
                                                                                                                                                                        HEFAT2011
                                                 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
                                                                                                                                                        11 July – 13 July 2011
                                                                                                                                            Pointe Aux Piments, Mauritus

                       Numerical Investigation of Flow and Heat Transfer in Closed Cavities
                                                  Partially Heated from Below

                                                                              Singh S.N
                          Department of Mechanical Engineering and Mining Machinery Engineering,
                                                               Indian School of Mines Dhanbad
                                                                        Dhanbad- 826004
                                                                               India
                                E-mail: snsingh63@yahoo.com, singh.sn.memme@ismdhanbad.ac.in

ABSTRACT
The present problem deals with the numerical study of two-
dimensional, steady, incompressible, laminar natural
convection in air fill ed cavity with a centrally heated bottom
wall and cooled upper wall. The vertical walls and the rest of
the bottom walls are assumed to be insulated. Results are
presented for Ra = 103 - 3×106, A = 1-3, W = 0.25 - 1 and
Pr = 0.7. The governing equations, written in terms of stream-
function-vorticity formulation, are solved using a finite
volume method. The influence of heated surface dimension
on the fluid flow and thermal patterns is also presented by
comparing the present results against those obtained by the
author in an earlier study within a square cavity heated from
below. Based on numerical data a correlation has been
developed for convective heat transfer.

INTRODUCTION
Natural convection flows caused by buoyancy forces occur in
many thermal engineering systems, such as solar energy
efficient buildings, double-pane windows, cooling of
electronic equipment and so forth. Despite significantly lower
values of heat transfer coefficient, cooling by natural
convection using air is preferred, for example, in numerous
electronic cooling applications because of its low cost,
inherent reliabili ty, simplicity and noiseless method of
thermal control.
        To date, many experimental and numerical studies have
been conducted on the natural convection heat transfer in the
rectangular closed cavities. Most of the numerical studies
previously reported in the literature have considered one of
the vertical walls heated and the other one cooled with
horizontal insulated walls. Excellent reviews of laminar
natural convection have been presented by Ostrach [1] and
Hoogendoom [2]. Benchmark numerical solutions for natural
convection in a square enclosure with two isothermal and two
adiabatic walls have been obtained by de Vahl Davis and
Jones [3].  Akiyama and Chong [4] studied the problem for
coupled natural convection and radiation in a square

enclosure fill ed with air and having gray surfaces.  Using the
finite volume method, Mezrhab and Behir [5] studied the heat
transfer by radiation and natural convection in an air-fill ed
square enclosure with a vertical partition of finite thickness
and varying height. Mahapatra et al. [6] reported a finite
element solution on the interaction of surface radiation and
variable property laminar natural convection in a
differentially heated square cavity. Colomer et al. [7]
analyzed the natural convection phenomenon coupled with
radiant heat exchange in a three –dimensional differentially
heated cavity.

NOMENCLATURE
A        [- ]          aspect ratio, H’ /L’
g         [m/s2]     acceleration due to gravity
Gr       [-]           Grashof  number
H’ , L’ [m]          height and width of the cavity
m       [-]            number of grid points in horizontal
                          direction
 n        [-]            number of grid points in vertical direction
Nuc       [-]                 convection Nusselt number

cNu   [-]          average convection Nusselt

                          number
Pr        [-]          Prandtl number, ν/α
Ra       [-]          Rayleigh number, Gr × Pr
T         [°C]       variable temperature at any wall
Th       [ °C]          temperature at centrally heated
                          boundary
u          [m/s]      vertical velocity
U         [-]          dimensionless vertical velocity,
                          uL’ /α
v         [m/s]      horizontal velocity
V        [-]           dimensionless vertical velocity,
                          v L’ /α
w        [m]          centrally heated bottom part
W       [-]           heated bottom part ratio, w/H’
x         [m]        vertical coordinate

