125] ——, Radar Handbook, 3rd ed. McGraw-Hill Professional, Jan. 2008.

[126] K. Teitelbaum, “A Flexible Processor for a Digital Adaptive Array Radar,” IEEE Aerosp. Elec-

tron. Syst. Mag., vol. 6, no. 5, pp. 18–22, May 1991.

[127] R. G. Lyons, Understanding Digital Signal Processing, 2nd ed. Prentice Hall, Mar. 2004.

[128] T. Long and L. Ren, “HPRF pulse Doppler stepped frequency radar,” Science in China Series

F: Information Sciences, vol. 52, pp. 883–893, 2009.

[129] C. Venter and K. AlMalki, “RATIP: Parallel Architecture Investigation (GPU),” CSIR, Tech.

Rep., Mar. 2011.

[130] S. Vangal, Y. Hoskote, N. Borkar, and A. Alvandpour, “A 6.2-GFlops Floating-Point Multiply-

Accumulator With Conditional Normalization,” IEEE J. Solid-State Circuits, vol. 41, no. 10,

pp. 2314–2323, Oct. 2006.

[131] Z. Luo and M. Martonosi, “Accelerating Pipelined Integer and Floating-Point Accumula-

tions in Configurable Hardware with Delayed Addition Techniques,” IEEE Trans. Computers,

vol. 49, no. 3, pp. 208–218, Mar. 2000.

118 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://tce.cs.tut.fi/

References

[132] M. Ayinala, M. Brown, and K. Parhi, “Pipelined Parallel FFT Architectures via Folding Trans-

formation,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 6, pp. 1068 –1081,

Jun. 2012.

[133] D. Knuth, The Art of Computer Programming: Sorting and Searching, ser. The Art of Com-

puter Programming. Addison-Wesley, 1997, vol. 3.

[134] K. E. Batcher, “Sorting networks and their applications,” in Proc. Spring Joint Comp. Conf.,

1968, pp. 307–314.

[135] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on FPGAs,” The VLDB Journal,

vol. 21, pp. 1–23, 2012.

[136] S. W. Smith, Digital Signal Processing - A Practical Guide for Engineers and Scientists.

Newnes, 2003.

[137] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Approach to Archi-

tecture, Compilers and Tools. Morgan Kaufmann, 2005.

[138] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hardware Soft-

ware Interface, 4th ed. Morgan Kaufmann, 2008.

[139] D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, P. Har-

vey, H. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham,

J. Pille, S. Posluszny, M. Riley, D. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel,

D. Wendel, and K. Yazawa, “Overview of the Architecture, Circuit Design, and Physical Im-

plementation of a First-Generation Cell Processor,” IEEE J. Solid-State Circuits, vol. 41, pp.

179–196, 2006.

[140] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J.-H. A., N. Jayasena, U. J. Kapasi,

A. Das, J. Gummaraju, and I. Buck, “Merrimac: Supercomputing with streams,” in SC’03,

Phoenix, Arizona, Nov. 2003.

[141] S. Rixner, “Stream processor architecture,” Ph.D. dissertation, Rice University, 2001.

[142] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluating the Imagine Stream

Architecture,” SIGARCH Comput. Archit. News, vol. 32, no. 2, p. 14, Mar. 2004.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

119

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

References

[143] R. Wester, “A dataflow architecture for beamforming operations,” Master’s thesis, University

of Twente, Dec. 2010.

[144] M. Freeman, “Evaluating Dataflow and Pipelined Vector Processing Architectures for FPGA

Co-processors,” in Conf. Digital System Design: Architectures, Methods & Tools, 2006, pp.

127–130.

120 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX A

RADAR SIGNAL PROCESSING ALGORITHMS

A.1 OVERVIEW

This chapter provides more details on each of the radar signal processing algorithms [18,22,124,125]

of Fig. 2.6. For each algorithm, the computational requirements as well as possible implementation

alternatives are considered.

A.2 TIMING GENERATOR

The timing generator is the underlying synchronisation mechanism for both the radar transmitter and

the radar receiver. It ensures that the receiver is blanked during the transmission time and that the

transmitter is disabled during the reception time. In a practical system, the timing generator also

controls various subsections of the analogue front-end including the antenna duplexer and the various

amplifiers. The STC also requires the timing information from the timing generator to avoid saturation

in the receiver from close targets and to amplify far target returns (increase dynamic range).

From a processing point of view, the timing generator consists of a few software configurable timers.

Radar parameters such as the PRI, CPI and receiver listening time can thus be adjusted in real time to

focus on certain regions of interest or achieve better counter-jamming performance through staggered

PRF or pulse burst mode techniques.

In a hardware implementation the timing generator could be a simple up-counter that is reset once it

reaches the “PRI” value as shown in Fig. A.1. A comparator asserts the transmit enable signal if the

counter value is less than the transmit length. Similarly the receive enable signal is high when the

counter value is between the receive start and the receive stop values.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

Up-counter
0 PRI

TX enable
RX enable

TX len

RX start

RX stop

Figure A.1: PRI counter

A.3 PULSE GENERATOR

For simpler systems that do not make use of pulse compression techniques, the pulse generator simply

outputs a basic pulse with a pulse width of τ . The unmodulated pulse width determines the capacity

to distinguish between targets that are in close proximity to each other. The RF modulated signal of a

simple pulse with τ = 1 µs is shown in Fig. A.2. It should be clear that the radar can only differentiate

between the two targets at 4 µs (at a range of 600 m) and 5 µs (at a range of 750 m) if they are

separated by at least R0 ≥ cτ/2, a resolution of 150 m in this example.

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Time (µs)

Po
w

er

Tx
Rx

Figure A.2: Range discrimination for a pulsed radar without pulse compression

Since a long pulse width is desired in order to increase the average transmitter output power (and

thus also the reflected power from a target), the transmitted pulse is either modulated in frequency or

phase. A frequency modulated waveform is shown in Fig. A.3. Note how the frequency of a pulse is

swept linearly across a bandwidth B over the entire pulse width τ . Alternative waveforms for pulse

compressed systems make use of pseudo random phase modulations that are matched at the receiver,

filtering out undesired signals that do not match the transmitted sequence.

122 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Normalised time t/τ

In
st

.f
re

qu
en

cy
f/

B

Figure A.3: Instantaneous frequency of a linear frequency modulated radar pulse

Mathematically the linear frequency modulated (LFM) signal can be written as:

y(t) = cos(2π(fc +B
t
τ
)t), −τ

2
< t <

τ

2
(A.1)

where fc is the carrier frequency or zero in the baseband signal case. The baseband time domain

signal for this LFM chirp waveform is shown in Fig. A.4.

−0.4 −0.2 0 0.2 0.4

−1

−0.5

0

0.5

1

Normalised time t/τ

A
m

pl
itu

de

Figure A.4: Linear frequency modulated radar pulse

It can be shown that the pulse compressed waveform has a much higher range resolution than the

unmodulated waveform [18]. Although the pulse width remains constant, the Rayleigh resolution

after pulse compression becomes 1/B seconds (for time-bandwidth products greater than 10); a range

resolution of R0 = c/(2B) or 3 meters for a pulse with 50 MHz bandwidth. Thus the pulse energy can

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

123

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

be controlled through the pulse width τ while separately controlling the range resolution through the

pulse bandwidth B.

Since the waveform that is transmitted has to be matched to the receiver for pulse compression, it is

typically precomputed. Practically this precomputed data is often stored in lookup tables on hardware

or in memory for a software implementation. Other hardware implementations have a parallel input

DAC directly access the data lines of a memory chip, and thus only require a counter on the read

address lines.

A.4 ANALOGUE INTERFACE

The analogue interface features both the input sampling process on the receive side as well as the

output pulse playback on the transmit side as shown in the pseudo code below.

loop p=0 to P-1

loop t=0 to T-1

DAC_DATA = pulse_playback[t]

loop n=0 to 2*N-1

input[p][n] = ADC_DATA

The timing generator initiates the pulse playback as well as the sampling process at the PRF. A

fast memory interface as well as a processor architecture that can sustain the data rates of the ADC

and DAC is necessary. Computationally P×2×N memory writes and P×T memory reads are re-

quired.

A.5 I/Q DEMODULATION

The process of in-phase and quadrature sampling is often implemented digitally after analogue to

digital conversion [125]. In many cases the input signal is centred around some intermediate fre-

quency fIF , and directly converted to the baseband real and imaginary components with two digital

multiplication operations by the in-phase and 90 degree out-of-phase local oscillator. These digital

mixing operations are easily implemented if the instantaneous frequency is a quarter of the ADC

sampling frequency. Fig. A.5 depicts how the mixing operations reduce to simple multiplications by

either 0, +1 or -1 if the ADC sampling frequency is four times the instantaneous frequency of the

radar [126].

124 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

ADC

fADC

= 4 fIF

fIF
x(t) cos(2π fIFt) = [1,0,−1,0, ...]

sin(2π fIFt) = [0,1,0,−1, ...]

LPF

LPF

decimate
by 2

decimate
by 2

I

Q

Figure A.5: Digital I/Q sampling

Digital low pass filters are used to eliminate the negative frequency as well as DC components of both

I and Q after the mixing operation. The filter output is then decimated by two to discard redundant

data. The low pass filters (LPF) are typically designed to have a cut-off corner frequency at fIF .

However, since the signal is complex, the full bandwidth of fADC/2 is still preserved.

Alternatively, a Hilbert transform can be used to extract the Q-channel from the real sampled data

[127]. The FIR approximation of a Hilbert filter is essentially a band-pass filter (BPF) that has a

constant 90-degree phase shift. Fig A.6 shows how I/Q demodulation can be performed with a Hilbert

filter.

ADC

Delay

HilbertfADC

fIF
x(t)

decimate
by 2

decimate
by 2

I

Q

Figure A.6: Digital I/Q demodulation using a Hilbert filter

Unlike the mixing method however, the Hilbert transform method does not shift the frequency band

to baseband. A high pass filter for both the I and Q channel as well as a decimation stage can however

be added to bring the signal of interest down to baseband. Note how the I-channel input is delayed

by the same latency the Hilbert filter introduces (for a K-tap FIR filter, group delay G = (K-1)/2

samples).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

125

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

The Hilbert transform is often realised as a systolic array structure, while the filters are typically

implemented as either FIR, IIR or similar classes of digital filters. Implementation details for these

types of filters are discussed in Sections B.5, and B.6 respectively.

I/Q demodulation can also be performed in the frequency domain, similar to MATLAB’s hilbert

function. Since the analytic signal has a one-sided Fourier transform (i.e. no negative frequencies),

the forward FFT can be used to convert the real-valued signal to the frequency domain, the negative

frequencies multiplied by zeros, and an inverse FFT to get the complex time domain analytic sig-

nal. Computationally this approach is quite intensive for the typically long range lines of a radar

system.

The performance requirements for I/Q demodulation strongly depend on the required resolution and

acceptable filter stop-band attenuation. Since most high frequency ADCs have between 10 and 14-

bit resolutions, a 16-bit filter of length 32 (order 31) is usually more than adequate. The mixing

operations are simply digital multiplications by sine and cosine as shown below (where P is the

number of pulses per burst, and N is the number of range bins per pulse).

loop i=0 to P-1

loop j=0 to 2*N-1

input_re[i][j] = input[i][j]*sin(2*pi*fIF*j/fadc)

input_im[i][j] = input[i][j]*cos(2*pi*fIF*j/fadc)

Thus P×2×N×2 multiplications and memory writes as well as P×2×N×3 memory read operations

are required provided that a lookup table is used for the trigonometric functions. The filter require-

ments (length L) are therefore P×N×L×2 multiplications, additions, and memory reads as well as

P×N×L coefficient memory reads.

loop i=0 to P-1

loop j=0 to N-1

loop l=0 to L-1

iq_dem[i][j].RE += input_re[i][j*2-l]*lpf_coeff[l]

iq_dem[i][j].IM += input_im[i][j*2-l]*lpf_coeff[l]

When the ADC sampling frequency is 4 times as high as the IF frequency, the above mixing operation

simplifies to multiplications by 1,0,-1,0 and 0,1,0,-1 for the I and Q channels respectively, reducing the

computational requirements to P×2×N memory reads and writes as well as P×N negations.

loop i=0 to P-1

loop j=0 to N-1

126 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

if (N=even)

input_re[i][j] = input[i][j*2]

input_im[i][j] = input[i][j*2+1]

else

input_re[i][j] = -input[i][j*2]

input_im[i][j] = -input[i][j*2+1]

In this case the filtering stage can also be simplified, since only every second filter coefficient (even

coefficients for I, odd coefficients for Q) is needed [126]. The computational requirements are thus

reduced to P×N×L multiplications, additions, and memory reads, as well as P×N×L coefficient

memory reads as shown below.

loop i=0 to P-1

loop j=0 to N-1

loop l=0 to L/2-1

iq_dem[i][j].RE += input_re[i][j-l*2]*lpf_coef[l*2]

iq_dem[i][j].IM += input_im[i][j-l*2-1]*lpf_coef[l*2+1]

loop i=0 to P-1

loop j=0 to N-1

iq_dem[i][j].RE = input[i][j*2]

loop l=0 to L-1

iq_dem[i][j].IM += input[i][2*j-l]*hil_coeff[l]

Thus P×N×(L+1) memory reads as well as P×N×L coefficient reads, multiplications and additions

are required.

A.6 CHANNEL EQUALISATION

In practical systems channel equalisation is an important prerequisite for radar systems. The transfer

characteristics of RF front-end components as well as ADC converters are not consistent across the

frequency bandwidths of radar systems. Additionally the gains between the different mono-pulse

antenna channels are not matched. The aim of the channel equalisation operation is to equalize all the

incoming channels to have the same filter response, compensating for channel-to-channel distortions

and performing matched filtering to the transfer characteristics of the RF components. Coefficients

for this matched filter are determined by sweeping the input frequency and measuring the resulting

response. These coefficients can be altered for calibration purposes at a later stage.

To compensate for such imbalances in amplitude, both the I and the Q channels are multiplied by a

fractional scaling factor as shown below.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

127

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

loop i=0 to P-1

loop j=0 to N-1

amp_comp[i][j].RE = iq_dem[i][j].RE*amp_coeff

amp_comp[i][j].IM = iq_dem[i][j].IM*amp_coeff

Frequency compensation typically involves a digital filter such as a complex FIR filter or two real

FIR filters. The case of a complex-valued FIR filter is shown in the pseudo code below.

loop i=0 to P-1

loop j=0 to N-1

loop l=0 to L-1

freq_comp[i][j] += amp_comp[i][j-l] * freq_coeff[l]

The complex multiplication in the above filter translates to 4 real multiplications and an addition

as well as a subtraction. Since the input, coefficients and output is complex, 2 memory accesses

need to be performed for each variable, resulting in P×N×L×4 memory reads, multiplications and

additions.

A.7 PULSE COMPRESSION / MATCHED FILTERING

Pulse compression is thus a technique that allows the pulse energy to be controlled separately from

the required range resolution. Typically the transmit signal is modulated to produce a chirp signal as

discussed in Section A.3. On the receiving side, the incoming data (in the fast-time / range dimension)

is correlated with the transmitted waveform.

Fig. A.7 shows how the output of this correlation yields a narrow compressed pulse with a main-

lobe width of approximately 1/B when the transmit signal aligns perfectly with the receive signal.

Although the pulse width remained at 1 µs as in Fig. A.2, the range resolution improved by a factor

of 50 (from 150 m to 3 m).

The main-lobe width (Rayleigh resolution) does not depend on the duration of the transmitted pulse

in pulse-compressed radar systems. Instead, increasing the pulse width increases the pulse energy, at

the cost of a convolution filter with more taps. An improved range resolution on the other hand, only

requires a wider signal bandwidth.

The pulse compression matched filtering operation can practically be implemented in several ways.

The most straightforward implementation uses a digital correlation as discussed in Section B.13.

128 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

Time µs

A
m

pl
itu

de

Figure A.7: Pulse Compression output of a LFM waveform with τ = 1 µs and B = 50 MHz

When the known template signal (the transmitted chirp) is time-reversed and conjugated, the convo-

lution method in Section B.12 can also be used. The fast convolution method (Section B.12.1) using

the Fourier transform, multiplication in the frequency domain, and the inverse Fourier transforms

becomes advantageous when

log2(N)< T, (A.2)

where N is the number of range samples and T is the number of convolution taps (number of samples

used for the transmitted waveform). Another possible implementation uses the FIR filter structure

(Section B.5) to implement the required arithmetic involved in computing the product of filter taps

against the incoming data.

The process of pulse compression (or matched filtering) involves correlating the transmitted pulse

against the received signal. The most straightforward implementation of this matched filter is derived

from the correlation integral and shown below.

loop i=0 to P-1

loop j=0 to N-1

loop t=0 to T-1

pc[i][j] += freq_comp[t+j] * tx_pulse*[t]

Similar to the FIR filter for the frequency compensation, P×N×T×4 memory reads, multiplications

and additions are required. However, since the transmit pulse length is usually longer than the fre-

quency compensation filter lengths, the processing requirements are much more demanding.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

129

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

The fast convolution method on the other hand, converts the input sequence to the frequency domain

with an FFT, performs a complex multiplication by the frequency spectrum of the time-reversed

complex conjugated transmitted pulse, and converts the result back to the time domain using the

inverse FFT.

loop i=0 to P-1

in_freq[i] = FFT(freq_comp[i])

loop j=0 to N-1

fil_freq[i][j] = in_freq[i][j] * FFT(tx_pulse*[-t])[j]

pc[i] = IFFT(fil_freq[i])

As discussed in Section B.4.3, the total computational requirements for an FFT are P×N/2×log2N×4

real multiplications and memory writes as well as P×N/2×log2N×6 real additions and memory reads.

Bit inverted addressing is required for either memory reads or writes, depending on the selected DIT

or DIF algorithm type. The multiplication stage requires P×N×4 multiplications and memory reads,

as well as P×N×2 additions and memory writes, provided the inverted and conjugated spectrum

of the transmitted pulse is precomputed. The IFFT processing requirements are similar to those of

the FFT, except for an added stage that divides all output values by N and uses swapped real and

imaginary components of the forward FFT twiddle factors [127].

A.8 CORNER TURNING MEMORY

Most of the burst processing algorithms work on the “slow-time" samples. Since the majority of

the signal processing libraries (such as the FFT function) are written for row access, and the cache

performance improves as a result of spatial locality in the row dimension, the entire pulse-range

matrix is often transposed as shown in Fig. A.8

Range

Pu
ls

e
#

0 N

P
0

Pulse #

R
an

ge

0 P

N
0

Figure A.8: Corner turning memory operation

This process also acts as a buffer. When an entire CPI of data has been collected, it is corner turned

and saved in a new matrix, so that the pulse-range map can be overwritten by the new streaming

samples from the next CPI.

130 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

From a hardware implementation perspective, the pre-processed streaming range-line data can be

written to memory in transposed order at this stage. In software implementations, one could avoid

transposing the input matrix explicitly by accessing the data in column vector format rather than row

vector format. The transpose operation is however still performed to improve cache performance and

make use of optimised library functions. Two separate sections of memory are then required as the

transpose operation is difficult to perform in-place.

Computationally, the corner turning operation is simply a matrix transpose in memory as shown

below.

loop i=0 to N-1

loop j=0 to P-1

transp[i][j] = pc[j][i]

If the memory architecture permits non-linear memory accesses without latency or throughput penal-

ties, this step can be incorporated into the next processing stage. Otherwise P×N memory reads and

writes are required with the appropriate address calculation circuitry (a multiply-adder).

A.9 NON-COHERENT INTEGRATION

Although not shown in 2.6, the non-coherent integration (NCI) operation is vital to simpler radars that

do not measure or cannot process the returned phase. In such systems, the NCI sums the returns from

numerous pulses before performing the threshold check, diminishing the effects of any noise that is

centred around a mean of zero.

A.10 MOVING TARGET INDICATION

Doppler processing can be divided into two major classes: pulse-Doppler processing and moving tar-

get indication (MTI). When only target detection is of concern, the MTI filter is usually adequate. MTI

filters are often low order; even a first or second order FIR high-pass filter (such as 2 or 3 pulse MTI

cancellers) can be used to filter out the stationary clutter. Higher order filter types are typically not

used as they only provide modest performance improvements over the pulse cancellers [22].

MTI assumes that repeated returns from stationary targets have same echo amplitude and phase.

Thus subtracting successive pulses from each other should cancel out stationary targets. MTI merely

provides an indication of a moving target; no information about the targets velocity is extracted. The

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

131

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

MTI operation is essentially a high pass filter (HPF) typically implemented as a delay and subtract

operations or a FIR filter as discussed in Section B.5.

MTI filters can also be used to cancel clutter prior to Doppler processing. The clutter cancellation

operation can be described by the pseudo code below. It simply subtracts the previous pulse value

from the current pulse value for each sample in the range line.

loop i=0 to N-1

loop j=0 to P-1

cc[i][j] = transp[i][j] - prev

prev = transp[i][j]

The processing requirements for the two pulse canceller (above pseudo code) are thus N×P×2

memory reads, subtractions and memory writes, while the 3-pulse canceller (pseudo code below)

requires an additional N×P×2 multiplications and additions.

loop i=0 to N-1

loop j=0 to P-1

cc[i][j] = pc[j][i] - 2*prev1 + prev2

prev2 = prev1

prev1 = pc[j][i]

A.11 PULSE-DOPPLER PROCESSING

For a target directly approaching the radar with velocity v, R0 in Eq. 2.8 is replaced with R0− vpTp

(where Tp is the PRI) to give

y[p][n0] = A′e− j 4π

λ
(R0−vpTp) (A.3)

= A′e− j 4πR0
λ e j2π(2v

λ
)pTp , p = 0, ...,P−1 (A.4)

Since the e− j(4πR0)/λ component does not change with increasing time pTp, extracting the Doppler

frequency component

fd =
2v
λ
, (A.5)

can be accomplished with a K-point discrete Fourier transform (DFT) over all P pulse samples. The

Doppler resolution then becomes fp/K. For an X-Band radar, the wavelength is

λ =
c
f
= 0.03m (A.6)

132 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

Thus there will be a fd = 66 Hz Doppler shift for each m/s of target radial velocity. When the targets

radial velocity becomes too large, it wraps in Doppler and becomes ambiguous. This happens when

fd >= fp. If the direction of the Doppler shift is not known, the unambiguous velocity is halved

again, placing the following constraint on the targets velocity:

v <
λ fp

4
. (A.7)

From a computational perspective, Doppler processing translates to an independent K-point fast-

Fourier transform (FFT) over the “slow-time" pulse-to-pulse samples representing a discrete range

bin as shown in Fig. A.9. K has to be a power of 2 and each “slow-time" sample vector is zero

padded when K is larger than P.

Range

Pu
ls

e
#

0 N
P

0

Range

D
op

pl
er

N

K

0

Independent FFT on each column

Figure A.9: Doppler processing algorithm

For HRR or stepped frequency implementations of Doppler processing [128], the memory accesses

of the FFT operation become disjoint as only every N-th pulse sample is used. Library-based FFT

functions assume data input in linear order, and thus require a memory realignment operation to group

the input samples by their frequency steps prior to the FFT operation.

Optionally a Blackman or a Hamming window can be applied to the input data prior to the Doppler

FFT operation to suppress side-lobes at the expense of a slightly worse noise bandwidth. Pulse

Doppler processing is thus computationally more demanding than MTI, but improves signal-to-noise

ratio (SNR) performance and provides target velocity information.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

133

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

Computationally N independent FFTs over all P samples are required, each of which are preceded by

a windowing function as shown below.

loop i=0 to N-1

loop j=0 to P-1

win[i][j].RE = pc[j][i].RE * w[j]

win[i][j].IM = pc[j][i].IM * w[j]

loop i=0 to N-1

dop[i] = FFT(win[i])

The processing requirements for the FFT stage are thus N×P/2×log2P×4 real multiplications and

memory writes as well as N×P/2×log2P×6 real additions and memory reads. As before, bit-inverted

addressing on either the input or output as well as twiddle-factor coefficients are required. The

window function requires N×P×2 multiplications and memory writes as well as N×P×3 memory

reads.

A.12 ENVELOPE CALCULATION

Envelope calculation (or linear detector) takes the I and the Q value of each sample as input and

calculates the complex modulus (magnitude) as shown in Eq. A.8.

|x|=
√

x2
I + x2

Q (A.8)

Although one of the more simple algorithms, the envelope or magnitude calculation is computation-

ally demanding because of the square root operation. Depending on the processing architecture, the

lack of a square root operation may have a significant impact on performance. Historically the lin-

ear detector was used to scale the output in fixed point processors, but the square-law detector is

often preferred on modern floating-point processors to simplify the computational requirements. The

square-law detector (or squared magnitude operation) does not make use of the square root (x2
I +x2

Q).

Another variation takes the (linear) magnitude and scales the output logarithmically. In such a case

the square root operation simplifies to a multiplication by 2 after the log operation.

Practically, the sum of squares operation can be implemented as a complex multiplication with its

complex conjugate if such an operation is available on the specific architecture.

134 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

The linear magnitude takes the square root of the sum of the squares of real and imaginary parts,

requiring N×P×2 multiplications and memory reads as well as N×P additions, square roots, and

memory writes as shown below.

loop j=0 to N-1

loop i=0 to P-1

env[j][i] = SQRT(dop[j][i].RE^2 + dop[j][i].IM^2)

The log magnitude and squared magnitude operations have similar computational requirements to

the linear magnitude operation, with the exception of requiring a logarithmic operation instead of a

square root operation, or neglecting it entirely.