8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

337



X        [-]          dimensionless vertical coordinate,
                         x/H’
y         [m]         horizontal coordinate
Y         [-]          dimensionless horizontal coordinate,
                          y/H’
Subscripts
c                        convection
h                        hot
i,j                       number of variables of nodal points in
                          Y and X directions respectively.
∞                       ambient
Greek symbols
α         [m2/s]         fluid thermal diffusivity, m2/s
ν         [m2/s]         kinematic viscosity of fluid
θ          [-]              dimensionless temperature,
                               ( T- T∞)/(Th - T∞)
ψ’        [m2/s]       stream function,
ψ          [-]            dimensionless stream function, ψ’ /α
ω’         [1/s]        vorticity
ω          [-]           dimensionless vorticity, ω’ H’ 2/ ν
   When the heating/cooling scenario switches from vertical to
horizontal walls, Hasnaoui et al. [8] have demonstrated
numerically the existence of multiple steady-state solutions in
the absence of radiation in a rectangular cavity partially
heated from below. Recently, while studying coupling
between radiation and natural convection in a square cavity
entirely heated from below, Ridouane et al. [9, 10]
demonstrated also that the multiplicity of solutions is
possible. Recently, Ridouane and Hasnaoui [11] numerically
studied the effect of surface radiation on multiple natural
convection solutions in a square cavity partially heated from
below. Singh and Venkateshan[12] have discussed the
importance of surface radiation coupled with natural
convection in side vented open top cavities. Sharma et al.[13]
numerically investigated turbulent natural convection in an
enclosure partially heated from below. Oztop and Abu-
Nadu[14] have numerically investigated the natural
convection in partially heated enclosures filled with
nanofluids.
   While much progress has been accomplished in
understanding flow and heat transfer in the closed cavities for
combined natural convection and surface radiation, there are
still some important areas requiring attention. However, to
the best of my knowledge, average heat transfer coefficient
for the hot portion of the bottom wall has not been examined
in detail . In this study, the analysis of heat transfer has been
investigated by placing centrally hot to full bottom hot walls
and vertical walls as insulated and top horizontal wall as a
cold wall of a cavity. The present investigation also focuses
on development of an empirical correlation in terms of
average convective Nusselt number which is the function of
independent parameters like Rayleigh number, aspect ratio
and hot bottom surface ratio.

MATHEMATICAL FORMULATION
The natural convection in a square cavity with having
centrally heated from bottom shown schematically in Fig. 1,
can be formulated as stream function and vorticity ( %& − )

form for a constant property fluid under the Boussinesq
approximation, in non-dimensional form as
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BOUNDARY CONDITIONS
The velocity boundary conditions are based on the assumption
that the walls are rigid and impermeable and that the trapped air
does not slip on the walls. In terms of stream function, this
assumption can be translated to ψ = 0 at all the surfaces.

At the left and right vertical walls:
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Fig. 1 Schematic of the physical system
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At the top of the horizontal wall of the cavity:

ψ = 0, &
2X
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At the bottom of the adiabatic walls of the cavity:
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At the centrally heated wall of the cavity:

ψ = 0, &
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METHOD OF SOLUTION
The governing equations (1) - (3) are first transformed into
finite difference equations using a finite volume based finite
difference method of Gosman et al [15]. Gauss - Seidel iterative
procedure is used to solve the resulting algebraic equations.
The details of solution procedure are available in Singh and
Venkateshan [12]. A 41×41 non-uniform grid system for the
computational domain is employed. The grid sizes have been
fixed based on grid sensitivity analysis, the results of which are
presented in the ensuing section in Table 1. A cosine function
has been chosen to generate the grids in both along the X and Y
directions in the cavity region. With reference to the
implementation of derivative boundary conditions, three point
formulae using second degree Lagrangian polynomial have
been used. Upwinding has been used for representing the
advection terms. The integrations required in all calculations
are performed using Simpson’s 1/3 rule for non-uniform step
size.  Under relaxation with a relaxation parameter of 0.5 was
used for all three equations to obtain convergent results.

RESULTS AND DISCUSSION
Calculations have been made keeping in view the objective of
evolving useful correlation for convective Nusselt number.
Before proceeding further the result of a grid sensitivity study is
presented.

GRID SENSITIVITY TEST

Table 1 shows the effect of the grid size on the cNu  for a

typical case with Ra = 1×106, A = 1, W = 1 and Pr = 0.7. It can

be seen from Table 2 that the difference in cNu  between the

grid sizes of 41× 41 and 51× 51 is 0.277% which is the lowest.
Thus grid pattern used in the present study is 41× 41.

 Table 1 Grid independence study( Ra = 1×106, A = 1, W = 1
and Pr = 0.7)

   m×n        cNu    % change in cNu
   31× 31      17.177         -
   41× 41      17.121      0.326
   51× 51      17.138      0.277

Numerical code validation and comparison with benchmark
results
The numerical code was extensively validated against the
benchmark results of Ridouane and Hasnaoui [11] for pure
natural convection, in terms of maximum and minimum of
stream function values in a square cavity heated from below to
check its validity as given in the next section for predicting the
further results.

Comparison with streamline contours of present result
with Ridouane and Hasnaoui[11]
Present results for typical values of various parameters are
compared with numerical results of Ridouane and Hasnaoui[11]
in trerms of streamlines and comparative results in terms of
stream functions are given in the Table 2.

Table 2 Comparison of present results with Ridouane
and Hasnaoui[11] in terms of stream function

 Present
result

Hasnaoui[11]
Present
result Hasnaoui[11]

ψmax  ψmin  ψmax  ψmin  ψmax  ψmin  ψmax ψmin

15  -15 13.39 -12.49   20 - 20  19.73   -

The above results show good agreement with the present results
and results obtained by Ridouane and Hasnaoui[11].

Typical results for closed cavities partially heated from
below
Having validated the present code with previous studies
available in the literature, a detailed parametric study has been
undertaken. Typical results from this study are presented here
for a closed cavity partially heated from below. The parameters
set is taken as Ra =1×103 - 3×106, A = 1-3, W = 0.25 - 1 and Pr
= 0.7.

 Streamline and isotherm patterns for closed cavities
Fig. 2 and Fig. 3 showing the streamlines (on left side) and
isotherm lines (right side) corresponding to the given set of
parameters as mentioned against figure captions indicate the
influence of Rayleigh number. For Ra = 5×103, streamlines of
Fig. 2 shows that the flow is organized in a single vortex
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rotating in the anti-clockwise direction. The corresponding
isotherms show weak convection effect; they characterize a
situation for which the conduction regime is still dominating.
The vortex moves warm fluid from the hot element along the
right insulated vertical wall , which results in higher temperature
gradients at the right part of the cavity. At slightly higher Ra,
Fig. 3 shows, for Ra =1×104, that the increase of Ra leads to the

appearance of higher value of ψ in the core of the cavity. High
temperature gradients are obtained near the active walls
whereas the vortex moves warm fluid from the hot element
along the right insulated vertical wall , which results in higher
temperature gradients at the right part.
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Fig. 2 Streamline (left) and isotherm patterns (right)
          for Ra = 5×103 , A =1, W = 0.5
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Fig. 3 Streamline (left) and isotherm patterns (right) for
          Ra = 1×104, A =1, W = 0.5
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Fig. 4 Streamline (left) and isotherm patterns (right)
          for Ra = 1×103 , A =3, W = 0.5
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Fig.5 Streamline (left) and isotherm patterns (right)
          for Ra = 1×105, A =3, W = 0.5
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Fig. 6 Streamline (left) and isotherm patterns (right)
          for Ra = 1×106 , A =3, W = 0.5
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Fig. 7 Streamline (left) and isotherm patterns (right)
          for Ra = 1×106 , A =1, W = 1
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     Fig. 4 and Fig. 5 show the streamlines and isotherm lines for
the aspect ratio, A= 3 and W = 0.5 but for different Rayleigh
numbers, Ra as mentioned with figure captions. For Ra =
1×103, streamlines of Fig. 4 indicates that the two symmetrical