A.13 CONSTANT FALSE ALARM RATE

The process of detection compares each radar measurement to a threshold; if the test cell xt is greater

than the threshold T̂ , a target detection decision is made.

PD =

 H1 if xt ≥ T̂

H0 if xt < T̂
(A.9)

The radar detector is designed such that the highest possibility of detection can be achieved for a

given SNR and probability of false alarm (PFA). If the statistics of the interference are known a priori,

the threshold can be chosen for a specific probability of false alarm. However, since the parameters of

these statistics are typically not known in advance, the CFAR detector tracks changes in the interfer-

ence levels and continuously adjusts the threshold to keep the probability of false alarm at a constant.

The CFAR detection process thus greatly improves the simple threshold detection performance by

estimating the current interference level rather than just assuming a constant level.

A.13.1 Cell Averaging CFAR

The simplest implementation of the CFAR detector is the cell averaging (CA) variant. The CA-CFAR

detector estimates the interference by averaging R reference cells xr around each test cell. CA-CFAR

relies on two basic assumptions:

• The reference cells contain interference with the same statistics as test cell, and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

135

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

• The reference cells do not contain any targets.

The CFAR window (consisting of all the reference cells used for the interference estimation) is com-

puted for each cell in the range-Doppler map. It can be any arbitrary size across one dimension in the

range vector or across two dimensions in the range-Doppler map. Fig. A.10 depicts the case of a two

dimensional window consisting of a 5x5 matrix on each side of the test cell (the CFAR window: R =

2×WIN_R×WIN_D cells). At the extremes, Doppler cells are wrapped around; that is, the reference

cells from the opposite side of the Doppler dimensions are used. In the range dimension, cells are

either duplicated or single-sided reference windows are used.

Range

D
op

pl
er

Test

Guard

Reference

Cells:

xt

xt

Figure A.10: Cell averaging CFAR window

The estimated threshold T̂ can now be computed by multiplying the average interference for each cell

by the CFAR constant α as shown in Equations A.10 and A.11.

T̂ =
α

R

R

∑
r=1

xr where (A.10)

α = R[P−1/R
FA −1] (A.11)

To minimize target masking effects, smaller of cell averaging (SOCA-) CFAR uses the quantitatively

smaller of the two (left and right) windows. Similarly greater of cell averaging (GOCA-) CFAR uses

the larger of the two windows to suppress false alarms at clutter edges. Another variation of CFAR

determines the mean of both the left and right CFAR window, and depending on their difference,

makes a logical decision whether CA-, GOCA-, or SOCA- CFAR is to be used.

Heterogeneous environments may bias the threshold estimate. The censored (CS-) CFAR discards

the M largest (both largest and smallest in the case of trimmed mean (TM-) CFAR) samples in the

136 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

window, making it much more suitable for such environments than the CA-CFAR. The interference

power is then estimated from the remaining cells as in the cell averaging case. Sorting the reference

cells is extremely demanding from a computational perspective, and hence a minimum / maximum

selection algorithm that loops over all the reference cells is often used for smaller values of M.

A.13.1.1 Sequential implementation

Numerous approaches and methods for calculating the CFAR threshold from a software perspective

are possible; an iterative method, a sliding window method and a sum area table method.

Iterative Method

In the iterative CFAR calculation the reference cells are iteratively summed for each test cell according

to Equation A.10. Although this method is simple, it is computationally intensive and leaves a lot of

room for optimisation. Processing architectures that have vectorised single instruction multiple data

(SIMD) instruction sets (which feature packed additions) are well-suited for this CFAR approach.

However, the data alignment requirements of these instructions typically don’t support the iterative

process without some modifications.

Sliding Window Method

The CFAR sliding window method relies on the fact that the threshold for the test cell xt can be

calculated using the reference window of the previous test cell xt−1; new cells that are sliding into the

window are added, while old cells that are sliding out of the window are subtracted.

In Fig. A.11, the reference window for the current test cell xt (shaded grey) is calculated by subtracting

the cells directly on the left of each window from the previous windows and then adding the rightmost

cells of the current windows.

The old cells that are sliding out of the window do not necessarily have to be re-computed, since their

sum could be stored in a circular buffer and subtracted from the previous window.

Sum Area Table Method

The CFAR summed area table (SAT) method [129] makes use of a precomputed sum matrix to de-

termine the sum of the relevant reference cells. The SAT matrix is defined in Eq. A.12.

SAT (i, j) =
i

∑
a=0

j

∑
b=0

x(a,b) (A.12)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

137

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

xt

Range

D
op

pl
er

Cells:

Subtract

Add

Previous

window

Σ = − Σ + Σ

Figure A.11: CFAR sliding window method

Each entry in the SAT thus represents the sum of all the original reference cells below and to the left

of that entry.

Range

D
op

pl
er xt

Areas:

SAT (A)

SAT (B)

SAT (C)

SAT (D)

AB

CD

Σle f t = SAT (A)−SAT (B)−SAT (C)+SAT (D)

Figure A.12: CFAR sum area table method

For example SAT (A) is the sum of all cells enclosed in bold in Fig. A.12. In order to calculate the left

reference window (shaded grey), the areas to the left (SAT (B)) and below (SAT (C)) are subtracted

from the total area (SAT (A)). Since the intersecting area (SAT (D)) was subtracted twice from the

total area, it has to be added to the result again. The same principle applies to calculating the right

reference window.

138 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

This method thus only requires the lookup of 8 values in the SAT matrix to calculate the entire

reference window for each test cell. Care needs to be taken with the number of bits used to represent

the SAT, since overflows can easily happen with large range-Doppler maps.

The iterative, sliding window and sum-area-table methods for calculating the CFAR threshold can be

ported to a multi-cored implementation. The range-Doppler map is split into range blocks (leaving

the complete Doppler dimension) and computed individually on each processing core. Care needs to

be taken with overlapping range samples, which need to be copied to the local core before each job

can be scheduled.

A.13.1.2 Hardware implementation

The CFAR algorithm is often realised in hardware as a tapped delay line or a shift register with an

adder tree structure. Depending on the length of the CFAR window and the number of guard cells

used, this delay line may become extremely long, even for the one dimensional window. For the two

dimensional window this approach becomes highly impractical as the shift register has to be longer

than the range line. If multiple memory read buses are available, multiple tapped delay lines could be

used for a multi-dimensional window.

A.13.2 Adaptive CFAR

Adaptive CFAR algorithms iteratively split the window (including the test cell) at all possible points

and then calculate the mean of the left and right windows. The most likely splitting point Mt that

maximises the log-likelihood function based on the calculated mean values is then chosen. The final

step performs the standard CA-CFAR algorithm on the data in which the test cell is located. In such

a case, a one dimensional SAT of all reference cells can be formed as shown in Eq. A.13.

SAT (i) =
i

∑
a=0

x(a) (A.13)

The sum of all cells in the windows to the left of the transition point Mt is now simply sum_area[Mt],

while the sum of the right window is sum_area[R] - sum_area[Mt]. The log-likelihood function [18]

is defined in Eq. A.14.

L(Mt) = (R−Mt) ln(βr)−Mt ln(βl), Mt = 1, ...,R−1 (A.14)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

139

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

where β is the sample mean of the reference cells either to the right or the left of Mt . An iteration

over the (R-1) possible transition points is required to select Mt such that L(Mt) is maximised. If

Mt is smaller than R/2, the left window (otherwise the right window) is selected as the CFAR stat-

istic.

A.13.3 Order Statistic CFAR

Similar to CS and TM-CFAR, order statistic (OS-) CFAR also requires the samples in the window to

be numerically sorted. Rather than discarding samples however, OS-CFAR selects the K-th sample

from the sorted list as the interference statistic. This value is then multiplied by a fractional and

used in the comparison against the current cell under test. Although a selection algorithm could

be used, well established sorting algorithms such as merge-sort can sort R samples with R×log2R

comparisons. Since the reference window has to be sorted for each cell in the range-Doppler map,

the sorting stage is very computationally demanding compared to CA-CFAR, but provides improved

performance in multi-target environments.

A.13.4 Computational Requirements

For the CA-CFAR case, both sides of the window are summed together as shown below.

loop j=0 to N-1

loop i=0 to P-1

sum_left = 0, sum_right = 0

loop l=0 to WIN_R-1

loop k=-WIN_D/2 to WIN_D/2

sum_left += env[j+GUARD+l][i+k]

loop l=0 to WIN_R-1

loop k=-WIN_D/2 to WIN_D/2

sum_right += env[j-GUARD-l][i+k]

if (env[j][i] > alpha * (sum_right+sum_left))

target.RANGE = j

target.VELOCITY = i

Thus N×P×(R+1) additions, N×P×(R+1) memory reads, as well as N×P fractional multiplications,

and comparisons are required. The number of memory writes depends on the expected number of

targets.

140 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

Sliding window techniques, where previously summed columns are stored in registers and reused

in the next iteration, further reduce the number of memory reads and additions to N×R + N×(P-

1)×WIN_R×2 + N×P and N×R + N×(P-1)×(WIN_R×2+2) respectively.

Computationally the GOCA and SOCA CFAR classes are similar to the CA-CFAR with the exception

of one less addition and one extra comparison for each N×P loop. The sliding window approach to

SOCA and GOCA requires 2 more additions (as well as 1 extra comparison) per cell in order to keep

the two window sums separate.

For CA-CFAR with small values of M (between 1 and 3), a selection algorithm as shown below is

well-suited.

loop m=0 to M-1

min = 0, max = 0

loop d=1 to R-1

if x[min] > x[d] min=d

if x[max] < x[d] max=d

delete x[min]

delete x[max]

This selection algorithm thus requires M×(R-1)×2 comparisons, M×R memory reads and M×2

memory invalidations per cell in the range-Doppler map.

The merge-sort for the CS-CFAR sorts R samples with R×log2R comparisons, memory writes and

memory reads. Since this sorting operation is done for each cell in N×P, the computational require-

ments very demanding.

The Adaptive CFAR one dimensional SAT method involves the following calculation.

sum = 0

loop r=0 to R-1

sum = sum + x[r]

sum_area[r] = sum;

The log-likelihood function requires 3 additions, 2 divisions, multiplications and logarithm calcula-

tions, as well as 1 memory read and write per transition point as shown below.

loop mt=1 to R-1

L[mt] = (R-mt) * ln((sum_area[R]-sum_area[mt])/(R-mt)) -

mt * ln(sum_area[mt] / mt)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

141

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Radar Signal Processing Algorithms Appendix A

A.14 NOISE LEVEL ESTIMATION

Once a detection is made, the data processor needs to decide whether a detection is a false alarm or

not. One of the factors influencing this decision is the measured noise level during pulse reception.

The noise-level estimation (NLE) subtracts successive samples from each other (similar to the 2 pulse

MTI canceller), leaving a crude estimation of the noise level.

A.15 MONOPULSE CALCULATIONS

The monopulse calculation is used to improve directional accuracy of a target within the current beam.

It makes use of the ∆AZ/Σ and ∆EL/Σ ratios to estimate the bearing (azimuth and elevation angles)

relative to the main beam. These angle estimates are then averaged over numerous CPIs by the data

processor. Practically it involves calculating a ratio of the sum and difference channels, which is then

passed to the data processor for detection purposes.

A.16 DATA PROCESSOR

The data processor interface involves compiling the results from the CFAR stage into a set of target

reports that can be sent to the data processor over an appropriate media (typically in packet format

over gigabit Ethernet).

If the CFAR process writes the range and Doppler bin indexes to an array once a positive target iden-

tification is made, the computational requirements only involve reading that list and writing it to the

media access control (MAC) interface together with some control fields in the packet structure. When

the CFAR process outputs a hard-limited range-Doppler map, an additional iteration over the matrix

is required (N×P memory reads and comparisons), writing the indexes of the positive identifications

into a new array. The size of the index array, and thus also the number of memory writes, is determ-

ined by the probability of false alarm, which is chosen for a specific system at design time.

The post detection processing functions of the data processor are application dependent. The data

processor typically receives a set of target reports (including false alarms) from the signal processor

and performs combinations of higher level functions such as clustering, radar cross section (RCS)

measurement, tracking, detection, classification, surveillance or scanning.

142 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A Radar Signal Processing Algorithms

The processing occurs on bursts of target reports that are received every CPI. These target reports

include critical target information such as beam direction, range, Doppler, signal-to-noise ratio es-

timates, and radar-specific parameters for the current CPI. Since the CPI is typically in the range of a

few milliseconds to a few seconds, the processing requirements are not as intensive as with the radar

signal processor and standard microprocessors or personal computers (PC) are often used as the data

processor.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

143

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX B

COMMON SIGNAL PROCESSING OPERATIONS

B.1 OVERVIEW

This chapter introduces some of the signal processing operations commonly used by the radar signal

processor. Operations are analysed from an algorithmic as well as a computational perspective, giving

details for both parallel and sequential (dataflow and control-flow) implementations. These operations

are listed in no particular order in the following sections.

B.2 BASIC ARITHMETIC OPERATIONS

The most fundamental mathematical operations used in a typical processor are summarised in

Table B.1.

Table B.1: Fundamental arithmetic operations used in a typical processor

Mathematical Operation Comment
Addition Crucial; typically single cycle operation
Subtraction Crucial; typically single cycle operation
Multiplication Crucial for most DSP algorithms, iterative additions
Division Quotient and remainder. Radix-2 non-restoring algorithm
Complex Addition Two real additions. SIMD instruction
Complex Subtraction Two real subtractions. SIMD instruction
Complex Multiplication Four real multiplications, one real addition and subtraction
Square Root CORDIC
Logarithm Leading ones detector
Exponential Iterative multiplications, binary exponentiation
Trigonometric Functions CORDIC or DDS look up tables with Taylor series correction

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

Addition, subtraction and multiplication form the basis of almost all DSP related algorithms and typ-

ically sustain a throughput of 1 output sample per clock cycle on modern processing technologies.

Integer multiplication or division by powers of two can be accomplished with left or right bit-shifting

respectively. For high-speed implementations or floating-point variations, the throughput is still sus-

tained at the expense of additional latency cycles. Because of the streaming nature of DSP algorithms,

this added latency does not cause any significant dependency issues and hardly impacts the overall

performance.

The complex multiplication can be broken down to 4 real multiplications, 1 real addition and 1 real

subtraction. With a few rearrangements, one multiplication can be saved at the expense of one extra

addition and two additional subtractions as shown in Eq. B.3.

a∗b = (ai + ja j)(bi + jb j) (B.1)

= (aibi−a jb j)+ j(aib j +a jbi) (B.2)

= (aibi−a jb j)+ j((ai +a j)(bi +b j)−aibi−a jb j) (B.3)

A routine that counts how many times sequential odd numbers (1,3,5,7,9,...) can be subtracted from

an input number could be used for the square root operation, when no hardware support is available.

The number of required clock cycles for this operation would however vary depending on the input

number. Hardware implementations step through 2 bits per cycle to calculate the square root. Thus it

is typically faster to perform a square root operation compared to a division, which works through 1

bit per stage.

Not all of the operations in Table B.1 need to be explicitly supported by the instruction set, as they can

be calculated using iterative, recursive, numeric or bit manipulation methods. For example, modern

PCs (such as the x86) typically include the elemental trigonometric functions (Sine, Cosine, ArcTan)

in their instruction set, but derive other trigonometric functions from these or through polynomial

expansions. The coordinate rotational digital computer (CORDIC) algorithm or the direct digital

synthesizer (DDS) can also be used for trigonometric function calculations.

B.3 ACCUMULATION

The accumulate operation is used in numerous DSP operations. It involves adding an input number

to an internal sum value. On single cycle operations (fixed point addition on most modern processing

technologies), the accumulator can be implemented as shown below in Fig B.1.

146 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Common Signal Processing Operations

Input

+

Output

Figure B.1: Signal Flow Graph for the Accumulate Operation

The output of the adder is simply connected to one of its inputs. The other adder input now serves

as the accumulator input, where data can be clocked in every cycle. To reset the accumulator value

(bypass with a new value on the input), the output is disconnected from the other input.

The floating-point addition operation usually requires several latency cycles to compute an output

value. Since the previously computed accumulated value is required for each new input value, a new

value can only be input at multiples of the latency cycle count. This poses a problem for streaming

applications where new input values become available every clock cycle. If the dynamic range is

known beforehand, the floating-point input number can be converted to fixed point, accumulated in

fixed point, and the output value converted back to floating-point representation. When the precision

is not known beforehand, delayed addition or similar techniques for floating-point accumulation can

be used [102, 130, 131].

B.4 FOURIER TRANSFORM

The Fourier transform is one of the most important signal processing operations in radar. It transforms

a time-domain input sequence to the frequency domain representation and vice versa with the inverse

Fourier transform.

X(f) =
∫

∞

−∞

x(t)e− j2π f tdt (B.4)

For digital signal processing the above integral is solved either with the discrete Fourier transform or

the fast Fourier transform as discussed below.

B.4.1 Discrete Fourier Transform

The discrete time Fourier transform is shown below in Eq. B.5.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

147

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

X [k] =
N−1

∑
n=0

x[n]e− j2πnk/N (B.5)

Rewriting Eq. B.5 with WN = e− j2π/N gives

X [k] =
N−1

∑
n=0

x[n]W nk
N (B.6)

From a computational perspective, the following pseudo code describes the DFT algorithm:

const double ph0 = - 2 * PI / N
for (k=0; k<N; k++)

Complex t = 0.0
for (n=0; n<N; n++)

t += x[n] * exp(ph0*n*k)
y[k] = t

Computationally there are N2 complex multiplications and additions in the above algorithm. If the

twiddle factors are precomputed and stored, 2N2 complex memory reads and N complex memory

writes are required. Even for relatively small Fourier transform sizes these requirements are severely

stringent.

B.4.2 Inverse Discrete Fourier Transform

The inverse discrete time Fourier transform (IDFT) is defined in Eq. B.7.

x[n] =
1
N

N−1

∑
k=0

X [k]e j2πnk/N (B.7)

There are numerous tricks for using the DFT to compute the IDFT:

• Reversing the input: IDFT (x[n]) = DFT (x[N−n])/N,

• Complex conjugate of both input and output: IDFT (x[n]) = DFT ∗(x∗[n])/N,

• Swap real and imaginary parts on both input and output: IDFT (x[n]) =

swap(DFT (swap(x[n])))/N.

148 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Common Signal Processing Operations

B.4.3 Fast Fourier Transform

Although the DFT is extremely simple to understand, it is rather inefficient and the computational

requirements become excessive when N is large. The Fast Fourier transform eliminates the redundant

arithmetic operations of the DFT by reusing previously calculated values. The Cooley-Tukey Radix-

2 algorithm is one of more popular algorithms, with the restraint of N having to be a power of two.

When N is not a power of two, the input data is zero padded to the next power of two.

The performance improvement comes from its capability to segment an N-point DFT into two N/2-

point DFTs. This may not seem like it helps with the computational requirements, but iterative split-

ting yields a simplified structure that only requires a few arithmetic operations. The pseudo-code for

the non-recursive decimation-in-frequency Radix-2 algorithm is shown below.

N = 2^pow
for stage=pow to 1 step -1

m = 2^stage
mh = m/2
for k=0 to mh-1

W = exp(-j*2*PI*k/m)
for r=0 to N-1 step m

addr0 = r+k
addr1 = r+k+mh
A = x[addr0]
B = x[addr1]
x[addr0] = (A + B)
x[addr1] = (A - B) * W

bit_reverse(x)

The inner loop FFT butterfly operation is depicted graphically in Fig. B.2.

W k
N

×−1

A

B

A′ = A+B×W k
M

B′ = A−B×W k
M

Figure B.2: FFT Decimation-in-Frequency Butterfly

Where W k
N = exp(− j2πk/N) is the twiddle factor. The decimation-in-frequency FFT butterfly can be

described algorithmically as:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

149

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

A’[addr0] = (A[addr0] + B[addr1])

B’[addr1] = (A[addr0] - B[addr1]) * W[addrT]

The FFT dataflow structure for the case of N=16 is shown below in Fig. B.3.

X(0)
X(8)
X(4)
X(12)
X(2)
X(10)
X(6)
X(14)
X(1)
X(9)
X(5)
X(13)
X(3)
X(11)
X(7)
X(15)

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)

x(10)
x(11)
x(12)
x(13)
x(14)
x(15)

×W 0
16

×W 1
16

×W 2
16

×W 3
16

×W 4
16

×W 5
16

×W 6
16

×W 7
16

×

×

×

×

×

×

×

×

W 0
16

W 0
16

W 2
16

W 2
16

W 4
16

W 4
16

W 6
16

W 6
16

×

×

×

×

×

×

×

×

W 0
16

W 0
16

W 0
16

W 0
16

W 4
16

W 4
16

W 4
16

W 4
16

×W 0
16

×W 0
16

×W 0
16

×W 0
16

×W 0
16

×W 0
16

×W 0
16

×W 0
16

Figure B.3: FFT Radix2-DIF dataflow pattern

Note how there are log2 N = 4 stages, each consisting of N/2 = 8 butterflies. The above structure

and butterfly are for a decimation-in-frequency (DIF) type algorithm, better suited for when the input

sequence is complex. Decimation-in-time (DIT) algorithms subdivides the input data into odd and

even components, and are better matched for real input data sequences from a standpoint of general

hardware.

As shown in Fig. B.3, the radix-2 FFT of length N has log2 N stages, each consisting of N/2 but-

terflies. Each butterfly requires one complex multiplication, addition and subtraction. Thus the total

computational requirements for an FFT are P×N/2×log2N×4 real multiplications and memory writes

as well as P×N/2×log2N×6 real additions and memory reads. Bit inverted addressing is required for

either memory reads or writes, depending on the selected DIT or DIF algorithm type. The bit inver-

ted addressing can be implemented as a precomputed lookup table in main memory if a bit-reversal

instruction is not available on the architecture.

The radar requirements for the FFT operation dictate a wide range of FFT lengths; small length

FFTs of 8 or less for pulse-Doppler processing, all the way to extremely large sizes across the entire

range line for pulse compression or fast filtering. Hardware implementations (FFT coprocessors)

rely on highly pipelined structures that can sustain a high throughput bandwidth [132]. These FFT

coprocessors however typically only support a few fixed or limited range of lengths. For purely

150 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Common Signal Processing Operations

sequential implementations, DSP manufacturers often include radix-2 butterfly instructions to speed

up the implementation. Since decimation in time or frequency algorithms permit FFTs of length N

to be computed with two FFTs of length N/2, a hybrid soft-core implementation consisting of several

smaller memory mapped FFT-coprocessors could be software coordinated to achieve larger length

FFTs. Optimisations such as these can improve the performance as well as simplify the programming

model from a HDL design to a library based software environment, permitting quick evaluation of

new radar algorithms during field-tests.

Other implementations, such as the radix-4 FFT, require less complex multipliers (75%) than the

radix-2 FFTs. In modern processing architectures however, the performance limiting factor is com-

monly not the arithmetic multiplier performance, but the memory bandwidth. The real saving from

the radix-4 implementation is the number of memory accesses, since the number of stages is further

halved. For a radix-4 implementation the input sequence is required to be a power of 4 samples

long.

B.4.4 Inverse Fast Fourier Transform

Similar to the inverse discrete Fourier transform, the inverse FFT can be computed with the forward

FFT. One of the simplest methods is to use the same algorithm, but different twiddle factors (WN =

e j2π/N). The output will still have to be scaled by 1/N though.

B.5 FINITE IMPULSE RESPONSE FILTERS

Another crucial signal processing operation is the FIR filter. An important characteristic of the FIR

filter is that it can be designed to have a linear phase response, making it useful for a wide range of

applications that require little or no phase distortions such as the Hilbert transformer. Additionally,

FIR filters are inherently stable and require no feedback. The transfer function for a causal FIR filter

of order L (length L+1) is shown in Eq. B.8.

H(z) = h(0)+h(1)z−1 + ...+h(L)z−L (B.8)

The FIR filter structure (and hardware systolic array implementation) as derived from the transfer

function is depicted in Fig. 5.6. The input sample feeds into a shift register, which delays the input

sequence by one sample every clock cycle. Each delayed sample is multiplied by a unique coefficient,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

151

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

while the multiplier outputs are summed to produce an output sample every clock cycle. A filter of

order L has L+1 taps, coefficients and multipliers and needs L adders.

Mathematically each output sample can be calculated as follows:

y[n] =
L

∑
i=0

bix[n− i] (B.9)

Software tools for designing and analysing various types of FIR filters are readily available (for ex-

ample MATLAB’s fdatool [17]) and simplify the coefficient generation process. FIR filter frequency

responses have a linear phase if the impulse response is either symmetric or anti-symmetric as shown

in Eq. B.10 or Eq. B.11.

h[n] = h[L−n], n = 0,1, ...,L (B.10)

or

h[n] =−h[L−n], n = 0,1, ...,L (B.11)

The direct FIR filter structure maps well to fused multiply accumulate instructions available on most

DSP’s. These purely sequential implementations (such as DSPs or general purpose CPUs), however,

require numerous iterations over the array for a single output sample. The processing requirements

are thus quite stringent; at a sampling frequency of 200 MHz and a FIR filter length of 512, more than

102 billion multiplications and additions are required every second - a throughput of 102 GMAC’s

per second. From a hardware implementation perspective, the direct form FIR filter structure maps

well to systolic array structures [101] (as shown in Fig. 5.6), capable of producing an output sample

every clock cycle at the expense of additional resource usage.