flow vortices are developed. The right vortex rotating in the
clockwise direction, (ψmax = 0.04 ) is the mirror image of the left
vortex rotating in anti-clockwise direction (ψmin     = -0.04 ). The
magnitude of stream function is very small and so the
conduction dominant flow is present in the domain. Fig. 4 of the
isotherm contours clearly indicates that the temperature lines
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Fig. 8 Streamline (left) and isotherm patterns (right)
          for Ra = 1×106 , A =2, W = 1

Fig. 9 Streamline (left) and isotherm patterns (right)
          for Ra = 3×104, A =2, W = 1
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Fig. 10 Streamline (left) and isotherm patterns (right)
          for Ra = 1×105, A =3, W = 1
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Fig. 11 Streamline (left) and isotherm patterns (right)
          for Ra = 3×106, A =3, W = 1

Y

0 1

X

0

1

-30

-30

-30

0 0

-20

-20
-20

-20

-20

0

-10

-10

-10

-10

-10

-10

-10

0

0

0

0
0 0 0 0 0

30

30

30

30

20

20

20

20

20

20

10

10

10

10

10

10 10

0

0

000

0

0

0

0

00

0

0

0

0 0

Y

0 1

X

0

1 0 0 0 0

Y

0 1

X

0

1

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0

40

40

40
40

-40

-40

-40 -40

20

20
20

20

20

20

-20

-20

-20

-20

-20

-20

0

0

0

0

0

0

0

00
0

Y

0 1

X

0

1

2 0 0

Fig. 12 Streamline (left) and isotherm patterns (right)
          for Ra = 1×106, A =1, W = 0.25 Fig. 13 Streamline (left) and isotherm patterns (right)

          for Ra = 1×106, A =2, W = 0.25
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are flat and parallel from the bottom to top part of the cavity for
aspect ratio, A = 3. For the same W = 0.5 and aspect ratio = 3
and for higher Ra = 1×105, streamlines of Fig. 5 shows the
development of three vortices along the height due to
convection heating of the fluid from the bottom to the top. The
corresponding isotherm lines show that the heat is transferred
from the heated element to the lower vortex, then from the
lower vortex to the upper one, and finally from the latter to the
cold wall as testified by the presence of the sharp gradients near
the active walls and between the vortices.
      Fig. 6 and Fig. 7 show the streamlines and isotherm lines for
the parameters shown with corresponding figures.  Fig. 7 of
streamlines for Ra = 1×106, A =1, W = 1 shows that each vortex
is in contact with only one active wall . The structure of the
isotherms shows that the heat is transferred from the heated

element to the lower vortex, then from the lower vortex to the
upper one, and finall y from the latter to the cold wall as testified
by the presence of the sharp gradients near the active walls and
between the vortices. In addition, the central part of each half of
the cavity, containing the horizontal vortices, is isothermal.
Fig. 6 of streamlines for Ra = 1×106, A =3, W = 0.5 indicates
that four parallel vortices along the height of the cavity are
developed. So as aspect ratio increases at higher Rayleigh
number, more stratification loops are observed. In this case,
each vortex is in contact with only one active wall . The
isotherm lines are similar to the earlier case.
        Fig. 8 and Fig. 9 show the streamlines and isotherm lines
for the parameters shown with corresponding figures. Fig. 9 of
streamlines for Ra = 3×104, A =2, W = 1 shows that two
vortices are developed along the height of the cavity. Fig. 9 of
isotherm lines are similar to the earlier case. However, Fig. 8 of
streamlines for Ra = 1×106, A =2, W = 1 shows that
development of three vortices along the height of the cavity. So
it signifies that as Ra increases number of vortices also
increases for the same aspect ratio and same portion of bottom
heating.
        Fig. 10 and Fig. 11 show the streamlines and isotherm
lines for the parameters shown with figure captions. Fig. 10 of