So far only FIR filters with purely real input data and coefficients were discussed. When the input

data is complex, the same algorithm applies with complex coefficients. Since the complex multiplic-

ations and additions are computationally more demanding though, both I and Q channels are often

filtered separately with two real-valued FIR filters when there are no special frequency response re-

quirements.

B.6 INFINITE IMPULSE RESPONSE FILTERS

An infinite impulse response (IIR) filter is a recursive filter that requires less coefficients that an equi-

valently specified FIR filter. It can be designed to have a sampled version of the frequency response

152 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Common Signal Processing Operations

corresponding to that of an analogue filter. An IIR filter with numerator order L and denominator

order M is mathematically defined as

y[n] =
L

∑
i=0

bix[n− i]−
M

∑
j=1

a jy[n− j]. (B.12)

The first summation in Eq. B.12 is identical to the FIR filter. The second summation provides feed-

back, including previously calculated outputs multiplied with their relevant coefficients in the calcu-

lation. For each output sample the computational requirements are thus:

Number of multiplications: L+M+1

Number of additions / subtractions: L+M.

Since the IIR filter order is typically less for an equivalently specified FIR filter, less processing

and memory is required. However, if the filter is not designed properly, the filter could become

unstable as a result of overflow in the datapath. IIR filter coefficients are very sensitive to quantisation

limitations, making them hard to implement practically in fixed point processors with limited dynamic

range. Because of data dependencies (requiring the previous output sample before the next one can be

calculated), the IIR filter is not as well-suited for high-speed streaming applications compared to the

FIR filter. For example, pipelining and SIMD vectorisation cannot be used in the datapath because of

the dependency between loop iterations. For these reasons IIR filters are not often used for practical

implementations of radar signal processors.

B.7 PHASE SHIFT

The digital phase shift operation is a common DSP operation used in a variety of algorithms. To phase

shift an input sample (Ii,Qi) with an angle of θ , the phase shifted output (Ips,Qps) is given by:

Ips = Ii(cosθ)−Qi(sinθ) (B.13)

Qps = Ii(sinθ)+Qi(cosθ). (B.14)

Eq. B.13 reminds us of the complex multiplication operation. The most straightforward technique of

digitally phase shifting an input signal is thus by multiplying it with a complex coefficient. The real

and imaginary components of the complex coefficient are determined by the value of cosθ and sinθ

respectively.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

153

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

B.8 SORTING

For some CFAR processing classes, the reference cells need to be sorted in ascending or descending

order. The sorting operation is computationally and memory intensive even for the small number of

reference cells in the CFAR window. Sequential sorting algorithms (such as Heapsort, Mergesort or

Quicksort) are well documented and characterised in terms of performance and memory usage on

commercial PC systems [133]. Sorting networks are data independent and thus much better suited for

parallel hardware implementations. The compare and swap operation, which is used by all the sorting

networks, is represented by a vertical line as shown below in Fig. B.4.

x1

x2

y1 = max(x1,x2)

y2 = min(x1,x2)

Figure B.4: Network Comparator

Depending on the required output order (ascending or descending), y1 could also be min(x1,x2) while

y2 = max(x1,x2), as long as the convention is kept the same throughout the selected algorithm.

B.8.1 Odd-Even Transposition Sort

One of the simplest parallel sorting network implementations is the odd-even transposition sort. Ad-

jacent (odd, even) pairs in the input stream are compared and swapped if they are in the wrong order.

In the second step, adjacent (even, odd) pairs are compared and swapped. This alternating sequence

is repeated until the list is sorted as shown in Fig. B.5.

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

Figure B.5: Odd-Even Transposition Sorting Network

154 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Common Signal Processing Operations

There are N stages each consisting of either N/2 or N/2− 1 comparisons for the even and odd

stages respectively. Thus a total of N(N− 1)/2 comparators and swaps are required for the even-

odd transposition sorting network. Provided that there are enough parallel comparators, each stage

could be completed in a single step. The algorithm would thus take N steps to complete the sorting

operation. In a pipelined implementation a throughput of 1 sorted output array can be achieved each

clock cycle with a latency of the 8 stages.

B.8.2 Bitonic Merge-Sort

The Bitonic mergesort improves on the simple odd-even transposition network. The input array is

partitioned into two equally sized sub-arrays, which are recursively sorted in parallel and finally

merged. The original algorithm [134] was devised for input sequences of powers of 2, but later

modifications proposed an algorithm for arbitrary sizes. Fig. B.6 shows the bitonic sorting network

for N = 8.

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure B.6: Bitonic Sorting Network

The algorithm is well-suited for a parallel architecture such as an FPGA. The number of stages (dir-

ectly related to the latency) is log2(N)(log2(N)+ 1)/2, each consisting of N/2 comparisons. The

total number of comparators for a streaming implementation is thus

C =
N log2(N)(log2(N)+1)

4
(B.15)

Note that the algorithm is highly regular in dataflow with each signal path having the same length,

and the number of comparators remaining constant in each stage.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

155

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

B.8.3 Odd-Even Merge-Sort

Another related data-independent sorting algorithm is Batcher’s odd-even mergesort. It sorts N input

samples in the same number of stages as the bitonic mergesort, but uses fewer comparators [135].

The required number of comparators is given in Eq. B.16.

C =
N log2(N)(log2(N)−1)

4
+N−1 (B.16)

The odd-even mergesort is a popular sorting network on graphic processing units (GPUs). On FPGAs

and ASICs additional registers will have to be used to buffer the data as some paths route through

fewer comparator stages as others (the number of comparators per stage is not a constant).

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure B.7: Odd-Even Merge-Sort Network

B.9 ARRAY OPERATIONS

Array operations refer to elementwise arithmetic operations performed on two input arrays or an array

and a scalar or constant. Mathematically, the operation can be described as

y[n] = a[n] Θ b[n] or (B.17)

y[n] = a[n] Θ c, (B.18)

where Θ represents any arithmetic operation as listed in Table B.1. This arithmetic operation is

performed iteratively over all N elements in the array. From a computational perspective, the array

operations are performance limited by memory bandwidth, when the number of elements that can be

fetched and written back via the memory data bus is exceeded by the number of effective parallel

arithmetic functional units that can be performed each clock cycle. The instruction bandwidth and

architectural execution restrictions may limit the number of effective operations that can be performed

each clock cycle, even when a sufficient number or type of arithmetic functional units is available.

SIMD instructions are well-suited for array operations.

156 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Common Signal Processing Operations

B.10 MATRIX MULTIPLICATION

The process of matrix multiplication is used extensively by the data processor for higher level pro-

cessing. Equations B.19 to B.23 describe the process from a mathematical perspective.

Cnp = Anm×Bmp (B.19)
c1,1 c1,2 · · · c1,p

c2,1 c2,2 · · · c2,p
...

...
. . .

...

cn,1 cn,2 · · · cn,p

=


a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m
...

...
. . .

...

an,1 an,2 · · · an,m

×


b1,1 b1,2 · · · b1,p

b2,1 b2,2 · · · b2,p
...

...
. . .

...

bm,1 bm,2 · · · bm,p

 (B.20)

where

c11 = a11b11 +a12b21 + ...+a1mbm1 (B.21)

c12 = a11b12 +a12b22 + ...+a1mbm2 (B.22)

c1p = a11b1p +a12b2p + ...+a1mbmp (B.23)

Each element in the resulting matrix (cxy) is the dot product of row x in matrix A (m-elements) with

column y of matrix B (also m-elements). Computationally, the matrix multiply operation thus requires

n× p dot-products of length m, each requiring m multiplications and m−1 additions.

Number of multiplications: npm

Number of additions / subtractions: np(m−1).

The matrix multiplication operation is both computationally and memory intensive. Storing two

copies of the matrix, one in transposed and one in normal order, with data bus widths the size of a row

and column would simplify these memory requirements. A dot-product operation of length m would

be required to improve the computational throughput.

B.11 MATRIX INVERSION

Matrix inversion is an important component of beam-forming, which is commonly used in multiple

antenna systems for beam steering purposes. The concept of matrix inversion can be seen as a form

of matrix division as shown in Eq. B.24,

AAAAAA−1 = III, (B.24)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

157

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

where III is the identity matrix (each diagonal element i j j = 1, every other element is zero). Only square

matrices with their determinant not equal to zero are invertible (i.e. nonsingular or nondegenerate).

The matrix inverse or reciprocal matrix AAA−1 can be computed using numerous methods, such as LU

Decomposition or Gaussian Elimination.

B.12 CONVOLUTION

The convolution operation expresses the amount of area overlap between two functions as one is

shifted over the another. Convolutions are used in a variety of mathematical and engineering applic-

ations including probability theory, weighted moving average calculations and the output responses

of linear time-invariant systems. The convolution integral is defined in Eq. B.25 and Eq. B.26 for the

continuous and discrete cases respectively.

(f ∗g)(t) =
∫

∞

−∞

f (τ)g(t− τ)dτ (B.25)

x[n]∗h[n] =
∞

∑
m=−∞

x[m]h[n−m] (B.26)

From a computational perspective, the direct implementation of the above summation has a compu-

tational cost of N2 (complex or real) multiplications and N(N−1) (complex or real) additions for N

input samples.

B.12.1 Fast Convolution

A substantial reduction in computational requirements can be achieved by performing the convo-

lution in the frequency domain. The fast convolution method multiplies the spectrum of the two

input sequences, and then converts the result back to the time domain with the IFFT as shown in

Eq. B.27.

x∗h = IFFT(FFT(x)×FFT(h)) (B.27)

The computational cost for N input samples then becomes:

Number of complex multiplications: N +3N(log2 N)/2

Number of complex additions: 3N log2 N

When the spectrum of one of the input sequences can be precomputed, only two (rather than three)

FFTs and N multiplications are required.

158 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Common Signal Processing Operations

B.13 CROSS-CORRELATION

Similar to the convolution operation, the correlation operation also performs a sliding dot product of

two input functions. However, rather than representing the amount of overlap, the cross-correlation

operation is a measure of the two functions similarity as a function of time lag between them. This

has a variety of applications in pattern matching, signal detection and almost any statistical analysis

involving dependence. For example, the matched filter used for pulse compression is a correlation

between the transmitted pulse template and the received data stream. The correlation integral is

defined in Eq. B.28 and Eq. B.29 for the continuous and discrete cases respectively.

(f ?g)(t) =
∫

∞

−∞

f ∗(τ)g(t + τ)dτ (B.28)

x[n]?h[n] =
∞

∑
m=−∞

x∗[m]h[n+m] (B.29)

Comparing the correlation and convolution integrals, it should be evident that the cross-correlation

of functions f (t) and g(t) is equivalent to the convolution of f ∗(−t) (time inverted and conjugated

f (t)) and g(t). Convolution and correlation are thus identical for real-valued functions when f (t) is

symmetric. Computational requirements for the correlation are identical to the convolution, and can

also be computed in the frequency domain as with the fast convolution.

B.14 DOT PRODUCT

The dot product (or scalar product / inner product) is an important concept in linear algebra and

physics. Geometrically it can be interpreted as the length of the projection of one vector onto another

when their starting points coincide. The dot product can also be used as a subcomponent of multiple

other signal processing operations such as FIR filtering, matrix multiplication, convolution or any

other sum of products application. The dot product of two vectors a and b, each of length N, is

defined as:

a ·b =
N

∑
i=1

a[i]b[i] (B.30)

Thus N multiplication and N−1 additions are required for the computation. Digital signal processors

use a multiply accumulate instruction in a loop, while increasing the address pointers of the input

arrays, to calculate the dot product. For a hardware implementation capable of sustaining a throughput

of 1 output sample every clock cycle, a balanced adder tree structure is often used. Fig. 5.7 shows an

example of an eight point dot product with a balanced adder tree structure.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

159

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

New input samples (a(0)-a(7) and b(0)-b(7)) can be clocked in every clock cycle, with the result ap-

pearing on the output port after the combined latency of the multipliers and adder tree (1x MUL_LAT

+ 3x ADD_LAT in this case).

B.15 DECIMATION

Decimation (or downsampling) refers to the process of reducing the sampling rate of a signal. Prac-

tically decimating by a factor of N involves only making use of every N-th sample in the input stream

and discarding all other samples. Fractional decimation factors require an integer interpolation stage

followed by an integer decimation stage. Software downsampling implementations simply rearrange

the memory or use a modified addressing scheme in the next process that makes use of the decimated

data. On hardware systems, the decimation process introduces another clock domain at a fraction of

the input sampling frequency.

B.16 SCALING

Scaling is an important process for fixed point processors, commonly inserted before and/or after

processing stages such as FFTs or filters. For example, the change in dynamic range before and

after the digital pulse compression algorthm is very large, causing finite word length effects when

not considered. Input (or output) data is left or right shifted in order to balance dynamic range and

avoid data overflow. Even on floating-point processors, scaling is still required for normalisation or

converting data to fixed point for other interfaces (e.g. DAC output). When the simple left or right

shifting operation is not adequate, or the scaling factor is not known beforehand, the scaling operation

is preceded by finding the maximum and/or minimum value in the input stream. Subsequently all

elements in the input stream are then divided or multiplied by that scaling factor.

Rather than scaling the input data to some predetermined range, data could also be scaled logarith-

mically to decrease the dynamic range, for example for graphical representation purposes.

B.17 INTERPOLATION

Interpolation is the process of increasing the sampling rate (upsampling). The simplest form of inter-

polation is linear interpolation, which estimates the value of a new datapoint from a straight line drawn

160 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B Common Signal Processing Operations

between the two closest known datapoints. For example, the linear interpolation between datapoints

x(1) and x(2) is given as

x(1.5) =
x(1)+ x(2)

2
, (B.31)

which is halfway between the two datapoints. Although very simple to calculate, linear interpolation

is not very precise. In practical systems, interpolation filters are used rather than linear interpolation

methods. To interpolate by a factor of N, N-1 zeroes are inserted between consecutive low rate

samples before the data is passed through a low pass filter running at the interpolated rate. The low

pass filter is typically a FIR filter or a cascaded integrator-comb filter (a FIR filter class that does not

require multipliers).

B.18 RECTANGULAR AND POLAR COORDINATE CONVERSION

Converting rectangular coordinates to polar coordinates and vice versa is a common operation in the

radar signal processing paradigm. Real and imaginary samples (i.e. I/Q samples) are converted to

amplitude and phase components as shown in Fig. B.8.

θ
Real

Imag

0

r

x

y

r sin(θ)

r cos(θ)

Figure B.8: Rectangular - Polar coordinate conversion

Mathematically these conversions are given in Eq. B.32 to Eq. B.35.

x = r cos(θ) (B.32)

y = r sin(θ) (B.33)

θ = atan2(x,y) (B.34)

r =
√

x2 + y2 (B.35)

From a computational perspective, CORDIC algorithms are well-suited for these type of conver-

sions.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

161

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Common Signal Processing Operations Appendix B

B.19 MOVING AVERAGE

The moving average operation is commonly used to smooth out short term fluctuations in a dataset

in order to highlight long term trends, making it a type of low pass filter. A simple moving average

calculates the sum of N data points, which is then divided by N. The moving average calculation

can thus also be used as a sliding window alternative for the CA-CFAR algorithm. In dataflow ar-

chitectures the summation of the last N values can be implemented as a log-sum structure as shown

in Fig. 5.10. In software implementations sliding window techniques similar to those discussed in

Section A.13.1.1 can be applied, followed by a multiplication by 1/N.

B.20 FINITE WORD LENGTH EFFECTS

All of the signal processing operations discussed in this chapter are prone to finite word length ef-

fects. Since the radar processing chain includes multiple FIR filters and FFT operations, the signal

degradation through these operations is additive and a certain number of bits need to be maintained

to reduce distortion and round-off noise at the end of the processing chain.

Additionally the ADC quantisation errors, limited dynamic range, scaling errors (the rounding or

truncation between stages to avoid data overflow), precision of filter coefficients as well as twiddle

factors all constitute to signal degradation as a result of finite word lengths in fixed point arith-

metic [127].

Although a datapath consisting of floating-point arithmetic units solves many of these issues, the

round-off noise still plays a significant factor. Since the result of an arithmetic operation is either

rounded up or down, depending on the data, the error can become additive (rather than random)

between consecutive stages in the worst case scenario. This round-off from single precision floating

point arithmetic can cause a variable to drift by as much as 1 part in 40 million multiplied by the

number of arithmetic stages it passed through [136].

Historically the hardware for fixed point arithmetic was always considered to be much faster and

simpler than equivalent floating-point arithmetic. With modern processing technologies however,

the difference in computational throughput is minimal, and the additional silicon area requirements

hardly influence the cost [137]. The large dynamic range, and lack of scaling between stages (from

both a performance and ease of programming model) make floating-point arithmetic very attractive

for radar signal processors.

162 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX C

CURRENT PROCESSING ARCHITECTURES

C.1 OVERVIEW

This chapter provides a brief overview of the architectural features of current processors with em-

phasis on parallelism, execution model, instruction set architecture, and micro-architecture.

Commercial PC systems have retained the same execution model over the past few decades, only

changing the microprocessor architecture that implements the execution model [101]. Features such

as instruction-, data- and thread-level parallelism, horizontal and vertical microcoding, pipelining,

caching, branch prediction, vectorisation, instruction set extensions, out-of-order execution, and

multi-threading all aim at improving the overall performance, without changing the underlying ex-

ecution model. Depending on the application, this instruction-set based execution model might not

be the most optimal architecture. In order to propose an optimal radar signal processing architecture,

the different architectures and performance enhancement techniques that are typically used in high

performance processing architectures are investigated.

C.2 INSTRUCTION SET ARCHITECTURE

One of the most fundamental concepts of a processing architecture is that of the instruction set.

The instruction set architecture refers to the way a processor is defined in regard to the interface

between hardware and software, the type and number of registers, word size (bit level parallelism),

mode of memory addressing, and the various address and data formats. The majority of instruction set

architecture approaches can be categorised into Reduced Instruction Set Computing (RISC), Complex

Instruction Set Computing (CISC) or Very Long Instruction Word (VLIW) architectures.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Architectures Appendix C

C.2.1 Reduced Instruction Set Computing

The simplest instruction set architecture is undoubtedly the RISC architecture. RISC instructions

are frequently single cycle instructions that directly link to functional units like multipliers, adders,

arithmetic logic units and memory accesses in order to achieve high clock rates. Instructions are

register based rather than memory based, with special instructions for loading and storing registers to

and from data memory.

Traditional RISC processors execute one instruction every cycle, and hence only a single functional

unit is used at a time (horizontal waste, since other functional units sit idle). When an operation

requires multiple cycles to complete, execution is halted until the instruction completes (vertical

waste, since new data could be clocked into the functional unit every clock cycle for a pipelined

solution).

C.2.2 Complex Instruction Set Computing

In contrast to RISC, the CISC instruction set architecture includes more complex instructions, requir-

ing multiple clock cycles or data memory accesses to execute a single instruction. These instructions

were designed to simplify assembly language programming, representing high-level functions rather

than simple arithmetic operations. Modern CISC architectures, such as Intel’s x86, use embedded

micro-code to translate the CISC instructions to the underlying RISC-like functional units.

C.2.3 Very Long Instruction Word

Very Long Instruction Word architectures attempt to reduce the horizontal waste of RISC processors

at the expense of wider program memory widths. Each instruction is made up of multiple (typically

8 or less) RISC instructions, which are dispatched to the relevant execution units. Thus multiple

existing functional units can be used in parallel (instruction-level parallelism), provided the compiler

schedules the instructions appropriately.

Although VLIW architectures achieve much higher performance than similar RISC architectures,

their instruction sets are not backwards compatible between implementations. Also, memory accesses

are not deterministic, making static scheduling by the compiler very difficult. Explicitly Parallel

Instruction Computing (EPIC) architectures add on to the VLIW idea by providing explicit cache

control mechanisms with extra cache pre-fetching instructions.

164 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C Current Processing Architectures

C.2.4 Instruction Set Extensions

Each of the above instruction set architecture approaches can be optimised and extended for applic-

ation specific tasks. For example, applications requiring numerous checksum computations would

benefit from a custom assembly instruction that supports this operation. Instruction set optimisation

involves both removing unused and less frequently used instructions (instruction set reduction) as well

as identifying groups of repeatedly executed operations, which are combined into optimised custom

instructions.

A popular method of improving digital signal processing performance in general purpose computing

architectures is by adding vectorisation extensions into the instruction set. Multiple vector opera-

tions can be executed concurrently with this architecture, by packing data words into large single-

instruction-multiple-data (SIMD) registers.

Special loop control instructions are often added into the instruction set for applications requiring

fixed iterations without the overhead of loop exit controls or counters. These loop control instructions

as well as ring buffers or other specialised modulo addressing instructions also simplify software

pipelining (or modulo scheduling), which further improves performance.

The instruction set can also be extended with custom arithmetic operations depending on the end

application. Saturation arithmetic, bit-reversed addressing modes for FFT calculations, or operations

such as multiply accumulate (MAC) instructions, complex multiplication and inverse approximation

are included in various commercial processing architectures.

C.3 MICRO-ARCHITECTURE

The micro-architecture is more concerned with computer organisation, defining the method in which

an instruction set architecture is implemented on a processor, and describing the various datapaths,

data processing elements, and storage elements. The design methodology focuses on increasing exe-

cution speed by maximising the amount of useful instructions that can be executed in a single instruc-

tion cycle.

One method to achieve this is through instruction-level parallelism. Horizontal parallelism is util-

ized by having control over the multiple functional units in parallel, either by VLIW, microcoding, or

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

165

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Architectures Appendix C

superscalar mechanisms. In superscalar designs, instructions are still issued from a sequential instruc-

tion stream, but the CPU hardware checks for data dependencies between instructions dynamically

and decides which instructions can be executed in parallel. Microcoding is a technique that allows

the higher level assembly instructions to be split and dispatched to multiple functional units concur-

rently, adding an abstraction layer between instruction set architecture and the underlying functional

units.

Vertical parallelism on the other hand is utilized through pipelining. Adding registers in the datapath

of arithmetic operations and in the control-flow execution path allows the CPU to be clocked at much

higher frequencies at the expense of additional latency. When the data and instruction stream is

continuous, high throughputs can be achieved through such data or instruction pipelining techniques.

In most general purpose processing applications however, a continues stream of data and instructions

is not available due to dependencies, branching, memory access latencies and peripheral accesses

amongst other factors, causing the pipeline to stall.

To overcome these pipeline stalls, out-of-order execution, register renaming, rotating register files,

speculative execution and other similar techniques are often built into the micro-architecture. In the

out-of-order execution paradigm, instructions without data dependencies are re-ordered and execute

dynamically while waiting for other operations to complete or input data to become available. The

effectiveness of out-of-order execution can be further improved by adding register renaming sup-

port circuitry, which can use different physical registers for independent sequential program flow

sequences that would otherwise have used the same architectural registers. Speculative execution

and branch prediction techniques preempt the instruction flow and start executing the predicted route

while waiting for the branch condition to become available. When the prediction is incorrect, the

calculated values are discarded and execution jumps to the correct branch location.

Pipeline stalls can also be preemptively avoided by the compiler with loop unrolling, software pipelin-

ing, and static scheduling around hazards and functional unit latencies. Different physical registers

are used in loop unrolling to avoid dependencies in processors that do not have dynamic register

renaming or rotating register file circuitry.

Another method to avoid wasting CPU cycles while waiting for dependencies is multi-threading.

The temporal multi-threading methodology switches to another processing thread when execution of

the current thread is stalled because of data or control-flow dependencies. Once the dependency is

cleared, execution of the previous thread resumes. The context switching between threads does not

166 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C Current Processing Architectures

incur any overhead as register files and state hardware is duplicated on such multi-threaded CPUs.

Simultaneous multi-threading on the other hand allows multiple threads to execute simultaneously in

the various pipeline stages and functional units, improving the overall efficiency of superscalar CPUs

by exploiting thread level parallelism.

C.4 MEMORY ARCHITECTURE

The memory architecture of a processor plays an important role, as the primary memory is typically

the bottleneck in most high performance applications [138]. Table C.1 summarises some of the most

popular memory technologies.

Table C.1: Memory Technology Comparison

Memory Type Access
Time

Capacity Volatile Write En-
durance

Price per
GB

Flip Flops < 1 ns words No ∞ High
SRAM < 10 ns MB No ∞ High
DRAM < 20 ns GB No ∞ Moderate
Flash < 100 ns GB Yes 1M Moderate
Magnetic disk < 25 ms TB Yes 1.2M hrs Low
Optical disk < 500 ms GB Yes 1-10 Moderate

The need for memory hierarchies should be obvious, as a single non-volatile technology achieving

low latency, high throughput, large capacity and unlimited write cycles is not currently available. As

memory accesses usually exhibit both temporal and spatial locality, these caching memory hierarchies

work reasonably well for general purpose processing applications. Flip flops and latches are used as

internal working registers (storing single data values), while low latency volatile memory is typically

used for cache memory (storing the current dataset that is being processed). The slightly slower

DRAM then holds multiple and larger datasets and the various active programs. The non-volatile

disk- or flash-based memory on the other hand, provides a vast amount of storage space for data and

programs at much slower access speeds.

The traditional Harvard / Neumann memory architecture model is less frequently used nowadays, as

it varies throughout the different levels of the memory hierarchy. For example, a certain processor

might have separate program and data memory caches, but store both data and programs in non-

volatile memory or DDR memory during runtime.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

167

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Architectures Appendix C

C.5 HARDWARE COPROCESSORS

Hardware coprocessors supplement the main CPU in form of a custom processor created for specific

tasks, such as floating-point arithmetic, signal processing, fast Fourier transforms, graphic operations,

encryption and decryption. Tasks are allocated to the coprocessor from the main processor to offload

processor intensive or timing stringent tasks.