streamlines for Ra = 1×105, A =3, W = 1 indicates that three
vortices are present in the domain along the height of the cavity.
This is similar to the case for which Ra = 1×106, A =2, W = 1 as
described in Fig. 8. The isotherm patterns are also observed
similar to Fig. 8. However, the magnitudes of maximum and
minimum stream function values, ψmax and ψmin are 15 and   -15
respectively.  The streamlines of Fig. 11 for the parameters
Ra = 3×106, A =3, W = 1 indicates the development of four
vortices along the height of the cavity. So it is clear that as Ra
increases for the same aspect ratio and bottom-heating ratio, W
the development of number of vortices along the height of the
cavity increases. The development of isotherm lines is similar
to the earlier cases.
        Fig. 12 and Fig. 13 show of streamlines and isotherm lines

for the parameters set as indicated with figure captions. The
streamlines of Fig. 12 for Ra = 1×106, A =1, W = 0.25 indicates
that the formation of two vortices along the width direction. In
this case bottom-heating ratio is smaller than earlier cases and
therefore heating amount to the adjacent fluid due to convection
is small .
        Streamlines and isotherms, obtained for relatively low and
high Rayleigh numbers and W = 0.25, are presented in Fig. 14
and 15. For Ra = 1×103, A =1, W = 0.25, streamlines of Fig. 14
(on the left) show that the flow is organized in two vortexes i.e.
the right primary vortex rotating in the clockwise direction is
stronger than the left bottom corner secondary vortex. The
maximum value of the stream function,ψ is 0.06 which shows
conduction dominant flow.  The corresponding isotherms (right
side) show weak convection effect, they characterize a situation
for which the conduction regime is still dominating. Near the
heat source the isotherms show the influence of the natural
convection but at the upper part of the cavity the isotherms
become parallel to each other due to conduction effect.

Fig. 15 showing the streamlines and isotherms lines at higher
Ra clearly indicates the affect of convection on the flow and
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Fig. 14 Streamline (left) and isotherm patterns (right)
          for Ra = 1×103, A =1, W = 0.25
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isotherm patterns. Streamlines (left side) show the development
of two vortexes having ψmax = 10 (right vortex) and ψmin = -10
(left vortex). Isotherms (right side) clearly show the buoyancy
effect on the flow.

CORRELATION
Based on a large set of numerical data (some 40 data sets in all ),
correlation for average convection Nusselt number has been
derived as:

Nu c = 0.20W
1.82

A0.21Ra1.16 −                       (9)

As Rayleigh number directly affects convection heat transfer
because power law form is used for Ra. The exponent of aspect

ratio (A) is negative, which signifies Nu c decreases with
increase in aspect ratio. But the exponent of W is positive and

hence as W increases, Nu c also increases. A very high
correlation coeff icient of 0.991 and a standard deviation error of
0.129 indicate the goodness of the fit as shown in the parity plot
of Fig.16.

CONCLUSIONS
Numerical results for laminar natural convection in an air-fill ed
cavity having A = 1-3 partially heated from below are presented
for wide ranges of Rayleigh number. Equations of momentum
and energy have been solved using constant properties and
Boussinesq approximations. As aspect ratio increases, the
convection heat transfer decreases as obtained from correlation.
As bottom heating ratio, W increases the convection heat
transfer also increases. Average Nusselt number is greatly
influenced by Rayleigh number as found from correlation. The
number of vortices increases with increase in Rayleigh number
in vertical direction.
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Fig. 16 Parity plot for average convectie Nusselt number for the range of parameters as shown in Table 1

343