One method of connecting a coprocessor to the CPU is by mapping it directly into the memory space,

and having the CPU move data and commands through the data bus. The data bus can however be

hindered by bus arbitration and typically operates at a much slower speed than the processor clock

frequency. To overcome these issues, a DMA controller is often added to allow the coprocessor to

operate independently on blocks of data in a shared memory space.

Another method of connecting the coprocessor to the CPU is via dedicated I/O ports. I/O ports do not

have arbitration and are usually clocked faster than the data bus. Data movement to and from the cop-

rocessor thus achieves higher throughputs and lower latency than the processor bus interface.

Even faster connection speeds can be achieved by integrating the coprocessor directly into the

datapath of the CPU. With this instruction pipeline connection, the coprocessor responds to special

assembly instructions, executing them directly based on operands and updating the relevant status

flags. Floating-point units and memory address calculation units fall into this category and blur the

line between coprocessors and instruction set extensions.

C.6 MULTIPLE CORES / PARALLEL PROCESSOR

Most of the performance enhancement techniques discussed so far focused on exploiting bit, data and

instruction-level parallelism in the horizontal as well as vertical dimension. A more coarse-grained

approach to parallelism duplicates multiple processing cores on the same chip (thread or task-level

parallelism) in a linear or tile based manner. On an even more macro scale, multiple of such chips

are duplicated in a system as a cluster or grid of multi-cored machines (distributed computing or

MPP).

Regardless on the scale at which multi-cored processing is implemented, additional complications are

posed in the fields of scheduling, data dependencies, race conditions, synchronisation, shared memory

arbitration, and inter process communication. These issues have been covered extensively in general

168 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C Current Processing Architectures

purpose processing literature, and multiple frameworks for handling parallel processing workloads

exist (e.g. OpenMP, Intel Thread Building Blocks (TBB), Message Passing Interface (MPI), POSIX

Threads).

C.7 VECTOR / ARRAY PROCESSOR

A vector processor executes the same instruction on large data sets such as arrays or vectors. A single

multiply instruction could thus multiply two arrays each consisting of e.g. 32 element vectors of

double precision floating-point numbers (SIMD).

An example of a vector processor is the cell processor [139], consisting of one scalar processor and

eight vector processors. The master processor controls and allocates tasks to each of the eight memory

mapped coprocessors.

C.8 STREAM PROCESSOR

A stream processor applies the same operations to all elements of an incoming data stream. Practic-

ally it consists of a customised hardware pipeline (a fixed data flow graph) for a specific application,

compromising flexibility for parallel performance. Applications such as media encoding and decod-

ing, graphics rendering, digital filtering and image processing all exhibit data parallelism and locality

and are thus well-suited for such a pipelined processing architecture.

Examples of stream processors include Stanford’s Merrimac [140] and Imagine [141, 142] architec-

tures as well as modern GPUs. Systolic arrays form a subsection of stream processors. The difference

is that systolic arrays can exhibit non-linear array structures with data flowing in multiple directions,

and often contain small RISC processors with their own local instruction and data memory rather than

just mathematical or signal processing kernels.

C.9 DATAFLOW PROCESSOR ARCHITECTURES

A dataflow machine executes programs described by data flow graphs (DFG), rather than by a sequen-

tial instruction stream. Each operation in a DFG is represented as a node, while the data connection

between nodes is represented by arcs. Data travels along the arcs in tokens (data packets). The execu-

tion of a node is governed by the availability of tokens on each of its inputs. When all of the required

inputs are available, the node fires and consumes the input tokens, producing one or more output

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

169

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Current Processing Architectures Appendix C

tokens. The execution of nodes is thus data dependent rather than control-flow dependent. When

nodes produce and consume a fixed number of tokens per firing, the DFG is known as a Synchron-

ous Data Flow (SDF) graph. Homogeneous Synchronous Data Flow (HSDF) graphs are a further

subset of SDF graphs, which only consume and produce a single token per input [143]. Both SDF

and HSDF graphs simplify the compiler architecture of the dataflow machine as they allow static

scheduling.

Dataflow graphs simplify the construction of complex processing chains, as each node controls the

flow of data to neighbouring nodes without any global control bottleneck [144]. Because of this data

dependent processing nature, DFGs are useful for exposing parallelism in algorithms, graphically

depicting the mathematical dependencies between processing steps. Applications exhibiting data

parallelism or streaming operations are thus better described by DFGs rather than the traditional

control-flow based methods.

Describing control-flow based applications with DFGs becomes a bit more cumbersome though, as

additional mechanisms for branching, merging, function calls, recursion and loop control need to be

added. Avoiding race conditions and deadlocks is then handled by attaching tags to tokens. These

tags are used (amongst others) to distinguish between different loop iterations or contexts such that

nodes will only fire when their inputs have matching tags.

Dataflow architectures are typically divided into static dataflow machines and dynamic dataflow ma-

chines, based on whether multiple instances of execution (reentrant subgraphs: e.g. loops, recursion,

sub-program invocation) are permitted. Static dataflow machines use a simple model, in which tokens

destined for the same node cannot be distinguished in context, and thus do not support modern pro-

gramming constructs like procedure calls and recursion. Since only one token per arc is supported,

an acknowledge signal is uses to signal that the next firing can occur. Unlike dynamic dataflow ma-

chines, this static dataflow model can use conventional program memory to store the data dependency

and transformation tags.

Dynamic dataflow machines keep track of the different contexts by attaching them to the tokens in

the form of context tags. Since tokens need to be matched in context, a content-addressable memory

(CAM) is required. This sort of associative memory is not cost-effective and becomes impractical

as the memory requirements to store tokens waiting for a match tend to be rather large. Instead of

the associative memory, hashing techniques are used in the explicit token store dataflow architecture.

In this architecture, a separate frame memory is used to group waiting tokens with the same tags

170 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C Current Processing Architectures

until the node can fire. Regardless, the token matching logic turns out to be a huge bottleneck for

dataflow machines in addition to the efficiency problems in broadcasting data and instruction tokens

to multiple nodes.

C.10 NO INSTRUCTION SET COMPUTER

A No Instruction Set Computer (NISC) architecture does not have any predefined instruction set

or microcode. Instead functional units, registers and multiplexers of a given datapath are directly

controlled from a compiler generated instruction word (termed “nanocode”). Since the compiler has

knowledge of all functional units and latencies in the datapath, the program flow can be statically

scheduled with full parallel (horizontal and vertical) control over the functional units.

NISC architectures are common in high-level synthesis (HLS) or C to HDL compilers, as their

datapaths are highly efficient and can be generated automatically, bridging the gap between custom

processors and hardware descriptive languages.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

171

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX D

SOFTWARE DEVELOPMENT ENVIRONMENT

SCREENSHOTS

Fig. D.1 shows the programming environment for the FLOW language of the proposed architecture.

Each instruction is essentially a move instruction that happens in parallel with any number of other

move instructions. The instruction delimiter “||” starts a new parallel move portion.

Figure D.1: Screenshot of the Emulator depicting the FLOW Programming Window

The development environment features code auto-completion and syntax highlighting. In the debug-

ging environment of Fig. D.2, a new instance of the architecture is shown for each instruction cycle.

The lines connecting consecutive instructions correspond to the assignments in the FLOW program,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Software Development Environment Screenshots Appendix D

and depict how data flows through the registers. The functional units with multi-cycle latencies have

multiple orange boxes with the numeric results propagating through them every clock cycle.

Figure D.2: Screenshot of the Emulator depicting the Debugging Window

The final architecture as shown in the development environment is shown in Fig. D.3. The final archi-

tecture description file (which is used to generate the VHDL processor source files and the graphical

representation in the simulator) is shown below:

; arch_descr_v31.arch
; order in which they are drawn
NR_INT32_INP_REG=51
NR_FLOAT_INP_REG=41
NR_INT32_OUT_REG=32
NR_FLOAT_OUT_REG=31

; funcname_nr<intIN<intOUT<floatIN<floatOUT

PC_0<0<1<<
CONS_0<<2,3,4<<1
SPACING<-400
RCON<1<<<
IDEBUG_0<2<<<
IDEBUG_1<3<<<
IDEBUG_2<4<<<
STACK_0<<5<<
IINC_0<6<6<<
IINC_1<7<7<<
IINC_2<8<8<<
IINC_3<9<9<<
IMAC_0<10,11,12<10<<
IBUF_0<13<11<<
IADD_0<13,14<12<<
ISUB_0<13,14<13<<
SPACING<50

174 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix D Software Development Environment Screenshots

Figure D.3: Screenshot of the Emulator depicting the Architecture

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

175

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Software Development Environment Screenshots Appendix D

IADD_1<15,16<14<<
SPACING<50
;ISUB_1<15,16<15<<
SPACING<50
IADD_2<17,18<15<<
SPACING<50
IDEL_0<19,20<16<<
IDEL_1<21,22<17<<
IDEL_2<23,24<18<<
;ROTL_1<25,26<19<<
SPACING<50
ROTR_0<25,26<20<<
SPACING<100
INCZ_0<27,28,29<21,22<<
SPACING<50
ROTL_0<30,31<23<<
IREV_0<30,31<24<<
;ROTR_1<30,31<25<<
SPACING<400
IIOPORT_0<36<26<<
IIOPORT_1<37<27<<
ITOF_0<38<<<2
FDEL_0<39<<0<3
FDEL_1<40<<1<4
FDEL_2<41<<2<5
SPACING<200
CMEM_0<43,44,42<<3,4<6,7
SPACING<100
DMEM_0<46,47,45<<5,6<8,9
SPACING<100
DMEM_1<49,50,48<<7,8<10,11
SPACING<50
FBUF_0<<<10<12
FTOI_0<<31<10<
SPACING<50
FMUL_0<<<11,12<13
SPACING<50
FMUL_1<<<13,14<14
SPACING<50
FMUL_2<<<15,16<15
SPACING<50
FMUL_3<<<17,18<16
FDOT_0<<<11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26<17
FADD_1<<<19,20<18
SPACING<50
FADD_2<<<21,22<19
SPACING<50
FSUB_1<<<23,24<20
SPACING<50
FSUB_2<<<25,26<21
SPACING<50
FADD_0<<<27,28<22
FSUB_0<<<27,28<23
SPACING<200
;FADD_3<<<29,30<24
SPACING<100
FSINCOS_0<<<33<25,26
FSQR_0<<<34<27
FSWAP_0<<<35,36<28,29
FCON<<<37<
;CUSTOM_SEL<<<<31
FDEBUG_0<<<38<
FDEBUG_1<<<39<
FDEBUG_2<<<40<

SPACING is a dummy functional unit that simply controls the horizontal gaps between functional

units in the graphical representation for readability purposes.

176 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

APPENDIX E

APPLICATION SOURCE CODE

This section provides example source code of a few selected algorithms in the FLOW programming

language. Note that the cycle count for some of the algorithms could still be reduced by a few

clock cycles at the expense of generality and/or program memory size. For example, rather than

dynamically assigning initial conditions for registers based on the function arguments, these could

be precomputed by the compiler based on a few #defines. Similarly, the control-flow that generates

address and write enable signals could be replaced by a predefined control sequence in program

memory, thus avoiding the reinitialisation of the control-flow generation code between consecutive

processing stages.

E.1 ENVELOPE CALCULATION

; --
; --
; Envelope Processing (sqrt(x^2 + y^2)) in DMEM
;
; arguments: IAdd2_a = NR_WORDS_TO_PROCESS (N)
; IAdd1_a = WRITE ADDR_IN_DMEM
; IAdd0_a = READ ADDR_FROM_DMEM
;
; cycle count: N+28
;
; macro definition

IInc0_a = IInc0_o
DMem0_raddr = IInc0_o ; DMEM read address

FMul0_a = DMem0_o1
FMul0_b = DMem0_o1
FMul1_a = DMem0_o2
FMul1_b = DMem0_o2
FAdd0_a = FMul0_o
FAdd0_b = FMul1_o
FSqr0_a = FAdd0_o

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Application Source Code Appendix E

DMem0_a1 = FSqr0_o

IInc1_a = IInc1_o
DMem0_waddr = IInc1_o ; DMEM write address

IInc2_a = IInc2_o
DMem0_wi = IInc2_o ; DMEM write inhibit
DMEM0_WE = 1

{{ m_envelope

envelope:
Cons0_w0 = 17
IAdd2_b = Cons0_w0

||
Cons0_w0 = -7-17 ; wr_inhibit delay
IAdd1_b = Cons0_w0 ; IAdd1_o = ADDR_IN_DMEM - wr_inhibit
DMem0_wi = Cons0_w0 ; wr_inhibit
IInc2_a = Cons0_w0 ; wr_inhibit

Cons0_w1 = -1
IAdd0_b = Cons0_w1 ; IAdd0_o = ADDR_IN_DMEM - 1
IAdd2_b = Cons0_w1 ; IAdd2_o = (NR_WORDS_TO_COPY+17) - 1
IAdd2_a = IAdd2_o

||
Cons0_f = 0.0
DMem0_a2 = Cons0_f

IInc0_a = IAdd0_o ; read address for DMEM
IInc1_a = IAdd1_o ; write address for DMEM

RCon0_a = IAdd2_o ; setup loop initial condition register
PC0_a = PC0_o ; setup loop

||
}} m_envelope

IAdd2_a = IAdd2_o ; NR_WORDS_TO_COPY--
RCon0_a = IAdd2_o
[RCon0 >= 0] ; loop here while RCon0 >= 0
PC0_a = PC0_o

||
}} m_envelope ; wait for cond pass before assigning PC0_a

||
}} m_envelope
PC0_a = Stack0_o ; return to calling address
STACK_POP

||
}} m_envelope ; next instr is still exec. after PC assignment

||
; --

178 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix E Application Source Code

E.2 FFT ALGORITHM

; --
; --
; Inplace Fast Fourier Transform (FFT)
;
; arguments: IAdd1_a = ADDR_IN_DMEM
; RotR0_a = N (for N-point fft)
; ISub0_b = P (number of of consecutive FFTs)
;
; cycle count: (P*N/2+21)*log2(N)+8
;
; macro definition

RotR0_b = IInc1_o ; m value
RotL0_a = IncZ0_o ; j
RotL0_b = IInc1_o ; j<<stage, twiddle address

IncZ0_a = IncZ0_o ; j = j+1 if (j+1<m), else 0
IncZ0_c = IncZ0_p ; r = r if (j+1<m), else r+1

IMac0_a = IncZ0_p ; r*(2*m) + j
IMac0_c = IncZ0_o

IAdd1_b = IMac0_o ; addr_offset + r*(2*m) + j

IAdd0_a = IAdd1_o ; IAdd0_o = IAdd1 + m = xaddr1
IBuf0_a = IAdd1_o ; IBuf0_o = IAdd1 = xaddr0

IDel0_a = IBuf0_o ; xaddr0
IDel1_a = IAdd0_o ; xaddr1
IDel2_a = RotL0_o ; delay twiddle address

CMem0_raddr = IDel2_o
DMem0_raddr = IBuf0_o
DMem1_raddr = IAdd0_o

DMem0_waddr = IDel0_o
DMem1_waddr = IDel1_o
DMEM0_WE = 1
DMEM1_WE = 1

FAdd0_a = DMem0_o1 ; FAdd0o = a.re + b.re
FAdd0_b = DMem1_o1 ;
FAdd1_a = DMem0_o2 ; FAdd1o = a.im + b.im
FAdd1_b = DMem1_o2 ;
FSub0_a = DMem0_o1 ; FSub0o = a.re - b.re
FSub0_b = DMem1_o1 ;
FSub1_a = DMem0_o2 ; FSub1o = a.im - b.im
FSub1_b = DMem1_o2 ;
FDel0_a = FAdd0_o ; Pipeline bubble for an.re=a.re+b.re
FDel1_a = FAdd1_o ; Pipeline bubble for an.im=a.im+b.im
FMul0_a = FSub0_o
FMul0_b = CMem0_o1 ; (a.re - b.re) * t.re
FMul1_a = FSub1_o
FMul1_b = CMem0_o2 ; (a.im - b.im) * t.im

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

179

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Application Source Code Appendix E

FSub2_a = FMul0_o
FSub2_b = FMul1_o ;bn.re=(a.re-b.re)*t.re-(a.im-b.im)*t.im
FMul2_a = FSub0_o
FMul2_b = CMem0_o2 ; (a.re - b.re) * t.im
FMul3_a = FSub1_o
FMul3_b = CMem0_o1 ; (a.im - b.im) * t.re
FAdd2_a = FMul2_o
FAdd2_b = FMul3_o ;bn.im=(a.re-b.re)*t.im+(a.im-b.im)*t.re
DMem0_a1 = FDel0_o ; an.re
DMem0_a2 = FDel1_o ; an.im
DMem1_a1 = FSub2_o ; bn.re
DMem1_a2 = FAdd2_o ; bn.im

IInc2_a = IInc2_o
DMem0_wi = IInc2_o
DMem1_wi = IInc2_o ; write inhibit signals

IDebug0_a = IBuf0_o
IDebug1_a = IAdd0_o
IDebug2_a = IDel2_o
FDebug0_a = FDel0_o
FDebug1_a = FSub2_o
FDebug2_a = FAdd2_o

{{ m_fft_inplace

fft_inplace:
Cons0_w0 = 1
RotR0_b = Cons0_w0 ; RotR0_o = N >> 1, i.e. N/2
Cons0_w1 = 0
ISub0_a = Cons0_w1 ; ISub0_o = 0 - P

||
IMac0_a = RotR0_o ; N/2
IMac0_b = ISub0_o ; -P

IBuf0_a = RotR0_o ; save N/2 temporarily

Cons0_w0 = -12
IMac0_c = Cons0_w0 ; IMac0_o = N/2 * (-P) - 12

Cons0_w1 = 0
RotR0_b = Cons0_w1 ; RotR0_o = N >> 0, i.e. N

||
IMac0_b = RotR0_o ; N = initial m*2
RotR0_a = IBuf0_o ; N/2 = m start value
IncZ0_b = IBuf0_o
IAdd0_b = IBuf0_o

Cons0_w0 = 13
IDel0_d = Cons0_w0
IDel1_d = Cons0_w0 ; delay xaddr for writing
Cons0_w1 = 7
IDel2_d = Cons0_w1 ; twiddle address delay

||
IInc3_a = IMac0_o ; -inner loop counter-1

Cons0_w0 = -20

180 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix E Application Source Code

IInc2_a = Cons0_w0 ; write inhibit
DMem0_wi = Cons0_w0
DMem1_wi = Cons0_w0 ; write inhibit signals

Cons0_w1 = 4
FDel0_d = Cons0_w1 ; Pipeline bubble for an.re and an.im
FDel1_d = Cons0_w1

||
IInc0_a = IInc3_o ; assign inner loop counter

Cons0_w0 = -1
IncZ0_a = Cons0_w0
IInc1_a = Cons0_w0 ; stage counter start at 0
Cons0_w1 = 0
IncZ0_c = Cons0_w1

||
fft_stage_loop:

}} m_fft_inplace

RCon0_a = IInc0_o ; setup loop condition register
PC0_a = PC0_o ; setup loop

||
}} m_fft_inplace

[RCon0 < 0] ; loop here while RCon0 >= 0
RCon0_a = IInc0_o
IInc0_a = IInc0_o ; inner loop counter
PC0_a = PC0_o

||
}} m_fft_inplace
IMac0_b = RotR0_o ; save old m value = new m*2
IInc1_a = IInc1_o ; increase stage counter

||
}} m_fft_inplace

||
}} m_fft_inplace
RCon0_a = RotR0_o ; setup condition check

IncZ0_b = RotR0_o ; new m
IAdd0_b = RotR0_o

IInc0_a = IInc3_o ; reassign assign inner loop counter
||

}} m_fft_inplace
[RCon0 > 0] ; test cond: (N/2>>stage_cnt++)>0

||
}} m_fft_inplace
Cons0_w0 = fft_stage_loop
PC0_a = Cons0_w0 ; loop while condition true, i.e.

Cons0_w1 = -20
IInc2_a = Cons0_w1 ; write inhibit
DMem0_wi = Cons0_w1
DMem1_wi = Cons0_w1 ; write inhibit signals

||
Cons0_w0 = -1

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

181

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Application Source Code Appendix E

IncZ0_a = Cons0_w0
Cons0_w1 = 0
IncZ0_c = Cons0_w1

||
PC0_a = Stack0_o ; return to calling address
STACK_POP

||
; next instr is still executed after PC0_a assignment

||
; --

E.3 DELAY

; --
; --
; Delay N cycles
;
; arguments: ISub0_b = Delay
;
; cycle count: N+1
;

delay:
Cons0_w0 = 8 ; account for call/return/loop setup overhead
ISub0_a = Cons0_w0

||
IInc0_a = ISub0_o
RCon0_a = ISub0_o ; setup loop condition register
PC0_a = PC0_o ; setup loop

||
[RCon0 < 0] ; loop here while RCon0 >= 0
RCon0_a = IInc0_o
IInc0_a = IInc0_o
PC0_a = PC0_o

||
; wait for cond to be true again

||
PC0_a = Stack0_o ; return to calling address
STACK_POP

||
; wait for return

||
; --

182 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Introduction
	Background
	Motivation
	Objectives
	Contribution
	Overview

	Computational Analysis of Radar Algorithms
	Overview
	Radar Overview
	Continuous Wave Radar Systems
	Pulse Radar Systems

	Computational Requirements
	Computational Breakdown into Mathematical Operations
	Relative Processing Requirements for each Operation

	Current Processing Technologies
	Overview
	Digital Signal Processors
	Architecture of the Texas Instruments C66x Core
	Architecture of the Freescale SC3850 Core
	Usage in Radar

	FPGAs
	Streaming / Pipelined Architecture
	Adaptive Hardware Reconfiguration
	Hard-core Processors Embedded on FPGAs
	Generic Soft-core Processors Embedded on FPGAs
	Custom Soft-core Processors Embedded on FPGAs

	ASIC and Structured ASIC
	Consumer Personal Computer Systems
	Vector Processing Extensions
	Graphics Processing Unit

	Commercial Microprocessors
	Application Specific Instruction-set Processors
	Other Processing Architectures
	Discussion

	Proposed Architecture Template
	Overview
	Ideal Radar Signal Processing Architecture
	Simplified Architecture
	Datapath Architecture
	Control Unit Architecture
	Memory Architecture
	Functional Units
	Integer Functional Units
	Floating-Point Functional Units

	Architectural Optimisation Process
	Overview
	Software Development Environment
	Algorithm Implementation Procedure
	Envelope Calculation
	FIR Filter Operation
	FFT Operation
	Transpose Operation
	Summation Operation
	Sorting Operation
	Timing Generator
	Pulse Generation
	ADC Sampling
	IQ Demodulation
	Channel Equalisation
	Pulse Compression
	Corner Turning
	Moving Target Indication
	Pulse-Doppler Processing
	CFAR
	Data Processor Interface

	Final Architecture
	Overview
	Amalgamation of the different Functional Units
	Final Architecture
	Architecture Implementation on Xilinx Virtex 5

	Verification and Quantification
	Overview
	Signal Processing Performance Results
	Comparison to other Architectures

	Radar Algorithm Performance Results
	Comparison to other Architectures

	FPGA Resources Used
	Design time and Ease of implementation

	Conclusion
	Overview
	Result Discussion
	Performance
	System Interface
	Latency
	General Purpose Computing
	Architectural Efficiency
	Optimisation
	Scaling in Performance

	Similar Architectures
	Alternatives
	High-level FPGA Synthesis Tools
	Grid Processor
	GPU-based Processor

	Future Research
	Further Performance Optimisations
	Resource Usage Reduction
	ASIC Implementation
	Compiler Support

	Concluding Remarks

	Radar Signal Processing Algorithms
	Overview
	Timing Generator
	Pulse Generator
	Analogue Interface
	I/Q Demodulation
	Channel Equalisation
	Pulse Compression / Matched Filtering
	Corner Turning Memory
	Non-coherent Integration
	Moving Target Indication
	Pulse-Doppler Processing
	Envelope Calculation
	Constant False Alarm Rate
	Cell Averaging CFAR
	Adaptive CFAR
	Order Statistic CFAR
	Computational Requirements

	Noise Level Estimation
	Monopulse Calculations
	Data Processor

	Common Signal Processing Operations
	Overview
	Basic Arithmetic Operations
	Accumulation
	Fourier Transform
	Discrete Fourier Transform
	Inverse Discrete Fourier Transform
	Fast Fourier Transform
	Inverse Fast Fourier Transform

	Finite Impulse Response Filters
	Infinite Impulse Response Filters
	Phase Shift
	Sorting
	Odd-Even Transposition Sort
	Bitonic Merge-Sort
	Odd-Even Merge-Sort

	Array Operations
	Matrix Multiplication
	Matrix Inversion
	Convolution
	Fast Convolution

	Cross-Correlation
	Dot product
	Decimation
	Scaling
	Interpolation
	Rectangular and Polar coordinate conversion
	Moving Average
	Finite Word Length Effects

	Current Processing Architectures
	Overview
	Instruction Set Architecture
	Reduced Instruction Set Computing
	Complex Instruction Set Computing
	Very Long Instruction Word
	Instruction Set Extensions

	Micro-architecture
	Memory Architecture
	Hardware coprocessors
	Multiple Cores / Parallel Processor
	Vector / Array Processor
	Stream Processor
	Dataflow Processor Architectures
	No Instruction Set Computer

	Software Development Environment Screenshots
	Application Source Code
	Envelope Calculation
	FFT Algorithm
	Delay

